
Quickest Paths: Faster Algorithms and Dynamization

(Preliminary Version)
∗

Dimitrios Kagaris 1 Grammati E. Pantziou 1,2 Spyros Tragoudas 3

Christos D. Zaroliagis 2,4

April 18, 1994

(1) Computer Science Program, Dartmouth College, Hanover NH 03755, USA
(2) Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
(3) Computer Science Dept., Southern Illinois University, Carbondale IL 62901, USA
(4) Max-Planck Institut für Informatik, Im Statwald, 66123 Saarbrücken, Germany

Abstract

Given a network N = (V,E, c, l), where G = (V,E), |V | = n and |E| = m, is a directed
graph, c(e) > 0 is the capacity and l(e) ≥ 0 is the lead time (or delay) for each edge e ∈ E, the
quickest path problem is to find a path for a given source–destination pair such that the total
lead time plus the inverse of the minimum edge capacity of the path is minimal. The problem has
applications to fast data transmissions in communication networks. The best previous algorithm
for the single–pair quickest path problem runs in time O(rm+ rn logn), where r is the number
of distinct capacities of N [12]. In this paper, we present algorithms for general, sparse and
planar networks that have significantly lower running times. For general networks, we show
that the time complexity can be reduced to O(r∗m+ r∗n log n), where r∗ is at most the number
of capacities greater than the capacity of the shortest (with respect to lead time) path in N .
For sparse networks, we present an algorithm with time complexity O(n log n+ r∗n+ r∗γ̃ log γ̃),
where γ̃ is a topological measure of N . Since for sparse networks γ̃ ranges from 1 up to Θ(n),
this constitutes an improvement over the previously known bound of O(rn log n) in all cases
that γ̃ = o(n). For planar networks, the complexity becomes O(n log n+n log3 γ̃+r∗γ̃). Similar
improvements are obtained for the all–pairs quickest path problem. We also give the first
algorithm for solving the dynamic quickest path problem.

1 Introduction

Consider a network N = (V,E, c, l), where G = (V,E) is a directed graph, c : E → Z+ is the
capacity function and l : E → ℜ∗ is the delay function. The nodes represent transmitters/receivers
without data memories and the edges represent communication channels. The capacity c(e) of an
edge e ∈ E represents the amount of data that can be transmitted in a time unit through e. The
delay l(e) of an edge e ∈ E represents the time required for the data to traverse edge e. If σ units
of data are to be transmitted from a node u to a node v through edge e = (u, v), then the required

∗This work is partially supported by the EEC ESPRIT Basic Research Action No. 7141 (ALCOM II). The work
of the second author is also partially supported by the NSF postdoctoral fellowship No. CDA-9211155.

1

transmission time is l(e) + σ
c(e) . To see this, observe that since at most c(e) units of data can pass

through e in a time unit, all σ units of data will have been pumped out of node u after σ
c(e) time

units. The last data to leave node u will depart from u at time instant σ
c(e) and will arrive at node v

at time instant l(e) + σ
c(e) . Since in the meanwhile all previous data have already been transmitted

from u to v in a pipelined fashion, the total transmission time is l(e) + σ
c(e) . Due to the pipelined

nature of the transmission, the delay time l(e) is also characterized as the lead time of e.
Let p = (v1, v2, ..., vk) be a path from node v1 to node vk. The capacity of path p is defined

as the minimum capacity of the path edges and is denoted by c(p) = min1≤i≤k−1 c(ui, ui+1). The
definition of the path capacity is motivated by the fact that, since the nodes have no data memories,
all data that are received by a node in a time unit must be pumped out of the node in the next
time unit. The lead time of path p is defined as the sum of the lead times of the path edges and
is denoted by l(p) =

∑k−1
i=1 l(ui, ui+1). The transmission time to send σ units of data from v1 to vk

using path p is T (σ, p) = l(p) + σ
c(p) . Given a source node s ∈ V , a destination node t ∈ V and an

amount σ of data to be transmitted, our problem is to find a path of minimum transmission time
to transmit the σ units of data from s to t. This problem is known as the quickest path problem [2],
or, to be more precise, as the single-pair quickest path problem. Similarly, the all-pairs quickest
paths problem asks for the quickest path between any two nodes of the network. The problem has
obvious applications to fast data transmissions in communication networks. (For other applications
see [2].)

The quickest path problem is quite different from the traditional shortest path one. First,
the latter problem is defined on a network where each edge (v, u) owns only a single attribute,
namely, the distance from v to u. However, such a kind of network is not applicable in many
practical situations, e.g. in a communication network where the transmission time between two
nodes depends not only on the distance but also on the capacity of the edges in the network.
Moreover, in the quickest path problem the selection of the path depends also on the size of the
data to be transmitted. In one extreme case, if the amount of data is huge, then the quickest path
should be the path with largest capacity. If on the other hand, the amount of data is quite small,
then the quickest path is the shortest path with respect to lead time. An additional singularity of
the quickest path problem is that if (s, ..., v, ..., t) is the quickest path from s to t, then its subpath
(s, ..., v) is not necessarily the quickest one from s to v, to transmit the same amount of data. For
example, in Fig. 1, the quickest path to transmit σ = 100 units of data from a to d is (a, b, d)
with transmission time 36 + 100

5 = 56. However, subpath (a, b) is not a quickest path to transmit
σ = 100 units of data from a to b, since path (a, c, b) has smaller transmission time. The fact that
a subpath of a quickest path is not necessarily itself a quickest path suggests that a Dijkstra-like
labeling algorithm could not be used to solve the quickest path problem and makes interesting the
study of different approaches towards the design of efficient algorithms.

