
Solving Simplification Ordering Constraints

Patricia Johann⋆ and Rolf Socher-Ambrosius⋆⋆

Abstract. This paper considers the decision problem for the existential
fragment of the theory of simplification orderings. A simple, polynomial-time
procedure for deciding satisfiability of such constraints is given, and it is also
shown that the corresponding problem for the theory of total simplification
orderings is NP-complete. This latter result can be interpreted as showing
that the problem of deciding whether or not a simplification ordering on
first-order terms can be linearized is NP-complete.

1 Introduction

The concept of well-founded ordering is ubiquitous in automated deduction, being
fundamental to the development of termination proofs — especially for term
rewriting systems and other rewriting-like relations — and of deduction strategies
aiming to restrict search spaces in saturation processes. In particular, it plays
a central role in describing ordered rewriting, ordered resolution, and ordered
superposition.

Determining the existence of critical pairs in ordered completion processes
requires, and in some cases corresponds precisely to, deciding solvability of ordering
constraints. In such applications, ordering constraints act as a filter prohibiting
completion steps allowable in an unordered setting but inconsistent with whatever
deduction strategy the particular constraints enforce. To determine that admissible
completion inferences remain available, solvability of the relevant constraints must
be established.

The basic constraint satisfaction problem is that of deciding, given a signature
Σ and a system

Γ ≡ ⟨s1 > t1⟩, ..., ⟨sn > tn⟩

of term-pairs over Σ, whether or not there exist a ground substitution σ and a
well-founded ordering ≻ such that siσ ≻ tiσ holds for i = 1, ..., n. Depending on Σ,
two subproblems can be distinguished: constraint solving over fixed signatures, in
which σ is a Σ-substitution and ≻ is an ordering on Σ-terms, and constraint solving
over extended signatures, where σ and ≻ may range over arbitrary extensions of Σ.
Significantly, the same system of term-pairs over Σ may manifest vastly different
behavior according as it is considered over fixed or extended signatures. Given the

⋆ Fachbereich Informatik, Universität Saarbrücken, D-66123 Saarbrücken, Germany,
pjohann@cs.uni-sb.de. On leave from the Department of Mathematics and Computer
Science, Hobart and William Smith Colleges, Geneva, NY 14456, (315) 789-5500,
johann@hws.bitnet.

⋆⋆ Max-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany, (0681) 302 5367,
socher@mpi-sb.mpg.de. Supported by the German Ministry for Research and Technology
(BMFT) under grant ITS 9103.



signature consisting of a single constant a, for example, the system Γ ≡ ⟨x, a⟩ is
unsolvable when the signature is considered fixed. But over extended signatures, a
new constant b may be introduced, so that the substitution {x 7→ b}, together with
any ordering ≻ such that a ≻ b, is a solution.

Each specification of a term algebra and an ordering or class of orderings gives
rise to an instance of the constraint satisfaction problem. Typically, the ordering ≻
is specified as part of a given problem (so that only an appropriate substitution σ
is sought), and the purely existential fragment of the resulting theory is considered
(two exceptions are the studies of the Σ3 fragment of the theory of the subterm
ordering and the Σ4 fragment of the theory of an arbitrary but fixed partial recursive
path ordering comprising [Ven87] and [Tra90], respectively). Depending on the
intended application, ≻ has been interpreted variously as any recursive path ordering
(RPO) or lexicographic path ordering (LPO) based on a fixed precedence, as the
subterm relation, and as the embedding relation. The satisfiability problems for the
existential fragments of the most commonly considered of these theories, namely
those for fixed RPOs and LPOs, are known to be decidable ([JO91], [Com90]).
Venkataraman ([Ven87]) has shown that the decision problem for the existential
fragment of the theory of the subterm ordering is also decidable; recently Boudet
and Comon ([BC93]) proved the corresponding result for the positive existential
fragment of the embedding relation. All of these decision problems are likely NP-
complete.

Although we treat a more general problem in Section 2.3, in this paper we
focus on the simplification ordering (SO) constraint satisfaction problem. That
is, we do not specify ≻ as part of our constraint satisfaction problems except to
require that it be some arbitrary SO. Efficient techniques for deciding satisfiability
of SO constraints have recently been employed to prune completion search spaces
associated with theorem proving using ordering constrained clauses ([NR92]). In
such settings, clauses with unsatisfiable ordering constraints may be deleted without
sacrificing the refutational completeness of the resulting saturated sets of clauses.

Decidability of the SO constraint satisfaction problem over extended signatures
is proved in [Pla93] by means of rather complicated techniques also establishing
polynomial-time decidability of termination of ground term rewriting systems. We
present in Section 2.2 a simple algorithm of the same low polynomial-time complexity
as Plaisted’s for deciding solvability of SO constraint problems over extended
signatures, although we do not address here the apparently much harder problem
of deciding solvability of SO constraint problems over fixed signatures. We further
show for the first time that if ≻ is required to be total then the decidability of ground
SO constraint satisfaction is NP-complete (so that deciding satisfiability over both
fixed and extended signatures is at least as hard), and derive as a corollary to the
proof the fact that the problem of deciding constraint satisfaction for an arbitrary
LPO is NP-complete. In light of the polynomial-time complexity of deciding SO
constraint satisfaction, this result can be interpreted as showing that the problem
of deciding whether or not a given SO on first-order terms over a signature can be
linearized is NP-complete.

