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Abstract

Systems of set constraints describe relations between sets of ground terms.
They have been successfuly used in program analysis and type inference. So
far two proofs of decidability of mixed set constraints have been given: by
R. Gilleron, S. Tison and M. Tommasi [12] and A. Aiken, D. Kozen, and
E.L. Wimmers [3], but both these proofs are very long, involved and difficult
to follow.

We first give a new, simple proof of decidability of systems of mixed positive
and negative set constraints. We explicitely describe a very simple algorithm
working in NEXPTIME and we give in all detail a relatively easy proof of its
correctness. Then we sketch how our technique can be applied to get various
extensions of this result. In particular we prove that the problem of con-
sistency of mixed set constraints with restricted projections and unrestricted
diagonalization is decidable. Diagonalization here represents a decidable part
of equality. It is known that the equality of terms can not be directly included
in the language of set constraints. Our approach is based on a reduction of
set constraints to the monadic class given in a recent paper by L. Bachmair,
H. Ganzinger, and U. Waldmann [7].

To save space we assume that the reader is familiar with the main ideas of
the method introduced in [7] of using the monadic class to study set constraints.
We shall drop this assumption in the full paper.



1 Introduction

Set constraints give a natural formalism for many problems in program analysis and
type inference. They have been studied and applied in many papers including [5],
[4], [14], [15], [17], [18], [20].

The first general results concerning the decidability of set constraints were ob-
tained by Heintze and Jaffar [13], who studied the so-called definite set constraints.
The decidability of systems of positive set constraints was established by A. Aiken
and E.L. Wimmers [6]. Later other proofs have been obtained. R. Gilleron, S. Ti-
son, and M. Tommasi [11] gave a proof based on automata theoretic techniques and
L. Bachmair, H. Ganzinger, and U. Waldmann [7] gave a simple and very elegant
proof using the decision procedure for the first order theory of monadic predicates,
providing also NEXPTIME-completeness of the problem of solvability of positive set
constraints. In a paper by A. Aiken, D. Kozen, M. Vardi, and E.L. Wimmers [2],
yet another algorithm has been presented and a detailed analysis of the complexity
of positive set constrains has been given.

The problem of the decidability of sets constraints with negated inclusion was
more difficult. Two solutions were obtained independently by Aiken, Kozen, and
Wimmers [3], and Gilleron, Tison and Tommasi [12]. Both solutions are quite difficult
and involved.

The solution by Aiken, Kozen and Wimmers uses ideas of [2] and goes through
normal forms, a reduction to another problem concerning hypergraphs, a reduc-
tion to the Diophantine (nonlinear) reachability problem, and solving the last one
in some sense again using graph-theoretic tools. Later an improvement of this re-
sult was obtained by K. Stefansson [19], who simplified the last part of the proof,
obtained NP-completeness of the Diophantine reachability problem, and thus estab-
lished NEXPTIME-completeness of the original problem.

The solution by Gilleron, Tison and Tommasi extends ideas of [11] and is based
on the notion of a tree set automaton. It is quite involved, the paper presenting the
proof is rather long and contains a difficult combinatorial lemma whose proof is very
long and rather difficult to follow.

Our proof is based on the idea of L. Bachmair, H. Ganzinger, and U. Waldmann
[7] to reduce the decidability problem for positive set constraints to the problem
of consistency of first order theories of unary predicates. It has been known for
some time (see [1], [16]), that it is decidable if a finite set of first order sentences
in a language L having only unary predicates has a model. Moreover, for sentences
without equality the size of such a model can be bounded by 2N , where N is the
number of predicate symbols in L. In [7] a simple method was given for translating
the problem of consistency of positive set constraitns to the problem of consistency
of finite sets of sentences in a first order unary language, and a method of obtaining
solutions of systems of positive set constraints from the corresponding finite models
of monadic theories.

The translation of set constraints to monadic theories works also for negative
set constraints. Our extension solves the problem of how to use a finite model of
a monadic theory to get a solution of the corresponding system of set constraints.
The main problem is to make sure that some sets of terms are non empty. The
first observation is that each solution of a system of set constraints gives a finite
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approximation, called a history which is sufficient to reconstruct a (perhaps different)
regular solution. Then, the proof proceeds by distinguishing a small subset, the
skeleton of a history, which is small, is not always a history, but can be collapsed to
obtain a small history. Now, what is left, is to make an exhaustive search through
all small histories, which is described below in the algorithm EASY.