Previously known results are as follows. The single pair quickest path problem has been
solved in time O(rm + rn log n) [2, 12], where r is the number of distinct edge capacities. For
sparse networks (i.e., m = O(n)), this complexity becomes O(rn log n). The all–pairs quickest
path problem has been solved in O(min(rnm+ rn2 log n, mn2)) [11]. For sparse graphs, the later
complexity becomes O(min(rn2 log n, n3)).

In this paper, we show that the above time complexities can be significantly improved. We
first present (Section 2) an improved algorithm for the single–pair problem with worst–case time
complexity O(r∗m+r∗n log n), where r∗ never exceeds the number of distinct capacities greater than
the capacity of the shortest with respect to (wrt) lead time path in N . A more precise definition

2

of r∗ is given in Section 2. The benefit of the proposed algorithm is that it takes advantage
of the distribution of the capacity values on the network edges, which existing algorithms ignore.
Depending on the capacity of the shortest wrt lead time path on the original network and, moreover,
on the capacity of the shortest wrt lead time paths in appropriately defined subnetworks, parameter
r∗ can be as low as 1, or a very small integer, even if r = m. Note that in the worst case r∗ = r,
but the proposed algorithm offers a substantial improvement in all cases that r∗ < r.

In addition, we present (Section 3) improved algorithms for the single-pair quickest path prob-
lem on sparse and planar networks. The complexities of the algorithms are expressed in terms of
a parameter γ̃ which provides a measure of the topological complexity of N and ranges from 1 up
to Θ(n). If N is planar, we give an O(n logn + n log3 γ̃ + r∗γ̃)-time algorithm (Section 3.2). For
arbitrary non-planar sparse networks, we obtain an algorithm with time complexity varying from
O(n log n) up to O(r∗n log n), depending on the particular value of γ̃. Also, the all–pairs quickest
path problem for planar networks is solved in O(rn2) time, while for arbitrary sparse networks, it
is solved in O(rγ̃2 log γ̃ + rn2) time.

Note that our results are clear improvements over the best previous ones. Moreover, our
bounds match the best previous bounds only when both parameters r∗ and γ̃ reach their extreme
values (of r and Θ(n), respectively).

All of the above-mentioned results, however, relate to the static version of the problem, i.e.
the network, the lead times and the capacities on its edges, as well as the amount of data to be
transmitted, do not change over time. We also consider here (Section 4) a dynamic environment,
where edges can be deleted and their lead times and capacities can be modified, and also, the amount
of data to be transmitted can be changed. More precisely, we investigate the following dynamic
quickest path problem: Given a network N (as above), build a data structure (i.e. preprocess N)
in order to be able to answer very fast on-line queries asking for a path from any node u to any
other node z with minimum transmission time for sending an amount of data σ. Also the data
structure should be efficiently updated and maintain quickest path information after a modification
of N . According to the best of our knowledge, there are no previous algorithms for the above
problem. In this paper, we present an efficient dynamic algorithm for the case of planar and sparse
networks. In the case of planar (resp., sparse) networks, the algorithm needs O(r(n + γ̃ log γ̃))
(resp., O(r(n + γ̃2 log γ̃))) time for preprocessing and O(r(γ̃ + log n) + L) (resp., O(r log n + L))
time for finding the quickest path from any vertex u to any vertex z, where L is the number of
edges of the quickest path. In the case of a modification in the lead time or in the capacity of
an edge, O(r(log n + log3 γ̃)) (resp., O(r(log n + γ̃2 log γ̃))) time is required for updating the data
structure.

2 Single–pair quickest paths in general networks

Let N(V,E, c, l) be a network where G = (V,E), |V | = n, |E| = m, is a directed graph, c(e) > 0 is
the capacity of an edge e ∈ E and l(e) ≥ 0 is the lead time for an edge e ∈ E. Let C1 < C2 < ... < Cr

be the r distinct capacity values of the edges of network N , r ≤ m. We define Nw = (V,Ew, c, l)
to be a subnetwork of N(V,E, c, l) such that Ew = {e : e ∈ E ∧ c(e) ≥ w}. In the sequel, we say
shortest lead time path from u to v to refer to the shortest path from u to v with respect to the
lead time. The following observation has been made in [12].

Fact 2.1 If q is a quickest path, then q is a shortest lead time path in N c(q).

3

Proof: Since q is a quickest path with capacity c(q), all of its edges belong to the network N c(q).
Suppose that there is another path p ∈ N c(q) that is shortest (with respect to lead time) than q i.e.
l(p) < l(q). Since q is a quickest path, l(q) + σ/c(q) ≤ l(p) + σ/c(p). This implies that c(p) < c(q),
a contradiction since we have assumed that p ∈ N c(q). 2

The algorithm of Rosen et.al. [12] for computing the quickest path from s to t in N , computes
the shortest lead time path pi in each network NCi , 1 ≤ i ≤ r, and outputs as the quickest path,
the one that minimizes the quantity l(pi) + σ/c(pi), 1 ≤ i ≤ r. Their algorithm follows.

PROCEDURE RSX(N) [12]
1. for i = 1, ..., r do

Find a shortest lead time path pi from s to t in NCi ;
2. The quickest path is pk, where index k minimizes l(pi) + σ/c(pi), 1 ≤ i ≤ r.
end RSX

Using the algorithm of [9] that computes a shortest path in time O(m+n log n), the overall time
complexity of algorithm RSX is O(rm+rn log n). For sparse graphs, the corresponding complexity
becomes O(rn log n).

Algorithm RSX can be viewed as seeding serially for the capacity of the quickest path. If a
hypothetical oracle would give us the capacity wo of the quickest path, then the actual path could
be found just in time O(m+n log n) by applying the shortest path algorithm of [9] on Nwo . Below,
we show that the seed for the capacity of the quickest path does not have to be serial. Let sw

denote the shortest lead time path in Nw and q the quickest path in N .

