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Abstract. In this paper we view P=NP as the problem which symbolizes
the attempt to understand what is and is not feasibly computable. The paper
shortly reviews the history of the developments from Gdodel’s 1956 letter ask-
ing for the computational complexity of finding proofs of theorems, through
computational complexity, the exploration of complete problems for NP and
PSPACE, through the results of structural complexity to the recent insights
about interactive proofs.

1 GODEL’S QUESTION

The development of recursive function theory, following Godel’s famous 1931 paper
[G631] on the incompleteness of formal mathematical systems, clarified what is and
is not effectively computable. We now have a deep understanding of effective proce-
dures and their absolute limitations as well as a good picture of the structure and
classification of effectively undecidable problems. It is not clear that the the concept
of feasible computability can be defined as robustly and intuitively satisfying form as
that of effective computability. At the same time it is very clear that with full awaze-
ness of the ever growing computing power we know that there are problems which
remain and will remain, in their full generality, beyond the scope of our computing
capabilities. One of the central tasks of theoretical computer science is to contribute
to a deeper understanding of what makes problems hard to compute, classify prob-
lems by their computational complexity and yield a better understanding of what is
and is not feasibly computable.

It is interesting to observe that the effort to understand what is and is not ef-
fectively computable was inspired by questions about the power of formal systems
and questions about theorem proving. Not too surprisingly, the questions about the
limits of feasible computability are also closely connected to questions about the
computational complexity of theorem proving. It is far more surprising and interest-
ing that it was again Godel, who’s work had necessitated the investigations of what
is effectively computable, who asked the key question about feasible computability
in terms of theorem proving. In a most interesting 1956 letter to his colleague at the
Institute for Advanced Study, John von Neumann, Godel asks for the computational
complexity of finding proofs for theorems in formal systems( cf. [Har89] ). Godel is
very precise, he specifies the Turing machine as a computational model and then
asks for the function which bounds the number of steps needed to compute proofs
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of length n. It does not take very long to realize that Gddel was, in modern termi-
nology, asking von Neumann about the deterministic computational complexity of
theorem proving and thus about the complexity of NP. In the same letter Gddel also
asks about the computational complexity of problems such as primality testing and
quite surprisingly, expresses the opinion that the problem of theorem proving may
not be so hard. He mentions that it is not unusual that in combinatorial problems
the complexity of the computation can be reduced from the N steps required in the
brute force method to log IV steps, or linear in the length of the input. He mentions
that it would not be unreasonable to expect that theorem proving could be done in
a linear or quadratic number of steps. Strange that the man who showed the unex-
pected limits of formal theorem proving did not seem to suspect that computational
theorem proving and therefor NP may be at the limits of feasible computability. It
is very unfortunate that von Neumann was already suffering from cancer and passed
away the following year. No reply to this letter has been found and it seems that
Godel did not pursue this problem nor try to publicize it.

2 Complexity theory and complete problems

The full understanding of the importance of Godel’s question had to wait for the
development of computational complexity which was initiated as an active computer
science research area in the early 1960’s. The basic hierarchy results were developed,
the key concept of the complexity class, the set of all problems solvable( or languages
acceptable ) in a given resource bound, was defined and investigated[HS65, HI.S65].
In a very general sense, the most important effect of this early work in complexity
theory was the demonstration that there are strict quantitative laws that govern the
behavior of information and computation. A turning point in this work came in 1971
with Cook’s proof that SAT, the set of satisfiable Boolean formulas, was complete
for NP, the class of nondeterministic polynomial time computations [Coo71]( these
results were independently discovered a year later by Levin [Lev73] ). In other words,
any problem that can be solved in polynomial time by guessing a polynomially
long solution and then verifying that the correct solution had been guessed, could
be reduced in polynomial time to SAT. In 1972 Karp [Kar72] showed that many
combinatorial problems were in NP and could be reduce to SAT. On of the key
problems in this set was the Clique decision problem: given a graph G and an
integer k, determine if there is a clique of size % in this graph. Cook’s and Karp’s
work virtually opened a flood gate of complete problems in NP and PSPACE. From
all areas of computer science mathematics, operations research etc., came complete
problems in all sizes and shapes all reducing to SAT and SAT reducing to them (see
[GJ79] for a compendium).