In the last section we consider set constraints with projections and diagonaliza-
tions. First, just by changing some parameters in EASY, we prove that we can
extend to the case of mixed constraints some results of [7] on positive set constraints
with restricted projection and diagonalization. Then we sketch a proof of a theorem
saying that in fact the restrictions on diagonalizations can be lifted. The diagonal-
ization is a way of introducing a weak form of equality which allows to compare
brothers in a term. It has been proved by B. Bogaert and S. Tison [8] that if the
comparison of cousins is allowed, then the problem (or even its special case) becomes
undecidable.

2 Basic definitions

Let Σ = {a01, . . . , a0i0 , f
1
1 , . . . , f

1
i1
, . . . , fm1 , . . . , f

m
im}, where a01, . . . , a

0
i0

are constant
symbols, f1i1 , . . ., f

m
1 , . . . , f

m
im are function symbols and f ij stands for j-th symbol

of arity i in Σ, and let V be a set of second order variables. Set expressions are
defined by the grammar

E ::= 0 | 1 | α | E ∪ E | E ∩ E | Ē | fki (E1, ..., Ek)

where α is a set variable in V and fki ∈ Σ. A positive set constraint is a relation of
the form E ⊆ E′, and a negative set constraint has a form E ̸⊆ E′.

Consider a system of set constraints

(SC) E1 ̸⊆ E′
1 ∧ . . . ∧ El ̸⊆ E′

l ∧ El+1 ⊆ E′
l+1 ∧ . . . ∧ Ek ⊆ E′

k.

Let E(SC) denote set of all subexpressions of E1, E
′
1, . . . , Ek, E

′
k. Following [7]

for each expression E ∈ E(SC) we introduce a predicate symbol PE . Let φ′ be
the universal closure of the conjunction of the formulas defining predicates PE for
all E ∈ E(SC) (i.e. formulas of the form PE1∪E2(y1) ↔ PE1(y1) ∨ PE2(y1), . . . ,
Pf i

j(E1,...,Ei)
(f(y1, . . . , yi)) ↔ PE1(y1) ∧ . . . ∧ PEi(yi), Pf i

j(E1,...,Ei)
(g(y1, . . . , yi′)) ↔

false for g ∈ Σ \ {f ij}). For the system (SC) the formula

∃x1 . . . ∃xl∀y1(PE1(x1) ∧ ¬PE′
1
(x1)) ∧ . . . ∧ (PEl

(xl) ∧ ¬PE′
l
(xl))∧

∧(PEl+1
(y1) → PE′

l+1
(y1)) ∧ . . . ∧ (PEk

(y1) → PE′
k
(y1)) ∧ φ′

expresses the satisfiability of (SC). Moving the quantifiers of φ′ outward, we obtain
a formula of the form

∃x1 . . . ∃xl∀y1 . . . ∀ymφ(x1, . . . , xl, y1, . . . , ym, a
0
1, . . . , a

0
i0 , f

1
1 (y1), . . . , f

m
im(y1, . . . , ym)),

with φ built using only monadic predicate symbols (and the symbols listed above).
It can easily be seen that this formula is a (partial) skolemization of the formula ψ
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below.

∃x1 . . . ∃xl∃x01 . . . ∃x0i0∀y1∃x
1
1 . . . ∃x1i1∀y2∃x

2
1 . . . ∃x2i2 . . . ∀ym∃xm1 . . .∃xmim

φ(x1, . . . , xl, y1, . . . , ym, x
0
1, . . . , x

0
i0
, x11, . . . , x

m
im)

Let N be the number of predicate symbols in P = {PE | E ∈ E(SC)}. If I is a
model of ψ then we consider the equivalence relation ≡ in I such that x ≡ y if and
only if for all P ∈ P we have P I(x) ↔ P I(y), where P I is the interpretation of P
in I. Let M be the number of different nonempty equivalence classes of the relation
≡. We will often identify the interpretation of a unary predicate symbol P I with the
subset {x | P (x)} of the domain of I.

Lemma 2.1 (see [1], p.34) A monadic formula (without equality) is satisfiable if
and only if it has a finite model (of cardinality M ≤ 2N ) such that in each equivalence
class of the relation ≡ there is at most one element.