Lemma 2.1 If the capacity of the quickest path q is c(q) > Ci for some i < r, then c(q) ≥ c(sCi+1).

Proof: Since c(q) > Ci for some i < r, q is in fact a path in subnetwork NCi+1 . Let sCi+1 be the
shortest lead time path in NCi+1 . Since q is the quickest path, l(q) + σ/c(q) ≤ l(sCi+1) + σ

c(sCi+1)
.

However, since sCi+1 is the shortest lead time path in NCi+1 , l(sCi+1) ≤ l(q). Adding the two
inequalities, we get σ/c(q) ≤ σ/c(sCi+1) ⇔ c(q) ≥ c(sCi+1). 2

Proposition 2.1 If for some i, 1 ≤ i ≤ r, the capacity of the shortest lead time path sCi is
c(sCi) = Cr, then the capacity of the quickest path q is either c(q) < Ci or c(q) = Cr.

Proof: Assume c(q) ≥ Ci and c(q) ̸= Cr. Since c(q) > Ci−1, then by Lemma 2.1, c(q) ≥ c(sCi+1) ⇒
c(q) ≥ Cr ⇒ c(q) = Cr, a contradiction. 2

We also observe that some subnetworks Nw may not be connected graphs. In the case that
there is no path from s to t in network NCi for some i < r, then s and t will remain unconnected
in any network NCj , j ≥ i, since NCj is a subnetwork of NCi . That is,

Lemma 2.2 If there is no path from s to t in NCi for some i, 1 ≤ i ≤ r, then the capacity c(q) of
the quickest path q is c(q) < Ci (if i = 1, no path exists).

By convention, we assume that if there is no path from s to t in some subnetwork, then the
shortest path algorithm returns a path of “infinite” length and “infinite” capacity. Initially, all
we know for the capacity of the quickest path is that c(q) ≥ C1. According to lemma 2.1, each
application of the shortest path algorithm on network Nwi , where w1 = C1 and wi = c(swi−1), i > 1,
can be regarded as a query that provides us successively with more information for the range of

4

c(q) (namely, c(q) ≥ c(swi)). If for the ith such successive query, it happens that c(swi) = Cr or
c(swi) = ∞, then by proposition 2.1 or lemma 2.2 respectively, no more than r∗ = i queries are
required. If, on the other hand, ∀i, 1 ≤ i < r, c(swi) = wi ⇔ c(sCi) = Ci, then (and only then) we
end up making r∗ = r queries. Given that the latter scenario is in every practical respect a very
rare case, the improvement that the algorithm yields is important. The algorithm is given below.

PROCEDURE General Single Pair Quickest Path(N)
1. w = C1;
2. r∗ = 0;
3. while w < Cr do
4. r∗ = r∗ + 1;
5. Find a shortest lead time path pr∗ in Nw;
6. if ∃i < r such that c(pr∗) = Ci then w = Ci+1 else w = ∞;
7. The quickest path is pk, where index k minimizes l(pi) + σ/c(pi), 1 ≤ i ≤ r∗.
end General Single Pair Quickest Path

Lemma 2.3 Algorithm General Single Pair Quickest Path correctly finds the quickest path between
two given nodes of a general network in O(r∗m+ r∗n log n) time.

Proof: The while loop in Step 3 terminates whenever w = Cr or w = ∞. This is justified by
proposition 2.1 and lemma 2.2. The candidate set of shortest paths from which the quickest path
is chosen in Step 7, is justified by Lemma 2.1. Since there are r∗ applications of the shortest
path algorithm in Step 5, we obtain, by using the algorithm of [9], an overall time complexity of
O(r∗m+ r∗n log n). 2

An example where r∗ is significantly smaller than r is given in Fig. 1. Algorithm Gen-
eral Single Pair Quickest Path is applied on a network N to transmit σ = 100 units of data from
a to h. The algorithm is applied successively on subnetworks N (4) = N (finding shortest lead time
path (a, e, h) with capacity 10), N (15) (finding shortest lead time path (a, f, h) with capacity 20)
and N (25) (finding no path). It thus terminates in r∗ = 3 iterations, yielding (a, f, h) as the quick-
est path. In contrast, algorithm RSX would require r = |E| = 13 iterations to find the quickest
path. We also observe that Algorithm General Single Pair Quickest Path can be further enhanced
in practice by making sure that among the potentially many paths in Nw with the same shortest
lead time, the shortest such path with the largest minimum capacity is always chosen. This can be
easily done in the same time complexity by modifying slightly the shortest path algorithm used.
That is, the comparison for each derived subpath is now based on a vector (l′,−c′), where l′ is
the subpath’s lead time, c′ is the minimum capacity of the subpath so far, and all comparisons are
performed in lexicographic order.

3 Computing quickest paths in sparse networks

In the previous section, we saw that there is a kind of “information redundancy” in the approach
of [12] in that not all queries that are asked may in fact be necessary. However, another potential
source of redundancy may be found in the repeated applications of the shortest path algorithm on
network versions that, loosely speaking, do not differ much. That is, subnetworks NCi and NCi+1

differ only in that NCi+1 has some fewer edges than NCi and therefore, the information obtained by

5

computing the shortest lead time path in NCi+1 may be useful in the computation of the shortest
lead time path in NCi . This suggests the use of a dynamic algorithm for computing shortest paths
that allows updates/deletions of edges.

Below, we show that dynamic shortest path algorithms can be used advantageously in the
quickest path context. We give algorithms for both the single pair and the all pairs quickest paths
problems on planar and on sparse networks, that compare favorably with the existing ones. Before
proceeding to the description of the algorithms, we give some preliminaries.