Later, many other complexity classes were defined and found to have com-
plete languages or problems. Among the better known ones are SPACE(logn),
NSPACE(logn), P, NP, SPACE(n), NSPACE(n), the Polynomial Hierarchy(PH),
PSPACE, NPSPACE(which is the same as PSPACE), EXPTIME, NEXPTIME,
and EXPSPACE. The reassuring aspect of these classes is that they are very robust
in their definition and that they appear naturally in many other settings which may
or may not be directly connected to computing. For example, a variety of these com-
plexity classes appear naturally as the classes definable by different logics, without



any direct reference to computing( cf. [Imm89] for a survey). There is no doubt that
complexity classes are a key concept and that they reveal a natural and important
structure in the classification of computational problems and mathematical objects.

3 Structural Complexity Theory

The exploration of the structure of the complexity of computations has been an
active area of research for more than a decade. This research explores the rela-
tions between various complexity classes and it investigates the internal structure
of individual complexity classes. Figure 1 presents the key complexity classes below
EXPSPACE, the class of all problems solvable with tape size bounded by an expo-
nential in the length of the input. Besides the space and time bounded classes such
as P, PSPACE etc. mentioned earlier the figure also shows the second level of the
Polynomial Hierarchy in detail. PSATII¥ is the class of languages recognizable by
polynomial time oracle machines which can make up to k¥ non-adaptive queries to
a SAT oracle. The language of uniquely satisfiable formulas, USAT, is in £, the
second level of the PH and also the complement of USAT is in X¥. In fact, USAT,
is in the class PSATII[2], PSAT[log~] is the class of languages accepted by polynomial
time oracle machines which make logarithmic number of queries to SAT and PSAT
is the class of languages recognizable with a polynomial number of queries to SAT.
For several NP optimization problems where the optimum value is bounded by a
polynomial in the input size, such as the Clique problem ( the maximum clique size
is the number of vertices), the optimum value can be computed with logarithmically
many queries to SAT, by a binary search on the polynomial sized range of possible
values. Optimization problems such as the Traveling Salesperson Problem can be
solved with polynomially many queries to SAT.

Though we know a tremendous amount about the relations between these com-
plexity classes, we still have no proof that they all are distinct: There is no proof
that P is not equal to PSPACE! There is a very strong conviction that all the ma-
jor complexity classes are indeed different, but in spite of all our efforts there is no
nontrivial separation result. A major result would be any separation of: P and NP,
NP and PSPACE, the various levels of the Polynomial Hierarchy, PSPSACE and
EXPTIME, EXPTIME and NEXPTIME, and the last two from EXPSPACE. Less
dramatic, but still very interesting would be the separation of the lower complexity
classes, including SPACE(logn) and P or some even lower classes (defined by circuit
models) not discussed here. It is clear that there are major problems facing complex-
ity theory on which no substantial progress has been made since their definition, in
some cases more than twenty years ago. The successes in recursive function theory
have come from diagonalization arguments whose sharpness and sophistication has
been elevated to a fine art. Unfortunately, though structural complexity theory has
been strongly influenced by concepts from recursive function theory, diagonalization
proof techniques have failed to dent the notorious separation problems. Since we can
not diagonalize over these classes to construct a language just outside of the class,
i.e. in a higher but not too high a class, we lack proof techniques to be able to deal
with all possible ways of computing a problem in a given class to show that a certain
problem from the class above can not be so computed. We badly need new concepts
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and techniques to reason about all the possible computations in a complexity class
to show their limitations.

Given the current situation, a working hypothesis in structural complexity theory
is that P is different than NP and further more that the Polynomial Hierarchy is
infinite. In particular, there have been many very interesting results which show that
a given assumption implies that PH is finite, and thus giving in our view, a strong
indication that the assumption is not true. We will illustrate some such results.

In 1977 Len Berman and the first author were led to conjecture on the strength
of many special cases and with analogy to the corresponding situation in recur-
sive function theory, that all NP complete sets are isomorphic under polynomial
time computable isomorphisms [BH77). This means that for any two NP complete
problems there exists a bijection, reducing the problems to each other, and which
is polynomial time computable in both directions, thus asserting that all NP com-
plete problems are indeed very similar in structure. It is easily seen that this, the
Berman-Hartmanis conjecture, implies that all NP complete sets must have roughly
the same density. If we refer to a set as sparse if it has only polynomially many
elements up to size n, then the conjecture implies that no sparse sets can be NP
complete. Indeed, a former student of the first author, Steve Mahaney, proved the
following very interesting result.