3 The algorithm

In this section we give an algorithm solving set constraints with negated inclusion.
The algorithm is nondeterministic with exponential time complexity. This together
with the results from [7] gives NEXPTIME-completeness of the problem. Note that
except the first step, when we choose a model of a monadic formula (which requires
nondeterministic exponential time, see [16] for details), the algorithm is nondeter-
ministic polynomial.

Steps 2 and 3 implement a standard method of building Herbrand models. Step
4 gives a definition of a solution, if one exists. Note that in this step we do not
compute the whole solution, we just give a description of how to compute it. Since
this description is finite, the solution is regular (see [12] for a definition of regularity).

algorithm EASY
input: formula ψ representing set constraint (SC)
output: solution of (SC) if such a solution exists, ”NO SOLUTION” if it does not
exist

1. Nondeterministically choose a model of ψ consisting of a finite domain D (of
cardinality M ≤ 2N ) and a subset PD

E of D, for each E ∈ E(SC), such that in
each equivalence class there is at most one element. If such a model does not
exist then return(”NO SOLUTION”).

2. Nondeterministically choose d01, . . . d
0
i0
∈ D such that

∃x1 . . .∃xl∀y1∃x11 . . .∃x1i1∀y2 . . . ∃x
m
im

φ(x1, . . . , xl, y1, . . . , ym, d
0
1, . . . , d

0
i0
, x11, . . . , x

m
im)

holds in D. Such d01, . . . d
0
i0

exist because ψ is satisfied in our interpretation.
Put Φ(a0j ) = d0j and H = {a01, . . . a0i0}.
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3. Repeat this step until |H| ≥ 2M3 or Φ(H) = D:

Choose a function symbol fkj ∈ Σ and a sequence t1, . . . tk of terms from H

such that Φ(fkj (t1, . . . tk)) has not yet been defined. Choose dkj ∈ D such that

∃x1 . . . ∃xl∃x11 . . . ∃xkj−1∃xkj+1 . . . ∃xkjk∀yk+1 . . . ∃xmim
φ(x1, . . . , xl,Φ(t1), . . . ,Φ(tk), yk+1, . . . , ym, d

0
1, . . . , d

0
i0
, x11, . . . , d

k
j , . . . , x

m
im)

holds in D. Add fkj (t1, . . . , tk) to H and define Φ(fkj (t1, . . . , tk)) = dkj .

4. If Φ(H) = D then fix terms t1, . . . , tM ∈ H such that Φ({t1, . . . , tM}) = D. If
Φ(f ij(t

j1 , . . . , tji)) is not defined for some f ij ∈ Σ and some tj1 , . . . , tji among

t1, . . . , tM , then define it in the same way as in the step 3. Extend Φ to T (Σ)
by defining Φ(f ij(t1, . . . , ti)) = Φ(f ij(t

j1 , . . . , tji)) where Φ(tjk) = Φ(tk).

Now for each set variable X ∈ E(SC) return(”SOLUTION:” X = Φ−1(PD
X )).

If for all nondeterministic choices in steps 1–3 Φ(H) ⊆/D then return(”NO
SOLUTION”).

4 Correctness of the algorithm

4.1 Soundness

Theorem 4.1 The algorithm gives only correct solutions.

Proof. Consider an interpretation with the domain T (Σ) and predicates P
T (Σ)
E for

E ∈ E(SC) defined as follows: P
T (Σ)
E (t) ↔ PD

E (Φ(t)). It suffices to show that under
this interpretation the formula

∃x1 . . . ∃xl∀y1 . . . ∀ym
φT (Σ)(x1, . . . , xl, y1, . . . , ym, a

0
1, . . . , a

0
i0
, f11 (y1), . . . , f

m
im(y1, . . . , ym))

is satisfied. Take d1, . . . dl ∈ D such that the formula

∃x01 . . . ∃x0i0∀y1∃x
1
1 . . .∃xmimφ(d1, . . . , dl, y1, . . . , ym, x

0
1, . . . , x

0
i0 , x

1
1, . . . , x

m
im)

is satisfied, and xi ∈ Φ−1(di). Then for any t1, . . . , tm ∈ T (Σ) we get

φT (Σ)(x1, . . . , xl, t1, . . . , tm, a
0
1, . . . , a

0
i0
, f11 (t1), . . . , f

m
im(t1, . . . , tm)) ↔

↔ φD(Φ(x1), . . . ,Φ(xl),Φ(t1), . . . ,Φ(tm),Φ(a01), . . .
. . . ,Φ(a0i0),Φ(f11 (t1)), . . . ,Φ(fmim(t1, . . . , tm))) ↔