3.1 Preliminaries

A closed surface is orientable if it can be constructed by attaching handles to a sphere. The genus
g(G) of a graph G is the minimum number of handles of an orientable surface in which G can be
embedded.

A hammock decomposition is a decomposition of an n-vertex graph G into certain outerplanar
digraphs called hammocks [8]. Hammocks satisfy certain separator conditions and the decomposi-
tion has the following properties: (i) each hammock has at most four vertices in common with any
other hammock (and therefore with the rest of the graph), called the attachment vertices; (ii) each
edge of the graph belongs to exactly one hammock; and (iii) the number of hammocks produced
is order of the minimum possible among all decompositions and is bounded by a function involv-
ing certain topological measures of G (e.g., genus). More concretely, the number γ̃ of hammocks
can range from 1 up to Θ(m) (m is the number of edges of G), depending on the graph, and is
proportional to g(G) + q, where G is embedded on an orientable surface with g(G) handles so as
to minimize the number q of faces that cover all vertices [8]. If G is sparse, then γ̃ ranges from
1 up to Θ(n). In the case that G is planar, g(G) = 0 and the number of hammocks is at most
a constant factor times the minimum number of faces that cover all vertices of G among all the
possible embeddings of G on the plane. Also, if G is outerplanar then γ̃ = 1. As it has been
proved in [8], the hammock decomposition can be obtained in time linear to the size of G and an
embedding of G into some topological surface does not need to be provided by the input.

In the case of general digraphs, the best algorithm for the dynamic shortest paths problem is
due to Even and Gazit [4]. Their algorithm supports insertions and/or deletions of edges. If the
digraph is planar, Feuerstein and Spaccamela have proposed a much more efficient algorithm that
supports edge cost modification and/or edge deletion [6]. Their algorithm makes an O(n log n) time
and space preprocessing of the graph and then answers queries in O(n) time. An interesting feature
of their algorithm is that O(n2) queries can be answered in O(n2) time. Their data structures can be
updated in O(log3 n) time. Also, their algorithm has the same complexity in the case of digraphs
that have an O(nt)-separator decomposition, where 0 < t < 1 [5]. (A separator of a digraph
G = (V,E) is a subset of vertices S ⊂ V such that the subgraph induced by V \S is not connected
and the number of vertices in each connected component is at most a fixed fraction of the number of
vertices in G. An f(n)-separator decomposition is a recursive decomposition of G using separators,
where subgraphs of size n have separators of size O(f(n)).)

A dynamic shortest path algorithm that works efficiently for sparse digraphs with γ̃ = o(n),
and supports edge cost modification and/or edge deletion is recently presented in [3]. If the input
digraph is planar then the algorithm needs O(n+γ̃ log γ̃) preprocessing time and space; O(γ̃+log n)
single–pair distance query time; O(γ̃ + log n + L) single–pair shortest path query time, where L
is the length of the shortest path; O(log n + log3 γ̃) update time after an edge cost modification
or edge deletion. If the input digraph is not planar, but has an O(nt)-separator decomposition

6

0 < t < 1, then the bounds are the same with those for the planar case. Otherwise, the algorithm
needs O(n + γ̃2 log γ̃) preprocessing time and space; O(log n) single–pair distance query time;
O(log n+L) single–pair shortest path query time, where L is the length of the shortest path; and,
O(log n+γ̃2 log γ̃) update time after an edge cost modification or edge deletion. Since the algorithm
of [3] is mostly used here, for the sake of completeness we briefly describe it in appendix A.

3.2 Single-pair quickest paths

We denote by Li the length of the shortest lead time path from the source s to the destination t
in subnetwork NCi . Let also Ei be the set of edges with capacity Ci, 1 ≤ i ≤ r. The algorithm for
finding the quickest path between two nodes s and t in a planar network is as follows:

PROCEDURE Planar Single Pair Quickest Path(N)
1. Use the preprocessing algorithm of [3] for planar digraphs, to build the appropriate

data structures.
2. for i = 1 to r do
3. Use the query algorithm of [3] for planar digraphs, to find the length Li of the shortest

lead time path from s to t in NCi .
4. for each edge e in Ei do
5. Use the update algorithm for planar digraphs of [3] to delete e from NCi .
6. Find index k that minimizes Li + σ/Ci, 1 ≤ i ≤ r.
7. Obtain the quickest path by applying a single source shortest path algorithm on NCk .
end Planar Single Pair Quickest Path

Lemma 3.1 Algorithm Planar Single Pair Quickest Path correctly finds the quickest path between
two given nodes of a planar network in O(n · log n+ n · log3 γ̃ + r∗ · γ̃) time.

Proof : First notice that the r iterations in the loop of Step 2 can be reduced to r∗ as it was
discussed in the previous section. From fact 2.1, the quickest path q is a shortest lead time path
in N c(q). It is enough to compute the length Li of the shortest lead time path in NCi , 1 ≤ i ≤ r,
and then compute the minimum of Li + σ/Ci, 1 ≤ i ≤ r. Since network NCi+1 = (V,ECi+1) differs
from NCi = (V,ECi) in that ECi+1 = ECi − Ei, and since we have already computed Li in NCi ,
it is clear that Li+1 can be computed by deleting the edges in Ei from NCi and calling the query
algorithm of [3] on the resulting network NCi+1 . The overall time complexity is O(n + γ̃ · log γ̃)
for the preprocessing, plus O(m · (log n + log3 γ̃)) for the m updates, plus O(r∗ · (γ̃ + log n)) for
the r∗ single-pair distance queries [3]. Since in planar graphs m = O(n), we have a total time of
O(n · log n+ n · log3 γ̃ + r∗ · γ̃). 2