That solvability of SO constraints can be decided quickly represents the main
advantage of using them, rather than more structured and specific constraints,
in automated deduction. Indeed, our algorithm for extended signatures executes



in a time proportional to the cube of the number of symbol occurrences in the
input problem (the complexity of the SO constraint satisfaction problem over fixed
signatures is not yet clear). On the other hand, SO constraint solving techniques
handle many orderings simultaneously and so admit rewrite or completion steps if
there is any SO permitting them, and as a result, longer sequences are possible
than for RPOs and LPOs. Nonetheless, the efficiency of deciding solvability of SO
constraint problems (at least over extended signatures) may in practice more than
compensate for the added generality in the orderings considered and, as Plaisted
observes, SO constraint solving techniques may prove useful for theorem proving
applications which require the existence of a single SO consistent with all choices
(as evidenced by the constraints currently under consideration) made thus far in a
particular theorem proving session or rewrite sequence.

A second argument in favor of choosing SO constraints over RPO or
LPO constraints in automated deduction applications is their utility in proving
termination of term rewriting systems. Termination of term rewriting systems is
undecidable in general, even under very restrictive assumptions on the system. A
sufficient condition for a term rewriting system R to be terminating is the existence
of an SO ≻ such that sσ ≻ tσ holds for all ground instances sσ → tσ of rules s → t
in R. It is indeed possible that this condition is satisfied even though there exists
no RPO or LPO with the required property. In such cases, the question, “Is R
terminating?” can be answered in the affirmative by appealing to more general SOs.

2 Constraint Solving in Extended Signatures

Although in this paper we focus primarily on SO constraint satisfaction problems
comprising pairs of the form ⟨s > t⟩, in Section 2.3 we also consider problems
involving somewhat more general types of constraint pairs. Section 2.2 treats
the basic SO constraint satisfaction problem discussed in the introduction. We
emphasize that we are only interested in deciding SO constraint satisfaction, as
opposed to finding explicit solutions for these constraint problems.

2.1 The Basic Problem

We briefly recall the basic notation used in the text. For notations not explicitly
given here the reader is referred to [DJ90].

A signature is a finite set Σ of (ranked) function symbols. For each k ≥ 0, the
set of function symbols in Σ of rank k is denoted Σk; the elements of Σ0 are called
constants. A signature Σ′ is an extension of the signature Σ if Σ ⊆ Σ′, and a proper
extension of Σ if Σ is a proper subset of Σ′.

Fix a countably infinite set V of variables. For each signature Σ, the set of terms
(over Σ) is the smallest algebra T (Σ, V ) containing V and closed under the term
formation rule: from f ∈ Σk and t1, ..., tk ∈ T (Σ, V ) infer f(t1, ..., tk) ∈ T (Σ,V ). We
write V (t) for the set of variables occurring in the term t, and denote by T (Σ) the
subalgebra of ground terms (over Σ), i.e., of terms t ∈ T (Σ, V ) such that V (t) = ∅.
Syntactic identity between terms is denoted by ≡.

A SO (over Σ) is an ordering ≻ on the algebra T (Σ) of ground terms over Σ
satisfying



– i) the subterm property f(...s...) ≻ s and
– ii) the monotonicity property f(...s...) ≻ f(...t...) whenever s ≻ t

for all f(...s...), f(...t...) ∈ T (Σ). Note that SOs need not be total.
We will use transformation-based methods to solve SO constraint problems and

so will represent such problems, as well as their solutions, in terms of constraint
systems. Transformation-based methods attempt to reduce systems to so-called
solved systems which represent their own solutions. We make these notions precise
below.

A SO constraint (over Σ) is an ordered term-pair of the form ⟨s > t⟩ for
s, t ∈ T (Σ, V ), and an equational constraint (over Σ) is an unordered term-pair
of the form ⟨s = t⟩ for s, t ∈ T (Σ, V ). A constraint (over Σ) is either an SO
constraint or an equational constraint over Σ; a constraint system (over Σ) is either
the trivial system ⊥ or a finite set of constraints over Σ. A constraint system is pure
if all of its constraints are SO constraints. We write Γ,C rather than Γ ∪ {C} if Γ
is a constraint system and C is a constraint. But because such a decomposition is
ambiguous — Γ may or may not contain the constraint pair C — we write Γ ;C to
indicate that C does not appear in Γ .

A term t ∈ T (Σ, V ) occurs in Γ if it is a component of a constraint in Γ ; write
T (Γ ) for the set of terms occurring in Γ . By V (Γ ) we denote

∪
{V (t) | t ∈ T (Γ )}.

If Σ is any signature and t is any term in T (Σ,V ), denote by [t] the (ordered)
list (t1, ..., tk) of immediate subterms of t. If Γ is a constraint system, write
(s1, ..., sk) >Γ (t1, ..., tk) to indicate that for i = 1, ..., k either ⟨si > ti⟩ ∈ Γ or
si ≡ ti, and that (s1, ..., sk) ̸≡ (t1, ..., tk).

A substitution (over Σ) is a finitely supported map from V into T (Σ, V ). Any
substitution σ induces a map from T (Σ,V ) into itself in a natural way; we abuse
notation and write σ for this extended map as well. If σ maps into T (Σ) rather than
all of T (Σ, V ) then σ is a ground substitution (over Σ). Substitutions are postfixed,
so that tσ is the result of applying the substitution σ to the term t. By Γσ we denote
the constraint system comprising all pairs ⟨sσ ρ tσ⟩ for ⟨s ρ t⟩ ∈ Γ , ρ ∈ {>,=}.