↔ φD(d1, . . . , dl,Φ(t1), . . . ,Φ(tm), d01, . . . , d
0
i0
, d11, . . . , d

m
im) ↔

↔ true

2
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4.2 Completeness

A solution of (SC) is a function S : X → P(T (Σ)), where X is the set of variables
occurring in (SC). This function can be extended in a unique way to a function
from E(SC) to P(T (Σ)). If E(SC) = {E1, . . . , EN}, then let D = {S(ε(E1)) ∩ . . . ∩
S(ε(EN )) | ε(Ei) ∈ {Ei, Ei}}. We can identify D with the set T (Σ)/≡ of equivalence
classes of the relation ≡, so D contains at most 2N elements which are disjoint subsets
of T (Σ). Let Φ be the quotient mapping from T (Σ) into D, i.e. Φ(t) = d ∈ D if
t ∈ d, so the sentence Φ(t1) = Φ(t2) is equivalent to the sentence t1 ≡ t2. In this
section while talking about a solution of (SC) we will think of a function Φ rather
then of S. Of course if we have the function Φ we can reconstruct the function S
putting for all X ∈ X S(X) = Φ−1(

∪
{ε(E1) ∩ . . . ∩ ε(EN ) ∈ D | ε(X) = X}).

We fix a linear ordering ≺ on terms such that if t is a term of depth lower then
the depth of s, then t ≺ s. The maximal subterm of a term f(s1, . . . , sk) is a term sj
among s1, . . . , sk such that for all i ≤ k, si ≺ sj (if there are two maximal subterms
sj = sl with j < l then the first occurrence, i.e. sj is the maximal subterm).

Definition 4.2 A history of a solution Φ of (SC) is a finite set of terms (labeled
by their image under Φ) containing the minimal terms in each equivalence class and
closed under taking subterms.

Lemma 4.3 A history of a solution gives all necessary information to construct a
(perhaps different, regular) solution.

Proof. With a history of solution on input, EASY does not need to proceed with
steps 1–3; it can at once go to step 4 and extend this information to a solution. 2

In this subsection we will show that if this set is too big then we are able to
construct a new solution with a smaller one. The key observation here is that if
f(s1, . . . , t, . . . , sn) belongs to the history H and there is no other term in H contain-
ing t as a subterm, then if we can replace f(s1, . . . , t, . . . , sn) by f(s′1, . . . , t, . . . , s

′
n)

where si ≡ s′i and s′i are minimal in their equivalence classes, we obtain a smaller
history.

In the text below c[i] denotes the i-th term (according to the ordering ≺) in
the set Φ−1(c), and the set of milestones is a subset of the history (defined in the
background of the definitions below). We call a term composed if it is not a constant
symbol.

Definition 4.4 The semi-skeleton of a history of a solution Φ of (SC) is a labeled
graph M constructed in the following way:

• initialize the set of milestones as the set containing all the minimal terms in
each equivalence class,

• initialize the set of nodes of M as the minimal set containing the set of mile-
stones and closed under the operation of taking the maximal subterm,

• label each node t in M with Φ(t),

• connect each composed term in M with its maximal subterm by an edge directed
from a term to its superterm,
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• label each edge t→ f(s1, . . . , t, . . . , sn) with the rule
f(Φ(s1)[1], . . . , ∗, . . . ,Φ(sn)[1]).

Before we say how to extend the semi-skeleton to a skeleton, we want to give some
intuition of how to interpret this graph. A label of an edge can be interpreted as
information for the algorithm from section 3 what to choose in its nondeterministic
choice to get a solution. The rule f(c1[1], . . . , ∗, . . . , cn[1]) says: take the predecessor
t of the edge and first ([1] indicates the first term) terms t1, . . . , tn from the sets
Φ−1(c1), . . . ,Φ

−1(cn) and define Φ(f(t1, . . . , t, . . . , tn)) as the label of the successor
of the edge. Of course we have to decide what to do if conflict arises, i.e. if we are to
define Φ on one term in several different ways.