Note that the above algorithm applies also to sparse networks that have an O(nt)-separator
decomposition, 0 < t < 1. But not all sparse networks may have this property. Below we give an
algorithm for this latter case. The algorithm is based on the decomposition of the original network
into a number of hammocks. The basic idea of the algorithm is the following. Consider the case that
nodes s and t belong to two different hammocks Hs and Ht respectively. (The other case is similar.)
Suppose that we have already computed Li and we have to compute Li+1. For each edge e ∈ Ei,
we delete e from the current network and use the outerplanar update algorithm of [3] to update the
hammock where e belongs to. We then, compute the distance from s to each attachment vertex
of Hs, and also, the distance from each attachment vertex of Ht to t, using the outerplanar query

7

algorithm of [3]. Then, each hammock H is substituted by a constant sized subgraph that keeps
the shortest path information among the attachment vertices of H. This constant size subgraph
is called sparse representative of H and can be constructed in time linear in the size of the graph
[3]. In the resulting network, we compute four (at most) shortest lead time path trees rooted at
the four attachment vertices of Hs. We use this information to compute the quickest path from
s to t. The details of the algorithm follow. (In the sequel, if v is not an attachement vertex, we
will denote by Hv the hammock in which v belongs to. We also denote by dG(u, v) the length of
the shortest lead time path from u to v subject to the constraint that the path lies totally within
subgraph G.)

PROCEDURE Sparse Single Pair Quickest Path(N)
1. Find a decomposition of the network N into hammocks.
2. Apply the preprocessing algorithm of [3] on each one of the hammocks.
3. for i = 1 to r do
4. if s is not an attachement node then

Find the length dHs(s, a
s
k) of the shortest lead time path in Hs from s to the attachment

node ask (k = 1, · · · , 4) of Hs using the algorithm of [3].
5. if t is not an attachement node then

Find the length dHt(a
t
k, t) of the shortest lead time path in Ht from the

attachment node ak (k = 1, · · · , 4) of Ht to t.
6. For each hammock H, find its sparse representative SR(H) using the algorithm

of [3] and substitute H by SR(H).
Let Nγ̃ be the resulting network and Vγ̃ be the set of nodes of Nγ̃ .

7. Find shortest lead time paths trees in Nγ̃ rooted at the four attachment nodes
ak (k = 1, · · · , 4), of Hs using the algorithm of [9].

8. if s and t do not belong to the same hammock (i.e., Hs ̸= Ht) then
Compute the length Li of the shortest lead time path from s to t as the minimum
of dk,l(s, t) = dHs(s, a

s
k) + dNγ̃ (a

s
k, a

t
l) + dHt(a

t
l , t) for all possible combinations

of ask, a
t
l where ask (atl) is an attachment node of Hs (Ht).

else (s and t belong to the same hammock say Hs, i.e., Hs = Ht)
Compute the length Li of the shortest lead time path from s to t as the minimum
of dk,l(s, t), for all possible combinations of ask, a

s
l , and dHs(s, t).

9. for each edge e in Ei do
10. Delete e from the current network and apply the

update algorithm of [3] on the hammock He containing e.
11. Find index k that minimizes Li + σ/Ci, 1 ≤ i ≤ r.
12. Obtain the quickest path by applying a single source shortest path algorithm on NCk .
end Sparse Single Pair Quickest Path

Lemma 3.2 Algorithm Sparse Single Pair Quickest Path correctly computes the quickest path be-
tween a given pair of nodes in a sparse network in O(n · log n+ r∗ · (n+ γ̃ · log γ̃)) time.

Proof : First notice again that the r iterations in the loop of line 3 can be reduced to r∗ as
discussed in the previous section. Since each edge of the network belongs to exactly one hammock,
once an edge e is deleted from the current network, exactly one hammock He needs to be modified
and the shortest lead time path information among its attachment vertices to be updated. The

8

updated hammock He is then substituted by its sparse representative that keeps the new shortest
lead time path information among its four attachment vertices, and in this way, the network Nγ̃ is
updated. At the query time, i.e., when the distance from s to t is computed in the current network,
the single source algorithm of [9] finds the updated shortest lead time paths from the attachment
vertices of Hs to the attachment vertices of Ht. Steps 1,2,4,5,6 take time O(n). Step 7 takes time
O(γ̃ · log γ̃), since network Nγ̃ has O(γ̃) nodes and is sparse. The overall time of the main loop
(step 3), excluding the time for the loop in step 9, is thus O(r∗ · (n+ γ̃ · log γ̃)). The overall number
of times that step 10 is executed is m = O(n). The updating procedure after an edge deletion is
applied only in one hammock, and this takes time O(log n) [3]. So the total time complexity is
O(n log n+ r∗(n+ γ̃ log γ̃)). 2

3.3 All–pairs quickest paths for sparse networks

The algorithm for computing all pairs quickest paths in a planar or a sparse network is the following.

PROCEDURE Sparse/Planar All Pairs Quickest Paths(N)
1. Find a decomposition of the planar network N into hammocks.
2. Apply the preprocessing routine of [3] on each one of the hammocks.
3. for i = 1 to r do
4. For each hammock H and for each node v ∈ H, find a shortest lead time path tree

rooted at v.
5. For each hammock H, find its sparse representative SR(H) using the algorithm of [3]

and substitute H by SR(H). Let Nγ̃ be the resulting network.
of Nγ̃ .

6. Compute all-pairs shortest lead time paths in Nγ̃ as follows.
if Nγ̃ is planar or has a separator decomposition then apply the algorithm of [6]
else apply the algorithm of [9].

