
On-line and Dynamic Algorithms for Shortest

Path Problems ∗ †

Hristo N. Djidjev
Department of Computer Science, Rice University,

P.O. Box 1892, Houston, TX 77251, USA

Phone: +1 (713) 527-8750 ext. 3246, Fax: +1 (713) 285-5930

Email: hristo@cs.rice.edu

Grammati E. Pantziou
Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece

and

Department of Mathematics and Computer Science,

Dartmouth College, Hanover NH 03755, USA

Phone: +1 (603) 646-1613, Fax: +1 (603) 298-8312

Email: pantziou@cs.dartmouth.edu

Christos D. Zaroliagis
Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece

and

Max-Plank Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany

Phone: +49 (681) 302-5356, Fax: +49 (681) 302-5401

Email: zaro@mpi-sb.mpg.de

April 1, 1994

Abstract

We describe algorithms for finding shortest paths and distances in a planar digraph
which exploit the particular topology of the input graph. An important feature of our
algorithms is that they can work in a dynamic environment, where the cost of any edge
can be changed or the edge can be deleted. For outerplanar digraphs, for instance, the
data structures can be updated after any such change in only O(log n) time, where n is
the number of vertices of the digraph. We also describe the first parallel algorithms for
solving the dynamic version of the shortest path problem. Our results can be extended
to hold for digraphs of genus o(n).

Keywords: Shortest path, dynamic algorithm, planar digraph, outerplanar digraph.

∗This is a substantially improved version of a paper presented at ICALP’91.
†This work is partially supported by the EC ESPRIT Basic Research Action No. 7141 (ALCOM II) and

by the EC Cooperative Action IC-1000 (project ALTEC). The work of the second author is also partially
supported by the NSF postdoctoral fellowship No. CDA-9211155.

1

1 Introduction

1.1 The problem and its motivation

There has been a growing interest in dynamic graph problems in the recent years [1, 9, 16,

19, 23, 26]. The goal is to design efficient data structures that not only allow one to give

fast answers to a series of queries, but that can also be easily updated after a modification

of the input data. Such an approach has immediate applications to a variety of problems

which are of both theoretical and practical value. Dynamic algorithms for graph problems

have applications in simulation of traffic networks, high level languages for incremental

computations, incremental data flow analysis, interactive network design, maintenance of

maximum flow in a network [2, 28, 29, 30], just to name a few.

Let G be an n-vertex digraph with real valued edge costs but no negative cycles. The

length of a path p in G is the sum of the costs of all edges of p and the distance between

two vertices v and w of G is the minimum length of a path between v and w. The path of

minimum length between v, w is called a shortest path between v and w. Finding shortest

path information in graphs is an important and intensively studied problem with many

applications. Recent papers [3, 6, 11, 12, 13, 15, 20, 22, 24, 25] investigate the problem for

different classes of input graphs and models of computation. All of the above-mentioned

results, however, relate to the static version of the problem, i.e. the graph and the costs on

its edges do not change over time. In contrast, we consider here a dynamic environment,

where edges can be deleted and their costs can be modified. More precisely, we investigate

the following on-line and dynamic shortest path problem: given G (as above), build a data

structure that will enable fast on-line shortest path or distance queries. In case of edge

deletion or edge cost modification of G, update the data structure in appropriately short

time.

The dynamic version of the shortest paths problem has clearly a lot of applications.

Consider for example, the vehicle routing problem: Assume that you are in a vehicle located

somewhere in the traffic network of a city, and you want to know at any time the shortest

route to the nearest hospital, drugstore, hotel, etc, or to find the shortest route or distance

to a specific place. Note that the underlying traffic network may change dynamically: some

roads may close (because of repair works or accidents), certain roads may change behavior

at rush hours, or some other ones may change direction. The on-line and dynamic shortest

path problem is one of the fundamental problems that one has to solve in order to develop

a software system that will give fast and efficient solutions to the vehicle routing problem.

2

1.2 Previous work

There are a few previously known algorithms for the dynamic shortest path problem. For

general digraphs, the best previous algorithms in the case of updating the data structure

after edge insertions/deletions were due to [8] and require O(n2) update time after an edge

insertion and O(n2 log n) update time after an edge deletion. Some improvements of these

algorithms have been achieved in [1] with respect to the amortized cost of a sequence of edge

insertions, if the edge costs are integers. For the case of planar digraphs the best dynamic

algorithms are due to [10] for the case of edge cost updates. The preprocessing time and

space is O(n log n) (O(n) space can be achieved, if the computation is restricted to finding

distances only.) A single-pair query can be answered in O(n) time, while a single-source

query takes O(n
√
log log n) time. An update operation to this data structure, after an edge

cost modification or deletion, can be performed in O(log3 n) time. In parallel computation

we are not aware of any previous results related to dynamic structures for maintaining

shortest path information in the case of edge cost updates. On the other hand, efficient

data structures for answering very fast on-line shortest path or distance queries for the

sequential and the parallel models of computation have been proposed in [6, 14], but they

do not support dynamization.

1.3 Our results

In this paper, we give efficient algorithms for solving the on-line and dynamic shortest path

problem in planar digraphs which are parameterized in terms of a topological measure q of

the input digraph. Our main result is the following.

Given an n-vertex planar digraph G with real-valued edge costs but no negative cy-

cles, there exists an algorithm for the on-line and dynamic shortest path problem on G that

supports edge cost modification and edge deletion with the following performance character-

istics: (i) preprocessing time and space O(n + q log q); (ii) single-pair distance query time

O(q+log n); (iii) single-pair shortest path query time O(L+q+log n) (where L is the num-

ber of edges of the path); (iv) single-source shortest path tree query time O(n+q
√
log log q);

(v) update time (after an edge cost modification or edge deletion) O(log n+ log3 q). In the

case where the computation is restricted to finding distances only the space can be reduced

to O(n).