Definition 4.5 A fork of degree k ≥ 2 is a term t such that in the semi-skeleton
there are k edges connecting t with k its superterms, labeled with the same rule.

Definition 4.6 A skeleton of a history is a graph with the following properties:

• it is a forest with directed edges leading from roots to leaves

• it contains the semi-skeleton (with changed labels of egdges) as a subgraph

• labels of edges outgoing from a single node are different

• labels of edges are compatible with the sentence ψ defined in the section 2, i.e. if
fkj (c1[j1], . . . , ∗, . . . , ck[jk]) is a label of an edge t → s, then the formula ψ

with c1, . . . ,Φ(t), . . . , ck substituted for y1, . . . , yk and Φ(s) substituted for xkj is
satisfied

• if c[j] is used in a label of an edge t → s then there are at least j milestones
labeled by c, and each of these nodes (according to the linear ordering ≺) is a
term lower then t

• all leaves are milestones

Lemma 4.7 If Φ is a solution of (SC), then there exists a skeleton of the history of
Φ.

Proof. If t is a fork of degree k, then we have in original history k different terms
f(s11, . . . , t, . . . , s

1
n), . . . , f(sk1, . . . , t, . . . , s

k
n), with sij ≺ t. Without loss of generality

we can assume that the terms s11 and s21 are different. Now if the terms s11, . . . , s
k
1

are different, then we add k − 1 minimal terms from Φ−1(Φ(s11)) to the set of mile-
stones (remember that Φ(si1) = Φ(sj1), so we have at least k terms in this set) and
replace the labels of edges with k different rules f(Φ(s11)[1], . . . , ∗, . . . ,Φ(s1n)[1]), . . . ,
f(Φ(s11)[k], . . . , ∗, . . . ,Φ(s1n)[1]). If there are less then k terms among s11, . . . , s

k
1, then

it is even better, because we need less new milestones. Consider the following exam-
ples

Example 1 t is a fork of degree 4 and we have the following four terms as nodes in
the skeleton of the history of a solution Φ: f(t, x1, y), f(t, x2, y), f(t, x3, y), f(t, x4, y)
with Φ(x1) = Φ(x2) = Φ(x3) = Φ(x4) = x. Then we label edges t → f(t, xj , y) with
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the rules f(∗, x[j],Φ(y)[1]) which (while executing step 3 of EASY and building a
new solution Φ′) we interpret as follows: take the term t (predecessor of these edges),
the four minimal terms t1, . . . , t4 from the set Φ−1(x) (these are also four minimal
terms from Φ′−1(x)), the minimal term s in Φ−1(Φ(y)) and define Φ′(f(t, tj , s)) =
Φ(f(t, xj , y))

Example 2 t is a fork of degree 4 and we have the following four terms as nodes in
the skeleton of the history of solution Φ: f(t, x1, y1), f(t, x2, y1), f(t, x1, y2),f(t, x2, y2)
with Φ(x1) = Φ(x2) = x and Φ(y1) = Φ(y2) = y. Then we have to create only
two new milestones - the second minimal terms from the sets Φ−1(x) and Φ−1(y)
and label the four edges with the rules f(∗, x[1], y[1]), f(∗, x[2], y[1]), f(∗, x[1], y[2]),
f(∗, x[2], y[2])

Note that if we have a fork of degree k then we introduce at most k − 1 new mile-
stones, which are among the first k− 1 terms in some equivalence classes. Moreover,
these milestones are of depth less then or equal to the depth of the fork. 2

Below we shall prove that a solution of a system of set constraints can be recon-
structed from a skeleton of a history. In fact a solution can be reconstructed from
any labeled graph satisfying all the conditions described in Definition 4.6 except con-
taining the semi-skeleton, slightly extended to allow dealing with constants in the
definition below.

Definition 4.8 Given a skeleton S we say that a term t′ is a collapse of a node t ∈ S
if either t is a constant symbol and t′ = t or t′ = f(t1, . . . , s

′ . . . , tk) and there is an
edge s → t labeled with f(c1[j1], . . . , ∗, . . . , ck[jk]), the term s′ is the collapse of the
node s and t1, . . . , tk are collapses of respective milestones. The collapsing function
is a function mapping each node of the skeleton of the history to its collapse.

Lemma 4.9 The collapsing function is 1 to 1.