Theorem 1 (Mahaney [Mah82]). If a sparse set is NP complete then P=NP.

This leads us to accept, using our working hypothesis, that no sparse set can be
complete for NP. Thus, there can not be a polynomially large dictionary which we
can consult to solve an NP complete problem in polynomial time with its help. We
describe the gist of the proof of this result with a new method due to Ogiwara and
Watanabe [OW90], which has made a hard proof [Mah82] quite manageable. As you
will see, the key ideas are deceptively simple, but please do not underestimate the
originality and difficulty of the original proof and the very clever choice of the right
NP complete set in the new proof.

Proof Outline: Instead of SAT, we will consider the set

A= {(z,F) | F an r~variable formula, |z| =r, and (3y) z < y and F(y) = 1}.

It is easy to see that this set is NP complete; it is in NP and by fixing = = 00....0,
it is SAT.

Let S be a sparse NP complete set, and let the density function of S, i.e. [{z|z €
S and |z| < n}|, be bounded by n*. Let f be the polynomial time computable
function which reduces A to S with |f(z)| < N(|z|). Think of the 2" r-length binary
strings arranged on a line in increasing order. Divide this line in 2(N(n))* segments
and compute the value of the reduction f of A to S at the 2(N(n))* points at the
beginning of each segment. Should all these values of f be different then we know
that among the first (N(n))* + 1 values there must be one that is not in S and thus
shows that there is no y to the right of it which can satisfy F . Therefore we can
remove the right half of the line since no solution exists there. We now repeat this
process on the first half. Clearly, if our luck holds and, in all following computations
the f values are distinct, in polynomially many rounds we will reach polynomially
many values which must contain the satisfying assignment if there is one and we
check all possibilities, solving the satisfiability problem in polynomial time.



Clearly, we can not expect that all the f values will be distinct all the time. At
the same time, equal values also contain a lot of good information and can be used
to eliminate from consideration the segments between any pair of values with same
function value. To see this, observe that if for z < z’, we have f(z) = f(z’) not in
S, then there is no solution to the right of z and therefore no solution between z
and z'. If f(z) = f(z') is in S, there are solutions to the right of z’, and hence we
can eliminate the segment between z and z’ without losing all solutions. Again it is
seen that if there are many equal values we toss out all the segments between pairs
of equal values and the line is shortened. It is not too hard to see that combining
both methods the total length of the remaining segments to be searched decreases
by at least half each time and we can determine in polynomial time if a the formula
F is satisfiable, which implies that P=NP.

To illustrate an assumption which forces the Polynomial Hierarchy to be finite
we will consider deterministic polynomial time computations which can query a
SAT-oracle, i.e. during the computation a polynomial number of questions can be
asked about the outcome of NP computations. These considerations will also lead
us to some recent interesting results about probabilistic computations which are
intuitively very satisfying. To recall, P SATI|[¥] denotes the class of polynomial
time computations with k parallel i.e. non-adaptive queries to the SAT oracle.

Theorem 2 ( Kadin [Kad88]). If for eny k, PSAT||[k -1} _ PSAT“[]‘], then
the Polynomial Hierarchy is finite.

Not only can sparse sets not be NP complete if P is not equal to NP, but if the PH
is infinite as we strongly expect, there is no way of even saving a single query to
SAT out of millions of queries. On the other hand, our intuition suggests that as the
number of queries to SAT increases the value of additional queries should decrease.
Kadin’s result shows that this is not the case, but there is another way of looking at
this problem which indeed justifies our intuition of the decreasing value of queries
as the numbers increases. To see this we consider randomized reductions:

Definition 3. A language H <7 reduces to language K, with probability p if there
exists a polynomial time function f such that

z € H = Prob[f(z,2) € K]>p
z ¢ H = Prob[f(z,2) g K]=1
when z is chosen at random from g(n) long binary strings, where ¢ is a polynomial.
The 53,?1‘( two-sided error ) reduction is defined similarly, with the condition being
Prob[z € H iff f(z,2) € K] > p.

The question now is, with what probability can languages in PSATI|[¥] be reduced to

P SAT||[k — 1] A very recent result by a former student of the first author, Pankaj
Rohatgi, shows that there are very interesting threshold results about randomized
reductions.