Here q is a topological measure of the input planar digraph G and is proportional to the

cardinality of a minimum number of faces covering all vertices of G (among all embeddings

of G in the plane). Our results are improvements over the best previous ones, in all cases

where q = o(n). In the case where G is outerplanar (q = 1) our preprocessing time and

space are optimal (linear) and the distance query and the update time are logarithmic.

3

Also, our algorithms seem to be very efficient for the class of all appropriately sparse

graphs. As it has been established in [7, 21] random Gn,p graphs with threshold function

1/n are with probability one planar and have expected value for q equal to O(1). Then, our

algorithms achieve the following expected performance for the above class of graphs: O(n)

preprocessing time and space, O(log n) (resp. O(L+ log n)) distance (resp. shortest path)

query time, O(n) single-source shortest path tree query time, and O(log n) update time.

For comparison of our results with previous ones, see Table 1.

Our solution is based on the following ideas:

(a) The input planar digraph is decomposed into a number, O(q), of outerplanar sub-

graphs (called hammocks) satisfying certain separator conditions [13, 25].

(b) A decomposition strategy based on graph separators is employed for the efficient

solution of the problem for the case of outerplanar digraphs (Section 2).

(c) A data structure is constructed during the decomposition of the outerplanar digraph

and is updated after each edge cost modification or edge deletion (Section 3). This data

structure contains information about the shortest paths between properly chosen Θ(n) pairs

of vertices. It also has the property that the shortest path between any pair of vertices is

a composition of O(log n) of the predefined paths and that any edge of the graph belongs

to O(log n) of those paths (n is the size of the outerplanar digraph).

We mention also the following extensions and generalizations to our results discussed

in the paper.

(i) We have constructed parallel versions of our algorithms for the CREW PRAM

model of parallel computation (Section 5). There have been no previous parallel algorithms

for the dynamic and on-line version of the shortest path problem.

(ii) Our algorithms can detect a negative cycle, either if it exists in the initial digraph,

or if it is created after an edge cost modification.

(iii) Using the ideas of [12, 20], our results can be extended to hold for any digraph

whose genus is o(n). In such a case an embedding of the graph does not need to be provided

by the input (Section 5).

(iv) Although our algorithms do not directly support edge insertion, they are so fast

that even if the preprocessing algorithm is run from scratch after any edge insertion, they

still provide better performance compared with [8]. Moreover, our algorithms can support

a special kind of edge insertion, called edge re-insertion. That is, we can insert any edge

that has previously been deleted within the resource bounds of the update operation.

The paper is organized as follows. Section 2 contains preliminaries. In Section 3

we construct algorithms for outerplanar digraphs and in Section 4 we obtain our basic

results for planar digraphs. In Section 5 we describe a parallel implementation and some

generalizations of our results.

4

2 Preliminaries

Let G = (V (G), E(G)) be a connected planar n-vertex digraph with real edge costs but no

negative cycles. A separation pair is a pair (x, y) of vertices whose removal divides G into

two disjoint subgraphs G1 and G2. We add the vertices x, y and the edges ⟨x, y⟩ and ⟨y, x⟩
to both G1 and G2. Let 0 < α < 1 be a constant. An α-separator S of G is a pair of sets

(V (S), D(S)), where D(S) is a set of separation pairs and V (S) is the set of the vertices

of D(S), such that the removal of V (S) leaves no connected component of more than αn

vertices. We will call the separation vertices (pairs) of S that belong to any such resulting

component H and separate it from the rest of the graph separation vertices (pairs) attached

to H. It is well known that if G is outerplanar then there exists a 2/3-separator of G which

is a single separation pair. Also, given an n-vertex outerplanar digraph Gop and a set M of

vertices of Gop, compressing Gop with respect to M means constructing a new outerplanar

digraph of O(|M |) size that contains M and such that the distance between any pair of

vertices of M in the resulting graph is the same as the distance between the same vertices

in Gop [13, 25]. (In our algorithms the size of M will be O(1).)

Definition 2.1 Let Gop be an outerplanar digraph and S be an α-separator of Gop that

divides Gop into connected components one of which is G. Let p = (p1, p2) be a separation

pair of G. Construct a graph SR(G) as follows: divide G into two subgraphs by using p as a

separation pair, compress each resulting subgraph K with respect to (V (S)∪{p1, p2})∩V (K),

and join the resulting graphs at vertices p1, p2. We call SR(G) the sparse representative of

G.

A hammock decomposition of G is a decomposition of G into certain outerplanar di-

graphs called hammocks. This decomposition is defined with respect to a given set of faces

that cover all vertices of G. Let q be the minimum number of such faces (among all em-

beddings of G). It has been proved in [13, 25] that a planar digraph G can be decomposed

into O(q) hammocks either in O(n) sequential time, or in O(log n log∗ n) parallel time and

O(n log n log∗ n) work on a CREW PRAM. Also, by [12, 20], we have that an embedding of

G does not need to be provided by the input in order to compute a hammock decomposi-

tion of O(q) hammocks. Hammocks satisfy the following properties: (i) each hammock has

at most four vertices in common with any other hammock (and therefore with the rest of

the graph) called attachment vertices; (ii) the hammock decomposition spans all the edges

of G, i.e. each edge belongs to exactly one hammock; and (iii) the number of hammocks

produced is the minimum possible (within a constant factor) among all possible decompo-

sitions. Hammock decompositions allows us to reduce the solution of a given problem Π on

a planar digraph to a solution of Π on an outerplanar digraph.

5

In the sequel, we can assume w.l.o.g. that Gop is a biconnected n-vertex outerplanar

digraph. Note that ifGop is not biconnected we can add an appropriate number of additional

edges of very large costs in order to convert it into a biconnected outerplanar digraph (see

[13, 25]).

2.1 Constructing a separator decomposition

We describe an algorithm that generates a decomposition of Gop (by finding successive

separators in a recursive way) that will be used in the construction of a suitable data

structure for maintaining shortest path information in Gop. Our goal will be that, at each

level of recursion, (i) the sizes of the connected components resulting after the deletion

of the previously found separator vertices are appropriately small, and (ii) the number of

separation vertices attached to each resulting component is O(1). The following algorithm

finds such a partitioning and constructs the associated separator tree, ST (Gop), used to

support binary search in Gop. Let in the algorithm below G denote a subgraph of Gop

(initially G := Gop).