Proof. (induction on depth of terms) It is obvious that a constant symbol cannot be
a collapse of two different nodes. Let us suppose that all collapsed terms of depth
less than or equal to n are collapses of at most one node and there is a term of depth
n + 1 which is a collapse of two different nodes. Without loss of generality we can
assume that this is a term of the form f(t′, s′) where t′ and s′ are collapses of nodes
t and s respectively, with s ≺ t. f(t′, s′) must be produced with the two rules of the
form f(c1[k], ∗) and f(∗, c2[l]), so t′ must be the collapse of the k-th milestone from
Φ−1(c1) which is not t (because s ≺ t and this k-th milestone is a term lower then
s). Hence t′ is a collapse of two different nodes which is impossible. 2

Lemma 4.10 If Φ is a solution of (SC) then the collapse of the skeleton of a history
of Φ is a history of a solution Φ′.

Proof. Consider the following path of choices of EASY:

1. choose the model with domain D consisting of the set of equivalence classes of
the equivalence relation defined by Φ.

2. choose d01, . . . , d
0
i0

as Φ(a00), . . . ,Φ(a0i0) (note that now Φ′ is defined on all the
roots of the skeleton of the history).
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3. if Φ′ is defined on a collapse t′ of a node t in the skeleton of the history and there
is an edge t→ s labeled with a rule fkj (c1[j1], . . . , ∗, . . . , ck[jk]) then choose the

function symbol fkj , terms ti as the ji-th minimal terms from the set Φ′−1(ci)

(and the term t′) and dkj as Φ(s). If we define Φ′ on s1 before defining it on
s2 whenever s1 ≺ s2 then we are sure that Φ′ is already defined on the terms
t1, . . . tk when we want to define it on fkj (t1, . . . , t

′, . . . , tk). Lemma 4.9 ensures
us that when we want to define Φ′ on any term, it was not defined earlier.

4. since the skeleton of a history contains nodes labeled with all elements of D,
then EASY, with the bound 2M3 omitted, ends with success.

From the theorem 4.1 it follows that Φ′ is a solution of (SC). 2

Lemma 4.11 There are at most M2 milestones.

Proof. We start building the skeleton of a history (from a semi-skeleton) with M
milestones. This gives for each number d at most M different terms of depth d in
the semi-skeleton. Then we add new milestones only if a fork is encountered. Let t
be a fork of degree k and let d denotes its depth. We have in the skeleton at least k
superterms of t of depth d+ 1 and t is the only one their subterm of depth d. Then
we add at most k− 1 new terms (milestones) of depth less than or equal to d. Hence
still we have at most M terms of depth d in the skeleton, which means that degrees
of forks are bounded by M and the set of milestones has at most M minimal terms
in each equivalence class. So the cardinality of this set is bounded by M2. 2

Lemma 4.12 There are at most M2 nodes of outdegree greater than one.

Proof. In a forest the number of nodes of outdegree greater than one is less then the
number of leaves. Each leaf of the skeleton of the history is a milestone. 2

Lemma 4.13 If a system of set constraints (SC) has a solution, then it has one
with the history consisting of at most 2M3 terms.

Proof. Assume that Φ is a solution of (SC). By lemma 4.10 we can assume that all
terms in the history of Φ belong to the skeleton of this history. Suppose that there
are more than 2M3 nodes. By lemmas 4.11 and 4.12 the number of milestones and
the nodes of outdegree greater than one is bounded by 2M2, so there exists a path
u1 → . . . → um with m ≥ M such that u1, . . . , um are terms of outdegree one and
none of them is a milestone. So, there are two terms ui and uj with 1 ≤ i < j ≤ m
such that Φ(ui) = Φ(uj). Now, we can cut off the path ui → . . . → uj−1 thus
obtaining a smaller skeleton of a history. In fact, to build a new solution Φ′ of (SC)
with a lower number of terms in its history we proceed as in the proof of lemma 4.10.
We have only to show that in step 3 we can assume that Φ′ is not yet defined on
fkj (t1, . . . , tk), and that Φ′ is defined on t1, . . . , tk. The former condition is fulfilled
since different nodes collapse to different terms - if a term s′ is a collapse of two nodes
s1, s2 then s′[ui/uj ] is a collapse of two nodes s1[ui/uj ] and s2[ui/uj ] where s[ui/uj ]
denotes a term with all occurrences of ui replaced by uj , which contradicts Lemma
4.9. The latter condition is satisfied since Φ is defined on s[ui/uj ].