Theorem4 (Rohatgi [Roh92]). Every language in PSATIIX] can be reduced to

a language in PSAT|(k = 1) with two-sided error reductions of probability 1 — 3.
And this result is optimal: if there is a such a reduction possible with probability
1 — g5 + songey then the PH is finite, where n is the size of the input to the

reduction.

This is a very interesting result: First it shows that with increasing k the value
of additional queries to SAT decreases since the probability that it reduces to a
problem solvable by one less query increases as k grows. At a million queries to SAT
an additional query indeed has a small value. It also shows, surprisingly, that in
randomized reductions there are very sharply defined threshold effects such that if
it is possible to pass this threshold then the polynomial hierarchy collapses, just as
in the deterministic case, according to Kadin’s resuit. It is also interesting to note
that the proof of this result uses the ‘hard-easy’ method used in Kadin’s proof iz a
new setting with technically interesting methods. The results for the one-sided error
case are similar but because of the stricter reductions the threshold probability is
1~ [z/7]- Again the violation of this threshold forces PH to be finite. The delightful
part in the proofs is that it the reductions that achieve the desired probability bound
are simple and it is surprising that the ‘natural’ method is also an optimal one. We
urge you to read Rohatgi’s PhD dissertation[Roh94].

4 Interactive Proofs

In 1985 two models of interactive randomized computation were introduced with very
different motivations. In order to extend NP class slightly to capture some problems
not known to be in NP, Babai defined the Arthur-Merlin games[Bab85](see also
[BM88]). Motivated by possible applications to cryptographic protocols, Goldwasser,
Micali and Rackoff defined the class of languages with interactive proofs| GMRS89]. To
motivate the introduction to this computing model, let us recall that NP is simply
that class of problems for which, when a solution is suggested, it can be verified in
polynomial time that the solution indeed solves the problem. We can think of this
as a very powerful prover seeing the problem posed to the verifier and then simply
sends him the solution, which than can be checked for validity by the verifier. Also,
if no such solution exists, no prover, however powerful, can convince the verifier of
the existence of a solution. Here the communication is one-way from the prover to
the verifier. It is easily seen that adding a two way interaction in this model does not
increase the computing power. To see this, we just have to observe that the verifier
is a deterministic polynomial time machine and that the very powerful prover can
compute the questions which the verifier will ask upon seeing the posed problem
and in response to the answers from the old prover. Thus the prover after seeing
the problem can send the whole exchange of questions and answers to convince the
verifier that there is indeed a solution to the posed problem, and we are back to
NP case. To have a unpredictable interaction between the prover and the verifier we
need to add randomness to the arsenal of the verifier and give up the total certainty
of verification of the solution as in the case of NP case. This leads us to the following
definition of languages with interactive proofs.



Definition 5 ([GMRS89]). A language L is in IP (i.e. it has an interactive proof)
if there exists a verifier V, a randomized polynomial time machine such that

z € L = There exists a prover P* such that Prob[(V, P*) accept on z] = 1

z € L = For all provers P Prob[(V, P) accept on z] < %

Note that repeated, independent executions of this protocol reduces the probability
of failure exponentially fast. For some time after the introduction of these concepts
it was not clear how powerful interactive proofs were. There is a very nice proof that
the graph non-isomorphism problem, which is in ¢co-NP and is not known to to be
in NP, has an interactive proof [GMW86]. The protocol is indeed simple: For any
pair of graphs (H, K), the Verifier selects randomly H or K, randomly permutes
the graph, and asks the Prover to identify the graph as H or K. If H and K are
not isomorphic a honest prover has no difficulty identifying the graph. If they are
isomorphic, no Prover is capable of distinguishing between the randomly permuted
versions of H and K, which are isomorphic. Thus, no prover can do any better than
guessing the answer and hence cannot deceive the verifier with probability more than
%. Again, by a repetition of this question-answer exchange, the probability that the
verifier is fooled by a dishonest prover can be made exceedingly small.

It is also interesting to recall that there were oracle results[FS88] which gave rel-
ativized worlds in which co-NP was not contained in IP. This suggested, incorrectly,
that IP was not very powerful or, according to the heuristic use of oracle results,
indicating that it should be very hard to prove that co-NP is contained in IP in the
real ( unrelativized ) world. The oracle hueristic implied that such a proof can not
be obtained with “known methods”.