ALGORITHM Sep Tree(G,ST (G))

Begin

1. If |V (G)| ≤ 4, then halt. Else let S denote the set of separation pairs in Gop found

during all previous iterations. (Initially S = ∅.) Let nsep denote the number of separation

pairs of S attached to G.

1.1. If nsep ≤ 3, then let p = {p1, p2} be a separation pair of G that divides G into two

subgraphs G1 and G2 with no more than 2n/3 vertices each.

1.2. Otherwise (nsep > 3), let p = {p1, p2} be a separation pair that separates G into

subgraphs G1 and G2 each containing no more than 2/3 of the number of separation pairs

attached to G.

2. Add p to S and run this algorithm recursively on Gi for i = 1, 2. Create a separator

tree ST (G) rooted at a new node v associated with p and G, and whose children are the

roots of ST (G1) and ST (G2).

End.

Observe that the nodes of ST (Gop) are associated with subgraphs of Gop which we

will call descendant subgraphs of Gop. With each descendant subgraph a distinct separation

pair is associated. From the description of the algorithm, the following fact follows.

Lemma 2.1 Any descendant subgraph G of Gop at level i in ST (Gop) has no more than 4

separation pairs attached to it and the number of its vertices is no more than (2/3)in.

6

Algorithm Sep Tree can be easily implemented to run in O(n log n) time and O(n)

space. We show by the following lemma that there exists a more efficient implementation

in O(n) time and space.

Lemma 2.2 Algorithm Sep Tree(Gop, ST (Gop)) can be implemented to run in O(n) time

and O(n) space. The depth of the resulting separator tree ST (Gop) is O(log n).

Proof: Each recursive step of Algorithm Sep Tree takes O(1) time plus time necessary to

find the separation pair p. Thus the total time needed by all steps of the algorithm is O(n)

plus the time required to find all separation pairs p. Furthermore, notice that finding all

separation pairs from Step 1.2 can be implemented in O(n) time, if in Step 1.2 we keep for

each component K into which S divides G a list of the separation pairs attached to K. We

can trivially update this list in O(1) time when a new separation pair is attached to K,

since we don’t allow the number of the separation pairs in any list to exceed 4. Therefore

we need to show that the time required to find all separation pairs p from Step 1.1 is linear.

We construct the dual graph of Gop (excluding the outer face), which is a tree. By using the

data structure of [27] for dynamic trees we can find one separation pair in O(log n) time.

Then the maximum time T (n) needed to find all separation pairs satisfies the recurrence

T (n) ≤ max{T (n1) + T (n2) | n1 + n2 = n, n1, n2 ≤ 2n/3}+O(log n), n > 1

which has a solution T (n) = O(n). Since ST (Gop) is a balanced tree, its depth is obviously

logarithmic.

3 Dynamic Algorithms for Outerplanar Digraphs

In this section we will give algorithms for solving the on-line and dynamic shortest path

problem for the special case of outerplanar digraphs. We will use these algorithms in Section

4 for solving shortest path problems for general planar digraphs. Throughout this section

we denote by Gop an n-vertex biconnected outerplanar digraph.

3.1 The data structures and the preprocessing algorithm

The data structures used by our algorithms are the following:

(I) The separator tree ST (Gop). Each node of ST (Gop) is associated with a descendant

subgraph G of Gop along with its separation pair as determined by algorithm Sep Tree and

also contains a pointer to the sparse representative SR(G) of G.

(II) The sparse representative SR(G) for all graphs G of ST (Gop). According to

Definition 2.1, SR(G) consists of the union of the compressed versions of G1 and G2 with

respect to the separation pairs attached to G plus the separation pair dividing G, where

7

G1 and G2 are the children of G in ST (Gop). Therefore the size of SR(G) is O(1). Note

also that: (a) since the size of SR(G) is O(1), we can compute the distances between the

vertices of SR(G) in constant time; (b) for each leaf of ST (Gop) we have that SR(G) ≡ G,

since in this case G is of O(1) size.

In the following sections we will use the properties of the separator decomposition

to show that the shortest path information encoded in the sparse representatives of the

descendant subgraphs of Gop is sufficient to compute the distance between any 2 vertices of

Gop in O(log n) time and that all sparse representatives can be updated after any edge cost

modification also in O(log n) time. We next give an algorithm that constructs the above

data structures in linear time.

ALGORITHM Pre Outerplanar(Gop)

Begin

1. Construct a separator tree ST (Gop) using algorithm Sep Tree(Gop, ST (Gop)).

2. Compute the sparse representative SR(Gop) of Gop as follows.

for each child G of Gop in ST (Gop) do

(a) if G is a leaf of ST (Gop) then SR(G) = G

else find SR(G) by running Step 2 recursively on G.

(b) Construct the sparse representative of Gop as described in Definition 2.1 by using

the sparse representatives of the children of Gop.

End.

Lemma 3.1 Algorithm Pre Outerplanar(Gop) runs in O(n) time and uses O(n) space.

Proof: Step 1 needs O(n) time and space by Lemma 2.2. Let P (n) be the maximum time

required by Step 2. Then P (n) satisfies the recurrence

P (n) ≤ max{P (n1) + P (n2) | n1 + n2 = n, n1, n2 ≤ 2n/3}+O(1), n > 1

which has a solution P (n) = O(n). The space required is proportional to the size of ST (Gop)

since each sparse representative has O(1) size. Therefore the space needed for the above

data structures is O(|ST (Gop)|) = O(n). The bounds follow.