7. for each pair of nodes u, v do
8. if u and v belong to the same hammock H then

Compute dH(u, v) and dk,l(u, v) = mink,l{dH(u, ak) + dNγ̃ (ak, al) + dH(al, v)}.
Compute the length Lu,v

i of the shortest lead time path from u to v as
the minimum of dH(u, v) and dk,l(u, v).

else Lu,v
i = mink,l{dHu(u, ak) + dNγ̃ (ak, al) + dHl

(al, v)}, where
Hu (Hv) is the hammock containing u (v).

9. Compute the quantity Lu,v
i + σ/Ci.

10. for each edge e in Ei do
11. Delete e from the current network and update the hammock containing e, as well as Nγ̃

using the algorithm of [3].
end Sparse/Planar All Pairs Quickest Paths

Lemma 3.3 All pairs quickest paths in a sparse network that has an O(nt)-separator decomposi-
tion, 0 < t < 1 (e.g. a planar one), can be computed in O(rn2) time. Otherwise, all pairs quickest
paths can be computed in O(rγ̃2 log γ̃ + rn2) time.

Proof : Correctness is clear from discussions in subsection 3.2. For the resource bounds note that
each iteration of the for-loop (step 3) needs O(n2) time if N is planar or has an O(nt)-separator

9

decomposition (0 < t < 1). The dominating step is step 7, since step 6 needs O(γ̃2) time by [6].
Otherwise, step 6 needs O(γ̃2) log γ̃) time by [9]. Also, note that each iteration of steps 10,11 needs
O(log n+ log3 γ̃) (if N is planar or has a separator decomposition), or O(log n+ γ̃2 log γ̃) time by
[3], and therefore does not dominate the running time of the algorithm. The bounds follow. 2

4 Dynamic quickest paths

In this section we present a solution to the dynamic quickest path problem for the case of planar
and sparse networks. As it is mentioned in the introduction, the amount of data to be transmitted
is an important factor to determine the quickest path from a node u to a node z. While in the
static statement of the problem the amount of data to be transmitted is fixed, in the dynamic one
we allow these data to be changed. Thus, the preprocessing procedure of our algorithms makes
a preprocessing of the network and creates the appropriate data structures in order to answer as
fast as possible on-line queries asking for a path with minimum transmission time to send a given
amount of data from any node u to any other node z of the network. Update procedures are also
given which update the data structures in the case that the lead time and/or the capacity of one
or more edges is modified.

Before describing the dynamic algorithm, we define a variation of the input network as follows.
Let N(V,E, c, l) be the input network and C1 < C2 < ... < Cr be the r distinct capacity values of
the edges of N . Let Nw

∞ = (V,E, c, lw) be a variation of N such that for each e ∈ E, lw(e) = l(e) if
c(e) ≥ w and lw(e) = ∞ otherwise. We shall first describe the case that N is planar. Our dynamic
algorithm consists of three procedures, namely preprocessing, query and update ones.

Preprocessing procedure: Call the preprocessing algorithm of [3] in each one of the networks
NCi∞ for i = 1, · · · , r and create the appropriate data structures.

Query procedure: Call the distance query algorithm of [3] in each one of the networks NCi∞ ,
i = 1, · · · , r, and compute the length Lu,z

i of the shortest lead time path from u to z in the network
N ci∞, i = 1, · · · , r. In each network NCi∞ , i = 1, · · · , r, the quantity Lu,z

i + σ/Ci, is computed. If k is
the index that minimizes Lu,z

i + σ/Ci, i = 1, · · · , r, then, using the shortest path query algorithm
of [3], the shortest lead time path from u to z is computed in the network NCk∞ .

Update procedure: There are two update procedures. The lead time update and the capacity
update procedure. The first one updates the data structure in the case of a modification to the
lead time of an edge, while the second one in the case of a modification to the capacity of an edge.
Note that deletion of an edge e corresponds to updating the lead time of the edge with an ∞ lead
time.

Lead time update: Let e be the edge whose lead time l1 is to be modified and let c(e) be its
capacity. Let also l2 be the new lead time of e. Then, the lead time update algorithm uses the
update algorithm of [3] to change the lead time of e in each network Nw

∞ with w ≤ c(e), from l1 to
l2.

Capacity update: Let e be the edge whose capacity Ci is to be modified and let l(e) be its lead
time. Suppose also that Cj is the new capacity of e. Then, the capacity update algorithm proceeds
as follows: If Ci < Cj , it uses the update algorithm of [3] to change the lead time of e in each
network Nw

∞ with Ci < w ≤ Cj , from ∞ to l(e). Otherwise (Cj < Ci), it uses the update algorithm
of [3] to change the lead time of e in each network Nw

∞ with Cj ≤ w < Ci, from l(e) to ∞.
The following lemma discusses the correctness of the algorithm and gives the bounds in the

case that the network is planar.

10

Lemma 4.1 Given an n-node planar network N , there exists an algorithm for the dynamic quickest
path problem on N that supports edge lead time modification, edge capacity modification and edge
deletion, with the following characteristics: (i) preprocessing time O(r(n+ γ̃ log γ̃); (ii) single–pair
quickest path query time O(r(γ̃ + log n) + L), where L is the number of edges of the quickest path;
and (iii) update time O(r(log n+ log3 γ̃)), after any modification and/or edge deletion.