The determination of the full power of IP came very suddenly and it was a great
surprise. In 1990, Lund, Fortnow, Karloff and Nisan [LFKN90| developed the tech-
niques to show that the entire polynomial hierarchy is contained in IP and Shamir
[Shag0] finished the characterization of the power of interaction and randomization
by showing that IP=PSPACE. This was indeed a startling surprise with further
unexpected consequences. The proof exploits in a very elegant way our better un-
derstanding of polynomials than Boolean formulas. The fact that polynomials can
be ‘fingerprinted’ be evaluating them at a random point, was the key to the very
ingenious proof. We know that if two polynomials, p and g of low degree evaluate
to the same value with high probability at a randomly chosen point z, then, with
high probability they are identical polynomials, since z is a root of the low degree
polynomial p(z) — g(z), and such polynomials have few roots unless identically zero.
The key idea in the proof is to replace a given quantified Boolean formula, which
constitute a PSPACE complete problem, QBF, by operations over a field of integers
modulo a large prime. To convert a QBF into a polynomial, ‘or’ is replaced by +,
‘and’ by x, ‘not’z by (1~z), forall’z by [],_, ;, and ‘there exists’z by 3°__, ;. After
that, a clever sequence of questions about the resulting polynomials and their eval-
uation ( fingerprinting ) at random points, yields the interactive protocol to test if
the given QBF is satisfiable, thus showing that QBF€IP, and since QBF is complete
for PSPACE, PSPACECIP. This startling result also gives a natural counterexample



to refute the random oracle hypothesis. It is shown in [HCRR90b] that with prob-
ability 1, for a random oracle A, IP4 #PSPACE4. The IP=PSPACE result also
allows one to tie the width of a proof of a theorem in a formal system to the ease of
convincing a verifier of its correctness with high probabilityfHCRR90a]. Informally,
we can think of a proof of a theorem as being written on a two-dimensional page
so that it can be verified easily, for e.g. by a finite automaton which can read one
symbol on 2 adjacent lines of the proof. This can be shown to be a robust definition
with the finite automaton replaced by several other models, all yielding the same
class of proofs. It can then be shown that PSPACE is the class of languages with
proofs with polynomially wide proofs, where the width of a 2—dimensional proof
being the largest number of symbols on any one line. IP=PSPACE thus implies that
width, as opposed to the length, of the proof determines how quickly one can give
overwhelming evidence that a theorem is provable without showing its full proof.

The impact of the IP=PSPACE result is still being explored in complexity theory
but some related results followed in rapid succession. Motivated again by their possi-
ble application in cryptographic protocols, Ben-Or, Goldwasser, Kilian and Wigder-
son [BGKW88| had earlier proposed, MIP, a multi-prover version of interactive
proofs. Babai, Fortnow and Lund [BFL90] showed that this model, which has two
provers who do not communicate with each other, increases the computational power
substantially: MIP = NEXPTIME. Fortnow, Rompel and Sipser [FRS88] showed
that the MIP model was equivalent to the following oracle model

Definition 6. A language L is in MIP if there exists a polynomial time probabilistic
oracle machine V'( the verifier ) such that

z € L = There exists oracle O such that Prob[V?(z) accepts | = 1

ze€ L = Forall O Prob[VO(z) accepts | < %

Since the oracle answers can be thought of as an exponentially long ‘proof’ of mem-
bership, the result MIP=NEXPTIME, says that for languages in exponential time
there are exponentially long proofs of membership which can be checked by in-
spection at a polynomial number of places. This characterization of MIP and the
MIP=NEXPTIME were surprisingly used to show the hardness of approximating
the clique problem[FGL*91] unless EXPTIME=NEXPTIME. This also initiated
the attempt to ‘scale down’ the result on proofs whose correctness can be checked
by inspection at very few places[BFLS91]. Two big breakthroughs followed: The
results of [AS92] showed that indeed languages in NP had proofs which could be
verified by checking at logarithmically many ( in fact even smaller ) places of the
proof. Finally Arora ef al. [ALM*92] showed that NP is the set of languages which
have proofs which can be checked by verifiers which use logarithmically many ran-
dom bits and which inspect the proof at only a constant number of positions! This
surprising characterization has led to many results on the hardness of approximating
many combinatorial problems[ALM*92, LY93, ABSS93], whose approximability has
been open for several years.
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