3.2 The single-pair query algorithm

We will first briefly describe the idea of the query algorithm for finding the distance between

any two vertices v and z of Gop. The algorithm proceeds as follows. First search ST (Gop)

8

to find a descendant subgraph G of Gop such that the separation pair p = (p1, p2) associated

with G separates v from z. Let d(v, z) denote the distance between v and z. Then obviously

d(v, z) = min{d(v, p1) + d(p1, z), d(v, p2) + d(p2, z)}. (1)

Hence, it suffices to compute the distances d(v, p1), d(p1, z), d(v, p2) and d(p2, z). In order

to do this we will need the shortest path information encoded in the sparse representatives.

Now we will analyze how one can use the information the sparse representatives provide.

Let s = (s1, s2) be any separation pair attached to G. Let s divide some descendant

subgraph H of Gop into subgraphs H1 and H2 where H1 has no other common vertices

with G except for s1 and s2. If H is an ancestor of G in ST (Gop), we call s an ancestor

separation pair of G and if H is a parent of G, we call s a parent separation pair of G. The

distance from s1 to s2 in SR(G) is, by the preprocessing algorithm, equal to the distance

between s1 and s2 in G. However, the distance from s1 to s2 in G might be different from

the distance between these vertices in Gop, if s is an ancestor separation pair. (If s is not

an ancestor separation pair the distances are the same.) Note that G can have more than

one ancestor separation pair, but only one parent separation pair (if G ̸= Gop).

Assume that G ̸= Gop. Denote by M(G) the set of the parent separation pairs of all

descendant subgraphs of Gop that are ancestors of G in ST (Gop) (including G). Then M(G)

contains all ancestor separation pairs of G. Let D(G) be the set of all distances d(x1, x2)

and d(x2, x1) in Gop, where (x1, x2) is a separation pair in M(G). Then D(G) can be found

by the following algorithm.

ALGORITHM Parent Pairs(G)

Begin

1. Let G′ be the parent of G in ST (Gop). If G′ = Gop then D(G′) := ∅; otherwise
compute recursively D(G′) by this algorithm.

2. Find d(s′1, s
′
2) and d(s′2, s

′
1) in Gop by using SR(G′) and the information in D(G′),

where (s′1, s
′
2) is the separation pair associated withG′. SetD(G) := D(G′)∪{d(s′1, s′2), d(s′2, s′1)}.

End.

Note that by the above discussion D(G) contains the distances in Gop between the

vertices of all ancestor separation pairs attached to G. The time complexity of Algorithm

Parent Pairs is clearly O(log n). Thus Algorithm Parent Pairs can be used to compute in

O(log n) time the distances in Gop between the pairs of vertices of all ancestor separation

pairs attached to G so that one can ignore the rest of Gop when computing distances in G.

Next we describe the query algorithm. Let v′ be a vertex that belongs to the same

descendant subgraph of Gop that is a leaf of ST (Gop) and that contains v. Let p(v) be the

9

pair of vertices v, v′. Similarly define a pair of vertices p(z) that contains z and a vertex z′

which belongs to the leaf of ST (Gop) containing z. For any two pairs p′ and p′′ of vertices,

let D(p′, p′′) denote the set of all four distances in a vertex from p′ to a vertex in p′′. Then

(1) shows that D(p(v), p(z)) can be found in constant time, given D(p(v), p) and D(p, p(z)).

The following recursive algorithm is based on the above fact.

ALGORITHM Dist Query Outerplanar(Gop, v, z)

Begin

1. Search ST (Gop) (starting from the root) to find pairs of vertices p(v) and p(z) as

defined above.

2. Search ST (Gop) (starting from the root) to find a descendant subgraph G of Gop

such that the separation pair p associated with G separates p(v) a nd p(z) in G.

3. Find the distances between the vertices of the ancestor separation pairs of G by

Algorithm Parent Pairs (if G has an ancestor separation pair).

4. Find D(p(v), p) as follows:

4.1. Search ST (Gop) (starting from G) to find a descendant subgraph G′ of G such

that the separation pair p′ associated with G′ separates p(v) and p in G′.

4.2. If G′ is a leaf of ST (Gop), then determine D(p(v), p′) directly in constant time.

4.3. If G′ is not a leaf then find D(p(v), p′) by executing Step 4 recursively with

p := p′, G := G′, and then find D(p(v), p) by using (1). Note that D(p′, p) can be taken

from SR(G′).

5. Find D(p, p(z)) as in Step 4.

6. Use D(p(v), p), D(p, p(z)), and (1) to determine D(p(v), p(z)).

End.

Lemma 3.2 Algorithm Dist Query Outerplanar(Gop, v, z) finds the distance between any

two vertices v and z of an n-vertex outerplanar digraph Gop in O(log n) time.

Proof: The correctness follows from the description of the algorithm. Searching ST (Gop)

in Steps 1 and 2 takes in total O(log n) time by Lemma 2.2. Step 3 takes O(log n) time by

the above analysis. Let Q(l) be the maximum time necessary to compute D(p(v), p), where

l is the level of G in ST (Gop) and lmax is the maximum level of ST (Gop). Then from the

description of the algorithm

Q(l) ≤ Q(l + 1) +O(1) for l < lmax,

which gives Q(l) = O(l) = O(log n). Similarly, the time necessary for Step 5 is O(log n).

Thus the total time needed by the algorithm is O(log n).

10

Algorithm Dist Query Outerplanar can be modified in order to answer path queries.

The additional work (compared with the case of distances) involves uncompressing the

shortest paths corresponding to edges of the sparse representatives of the graphs from

ST (Gop). Uncompressing an edge from a graph SR(G) involves a traversal of a subtree

of ST (Gop), where at each step an edge is replaced by two new edges each possibly corre-

sponding to a compressed path. Obviously this subtree will have no more than L leaves,

where L is the number of the edges of the output path. Then the traversal time can not

exceed the number of the vertices of a binary tree with L leaves in which each internal node

has exactly 2 children. Any such tree has 2L− 1 vertices. Thus the following claim follows.

Lemma 3.3 The shortest path between any two vertices v and z of an n-vertex outerplanar

digraph Gop can be found in O(log n+L) time, where L is the number of edges of the path.