Let Γ be a constraint system over Σ, σ be a ground substitution over Σ, and
≻ be an SO over Σ. The pair ⟨σ,≻⟩ is a solution for Γ (over Σ) if sσ ≡ tσ for all
equational constraints ⟨s = t⟩ ∈ Γ and s ≻ t for all SO constraints ⟨s > t⟩ in Γ . We
define the trivial constraint system ⊥ to have no solutions.

Note that any constraint system over Σ is also a constraint system over Σ′ for
any extension Σ′ of Σ, and likewise for SOs, substitutions, and hence solutions of
Γ over Σ.

The following easy lemma shows that the processes of solving SO constraints
and solving equational constraints can be effectively divorced.

Lemma 2.1 Let Γ be a constraint system over a signature Σ whose SO constraints
and equational constraints comprise subsystems ∆ and Π, respectively. If σ is a most
general unifier of Π, then Γ is satisfiable iff ∆σ is.

We may therefore restrict attention to pure SO constraint problems when
considering the basic SO constraint satisfaction problem. We describe in Section 2.2
a procedure for solving such constraint systems over possibly extended signatures.
The question our procedure answers can be stated thusly: Given a signature Σ and



a (pure) constraint system Γ over Σ, do there exist a ground substitution σ over
some extension Σ′ of Σ and an SO ≻ on T (Σ′) containing Γσ?

2.2 The Procedure

We give below a set of transformations capable of transforming any (pure) constraint
system Γ into a trivial or solved system and, in the latter case, determining a
fragment of a SO on a finite set of terms containing appropriate instantiations of
those in Γ . The key step in proving the correctness of our decision procedure for
SO constraint satisfaction problems is then to see that any such fragment can be
extended to a proper SO providing a solution for Γ .

Definition 2.2 The set T comprises the following transformations on constraint
systems:

1. subterm
Γ =⇒Γ ; ⟨s > t⟩

if s occurs in Γ , t ∈ [s], and ⟨s > t⟩ ̸∈ Γ .
2. trans

Γ =⇒Γ ; ⟨s > t⟩
if there exist terms s, t and u such that ⟨s > u⟩, ⟨u > t⟩ ∈ Γ and ⟨s > t⟩ ̸∈ Γ .

3. lift
Γ =⇒Γ ; ⟨s > t⟩

if s and t both occur in Γ , [s] >Γ [t], and ⟨s > t⟩ ̸∈ Γ .

Theorem 2.3 Every sequence of T -reductions terminates.

Proof. Let µ(Γ ) be the number of (unordered) pairs (s, t) of distinct subterms of
terms in T (Γ ) which do not appear in any constraint ⟨s > t⟩ in Γ . If Γ =⇒Γ ′ by
subterm, trans, or lift, then µ(Γ ′) < µ(Γ ). 2

It is easy to check that if Γ =⇒Γ ′ by a transformation in T , then Γ is a
constraint system over Σ iff Γ ′ is. The soundness of the transformations in T is
likewise immediate.

Lemma 2.4 The transformations in T are sound, i.e., if Γ ′ is a constraint system
over Σ, Γ =⇒Γ ′, and ⟨σ,≻⟩ is a solution over an extension Σ′ of Σ for Γ ′, then
⟨σ,≻⟩ is also a solution over Σ′ for Γ .

Definition 2.5 A constraint system Γ is consistent provided it contains no
constraint of the form ⟨s > s⟩, and inconsistent otherwise. A constraint system
is solved if it is consistent and irreducible by T .

Every sequence of T -reductions must, by definition, terminate in a constraint
system which is either solved or inconsistent. It is clear that if Γ is any inconsistent
constraint system over Σ and Σ′ is any extension of Σ, then Γ has no solution over
Σ′. In particular, an inconsistent constraint system Γ over Σ has no solution over
Σ itself. The remainder of this subsection is devoted to showing that any solved
constraint system has a solution over extended signatures.



Although an SO over Σ is by definition an ordering on the set T (Σ) of all ground
terms over Σ, in the following we will have occasion to talk about SO “fragments,”
i.e., orderings which are SOs when restricted to some finite set of ground terms.
Call an ordering ≻ on a finite set S ⊆ T (Σ) a SO on S if i) f(...s...) ≻ s and ii)
s ≻ t implies f(...s...) ≻ f(...t...) for all terms f(...s...), f(...t...) ∈ S. If ≻ is an SO
on S and S′ ⊆ S, then ≻ is an SO on S′ as well.

A solved constraint system Γ determines a SO on (appropriate instantiations of)
the set T (Γ ) of terms occurring in Γ in a natural way:

Lemma 2.6 If Σ is a signature and Γ is a solved constraint system over Σ, then
there exists an extension Σ′ of Σ, a ground substitution σ over Σ′, and an SO ≻Γ

on T (Γσ) containing Γσ.