Repeating the procedure described above we can find a solution with at most
2M3 different terms in its history. 2

As corollaries to lemma 4.13 we get
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Theorem 4.14 If a system of set constraints (SC) has a solution then EASY pro-
vides one.

Theorem 4.15 The problem if a system of set constraints has a solution is
NEXPTIME-complete.

5 Extensions

In [7] Bachmair, Ganzinger and Waldmann proved that for positive set constraints
some extensions of the problem are also decidable. These were the satisfiability
problems for set constraints without positive occurrences of projections for non-
monadic function symbols and for set constraints without positive occurrences of
diagonalizations. These extensions are decidable also in the case of mixed (positive
and negative) set constraints.

Theorem 5.1 The problem of satisfiability of mixed set constraints with projections
where projections of non-monadic function symbols occur only negatively in positive
inclusions is NEXPTIME-complete.

Proof. The transformation described in the section 2 gives for such a system a monadic
formula (note that projections for monadic function symbols are not restricted here).
We can just proceed with EASY, the arguments given in section 4 work here without
any change. 2

The case with diagonalization requires more arguments. If diagonalization oper-
ators do not occur positively (this time they may occur in negative inclusions too)
we get a monadic formula with equality, without positive occurrences of the equality
predicate. We need an extension of Lemma 2.1 to deal with the equality.

Definition 5.2 Let ψ be a monadic formula of quantifier depth at most q, with equal-
ity. Two interpretations I, J of ψ are similar if for each pair cI , cJ of corresponding
equivalence classes of the relations ≡I and ≡J either |cI | = |cJ | or both cI and cJ
have at least q elements.

As an immediate application of Ehrenfeucht games [10] one can prove (see also
[9]) that if I is a model of ψ and I is similar to J , then J is also a model of ψ. If
ψ has no positive occurrences of the equality predicate, the similarity condition can
be weakened: for J to be a model of ψ it suffices that for each pair of corresponding
equivalence classes we have |cI | ≤ |cJ |.

Now, to check that a finite model I of ψ (of cardinality less then or equal to
Mq) corresponds to a Herbrand model, we have to define Φ in such a way, that for
each c in the domain of I we have |Φ−1(c)| ≥ |c|. Replacing in EASY the condition
Φ(D) = D (which is equivalent to |Φ−1(c)| ≥ 1 for each c ∈ D) by |Φ−1(c)| ≥ |c|
for each c ∈ D, and 2M3 by 2M3q2, we get the algorithm solving extended systems
of set constraints. The proof of correctness of this algorithm is just the same as in
Section 4. The only difference is that we start building the skeleton of the history
with (at most) Mq milestones, getting at most 2(Mq)2M terms in the collapse of
the skeleton of the history. As a corollary we get
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Theorem 5.3 The problem of satisfiability of mixed set constraints with negative
diagonalizations is NEXPTIME-complete.

Using the method presented here we can also solve the satisfiability problem for
systems of set constraints with unrestricted diagonalization. The main new problem
here is to make sure that in the process of construction, when Φ−1(c) has reached
the desired cardinality, then we can extend Φ to a solution without adding any new
terms to Φ−1(c).

We have two solutions. The simpler is as follows. Given a set T of terms, by
Σ(T ) we denote the set of terms of the form f(t1, ..., tk), where f ∈ Σ and ti ∈ T .
Using the techniques of Section 4 we can easily prove that if a set T and Φ have
been constructed so that all finite (and bounded) classes have been saturated (i.e.
have the desired number of elements), then it suffices to make sure that Φ can be
extended to all terms of ΣM+1(T ) without adding new elements to the saturated
classes. Therefore the problem of consistency reduces to the problem of finding a
set T and a function Φ on ΣM+1(T ) as described above, which can be obtained
by an extension of EASY. This unfortunately leads to a nondeterministic double
exponential algorithm.

There is, however, a more subtle solution which gives a NEXPTIME decision
procedure. The details will be presented in the full version of the paper.

Theorem 5.4 The problem of satisfiability of mixed set constraints with projections
for non-monadic function symbols occurring only negatively in positive inclusions and
with unrestricted diagonalizations is decidable.
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