3.3 The update algorithm

In the sequel, we will show how we can update our data structures for answering on-line

shortest path and distance queries in outerplanar digraphs, in the case where an edge cost

is modified. (Note that updating after an edge deletion is equivalent to the updating of

the cost of the particular edge with a very large cost, such that this edge will not be

used by any shortest path.) The algorithm for updating the cost of an edge e in an n-

vertex outerplanar digraph Gop is based on the following idea: the edge will belong to

at most O(log n) subgraphs of Gop, as they are determined by the Sep Tree algorithm.

Therefore, it suffices to update (in a bottom-up fashion) the sparse representatives of those

subgraphs that are on the path from the subgraph G containing e (where G is a leaf of

ST (Gop)) to the root of ST (Gop). Let parent(G) denote the parent of a node G in ST (Gop),

and Ĝ denote the sibling of a node G in a ST (Gop). Note that G ∪ Ĝ = parent(G) and

SR(G)∪SR(Ĝ) ⊃ SR(parent(G)). The algorithm for the update operation is the following.

ALGORITHM Update Outerplanar(Gop, e, w(e))

Begin

1. Find a leaf G of ST (Gop) for which e ∈ E(G).

2. Update the cost of e in G with the new cost w(e).

3. If e belongs also to Ĝ then update the cost of e in Ĝ.

4. While G ̸= Gop do

(a) Update SR(parent(G)) using the new versions of SR(G) and SR(Ĝ).

(b) G := parent(G).

End.

11

Lemma 3.4 Algorithm Update Outerplanar updates after an edge cost modification the

data structures created by the preprocessing algorithm in O(log n) time.

Proof: Since by Lemma 2.2 the depth of ST (Gop) is O(log n), Step 1 clearly can be

implemented in logarithmic time by doing a binary search on ST (Gop). Steps 2 and 3

require O(1) time. Finally, the number of iterations in Step 4 is O(log n) and each iteration

takes constant time because the size of SR(G) for any descendant subgraph G of Gop is

O(1).

3.4 Handling of negative cycles and summary of the results

The initial digraph Gop can be tested for existence of a negative cycle in O(n) time by [20].

Assume now that Gop does not contain a negative cycle and that the cost c(v, w) of an

edge ⟨v, w⟩ in Gop has to be changed to c′(v, w). We must check if this change does not

create a negative cycle. We modify our algorithms in the following way. Before running

the Update Outerplanar algorithm, run the algorithm Dist Query Outerplanar to find the

distance d(w, v). If d(w, v) + c′(v, w) < 0, then halt and announce non-acceptance of this

edge cost modification. Otherwise, continue with the original update algorithms. Clearly,

the above procedures for testing the initial digraph and testing the acceptance of the edge

cost modification do not affect the resource bounds of our preprocessing or of our update

algorithm, respectively. Our results, in the case of outerplanar digraphs, can be summarized

in the following theorem.

Theorem 1 Given an n-vertex outerplanar digraph G with real-valued edge costs but no

negative cycles, there exists an algorithm for the on-line and dynamic shortest path problem

on G that supports edge cost modification and edge deletion with the following performance

characteristics: (i) preprocessing time and space O(n); (ii) single-pair distance query time

O(log n); (iii) single-pair shortest path query time O(L + log n) (where L is the number

of edges of the path); (iv) update time (after an edge cost modification or edge deletion)

O(log n).

Proof: Follows by Lemmata 3.1, 3.2, 3.3 and 3.4.

4 Dynamic Algorithms for Planar Digraphs

The algorithms for maintaining all pairs shortest paths information in a planar digraph G

are based on the hammock decomposition idea and on the algorithms of the previous section.

Let q be the minimum cardinality of a hammock decomposition of G. The preprocessing

algorithm for G is the following.

12

ALGORITHM Pre Planar(G)

Begin

1. Find a hammock decomposition of G into O(q) hammocks.

2. Run the algorithm Pre Outerplanar(H) in each hammock H.

3. Compress each hammock H with respect to its attachment vertices. This results

into a planar digraph Gq, which is of size O(q).

4. Run the preprocessing algorithm of [10] in Gq.

End.

Lemma 4.1 Algorithm Pre Planar runs in O(n + q log q) time and uses O(n + q log q)

space.

Proof: Step 1 can be implemented in O(n) time by [13]. The resource bounds of Step 2

come from Theorem 1. Step 3 takes O(1) time per hammock H (since by Step 2 we have

already computed SR(H)), or O(q) time in total. Since Gq is of size O(q), Step 4 takes

O(q log q) time and space by [10]. The bounds follow.

The update algorithm is straightforward. Let e be the edge whose cost has been mod-

ified. There are two data structures that should be updated. The first one concerns the

hammock H where e belongs to. This can be done by the algorithm Update Outerplanar

in O(log n) time. Note that this algorithm provides Gq with a new updated sparse repre-

sentative of H, from which the compressed version of H (with respect to its attachment

vertices) can be constructed in O(1) time. The second data structure is that of the digraph

Gq and can be updated in O(log3 q) time by [10]. Therefore, we have the following lemma.

Lemma 4.2 The data structures created by algorithm Pre Planar can be updated in the

case of an edge cost modification in O(log n+ log3 q) time.

The query algorithm for finding the shortest path or distance between any two vertices

v and z of G is the following. (Note that if both v and z belong to the same hammock H,

then their shortest path does not necessarily have to stay in H.)

ALGORITHM Query Planar(G, v, z)

Begin

(* Let H,H ′ be hammocks with attachment vertices ai, 1 ≤ i ≤ 4 and a′i, 1 ≤ i ≤ 4,

respectively, such that v ∈ H and z ∈ H ′. *)

if H ≡ H ′ (* i.e. both v, z belong to H *) then

13

1. Run Dist Query Outerplanar(H, v, z) and let dH(v, z) be its output.

2. dij(v, z) = mini,j{d(v, ai) + d(ai, aj) + d(aj , z)}.
3. d(v, z) = min{dH(v, z), dij(v, z)}.

else (* H ̸= H ′ *)

d(v, z) = mini,j{d(v, ai) + d(ai, a
′
j) + d(a′j , z)}.