Proof. Let Γ be a solved constraint system over Σ, let cx be a new constant for every
x ∈ V (Γ ), and let Σ′ be the signature Σ ∪ {cx | x ∈ V (Γ )}. If σ is the substitution
with components {x 7→ cx} for each x ∈ V (Γ ), then the constraint system Γσ is
solved since Γ is, and induces a simplification ordering ≻Γ on T (Γσ). 2

The next sequence of lemmas, culminating in Theorem 2.15, shows how — in
the notation of Lemma 2.6 — the ordering ≻Γ can be extended to an SO on all of
T (Σ′). The subterm and monotonicity properties given earlier in this section extend
to arbitrary binary relations in a straightforward fashion.

Definition 2.7 Let ≻ be an SO on the finite subterm closed set S ⊆ T (Σ), and
suppose u ∈ T (Σ) \ S is such that [u] ⊆ S. Write ≻u for the smallest transitive
binary relation on S ∪ {u} containing ≻ and satisfying the subterm property and
the monotonicity property. We call ≻u a simple extension of ≻ by u.

For any term u, ≻ is a subrelation of ≻u. We would like to see that ≻u is in fact
an SO. To prove this, it will be helpful to know that if s, t ∈ S and s ≻u t, then
s ≻ t. The next few lemmas are dedicated to obtaining this result.

Throughout the remainder of this subsection, let ≻u be a simple extension of
the SO ≻ on a finite subterm closed set S ⊆ T (Σ). Define a ≻u-proof (from ≻) for
s ≻u t to be a tree P constructed according to the rules Subterm, Trans, and Lift of
the inference system IT obtained by replacing all occurrences of the formal symbol
> in transformations in T by the SO ≻u and regarding each transformation, after
this modification, as an inference rule. The nodes of P are labelled with systems of
judgements of the form s ≻u t, while the leaves of P are labelled with systems of
judgements of the form s ≻u t for which the judgements s ≻ t also hold. The tree P
is constructed from its nodes by proof steps, i.e., by applications of inference rules
from IT . A proof step p is critical if u occurs in some premise of p but does not
appear in any of the pairs introduced by p.

Lemma 2.8 If P is any ≻u-proof, then any critical step of P is of the form

Γ ; ⟨s ≻u u⟩; ⟨u ≻u t⟩
(∗)

Γ, ⟨s ≻u u⟩, ⟨u ≻u t⟩, ⟨s ≻u t⟩



Proof. By definition, a critical proof step cannot be a Subterm step. If the critical
step p is a Lift step, then since u occurs in the premise of p, u must be a subterm of
one of the terms introduced by p, contradicting the fact that that p is critical. Thus
p must be a Trans step, and so it is easy to see that p must be of the form (∗). 2

Definition 2.9 The proof transformation system P on ≻u-proof trees is given by
the rules of Figure 1.

s ≻ t t ≻ u

s ≻ u u ≻ v

s ≻ v =⇒

s ≻ t

t ≻ u u ≻ v

t ≻ v
(P1)

s ≻ v

s ≻ u

u ≻ t t ≻ v

u ≻ v

s ≻ v =⇒

s ≻ u u ≻ t

s ≻ t t ≻ v
(P2)

s ≻ v

[s] ≻ [u]

s ≻ u u ≻ t

s ≻ t =⇒

s ≻ v v ≻ t
(P3)

s ≻ t

if t ∈ [u], t ≻ v, and v ∈ [s].

[s] ≻ [u]

s ≻ u u ≻ t

s ≻ t =⇒
(P4)

s ≻ t

if t ∈ [u] and t ∈ [s].

[s] ≻ [u]

s ≻ u

[u] ≻ [t]

u ≻ t

s ≻ t =⇒

[s] ≻ [u] [u] ≻ [t]

[s] ≻ [t]
(P5)

s ≻ t

Fig. 1. The proof transformation system P.



Lemma 2.10 Every sequence of applications of rules from P terminates.

Proof. Each application of a rule from P to a ≻u-proof P decreases the number of
occurrences of u in the tree P . 2

Lemma 2.11 If the ≻u-proof P is irreducible under the transformation system P,
then P does not contain any critical steps.

Proof. Let P be irreducible under P and suppose contains a critical step, i.e., a step
of the form (∗). The inferences s ≻u u and u ≻u t must both be conclusions of the
inference rules Subterm, Trans, and Lift in IT ; we derive a contradiction by cases
according to the rules of which they are the conclusions. If s ≻u u is the conclusion
of Trans, then P is reducible by P1, and if u ≻u t is the conclusion of Trans, then P
is reducible by P2. Since s ≻u u cannot be the conclusion of Subterm, the only other
possibility is that it is the conclusion of Lift. Since u ≻u t must be the conclusion
of either Lift or Subterm, two cases obtain. In the first, P is reducible by P5. In the
second, t must be an element of [u] and, since P contains the inference [s] ≻u [u],
either t is an element of [s] so that P4 applies to P , or else there is a subterm s′ of
s such that s′ ≻u t so that P3 applies to P . Since these considerations exhaust all
possibilities, we conclude that P , being irreducible under P, can contain no critical
step. 2

Lemma 2.12 If ≻ is an SO on a finite subterm closed set S ⊆ T (Σ) and s, t ∈ S,
then s ≻u t implies s ≻ t.

Proof. We show that if s, t ∈ T (Σ) are such that s ̸≡ u, t ̸≡ u, and there exists a
≻u-proof from ≻ of s ≻u t, then there exists a ≻u-proof from ≻ of s ≻u t in which
u does not appear. The result then follows easily.