Proof : From the definition of the network Nw
∞, each path in Nw

∞ that has lead time not equal to
∞, has capacity greater than or equal to w. It is not difficult to see that if q is a quickest path in

N , then q is a shortest lead time path in N
c(q)
∞ . Thus, the query procedure correctly computes the

quickest path from a node u to a node z. Suppose now that the lead time of an edge e is changed.
Then, we have to update all the networks where e belongs to, namely, all the networks Nw

∞ with
w ≤ c(e). If the capacity of an edge e is changed, then we have to change the lead time of e in
each network Nw

∞ with w between the old and the new capacity of e. The time complexity of the
algorithm comes from the complexity of the algorithm of [3], in the case of planar digraphs. 2

As previously discussed, the above bounds hold also if the sparse network is not planar but
has a separator decomposition. Otherwise, we have the following.

Lemma 4.2 Given an n-node sparse network N , there exists an algorithm for the dynamic quickest
path problem on N that supports edge lead time modification, edge capacity modification and edge
deletion, with the following characteristics: (i) preprocessing time O(r(n+ γ̃2 log γ̃); (ii) single–pair
quickest path query time O(r log n + L), where L is the number of edges of the quickest path; and
(iii) update time O(r(log n+ γ̃2 log γ̃)), after any modification and/or edge deletion.

Proof: Follows by the discussion in the proof of the previous lemma and the algorithm of [3] for
this type of networks. 2

Consider now the following modified version of the dynamic quickest path problem: The source
and destination nodes of the network remain unchanged, and the amount of data to be transmitted
from the source to the destination change more frequently than the network itself changes. Then,
we can modify our dynamic algorithm in such a way that the computation of the shortest lead
time distance is incorporated in the preprocessing and the update procedures instead of the query
one. This improves considerably the query time without increasing the preprocessing time and by
adding a factor of rγ̃ to the update time. More precisely we have the following lemma.

Lemma 4.3 Given an n-node planar (resp., sparse) network N with a source s and a destination
t, there exists an algorithm for the modified dynamic quickest path problem on N that supports edge
lead time modification, edge capacity modification and edge deletion, with the following character-
istics: (i) preprocessing time O(r(n + γ̃ log γ̃) (resp., O(r(n + γ̃2 log γ̃)); (ii) s − t quickest path
query time O(r + L), where L is the number of edges of the quickest path; and (iii) update time
O(r(γ̃ + log n+ log3 γ̃)) (resp., O(r(log n+ γ̃2 log γ̃)), after any modification and/or edge deletion.

Proof: Correctness is easy. The resource bounds are as follows. Preprocessing takes the time
stated in the lemma, because we run the preprocessing algorithm of [3] in the r subnetworks NCi .
In the case of edge lead time or capacity modification and/or edge deletion, we run the update
procedure of [3] in each subnetwork. We also find the quickest s− t path in each NCi . This is done
in order to achieve faster query time for our problem (as the data change more frequently than the
network itself). Hence, the update bounds are clear. Answering an s− t quickest path query takes

11

now O(r+L) time, since all we have to do is to find the minimum among r transmission times and
to output a path of L edges. 2

Acknowledgements. We are grateful to Esteban Feuerstein for many helpful discussions.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, North Holland, New York,
1976.

[2] Y. L. Chen and Y. H. Chin, “The quickest path problem”, Computers and Operations Research,
vol. 17, pp. 153–161, 1990.

[3] H. N. Djidjev, G. E. Pantziou and C. D. Zaroliagis, “On-line and Dynamic Shortest Paths
through Graph Decompositions,” Dartmouth Technical Report PCS-TR93-200, November
1993. Submitted.

[4] S. Even and H. Gazit, “Updating distances in dynamic graphs,” Methods of Operations Re-
search, Vol. 49, pp. 371–387, 1985.

[5] E. Feuerstein, Personal communication, January 1994.

[6] E. Feuerstein and A. M. Spaccamela, “Dynamic Algorithms for Shortest Paths in Planar
Graphs,” Theor. Computer Science, 116 (1993), pp.359-371.

[7] G. N. Frederickson, “Planar Graph Decomposition and All Pairs Shortest Paths,” J. ACM,
Vol.38, No. 1, pp.162–204, 1991;

[8] G. N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Shortest Path
Problems”, Proc. 30th Annual IEEE Symp. on FOCS, 1989, pp.448-453; also CSD–TR-897,
Purdue University, August 1989.

[9] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network oprim-
ization algorithms,” J. ACM, vol. 34, pp. 596–615, 1987.

[10] M.R. Garey, and D.S. Johnson, “Computers and Intractability. A Guide to the Theory of
NP-Completeness”, W.H. Freeman and Company, New York, NY, 1979.

[11] Y.-C. Hung and G.-H. Chen, “On the quickest path problem,” Proc. ICCI’91, LNCS 497,
Springer-Verlag, pp. 44–46, 1991.

[12] J. B. Rosen, S.-Z. Sun and G.-L. Xue, “Algorithms for the quickest path problem and the
enumeration of quickest paths,” Computers and Operations Research, vol. 18, pp. 579–584,
1991.

[13] D. D. Sleator and R. E. Tarjan, “A Data Structure for Dynamic Trees”, JCSC, Vol.26, pp.362-
391, 1983.