End.

Lemma 4.3 Algorithm Query Planar computes the shortest path (resp., distance) between

any two vertices in a planar digraph in O(L+ q+ log n) (resp., O(q+ log n) time, where L

is the number of the edges of the path.

Proof: Let us analyze the time complexity of the above algorithm. We need O(q) time for

queries in Gq [10] (for computing a distance or a compressed shortest path) and O(log |H|)
or O(LH + log |H|) time respectively for distance and path queries in each hammock H

(Theorem 1), where |H| is the size of H and LH is the portion (in number of edges) of the

shortest path contained in H. This results in a total of O(q + log n) or O(L + q + log n)

over all hammocks, where L =
∑

H LH .

Therefore, the results for planar digraphs can be summarized in the following theorem.

Theorem 2 Let G be an n-vertex planar digraph with real-valued edge costs but no negative

cycles and let q be the minimum cardinality of a hammock decomposition of G. There

exists an algorithm for the on-line and dynamic shortest path problem on G that supports

edge cost modification and edge deletion with the following performance characteristics: (i)

preprocessing time and space O(n+q log q); (ii) single-pair distance query time O(q+log n);

(iii) single-pair shortest path query time O(L+q+log n) (where L is the number of edges of

the path); (iv) update time (after an edge cost modification or edge deletion) O(log n+log3 q).

In the case where the computation is restricted to finding distances only, the space can be

reduced to O(n).

Proof: Follows by Lemmata 4.1, 4.2 and 4.3. The O(n) space in the case of computing

distances only, comes from Theorem 1 and the fact that the algorithm of [10] needs O(q)

space when applied to Gq for this problem.

The case of negative edge costs is handled in a similar way with that of outerplanar

digraphs. The initial digraph can be tested for a negative cycle in O(n + q1.5 log q) time

[20]. The procedure for accepting or not an edge cost modification is similar to the one

described for outerplanar digraphs.

14

5 Related Results

In this section we give other results following from our approach to the dynamic shortest

path problem. We first present an efficient parallel implementation of our algorithms on the

CREW PRAM model of computation. We start with the case of outerplanar digraphs. We

will show how the preprocessing algorithm from Section 3 can be implemented in parallel.

Step 1 can be implemented in O(log n) time and O(n logn) work as follows. Let Gop be an

n-vertex outerplanar digraph. Triangulate each face of Gop and construct the dual graph T

of the resulting triangulation GT , excluding the outer face of Gop. Since Gop is outerplanar,

then T is a tree. Assign each vertex x of Gop to a unique triangle of GT incident on x and

determine for each triangle t the number of vertices of Gop assigned to t. Call this number

the weight of t and also the weight of the vertex of T that corresponds to t. Then compute

for each node v of T the number w(v) equal to the sum of the weights of all descendants

of v (including v itself). This can be easily done in O(log n) time and O(n) work (see e.g.

[18], Chapter 3). Using the numbers w(v), find in constant time and O(n) work an edge

e of T whose removal divides T into two subtrees T1 and T2 each of total weight on its

vertices at most 2/3 of the total weight of T . Then, the pair of the endpoints of the edge

in GT corresponding to e will be a 2/3-separator of Gop. Moreover, updating the numbers

w(·) for T1 and T2 requires O(1) time and O(n) work. Thus Step 1 requires O(log n) time

and O(n log n) work. The total work required by Step 2 is described by the recurrence

for P (n) in the proof of Lemma 3.1. The parallel time of Step 2 satisfies the recurrence

Tp(n) = Tp(n/2)+O(1), whose solution is Tp(n) = O(log n). Hence, we have the following.

Theorem 3 Given an n-vertex outerplanar digraph G with real-valued edge costs but no

negative cycles, the data structure from Theorem 1 can be constructed in O(log n) time and

O(n log n) work.

The sequential distance query and the update algorithms for outerplanar digraphs are

logarithmic, but the shortest path sequential query algorithm requires O(L + log n) time,

where L is the number of edges of the path. We can find an optimal logarithmic-time

parallel implementation of the shortest path query algorithm by the following observations.

Algorithm Dist Query Outerplanar determines in O(log n) time a subtree of ST (Gop) con-

sisting of the descendant subgraphs of Gop that contain the path. This subtree has at most

L leaves and size O(L). Thus we can output the path in O(log n) time and O(L) work.

In the case of planar digraphs we need a parallel algorithm to build the data structures

in Gq (recall Section 4). We will make use of the following recent result of Cohen [3].

In any q-vertex planar digraph J the shortest paths from s sources can be computed in

O(log2 q) time and O(sq) work. A preprocessing phase is needed which takes O(log3 q) time

15

and O(q1.5) work. Note that J should be provided by a separator decomposition (i.e. a

recursive decomposition of J using 2/3-separators of size O(
√
q)), for the algorithm of

[3] to be applied. Using the result of [17], such a decomposition for J is constructed in

O(log5 q) time using O(q1+ε) work, for any arbitrarily small (1/2) > ε > 0. Furthermore,

finding a hammock decomposition (Step 1 of algorithm Pre Planar) takes O(log n log∗ n)

time and O(n logn log∗ n) work by [25]. Combining these results with Theorem 3 and using

the construction from Section 4 we derive a parallel algorithm for the class of n-vertex

planar digraphs with the following characteristics: (i) preprocessing time O(log n log∗ n +

log5 q) and O(n log n log∗ n + q1.5) work, using O(n + q1.5) space; (ii) distance query time

O(log n + log2 q) and O(log n + q) work; (iii) shortest path query time O(log n + log2 q)

and O(log n + q + L) work; and (iv) update time (after an edge cost modification or edge

deletion) O(log n+log3 q) and O(log n+q1.5) work. Note that our results compare favorably

with those of [3] in all cases where q = o(n).