If P is a ≻u-proof from ≻ of s ≻u t, then since P is terminating, there must exist
a ≻u-proof P

′ from ≻ of s ≻u t which is irreducible by P. By Lemma 2.11, P ′ can
contain no critical steps, so that s ̸≡ u and t ̸≡ u together imply that P ′ does not
contain any occurrence of u. 2

It is now a simple matter to see that ≻u is an SO:

Lemma 2.13 Let ≻ be a (total) SO on a finite subterm closed set S ⊆ T (Σ) and
let u ∈ T (Σ) \ S be such that [u] ⊆ S. Then ≻u is a (total) SO on S ∪ {u}.

Proof. Let ≻u be the simple extension of ≻ by the term u, and assume to the
contrary that ≻u is not an SO. Since ≻u satisfies the subterm, transitivity, and
monotonicity properties, the only way ≻u can fail to be a SO is if there exists a
term s such that s ≻u s.

If s ̸≡ u, then Lemma 2.12 implies that s ≻ s, which contradicts the fact that
≻ is an SO. So suppose u ≻ u and let P be a ≻u-proof from ≻ of u ≻u u. Clearly
u ≻u u cannot be the conclusion of Subterm. If it is the conclusion of Lift, then
there is an immediate subterm u′ of u such that u′ ≻ u′. Since u′ ̸≡ u, Lemma 2.12
implies that u′ ≻ u′, again contradicting the fact that ≻ is a SO. Finally, if u ≻u u
is the conclusion of Trans, then there exists a term t ̸≡ u such that u ≻u t and
t ≻u u. Then since ≻ satisfies the transitivity property, we must have t ≻u t and
hence t ≻ t, so that this case is dispensed with as above.



Finally, if ≻ is total, then the smallest ordering containing ≻u and the relation
t ≻u u, where t is the immediate successor of the least upper bound of the elements
of [u] with respect to ≻, and satisfying the transitivity and monotonicity properties,
is a total SO on S ∪ {u}. 2

We now see how repeated simple extensions of an SO on a finite set of ground
terms can be used to specify a SO on the set of all ground terms.

Lemma 2.14 Let ≻ be a (total) SO on a finite subterm closed set S ⊆ T (Σ). Then
≻ can be extended to a (total) SO on T (Σ).

Proof. We can enumerate the elements of T (Σ) \ S in a form t1, t2, ... such that
[ti] ⊆ S ∪{t1, ..., ti−1}. Define a sequence ≻0,≻1, ... of SOs such that ≻0 is precisely
≻ and each ≻i, i > 0, is the simple extension by ti of the SO ≻i−1 on S∪{t1, ..., ti−1}.
Finally, define a relation ≻′ on T (Σ) by declaring s ≻′ t to hold precisely when s ≻i t
holds for some i ≥ 0.

That ≻′ is indeed an SO can be verified as follows. If s ≻′ t and t ≻′ u for some
s, t, u ∈ T (Σ), then s ≻i t and t ≻j u hold for some i, j ≥ 0. Thus s ≻k t, t ≻k u,
and hence s ≻k u hold, where k = max(i, j), and so s ≻′ u holds as well. Also,
if s ≻′ s holds, then s ≻i s holds for some i, contradicting the fact that ≻i is an
ordering. Thus ≻′ is itself an ordering. Similar argumentation establishes that ≻′

satisfies the subterm and monotonicity properties, and the proof that totality of ≻
implies totality of ≻′ is also straightforward. 2

Theorem 2.15 For any signature Σ, any solved constraint system over Σ has a
solution over some extension of Σ.

Proof. Let Γ be a solved constraint systems over Σ. Then by Lemma 2.6, there
exist an extension Σ′ of Σ, a ground substitution σ over Σ′, and an SO ≻Γ on
T (Γσ) ⊆ T (Σ′). By Lemma 2.14, ≻Γ can be extended to an SO ≻ on all of T (Σ′)
containing Γσ. Thus ⟨σ,≻⟩ is a solution over Σ′ for Γ . 2

The results of this section yield a simple procedure for solving SO constraint
problems over extended signatures. Given a constraint system Γ over Σ, we may
obtain a T -irreducible system by repeated application of inference rules from T .
If the resulting system Γ ′ is inconsistent, then it has no solution (over fixed or
extended signatures). But if Γ ′ is in fact consistent, then it is by definition solved,
and Theorem 2.15 guarantees the existence of a solution ⟨σ,≻⟩ for Γ ′ over some
extension Σ′ of Σ. By repeated application of Lemma 2.4 we see that ⟨σ,≻⟩ is also
a solution over Σ′ for Γ .

2.3 A More General Problem

In this section we sketch some modifications that can be made to the procedure of
Section 2.2 to accommodate constraint systems containing pairs of the form

⟨s ≥ t⟩, ⟨s ̸> t⟩, ⟨s ̸≥ t⟩, and ⟨s ̸= t⟩

in addition to those of the form ⟨s = t⟩ and ⟨s > t⟩ considered there. Although
constraints of the form ⟨s ≥ t⟩ can ostensibly be handled by trading them for



disjunctive constraint systems of the form ⟨s > t⟩ ∨ ⟨s = t⟩ and then transforming
the resulting systems into disjunctive normal forms, such a naive approach can lead
to constraint systems which grow exponentially. More importantly, it is not possible
to reduce constraints of the form ⟨s ̸> t⟩ or ⟨s ̸≥ t⟩ to constraints involving only
the equality and SO constraints of Section 2.2 if we do not require that solution
orderings for SO constraint satisfaction problems be total.