12

APPENDIX A

In this appendix we give a brief description of the dynamic shortest path algorithm in [3]. We
shall first give the algorithm in the case of planar digraphs and then discuss the extension to any
non-planar sparse digraph. The algorithmic scheme for solving the dynamic shortest path problem
on a planar digraph G is based on the solution of the same problem when the input digraph is
outerplanar and on the hammock decomposition technique. Suppose that we have an n-vertex
outerplanar digraph Go with real edge costs (but no negative cycles). A compressed version C(Go)
of Go, with respect to a constant number of distinguished vertices ai, is an outerplanar digraph of
O(1) size and can be generated in O(n) time [7]. Furthermore, for every pair ai, ai, i ̸= j, in Go if a
shortest path from ai to aj exists in Go, then there is a corresponding (compressed) one in C(Go)
of equal cost. Let S be a separator of Go (i.e. a set of vertices whose removal disconnects Go).
Let also SR(Go) be the graph obtained as follows: remove S from Go, substitute each subgraph
produced by its compressed version and then join again the subgraphs. The graph SR(Go) is called
the sparse representative of Go. Clearly, SR(Go) has size O(|S|). The preprocessing algorithm for
Go is based on a recursive separator decomposition of Go. Note that in Go we can always find
a separation pair (i.e. |S| = 2) that splits Go into two subgraphs G1 and G2 such that G1 is
at most (2/3) of the size of Go. If we recursively apply this to G1 and G2, we have a separator
decomposition of Go. The interesting feature of this decomposition is that it can be represented as
a binary tree T (Go) such that: the root node corresponds to Go, its left and right child correspond
to G1 and G2 respectively, and so on. Clearly the depth of T (Go) is O(log n). With each node v
of T (Go) (except for the leaves) we also associate the sparse representative SR(G) of the subgraph
G corresponding to v. Each leaf of T (Go) is associated only with the original subgraph G, since in
this case G is of O(1) size.

The preprocessing algorithm for Go proceeds in three steps. First, find shortest path infor-
mation in Go using the algorithm of [7]. (This takes O(n) time.) Second, construct the separator
tree T (Go). Third, compute sparse representatives for each node of T (Go) (except for the leaves).
This step can be implemented in a recursive way starting from the root of T (Go). It is not hard
to see that step 3 can be executed in O(n) time. Step 2 can also be executed in O(n) time using
the dynamic trees of [13]. Therefore, the preprocessing algorithm runs in O(n) time. The update
algorithm proceeds as follows. Let e be the edge that its cost has been modified. Then e will belong
to at most O(log n) subgraphs as they are determined by the preprocessing algorithm. Hence, it
suffices to update (in a bottom-up fashion) those sparse representatives corresponding to the nodes
of T (Go), that are in the tree path from the leaf node associated with the subgraph containing e
until the root of T (Go). It is not hard to see that this algorithm takes O(log n) time. Now, as far as
it concerns answering a single-pair query between any two vertices v and z, we proceed as follows.
Using T (Go) find the first separation pair (p1, p2) that separates v from z in Go. Note that this
pair corresponds to a node x in T (Go). Then, d(v, z) = min{d(v, p1) + d(p1, z), d(v, p2) + d(p2, z)}.
The four distances can be computed by traversing the two tree paths from the leaves corresponding
to the subgraphs containing v and z respectively, up to x. (The computation of the corresponding
shortest paths is done in a similar way.) Therefore, a single pair shortest path or distance query
can be answered in O(log n+L) time (where L is the number of edges in the path), or in O(log n)
time respectively.

The preprocessing algorithm for a planar digraph G proceeds as follows. First, find a hammock
decomposition of G into γ̃ hammocks. (This takes O(n) time by [8].) Second, run the outerplanar
preprocessing algorithm in each hammock separately. Third, replace each hammock H with its

13

sparse representative. This results into a new planar digraph Gγ̃ which is of size O(γ̃). Fourth, run
the preprocessing algorithm of [6] on Gγ̃ . This algorithm runs in O(n+ γ̃ log γ̃) time. The update
algorithm is straightforward. Let e be the edge that its cost has been modified. We have two
data structures that should be updated. The first one concerns the hammock H where e belongs
to. This is done by the outerplanar update algorithm. The second data structure is that of Gγ̃

and can be updated in O(log3 γ̃) time by [6]. Hence, we need in total O(log n + log3 γ̃) for the
updating of G. A single-pair query between any two vertices v and z can be answered as follows.
If v and z do not belong to the same hammock, then their distance d(v, z) = mini,j{d(v, ai) +
d(ai, a

′
j) + d(a′j , z)} where ai and a′i respectively are the attachment vertices of the hammocks

in which v and z belong to. If both v and z belong to the same hammock H, then note that
the shortest path between them does not necessarily have to stay in H. Therefore, first compute
(using the outerplanar query algorithm) their distance dH(v, z) inside H. After that, compute
dij(v, z) = mini,j{d(v, ai) + d(ai, aj) + d(aj , z)}. Clearly, d(v, z) = min{dH(v, z), dij(v, z)}. Note
that we need O(γ̃) time for querying in Gγ̃ ’s data structure [6] and O(log n) (or O(log n+L)) time
for querying in each hammock.

The above results can be extended to hold for any sparse digraph G as follows. If G is provided
with an O(nt)-separation decomposition (0 < t < 1), then the bounds hold as they are for the planar
case [5]. Otherwise, we use the dynamic algorithm scheme of [4] for Gγ̃ instead of the one in [6].
Note that by [8] the hammock decomposition technique applies to any digraph G and a hammock
decomposition can be computed in time linear to the size of G. We summarize with the following.

Lemma 4.4 Given an n-vertex planar (resp., sparse) digraph G with real-valued edge costs but no
negative cycles, there exists an algorithm for the on-line and dynamic shortest path problem on G
that supports edge cost modification and edge deletion with the following performance characteristics:
(i) preprocessing time and space O(n + γ̃ log γ̃) (resp., O(n + γ̃2 log γ̃)). (ii) single-pair distance
query time O(γ̃+log n) (resp., O(log n)); (iii) single-pair shortest path query time O(γ̃+log n+L)
(resp., O(L+ log n)) (where L is the number of edges of the path); (v) update time (after an edge
cost modification or edge deletion) O(log n+ log3 γ̃) (resp., O(log n+ γ̃2 log γ̃)).

14

15