Another well-known version of the shortest path problem is the following: Given a

digraph G with real-valued edge costs but no negative cycles, find a single-source shortest

path tree rooted at a vertex v of G, i.e. find shortest paths between v and all other vertices in

G. This problem can be solved by the same data structure and by using similar techniques

with the ones described in Sections 3 and 4. We will first present the solution for the

outerplanar case.

Let Gop be an outerplanar digraph. Let U ⊂ V be a subset of O(1) vertices of Gop

with a weight d0(u) on any u ∈ U . For any vertex v of Gop the weighted distance d(U, v) is

defined by d(U, v) = min{do(u) + d(u, v)|u ∈ U}. We assume that d(U, v) = d0(v) for every

v ∈ U . The following algorithm computes d(U, v), ∀v ∈ Gop.

ALGORITHM Single Source Query Outerplanar(Gop, U)

Begin

1. Let S be the 2/3-separator associated with the root Gop of ST (Gop). Compute

d(u, s) for all vertices u ∈ U and s ∈ S by using algorithm Dist Query Outerplanar.

2. For any s ∈ S define d0(s) = min{d(u, s)|u ∈ U} = d(U, s).

3. Run recursively Single Source Query Outerplanar(G, (S ∪ U) ∩ G), on each child

subgraph G of Gop which is not a leaf of ST (Gop). (If G is a leaf, then distances are

computed easily since the associated subgraph is of O(1) size.)

End.

The correctness of the algorithm follows from its description. Let D(n) be the running

time of the algorithm. Then, D(n) ≤ 2D(n/2) +O(|S| · |U | · log n) = 2D(n/2) +O(log n),

16

which gives D(n) = O(n).

Let v be any vertex of Gop. The single-source shortest path tree rooted at v can be

computed as follows: (i) Run Single Source Query Outerplanar(Gop, {v}) with d0(v) = 0.

(ii) Each vertex y ̸= v checks its neighbors and selects as its parent that vertex x which

satisfies d(v, y) = d(v, x) + c(x, y), where c(x, y) is the cost of edge ⟨x, y⟩. Hence, a single-

source shortest path tree in Gop can be constructed in O(n) time.

Algorithm Single Source Query Outerplanar can be implemented to run in O(log2 n)

time and O(n) work on a CREW PRAM. The recurrence for the work done by the algorithm

satisfies the same recurrence as D(n). The parallel time satisfies the recurrence Tp(n) =

Tp(n/2) +O(log n), whose solution is Tp(n) = O(log2 n). Moreover, step (ii) above runs in

O(log n) time and O(n) work, since we have to resolve conflicts in the case where there are

more than one candidate parents which satisfy the distance condition.

Using the above result and the methodology of Section 4, we have the following.

Theorem 4 Let G be an n-vertex planar digraph with real-valued edge costs but no negative

cycles. There exists an algorithm for the on-line and dynamic single-source shortest path

tree problem on G that supports edge cost modification and edge deletion with the following

performance characteristics: (i) preprocessing time and space O(n + q log q); (ii) single-

source shortest path query in O(n+ q
√
log log q) time; and (iii) update time (after an edge

cost modification or edge deletion) O(log n+ log3 q).

For comparison, the best previous results for this problem are those in [10] (recall

Section 1). On a CREW PRAM, a single-source query is answered in O(log2 n) time and

O(n) work, thus matching the bound given in [3].

Notice that our update plus query work bound of O(n+ q1.5) compares favorably with

the preprocessing plus query work of O(n1.5) needed by the algorithm of [3] in order to

answer a query after an edge cost modification. Also observe that we can cut the additive

factors depending on q in both preprocessing and update bounds, at the expense of an

additive factor of O(q1.5) in the query work. Although this latter result still compares

favorably with the query O(n1.5)-work bound of [3], it is not as good as the result we

present here with respect to the amortized complexity of answering a large number of

queries after one update – since in a dynamic system the queries are expected to be much

more frequent than the updates.

Note that our results for outerplanar digraphs are important for the following reasons:

(a) Our data structure can be updated after an edge cost modification or edge deletion in

O(log n) time, while the algorithms in [13, 14] are not dynamic. In addition our algorithms

provide simple direct solution, while the previous algorithms were based on manipulations

17

with compact routing tables. (b) The CREW PRAM implementation of our results com-

pares favorably with the results in [25] and moreover, the results here are dynamic.

The hammock decomposition technique can be extended to n-vertex digraphs G of

genus γ = o(n). We make use of the fact [12] that the minimum number q of hammocks

is at most a constant factor times γ + q′, where q′ is the minimum number of faces of any

embedding of G on a surface of genus γ that cover all vertices of G. Note that the methods of

[12, 20] do not require such an embedding to be provided by the input in order to produce the

hammock decomposition in O(q) hammocks. The decomposition can be found in O(n+m)

sequential time [12], or in O(log n log log n) parallel time and O((n + m) log n log log n)

work on a CREW PRAM [20], where m is the number of the edges of G. The only other

property of planar graphs that is relevant to our shortest path algorithms (as well as to the

algorithms in [10]) is the existence of a 2/3-separator of size O(
√
n) for any planar n-vertex

graph. For any n-vertex graph of genus γ > 0, a 2/3-separator of size O(
√
γn) exists and

such a separator can be found in linear time [4, 5]. Furthermore, an embedding of G does

not need to be provided by the input. (For the CREW PRAM implementation, such a

separator should be provided by the input [3].) Thus the statement of Theorem 2 as well

as its extensions discussed in this section, hold for the class of graphs of genus γ = o(n).

Acknowledgement. We are grateful to Esteban Feuerstein and Anil Maheshwari for many

helpful discussions.

References

[1] G. Ausiello, G.F. Italiano, A.M. Spaccamela, U. Nanni, “Incremental algorithms for minimal
length paths”, J. of Algorithms, 12 (1991), pp.615-638.

[2] M. Carroll and B. Ryder, “Incremental Data Flow Analysis via Dominator and Attribute
Grammars”, Proc. 15th Ann. ACM SIGACT-SIGPLAN Symp. on Principles of Programming
Languages, 1988.

[3] E. Cohen, “Efficient Parallel Shortest-paths in Digraphs with a Separator Decomposition”,
Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 1993, pp.57-67.

[4] H. Djidjev, “A Separator Theorem for Graphs of Fixed Genus”, SERDICA, Vol.11, 1985,
pp.319-329.

[5] H. Djidjev, “A Linear Algorithm for Partitioning Graphs of Fixed Genus”, SERDICA, Vol.11,
1985, pp.369-387.

[6] H. Djidjev, G. Pantziou and C. Zaroliagis, “Computing Shortest Paths and Distances in Planar
Graphs”, in Proc. 18th ICALP, 1991, LNCS, Vol. 510, pp. 327-339, Springer-Verlag.

[7] P. Erdős and J. Spencer, “Probabilistic Methods in Combinatorics”, Academic Press, 1974.

[8] S. Even and H. Gazit, “Updating distances in dynamic graphs”, Methods of Operations Re-
search, Vol.49, 1985, pp.371-387.

[9] D. Eppstein, Z. Galil, G. Italiano and A. Nissenzweig, “Sparsification - A Technique for Speed-
ing Up Dynamic Graph Algorithms”, Proc. 33rd Symp. on FOCS, 1992, pp.60-69.

18

[10] E. Feuerstein and A.M. Spaccamela, “Dynamic Algorithms for Shortest Paths in Planar
Graphs”, Theor. Computer Science, 116 (1993), pp.359-371.

[11] G.N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with applications”,
SIAM J. on Computing, 16 (1987), pp.1004-1022.

[12] G.N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Shortest Path
Problems”, Proc. 30th Annual IEEE Symp. on FOCS, 1989, pp.448-453; also CSD–TR-897,
Purdue University, August 1989.

[13] G.N. Frederickson, “Planar Graph Decomposition and All Pairs Shortest Paths”, J. ACM,
Vol.38, No.1, January 1991, pp.162-204.

[14] G.N. Frederickson, “Searching among Intervals and Compact Routing Tables”, Proc. 20th
ICALP, 1993, LNCS 700, pp.28-39, Springer-Verlag.

[15] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved network optimization
algorithms”, JACM, 34(1987), pp. 596-615.

[16] Z. Galil and G. Italiano, “Fully Dynamic Algorithms for Edge-connectivity Problems”, Proc.
23rd ACM STOC, 1991, pp.317-327.

[17] H. Gazit and G. Miller, “A Parallel Algorithm for finding a Separator in Planar Graphs”,
Proc. 28th IEEE Symp. on FOCS, 1987, pp.238-248.

[18] J. JáJá, “An Introduction to Parallel Algorithms”, Addison-Wesley, 1992.

[19] A. Kanevsky, G. Di Battista, R. Tamassia and J. Chen, “On-line Maintenance of the Four-
Connected Components of a Graph”, Proc. 32nd IEEE Symp. on FOCS, 1991, pp.793-801.

[20] D. Kavvadias, G. Pantziou, P. Spirakis and C. Zaroliagis, “Hammock-on-Ears Decomposition:
A Technique for Parallel and On-line Path Problems”, Technical Report, CTI-TR-93.05.22,
Patras, 1993; a preliminary version will appear at Proc. 19th MFCS, 1994.

[21] D. Kavvadias, G. Pantziou, P. Spirakis and C. Zaroliagis, “On the expected number of ham-
mocks in a graph”, preprint, October 1993.

[22] P. Klein and S. Subramanian, “A linear-processor polylog-time algorithm for shortest paths in
planar graphs”, Proc. 34th IEEE Symp. on FOCS, 1993, pp.259-270.

[23] J.A. La Poutré, “Alpha-Algorithms for Incremental Planarity Testing”, to appear in Proc. 26th
ACM STOC, 1994.

[24] A. Lingas, “Efficient Parallel Algorithms for Path Problems in Planar Directed Graphs”, Proc.
SIGAL’90, LNCS 450, pp.447-457, 1990, Springer-Verlag.

[25] G. Pantziou, P. Spirakis and C. Zaroliagis, “Efficient Parallel Algorithms for Shortest Paths in
Planar Digraphs”, BIT 32 (1992), pp.215-236.

[26] M. Rauch, “Fully Dynamic Biconnectivity in Graphs”, Proc. 33rd IEEE Symp. on FOCS, 1992,
pp.50-59.

[27] D. Sleator and R. Tarjan, “A Data Structure for Dynamic Trees”, Journal Comput. System
Sci. 26 (1983), pp. 362–391.

[28] J. Westbrook, “Algorithms and Data Structures for Dynamic Graph Problems”, PhD Disser-
tation, CS-TR-229-89, Dept of Computer Science, Princeton University, 1989.

[29] M. Yannakakis, “Graph Theoretic Methods in Database Theory”, Proc. ACM conference on
Principles of Database Systems, 1990.

[30] D. Yellin and R. Strom, “INC: a language for incremental computations”, Proc. ACM SIGPLAN
conf. on Programming Language Design and Implementation, 1988, pp.115-124.

19

Djidjev, Pantziou Frederickson Feuerstein & This paper
& Zaroliagis [6] [14] Spaccamela [10]

Dynamic No No Yes Yes

Preprocessing
Time & Space O(n log n+ q2) O(n+ q2) O(n log n) O(n+ q log q)

Single-Pair
Dist. Query O(log n) O(L+ log n) O(n) O(q + log n)

Single-Pair
SP Query O(L+ log n) O(L+ log n) O(n) O(L+ q + log n)

Single-Source
SP Tree Query O(n) O(n) O(n

√
log log n) O(n+ q

√
log log q)

Update
Time O(n log n+ q2) O(n+ q2) O(log3 n) O(log n+ log3 q)

Table 1: Comparison of results for planar digraphs. L is the number of the edges of a

shortest path (SP). To see how our results compare to known ones [6, 10, 14] for outerplanar

digraphs or digraphs with q = O(1), just remove all terms depending on q in the above

table.

20