We will make use of the following terminology in this subsection. An equational
constraint ⟨s = t⟩ ∈ Γ is said to be solved in Γ if (at least) one of s and t is a
variable occurring only once in Γ . If ⟨x = t⟩ is solved in Γ , we say that x is a
solved variable of Γ . Although any pair ⟨x, y⟩ both of whose component variables
appear only once in Γ determines two solved variables, we will assume that there is
a uniform way of choosing which one will be considered solved, and we will consider
the other to be unsolved. Any substitution θ then determines a system of solved
equational constraints in a natural way; we write [θ] for such a constraint system.

A solution (over Σ) for a generalized constraint system Γ over Σ is a pair ⟨σ,≻⟩,
where σ is a ground substitution over Σ and ≻ is an SO over Σ such that

– sσ ≡ tσ holds for each pair ⟨s = t⟩ ∈ Γ ,

– sσ ≻ tσ holds for each pair ⟨s > t⟩ ∈ Γ ,

– sσ ≻ tσ or sσ ≡ tσ holds for each pair ⟨s ≥ t⟩ ∈ Γ ,

– sσ ̸≡ tσ holds for each pair ⟨s ̸= t⟩ ∈ Γ ,

– sσ ≻ tσ does not hold for each pair ⟨s ̸> t⟩ ∈ Γ , and

– neither sσ ≻ tσ nor sσ ≡ tσ hold for each pair ⟨s ̸≥ t⟩ ∈ Γ .

To appropriately modify the set T of transformations for this more general
setting, we begin by defining a total ordering on the constraint symbols >,≥, and
= by declaring > to be strictly larger than ≥, which is in turn strictly larger
than =. If Γ is a (generalized) constraint system over a signature Σ, then write
(s1, ..., sk) ρΓ (t1, ..., tk) to indicate that

– ρi ∈ {>,≥,=} for i = 1, ..., k,

– for some i ∈ {1, ..., k}, ρi is different from =,

– (s1, ..., sk) ̸≡ (t1, ..., tk), and no solved variables in Γ appear in these lists,

– either ⟨si ρi ti⟩ ∈ Γ or si ≡ ti for i = 1, ..., k, and

– ρΓ = max{ρi | i = 1, ..., k}.

For example, if ⟨a > b⟩, ⟨c ≥ d⟩, and ⟨e = f⟩ are in Γ , then (a, c) >Γ (b, d),
(c, e) ≥Γ (d, f), and (a, e) >Γ (b, f).

The transformation subterm requires no modification in the more general
setting, but trans requires an additional clause stating that if ⟨s ρ1 u⟩ and ⟨u ρ2 t⟩
are in Γ , for ρ1, ρ2 ∈ {>,≥}, but ⟨s ρΓ t⟩ is not, then ⟨s ρΓ t⟩ can be added to Γ .
Finally, all occurrences of “>” and “>Γ ” in lift must be replaced by “ρΓ .”

By contrast with Lemma 2.1, we cannot separate equality and SO constraints
in the generalized setting, due to the possibility of “cycling.” For example, ordering
constraints ⟨s ≥ t⟩ and ⟨t ≥ s⟩ require that sσ ≡ tσ for any solution ⟨σ,≻⟩ for a
constraint system containing them. Moreover, certain combinations of constraints in
a system Γ , e.g., ⟨s > t⟩ and ⟨s ̸≥ t⟩, guarantee that Γ will have no solution. We



therefore introduce “bookkeeping” transformations

Γ ; ⟨s > s⟩ =⇒ ⊥,
Γ ; ⟨s ̸= s⟩ =⇒ ⊥,
Γ ; ⟨s ̸≥ s⟩ =⇒ ⊥,
Γ ; ⟨s > t⟩; ⟨s ̸≥ t⟩ =⇒ ⊥,
Γ ; ⟨s ≥ t⟩; ⟨t > s⟩ =⇒ ⊥,
Γ ; ⟨s ρ t⟩; ⟨s ̸ρ t⟩ =⇒ ⊥,

where ρ is any constraint symbol. Together with T and the transformations delete,
cycle, clash and unify given below, these comprise the set GT .

The transformation delete is given by

Γ ; ⟨s ≥ s⟩=⇒Γ,

while cycle is defined by
Γ =⇒Γ ; ⟨s = t⟩,

where ⟨s ≥ t⟩ and ⟨t ≥ s⟩, or ⟨s ≥ t⟩ and ⟨s ̸> t⟩, are both in Γ , and ⟨s = t⟩ is not
in Γ . unify is given by

Γ ; ⟨s = t⟩=⇒Γθ, [θ],

where θ is a most general unifier of s and t and ⟨s = t⟩ is not a solved pair in Γ .
And clash is given by

Γ ; ⟨s = t⟩=⇒ ⊥,

where s and t are not unifiable.
It is not hard to see that every sequence of GT -reductions terminates. Let

µ = ⟨µ1, µ2, µ3, µ4, µ5⟩ be the well-founded lexicographic ordering on constraint
systems where µ1(Γ ) is the number of unsolved variables in V (Γ ), µ2(Γ ) is the
number of (unordered) pairs (s, t) of distinct subterms of terms in T (Γ ) not
appearing in any constraint ⟨s = t⟩, µ3(Γ ) is the number of (unordered) pairs (s, t)
of distinct subterms of terms in T (Γ ) not appearing in any constraint ⟨s > t⟩ in Γ ,
µ4(Γ ) is the number of (unordered) pairs of distinct subterms (s, t) of terms in T (Γ )
not appearing in any constraint ⟨s ≥ t⟩ in Γ , and µ5(Γ ) is the number of pairs in
Γ . Then

– subterm does not increase µ1 or µ2 and decreases µ3,
– trans and lift do not increase µ1 or µ2, and either decrease µ3 or else do not

increase µ3 and decrease µ4,
– cycle does not increase µ1 and decreases µ2,
– unify decreases µ1, and
– delete, clash, and the bookkeeping transformations do not increase µ1, µ2,

µ3, or µ4, and decrease µ5.

The GT transformations clearly preserve solutions, in the sense that if Γ =⇒Γ ′

then ⟨σ,≻⟩ is a solution over Σ for Γ ′ iff it is a solution over Σ for Γ .
A constraint system is said to be solved if it is GT -irreducible and non-trivial.

Any sequence of GT -reductions out of a constraint system Γ necessarily terminates
in either the trivial system or in a solved system. If the resulting GT -irreducible
system is trivial, then by the previous paragraph, Γ has no solution. If the resulting
GT -irreducible system is solved, then we would like to see that it, and therefore Γ ,
has a solution. This is precisely the upshot of the next theorem.



Theorem 2.16 Any GT -irreducible and non-trivial constraint system over a
signature Σ has a solution over some extension of Σ.

Proof. Let Γ be a GT -irreducible and non-trivial constraint system over Σ, let τ
be a substitution assigning to each unsolved variable x in Γ a distinct constant cx,
let Σ′ = Σ ∪ {cx | x is unsolved in Γ}, and let

σ = τ ∪ {x 7→ tτ | ⟨x = t⟩ ∈ Γ}.

Note that Γ is solved iff Γσ is, and that for any term s which is not a solved variable
of Γ , sσ ≡ sτ . Denote by ≻Γ the smallest binary relation containing sσ ≻ tσ for all
pairs of terms occurring in constraints ⟨sσ > tσ⟩ or ⟨sσ ≥ tσ⟩ in Γσ, and satisfying
the subterm, monotonicity, and transitivity properties. Then since Γσ is solved, ≻Γ

is an ordering on the terms occurring in pairs ⟨sσ > tσ⟩ and ⟨sσ ≥ tσ⟩ in Γσ.
That ≻Γ is an SO on the terms occurring in pairs ⟨sσ > tσ⟩ and ⟨sσ ≥ tσ⟩ in

Γσ follows from the fact that Γσ is solved and therefore GT -irreducible.
Now, since ≻Γ is an SO on the terms occurring in pairs ⟨sσ > tσ⟩ and ⟨sσ ≥ tσ⟩

in Γσ, by the results of Section 2.2, ≻Γ can be extended to a SO ≻ on all of T (Σ′).
We need only show that ⟨σ,≻⟩ is a solution over Σ′ for Γ .

– sσ ≻ tσ holds by definition of ≻ if ⟨s > t⟩ or ⟨s ≥ t⟩ is in Γ .
– if ⟨s = t⟩ ∈ Γ , then one of s and t is a solved variable in Γ and the other is a

term none of whose variables are solved in Γ . If s ≡ x for some solved variable
x, then tσ ≡ tτ , and therefore sσ ≡ tτ ≡ tσ.

– ⟨s ̸> t⟩ ∈ Γ (resp., ⟨s ̸≥ t⟩ ∈ Γ ), then since Γ is GT -irreducible, ⟨sσ > tσ⟩ ̸∈ Γσ
(resp., ⟨sσ ≥ tσ⟩ ̸∈ Γσ). Thus sσ ≻Γ tσ cannot hold. On the other hand, sσ ≻ tσ
cannot hold by definition of ≻ by Lemma 2.12.

– if ⟨s ̸= t⟩ ∈ Γ , then since Γ is GT -irreducible, s ≡ t cannot hold. By definition
of σ, then, sσ ̸≡ tσ.

2

3 Complexity

In [Pla93], Plaisted shows that a procedure similar to ours for deciding satisfiability
of (basic) SO constraint problems over extended signatures is of complexity O(n3),
n being the total number of function symbol and variable occurrences in the input
constraint system. Given his proof, it is not hard to see that our procedure has
precisely the same time complexity.

On the other hand, Plaisted does not at all consider the behavior of SO constraint
satisfaction problems when the SOs over which they are to solved are required to be
total. We prove below that the problem of deciding satisfiability of ground constraints
by total SOs, whether over fixed or extended signatures, is NP-complete.

Theorem 3.1 The following problem (Total SO Constraint Solving) is NP-
complete: Given a signature Σ and a ground constraint system

Γ ≡ ⟨s1 > t1⟩, ..., ⟨sn > tn⟩

over Σ, does there exist a total SO ≻ over Σ containing Γ?



Proof. The problem is easily seen to be in NP. A non-deterministic algorithm need
only guess an enumeration u1, u2, ..., um of the set of all subterms of terms in T (Γ ).
Then by the results of Section 2.2, satisfiability of the ground system

Γ ′ ≡ ⟨u1 > u2⟩, ⟨u2 > u3⟩, ..., ⟨um−1 > um⟩
can be determined in polynomial time. If Γ ′ is satisfiable and Γ is a subsystem of
Γ ′, then the results of Section 2.2 guarantee that Γ ′ induces a total SO ≻ on T (Σ)
containing Γ . Otherwise, the SO on T (Σ) induced by Γ ′ does not provide a solution
for Γ .

The rest of the proof ofNP-completeness is achieved by a reduction of “Monotone
3-SAT” ([GJ79]), which is the problem of deciding satisfiability of a set C of
propositional clauses of length three such that every clause C in C is positive (i.e.,
has only positive occurrences of propositional symbols) or negative (i.e., has only
negative occurrences of propositional symbols).

The following table gives a transformation from a clause set C satisfying the
assumptions of Monotone 3-SAT over the set X of propositional variables into a
constraint system Γ over the signature Σ = X ∪ {f, g, 1}, where the elements of
X are regarded as constants, f and g are ternary function symbols, and 1 is also a
constant:

¬x ∨ ¬y ∨ ¬z =⇒ f(1, 1, 1) > f(x, y, z)
x ∨ y ∨ z =⇒ g(x, y, z) > g(1, 1, 1)

We prove that the clause set C is satisfiable iff the constraint system Γ is satisfiable
by some total SO.

First, suppose that Γ is satisfiable, i.e., that there exists a total SO ≻ over Σ
containing Γ . Since ≻ is total, either x ≻ 1 or 1 ≻ x holds for every x ∈ X . Define

I = {x ∈ X | x ≻ 1}.
We show that I is an interpretation satisfying C, i.e., that if C ∈ C is positive then
it contains at least one variable in I, and that if C ∈ C is negative, then it contains
at least one variable not in I. If C = x∨ y ∨ z is positive, then g(x, y, z) ≻ g(1, 1, 1).
If x, y, and z are all not in I, then from 1 ≻ x, 1 ≻ y, and 1 ≻ z it follows that
g(1, 1, 1) ≻ g(x, y, z), which is a contradiction. The case when C is negative is similar.

On the other hand, suppose that C is satisfiable by some interpretation I ⊆ X .
Then every positive clause C in C contains an atom x ∈ I. We reorder each clause
C in such a way that x is the leftmost variable of C, i.e., that C = x ∨ y ∨ z with
x ∈ I. Similarly, if D is a negative clause, we write D in the form D = ¬x∨¬y∨¬z
with x ̸∈ I.

Now let ≻ be a lexicographic path ordering over Σ based on any total precedence
ordering ≻′ satisfying

– f ≻′ x ≻′ 1 for all x ∈ I, and
– g ≻′ 1 ≻′ y for all y ̸∈ I.

Such a precedence clearly exists, and it is easy to verify that for all C ∈ C the ordering
≻ satisfies the constraint system corresponding to C. Moreover, any LPO based on
a total precedence is itself total on ground terms. Thus we have seen that every
Monotone 3-SAT problem can be polynomially reduced to a total SO constraint
satisfaction problem, and this proves the SO constraint satisfaction problem to be
NP-complete. 2



In light of the polynomial time complexity of the constraint satisfaction problem
for arbitrary SOs, Theorem 3.1 can be interpreted as showing that the problem of
deciding whether or not a given SO on a set T (Σ) of terms can be linearized — i.e.,
embedded into a total SO on T (Σ) — is NP-complete.

The proof of Theorem 3.1 also shows that the following similar problem (LPO
Constraint Solving) is NP-complete: Given a signature Σ and a constraint system
Γ over Σ, does there exist a precedence on Σ and an LPO ≻ over this precedence
containing Γ? Note that this problem differs from the one treated in [Com90] and
[NR92] in that in both of these papers an arbitrary but fixed precedence on Σ is
assumed.

References

[BC93] A. Boudet and H. Comon. About the Theory of Tree Embedding. In Springer-
Verlag LNCS 668, M.-C. Gaudel and J.-P. Jouannaud, eds., pp. 376 – 390, 1993.

[Com90] H. Comon. Solving Inequations in Term Algebras. In Proceedings of the 5th IEEE
Symposium on Logic in Computer Science, pp. 62 – 29, 1990.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical
Computer Science B, J. van Leeuwen, ed., North-Holland, 1990.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[JO91] J.-P. Jouannaud and M. Okada. Satisfiability of Systems of Ordinal Notations with
the Subterm Property is Decidable. In Springer-Verlag LNCS 510, J. L. Albert, B.
Monien, and M. R. Artalejo, eds., pp. 455 – 468, 1991.

[NR92] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering Constrained
Clauses. In Springer-Verlag LNCS 607, D. Kapur, ed., pp. 477 – 491, 1992.

[Pla93] D. A. Plaisted. Polynomial Time Termination and Constraint Satisfaction Tests.
In Springer-Verlag LNCS 690, C. Kirchner, ed., pp. 405 – 420, 1993.

[Tra90] R. Treinen. A New Method for Undecidability Proofs for First-order Theories.
Technical Report A-09/90, Universität des Saarlandes, 1990.

[Ven87] K. N. Venkataraman. Decidability of the Purely Existential Fragment of the
Theory of Term Algebras. JACM 34, pp. 492 – 510, 1987.


