
On the Embedding Phase of the

Hopcroft and Tarjan Planarity Testing Algorithm

Kurt Mehlhorn and Petra Mutzel
�y

Abstract

We give a detailed description of the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm� The embedding phase runs in linear time� An implemen�
tation based on this paper can be found in �MMN����

An undirected graph G � �V�E� is called planar if it can be mapped into the plane without
edge crossings� i�e�� the vertices of G are mapped into distinct points in the plane and
the edges of G are mapped into disjoint Jordan curves connecting their endpoints� Such
a mapping is called a planar geometric embedding� Two geometric planar embeddings are
called equivalent if there is an homeomorphism of the plane transforming one into the other�
An equivalence class of geometric planar embeddings is called a planar topological embedding
or simply planar embedding�

A planar embedding of a planar graph induces a cyclic ordering on the edges incident to
any �xed vertex� namely the clockwise ordering of the edges around their common endpoint�
A graph G together with a cyclic ordering on the edges incident to each vertex is called a
combinatorial embedding� it is called a planar combinatorial embedding if it is induced by
some planar embedding� Di�erent planar embeddings can give rise to the same combinato	
rial embedding� However� a planar combinatorial embedding of a connected graph uniquely
determines its topological embedding on the sphere� In the plane� it determines the topo	
logical embedding up to selection of the outer face� Recall that an embedding into the plane
can be obtained from an embedding on the sphere by polar projection� The pole can be
put into any face� There are linear time algorithms 
dFPP��� Sch�
� to convert a planar
combinatorial embedding into a geometric embedding� e�g�� the algorithm by Schnyder puts
the vertices of an n node graph onto an �n � �� � �n � �� grid and realizes the edges by
straight	line segments�

Hopcroft and Tarjan 
HT��� gave an algorithm that tests the planarity of an undirected
graph in linear time� Alternative linear time algorithms were developed by Lempel� Even�
and Cederbaum 
LEC��� ET���� Booth and Lueker 
BL���� and Fraysseix and Rosenstiehl

FR���� Chiba� Nishizeki� Abe and Ozawa 
CNAO��� have shown how to extend the al	
gorithm of Booth and Lueker so as to also construct a planar combinatorial embedding�
Hopcroft and Tarjan also stated but gave no details that their planarity testing algorithm
can be extended to also construct a planar combinatorial embedding� The textbook of the
�rst author 
Meh��� vol� �� page ���� attempts to give more details �in less than one page�
but the presentation is incorrect� We conclude that there is no published correct presentation
of the embedding phase of the Hopcroft and Tarjan algorithm�

�Max�Planck�Institut f�ur Informatik� Im Stadtwald� ����� Saarbr�ucken� Germany
yRevised version� 	
�	���

�



4 3

1

26

5

7

Figure �� A DFS	tree of a planar graph� Tree edges are shown solid and back edges are
shown dashed�

In this note we give a complete description of the embedding phase� An alternative presenta	
tion can be found in 
Mut���� Our embedding algorithm has the same recursive structure as
the testing algorithm of Hopcroft and Tarjan and also runs in linear time� An implementa	
tion based on this note is described in 
MMN��� and is distributed with the LEDA platform
of combinatorial and geometric computing 
N�ah��� MN��� �anonymous ftp mpi	sb�mpg�de�
directory pub�LEDA��

The testing phase of the Hopcroft and Tarjan algorithm is discussed in detail in 
Meh���
vol� �� pages �� � ����� We summarize that discussion� The graph G is assumed to be
biconnected� We also �x a particular DFS	tree of G and identify the vertices of G with
their DFS	numbers� We direct all tree edges from lower to higher DFS	number and all
non	tree edges from higher to lower DFS	number� Non	tree edges are called back edges�
Figure � shows an example� We use T and B to denote the set of tree edges and back edges
respectively�

We associate a segment S�e� and a cycle C�e� with every edge e � �x� y� of G� If e is a
back edge then C�e� and S�e� consist of the tree path from y to x and the edge e� If e is a
tree edge then let V �e� be the set of tree successors of y �including y itself� and let w� be
the lowest numbered endpoint of any back edge starting in V �e�� The cycle C�e� consists of
a tree path from the vertex w� to a vertex w � V �e� with �w�w�� � B and the back edge
�w�w�� and the segment S�e� consists of C�e�� the subgraph induced by V �e�� and all back
edges starting in a node in V �e�� Note that the segment S�e� is uniquely de�ned but that
there may be several choices for the cycle C�e�� We will later �x one particular choice for
C�e�� We divide the tree path underlying the cycle C�e� into two parts� its stem and its
spine� The stem consists of the part ending in x� The spine is empty if e is a back edge and
it is the part starting in y if e is a tree edge�

In our example� the cycle C���� ��� may consist of the tree path from � to � followed by the
back edge ��� ��� The stem is the tree path from � to � and the spine is the tree path from �
to �� The cycle C���� ��� may consist of the tree path from � to � and the back edge ��� ���

�



4 3

1

26

4 3

1

2

7

Figure �� Embeddings of S���� ��� and S���� ��� induced by the embedding of G� Stems are
shown in bold� The embedding of S���� ��� is canonical and the embedding of S���� ��� is
reversed canonical�

Its stem is the node � and its spine is the tree path from � to �� The segment S���� ��� is
the entire graph G and the segment S���� ��� is the graph G minus the edge ��� ���

A segment S�e� is called strongly planar if there is a planar embedding of S�e� and some
face in that embedding such that the entire stem of the cycle C�e� is contained in the border
of the face� An embedding with such a property is called a strongly planar embedding of
S�e�� If a segment S�e� has a strongly planar embedding then it also has one where the
stem of C�e� borders the outer face� When we talk about a strongly planar embedding we
assume from now on that the stem of C�e� borders the outer face� Let w�� w�� ���� wr with
e � �wr � y� be the stem of C�e�� A strongly planar embedding of S�e� is called canonical
�reversed canonical� if for all i� 
 � i � r� the edge �wi� wi��� immediately precedes �follows�
the edge �wi� wi��� in the clockwise ordering of edges incident to wi�

Figure � shows the embeddings of S���� ��� and S���� ��� induced by the embedding of G
shown in Figure ��

Since G is assumed to be biconnected there is exactly one tree edge out of vertex �� namely
the edge ��� ��� Moreover G � S���� ��� and G is planar i� S���� ��� is strongly planar�

Let e� be any edge and let C � C�e�� be the cycle associated with e�� An edge e � �x� y� is
said to emanate from C if x lies on the spine of C but e does not belong to C� We will also
say that the segment S�e� emanates from C� If e�� ���� em are the edges emanating from C
then S�e�� � C�S�e��� ����S�em�� i�e�� S�e�� is the union of the cycle C and the segments
S�e��� ���� S�em��

We need some more concepts� As above� let C � C�e�� and let e � �x� y� emanate from C�
The set A�e� of attachments of segment S�e� to cycle C is de�ned to be the set fx� yg if e is
a back edge and the set fxg�fz� �w� z� is a back edge� w � V �e� and z �� V �e�g if e is a tree
edge� Two segments S�e� and S�e�� where e and e� emanate from C are said to interlace if
either there are nodes x � y � z � u on cycle C such that x� z � A�e� and y� u � A�e�� or
A�e� and A�e�� have three points in common�

The interlacing graph IG�C� with respect to cycle C � C�e�� is de�ned as follows� The
nodes of IG�C� are the segments S�e� where e emanates from C� Also� S�e� and S�e�� are

�



connected by an edge i� S�e� and S�e�� interlace� The segment S�e�� is strongly planar i�
the following conditions hold� Firstly� S�e� is strongly planar for every e emanating from
C� Secondly� there is a partition fL�Rg of the segments emanating from C such that no
two segments in L or R interlace and such that A�e� � fw�� ���wr��g � � for any segment
S�e� � R� where w�� w�� ���wr��� wr is the stem of cycle C�

For reasons of e�ciency� it is useful to order the adjacency list of any vertex v as follows�
edge �v� w� is before edge �v� w�� if min A��v� w�� � min A��v� w��� or if min A��v� w�� �
min A��v� w���� A��v� w�� has cardinality two� and A��v� w��� has cardinality three or more�
In all other cases the order is irrelevant� We assume from now on that the cycle C�e� for
a tree edge e � �x� y� is de�ned in the following way� Starting in y we construct a path by
always taking the �rst edge out of each node until a back edge is encountered� The path
constructed this way is the spine of the cycle C�e��

The discussion above suggests a procedure stronglyplanar �e��� cf� 
Meh��� vol� �� page �
��
that given an edge e� decides the strong planarity of the segment S�e��� It �rst constructs
the cycle C � C�e��� then recursively tests the strong planarity of all segments S�e�� where
e emanates from C� and �nally tests� whether there is an appropriate bipartition of the
vertex set of the interlacing graph� The recursive calls are made in the following order�
If wr��� ���� wk is the spine of the cycle C then the segments S��wk� �� are tested �rst�
the segments S��wk��� �� are tested next���� � For each �xed i the segments S��wi� �� are
tested in the order in which the edges �wi� � appear on the adjacency list of wi� The call
stronglyplanar���� ��� tests the strong planarity of segment S���� ��� and hence the planarity
of G�

As shown in 
Meh��� vol� �� page ���� procedure stronglyplanar can also be used to compute
a labelling � of the edges of G by L and R such that�

� an edge e is labelled i� stronglyplanar�e� is called

� edge ��� �� is labelled L

� if e� is a labelled edge and e�� ���� em are the edges emanating from C � C�e�� then
� induces the appropriate bipartition of the interlacing graph� i�e�� if ��ei� � ��ej�
then S�ei� and S�ej � do not interlace and if ��ej� � R then A�ej��fw�� ���� wr��g � �
where w�� ���� wr is the stem of C�

The correctness proof of procedure stronglyplanar demonstrates how a strongly planar em	
bedding of S�e�� can be obtained from strongly planar embeddings of the S�ei��s�

To construct a canonical embedding of S�e�� draw the path w�� � � � � wk �consisting of stem
w�� � � � � wr� edge e� � �wr� wr��� and spine �wr��� � � � � wk� as a vertical upwards directed
path� add edge �wk� w��� and then for i� � � i � m� and ��ei� � L extend the embedding
of C � S�e�� � � � �S�ei��� by glueing a canonical embedding of S�ei� onto the left side
of the vertical path� and for i� � � i � m� and ��ei� � R extend the embedding of
C � S�e��� � � �� S�ei��� by glueing a reversed canonical embedding of S�ei� onto the right
side of the vertical path� Similarly� if the goal is to construct a reversed canonical embedding
of S�e�� then� if ��ei� � L� a reversed canonical embedding of S�ei� is glued onto the right
side of the vertical path� and if ��ei� � R� then a canonical embedding of S�ei� is glued
onto the left side of the vertical path� This completes the review of 
Meh����

We can now give the algorithmic details� We �rst use procedure stronglyplanar to compute
the mapping �� We then use a procedure embedding to actually compute an embedding�
The procedure embedding takes two parameters� a tree edge e� and a �ag t � fL�Rg� A
call embedding�e�� L� computes a canonical embedding of S�e�� and a call embedding�e�� R�

�



�
� procedure embedding�e�� edge� t� fL�Rg�
�	 computes an embedding of S�e��� e� � �x� y�� as described in the text�

it returns the lists T and A de�ned in the text 	�
��� �nd the spine of segment S�e�� by starting in node y and always

taking the �rst edge of every adjacency list until a back edge is
encountered� This back edge leads to node w��
�	 Let w�� � � � � wr be the tree path from w� to x � wr and
let wr�� � y� � � � � wk be the spine constructed above� 	�

��� AL
 AR
 empty list of edges�
T 
 �wk� w���

��� for j from k downto r � �
��� do for all edges e� �except the �rst� emanating from wj

��� do if e� is a tree edge
��� then �T �� A��
 embedding�e�� t� ��e���
��� else T � 
 �e��� A� 
 �reversal of e��
��� �

��� if t � ��e��
��
� then T 
 T � conc T � AL
 AL conc A�

���� else T 
 T conc T �� AR
 A� conc AR
���� �

���� od

���� output �wj� wj��� conc T � �	 the cyclic adjacency list of vertex wj 	�
���� let AL � AL� conc T � and AR � T �� conc AR�

where T � and T �� contain all edges incident to wj���
���� AL
 AL�� AR
 AR�� T 
 T � conc �wj��� wj� conc T ��

���� od

���� A
 AR conc �w�� wk� conc AL�
���� return T and A
��
� end

Table �� The procedure embedding

computes a reversed canonical embedding of S�e��� The call embedding���� ��� L� embeds
the entire graph�

The embedding of S�e�� computed by embedding�e�� t� is represented in the following non	
standard way�

�� For the vertices v � V �e�� we use the standard representation� i�e�� the cyclic list of the
incident edges corresponding to the clockwise ordering of the edges in the embedding�

�� For the vertices in the stem we use a non	standard representation� For each vertex
wi � fw�� � � � � wrg let the lists AL�wi� and AR�wi� be such that the catenation of
�wi� wi���� AR�wi�� �wi� wi���� and AL�wi� corresponds to the clockwise ordering of
the edges incident to wi in the embedding� Here� w�� � wk� Note that AR�wi� � �
for � � i � r if t � L� and AL�wi� � � for � � i � r� if t � R� The lists AL�wi��
AR�wi�� 
 � i � r� are returned in an implicit way� AL�wr� and AR�wr� are returned
as the list T � AL�wr�� �wr� wr���� AR�wr� and the other lists are returned as the list
A � AR�wr���� � � � � AR�w��� �w�� wk�� AL�w��� � � � � AL�wr���� cf� Figure ��

�



AR�wr��	

AR�wr��	

AR�w�	

AR�w�	

AL�wr	

AL�wr��	

AL�wr��	

AL�w�	

AL�w�	

A

w�

w�

wr��

wr��

wr

wk

T

wr��

AR�wr	

Figure �� A call embedding �e�� t� returns lists T and A� Lists are drawn as arrows� The
arrowhead corresponds to the end of the list�

�



The procedure embedding has the same structure as the procedure stronglyplanar and is
given in Table �� It �rst constructs the stem and the spine �line ���� of cycle C�e��� then
walks down the spine �lines ��� to ������ and �nally computes the lists T and A to be
returned �lines ���� and ������

We �rst discuss the walk down the spine� Suppose that the walk has reached vertex wj � We
�rst recursively process the edges emanating from wj �lines ��� to ������ and then compute
the cyclic adjacency list of vertex wj and prepare for the next iteration �lines ���� to ������

We discuss lines ��� to ���� �rst� In general� some number of edges emanating from wj

and all edges incident to vertices wl with l � j will have been processed already� Call the
processed edges e�� � � � � ei��� We can now state the invariant of the loop ��� to �����

� T concatenated with �wj� wj��� is the cyclic adjacency list of vertex wj in the embed	
ding of C � S�e�� � � � �� S�ei����

� AL and AR are the catenation of the lists AL�w��� � � � � AL�wj��� and AR�wj���� � � � �
AR�w�� respectively where �wl� wl���� AR�wl�� �wl� wl���� AL�wl� is the cyclic adja	
cency list of vertex wl� 
 � l � j � �� in the embedding of C � S�e�� � � � �� S�ei����

When i � 
� i�e�� before processing any of the emanating segments the adjacency list of wj�

 � j � k � �� is �wj � wj���� �wj� wj��� and hence AL�wj� � AR�wj� � �� We conclude
that T � AL and AR are initialized correctly in line ����

Assume now that we process edge e� � ei emanating from wj� The �ag ��e�� indicates what
kind of embedding of S�ei� is needed to build a canonical embedding of S�e��� the opposite
kind of embedding of S�ei� is needed to build a reversed canonical embedding of S�e��� So
the required kind is given by t� ��e��� where L�L � R�R � L and L�R � R� L � R�

If e� is a tree edge� the call embedding�e�� t���e��� computes the cyclic adjacency lists of the
vertices in V �e�� and returns lists T � and A� as de�ned above� If e� is a back edge then T � is
simply e� and A� is simply the reversal of e�� If S�ei� has to be glued to the left side of the
vertical path w�� � � � � wk� i�e�� if t � ��e�� then we append T � to the front of T and A� to the
end of AL� cf� Figure �� Analogously� if S�ei� has to be glued to the right side of the path
w�� � � � � wk� i�e�� if t �� ��e��� then we append T � to the end of T and A� to the front of AR�
This clearly implements the glueing process described above and also clearly maintains the
invariants�

Suppose now that we have processed all edges emanating from wj� Then �wj� wj��� con	
catenated with T is the cyclic adjacency list of vertex wj �line ������

We next prepare for the treatment of vertex wj��� Let T � and T �� be the list of edges incident
to wj�� from the left and from the right respectively and having their other endpoint in an
already embedded segment� List T � is a su�x of AL and list T �� is a pre�x of AR� The
catenation of T �� �wj��� wj�� T ��� and �wj��� wj��� is the current clockwise adjacency list
of vertex wj��� Thus lines ���� and ���� correctly initialize AL� AR� and T for the next
iteration�

Suppose now that all edges emanating from the spine of C�e�� have been processed� i�e��
control reaches line ����� At this point� list T is the ordered list of edges incident to wr

�except �wr � wr���� and the two lists AL and AR are the ordered list of edges incident to
the two sides of the stem of C�e��� Thus T and the catenation of AR� �w�� wk�� and AL are
the two components of the output of embedding�e�� t�� We summarize in

Theorem � Let G � �V�E� be a planar graph� Then G can be turned into a planar combi�
natorial embedding in linear time�

�



T’
S(e’)

A’

AL

AR

T

w j

wj-1

w l

S(e’)
T’

T

w j

wj-1

AR

w l
AL

A’

Figure �� Glueing S�e�� to the left or right side of the path w�� � � � � wk respectively�

Proof� The correctness follows immediately from the correctness of procedure strongly�
planar� from the fact that stronglyplanar correctly computes the mapping �� and from the
observation that embedding realizes the glueing process described above�

For the running time analysis we only have to observe that every edge is moved at most
once from one of the lists AL and AR onto the list T �onto lists T � and T �� in line ���� and
then to T in line ������ that every edge belongs to at most one spine �line ����� and that all
lines except lines ��� and ���� take constant time� �

For an example let us consider the DFS	tree of G given in Figure �� Consider the situation in
the call of embedding���� ��� L�� The call embedding���� ��� L� computes the cyclic adjacency
lists of the vertices in V ���� ��� and returns lists T � � ��� �� and A� � ��� ����� ��� In line
��
�� T � ��� ����� �� and AL � ��� ����� ��� The call of embedding���� ��� R� gives T � � ��� ��
and A� � ��� ��� ��� ��� Thus in line ��
� we have T � ��� ����� ����� �� and AR � ��� ����� ���
The adjacency list of node wj � � is completed in line ����� It is ��� ��� ��� ��� ��� ��� ������
In line ���� we get AL � ��� ����� ��� AR � ��� �� and T � ��� ����� ��� At the end of
embedding���� ��� L� we have A � ��� ����� ����� ����� ���

An implementation based on this note is described in 
MMN��� and is distributed with the
LEDA platform of combinatorial and geometric computing 
N�ah��� MN��� �anonymous ftp
�mpi	sb�mpg�de� directory pub�LEDA��� It �rst determines the connected and biconnected
components and then adds edges to make the graph biconnected� It then tests planarity
�using procedure stronglyplanar�� If the graph is found to be non	planar� a subdivision of
K� or K��� is identi�ed to prove non	planarity �a trivial method is used for that purpose�
the following test is applied to every edge� The edge is removed provisionaly and planarity
is tested again� If the graph is still non	planar then the edge is removed� If the graph is
now planar the edge is kept� In this way� a subdivision of K� or K��� is found in quadratic
time� We should mention that there is a linear time algorithm to identify a K� or K���

in a non	planar graph 
Wil����� If the graph is found to be planar a planar combinatorial
embedding is constructed� The resulting planar combinatorial embedding is triangulated� a
straight	line embedding is constructed �using either the algorithm in 
Sch�
� or 
dFPP�����
and the result is displayed�

The implementation was extensively tested on three kinds of graphs� hand	crafted examples

�



number of nodes �


 �


 �


 �


 ��


 ��



number of edges ���� ���
 ���� ����� ����� �����
initializing 
��� 
��
 ���� ��
� �
��� ���
�
planarity testing 
��� 
��� 
��� ���� ���� ��
�
embedding 
��� 
��
 
��� ���
 ���� ����
total time 
��� ���� ���� ���
 ����� �����

Table �� Running times in seconds on a SUN SPARC �
 for pseudo	random planar graphs�
The �rst row shows the time to prepare the input graph� i�e�� to copy it� to make it bicon	
nected and bidirected� the second row shows the time to test planarity� and the third row
gives the time for constructing the embedding�

of small size� random sparse graphs� and pseudeo	random planar graphs� The latter graphs
were generated by choosing an appropriate number of random line segments in the unit
square� computing their intersections� and putting a vertex on every endpoint and intersec	
tion� The running time of the implementation is about �
 times the running time of the
LEDA strongly connected components algorithm� Table � gives more details�

The measured running times grow slightly more than linear� This is due to the increased
number of cache faults for larger input graphs� Many of the actions of the algorithm follow
the following pattern� an edge� say �v� w�� is explored and then a number of labels of node
w are inspected and processed� We have chosen LEDA�s node arrays to realize node labels�
Thus inspecting k node label corresponds to accesses in k arrays and hence to up to k cache
faults� Since processing a node label is typically a simple operation these cache faults show
up in the measured running time� An alternative implementation where all node labels are
stored directly in the node would incur less slow	down due to cache faults�

References


BL��� K� Booth and L� Lueker� Testing for the consecutive ones property� interval
graphs and graph planarity using PQ	tree algorithms� J� of Computer and Sys�
tem Sciences� ����������� �����


CNAO��� N� Chiba� T� Nishizeki� S� Abe� and T� Ozawa� A linear algorithm for embedding
planar graphs using PQ	trees� J� of Computer and System Sciences� �
����������
�����


dFPP��� H� de Fraysseix� J� Pach� and R� Pollack� How to draw a planar graph on a grid�
Combinatorica� �
������� �����


ET��� S� Even and R�E� Tarjan� Computing an st	numbering� Theoretical Computer
Science� ���������� �����


FR��� H�de Fraysseix and P� Rosenstiehl� A depth��rst�search characterization of pla	
narity� Annals of Discrete Mathematics� �������
� �����


HT��� J� Hopcroft and R� Tarjan� E�cient planarity testing� J� ACM� ��������������
�����


LEC��� A� Lempel� S� Even� and I� Cederbaum� An algorithm for planarity testing of
graphs� Theory of Graphs� Int� Symp��Rome ����	� pages �������� �����

�




Meh��� K� Mehlhorn� Data Structures and E
cient Algorithms� volume I� II� III�
Springer Verlag� Berlin� �����


MMN��� K� Mehlhorn� P� Mutzel� and St� N�aher� An implementation of the Hopcroft and
Tarjan planarity test and embedding algorithm� Technical Report MPI�I����
���� Max�Planck�Institut f�ur Informatik� Saarbr�ucken� �����


MN��� K� Mehlhorn and St� N�aher� LEDA� A library of e�cient data types and algo	
rithms� CACM� ����������
�� �����


Mut��� P� Mutzel� A fast linear time embedding algorithm based on the Hopcroft	Tarjan
planarity test� Technical report� Universit�at zu K�oln� �����


N�ah��� St� N�aher� LEDA Manual Version ���� Technical Report MPI	I	��	�	

�� Max	
Planck	Institut f�ur Informatik� �����


Sch�
� W� Schnyder� Embedding planar graphs on the grid� In Proc� �st ACM�SIAM
Symp� Discr� Alg� �SODA	� San Francisco� pages �������� ���
�


Wil��� S�G� Williamson� Depth	�rst search and Kuratowksi subgraphs� Journal of the
ACM� ����������� �����

�



