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Abstract

We design new inference systems for total orderings by applying rewrite techniques to chaining
calculi. Equality relations may either be specified axiomatically or built into the deductive
calculus via paramodulation or superposition. We demonstrate that our inference systems are
compatible with a concept of (global) redundancy for clauses and inferences that covers such
widely used simplification techniques as tautology deletion, subsumption, and demodulation. A
key to the practicality of chaining techniques is the extent to which so-called variable chainings
can be restricted. Syntactic ordering restrictions on terms and the rewrite techniques which
account for their completeness considerably restrict variable chaining. We show that variable
elimination is an admissible simplification techniques within our redundancy framework, and
that consequently for dense total orderings without endpoints no variable chaining is needed at
all.
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1 Introduction

The axioms of the theories of partial and total orderings are extremely prolific in the
context of resolution-based theorem proving. Many theorem provers build in transitivity
by so-called chaining rules, which allow one to derive (C ∨D ∨ u < v)σ from premises
C∨u < s andD∨t < v after unifying s and t by σ. Even though chaining is a considerable
improvement over naive resolution, in this general form it still generates a huge search
space. First, chaining inferences are always possible if s or t is a variable. For instance,
the totality axiom x < y∨ y ≤ x can always be applied in four different ways, leading to
the derivation of many equivalent variants of each clause. The situation is even worse
for total orderings with additional structure, and in particular dense orderings with no
endpoints. The clauses which express density and the absence of endpoints can also
be chained with any other clause. For example, the clause x < rx expressing the non-
existence of a right endpoint, generates infinitely many inequalities x < rnx just by
chaining with itself. Secondly, the same clause C ∨ u < s can be used as the first or as
the second premise of a chaining inference, so that one needs to chain with both terms,
u and s. Third, and related to the first two points, chaining is designed to generate the
full (possibly infinite) transitive closure of a given set of inequalities, even though for
any particular refutation a finite subset will be sufficient. This lack of goal-orientedness
forms another obstacle to any efficient proof search. These problems apply to transitive
relations in general; solutions have been proposed for certain theories.

Bledsoe and Hines (1980) have investigated dense total orderings without endpoints
and have developed techniques for eliminating certain occurrences of variables from for-
mulas. In their inference system, no chaining through variables is performed and no
explicit inferences with transitivity, density, totality and the “no endpoints” axioms
are computed. Completeness results for particular such systems of restricted chaining
are proved by Bledsoe, Kunen and Shostak (1985) and Hines (1992). Theorem provers
developed from these theoretical investigations have performed successfully in proving
theorems such as the continuity of the sum of two continuous functions or the interme-
diate value theorem; see Bledsoe and Hines (1980), Hines (1988) or Hines (1990).

Ordered paramodulation (Hsiang and Rusinowitch 1991) and superposition (Bach-
mair and Ganzinger 1990) are chaining-based inference systems for equality relations
(the congruence properties of which also require chaining through subterms). Paramod-
ulation into or below variables was first shown to be unnecessary by Brand (1975).
Various syntactic restrictions avoid that equalities are always applied in both directions.
In many cases even an infinite transitive closure of a given set of equalities can be rep-
resented by a finite convergent rewrite system. Only that system, and not the complete
transitive closure of the given set of equalities (or clauses), is computed by the ordered
variants of paramodulation and superposition.

Our aim is to combine the two approaches, keeping their best features, but avoiding
their drawbacks. For that purpose we adapt the term rewriting techniques for arbitrary
transitive relations described in Bachmair and Ganzinger (1993) to total orderings.

1.1 Results

We present refutationally complete inference systems for total orderings, in which chain-
ing is restricted by syntactic ordering constraints in much the same way as we know it
from superposition calculi. That is, chaining inferences as above are performed only
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if the term sσ is maximal in both (instances by σ of the) parent clauses. These or-
dering constraints immediately rule out many forms of chaining through variables. For
instance, a term xσ cannot be maximal if the variable x is shielded in a clause, that is,
occurs as an argument of a function symbol. We also go beyond simple chaining in that
we eliminate all occurrences of the maximal term in one single inference that combines
several chaining steps. The effect is similar to hyper-resolution, in that the results of
intermediate chaining steps need not be explicitly generated. Explicit inferences with
transitivity and totality are shown to be redundant. This inference system applies to ar-
bitrary total orderings and avoids most, though not all, variable chainings. The ordering
constraints, like in the equational case, derive from a presentation of the full transitive
closure of the given binary relation by an appropriate rewrite closure.

We prove refutational completeness of our inference systems in the presence of a
general notion of redundancy for clauses and inferences by which most of the com-
monly applied simplification and elimination techniques (e.g., tautology elimination or
subsumption) can be justified. For total orderings in particular we show that vari-
able elimination, as proposed by Bledsoe and Hines (1980), is a simplification rule in
our sense: a clause becomes redundant once variable elimination has been applied to
it. In other words, variable elimination can be made mandatory. Ordering constraints
for inferences and mandatory elimination of unshielded variables together achieve that
chaining through variables can be completely avoided for dense total orderings with no
endpoints. Variable elimination is also excluded in the inference systems proposed by
Bledsoe, Kunen and Shostak (1985) and Hines (1992), though these calculi, unlike ours,
are not compatible with tautology deletion. Our proofs are comparatively simple and in
particular profit from our ability of treating simplification techniques such as variable
elimination as a separate issue.

The first of the two calculi which we present in this paper lacks an efficient treatment
of equality. Like in previous approaches (Bledsoe and Hines 1980, Bledsoe, Kunen and
Shostak 1985, Hines 1992) an equality s ≈ t is represented by two inequalities s ≤ t
and t ≤ s. The disadvantage of this approach is that the implicitly specified equal-
ity relation requires additional congruence axioms for each function symbol, while such
powerful simplification mechanisms as demodulation cannot be used. Therefore we de-
scribe another system, in which we combine chaining with superposition (Bachmair and
Ganzinger 1990). Equality is thus built into the inference rules; explicit inferences with
congruence axioms or functional reflexive axioms and superposition into or below vari-
ables are not needed. The extended inference system also considerably improves earlier
chaining systems with paramodulation (Slagle 1972), and for dense orderings without
endpoints superposition from variables is not needed either. In addition, when super-
posing into inequalities only the maximal term of the inequality needs to be replaced.
As before, the completeness result allows to discard redundant clauses and inferences
and admits simplifications such as demodulation or condensement.

We have implemented most the techniques investigated here as an extension of the
Saturate system (Nivela and Nieuwenhuis 1993), and have obtained promising experi-
mental results.
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2 Preliminaries

2.1 Orderings

A (strict) partial ordering is a transitive and irreflexive binary relation; a quasi-ordering
a reflexive and transitive binary relation. The reflexive closure of a strict ordering is
a quasi-ordering. On the other hand, if ≤ is a quasi-ordering, then its strict part <,
defined by: x < y if and only if x ≤ y but not y ≤ x, is a strict ordering. An ordering
< is said to be total if x < y or y < x, whenever x and y are distinct. The ordering
is dense if for all x and y with x < y, there exists an element z, such that x < z and
z < y. An ordering < has no left (resp. right) endpoint if for every x there exists a
y such that y < x (resp. x < y). By an ordering without endpoints we mean one that
has neither a left nor a right endpoint. For instance, the usual less-than relation on the
natural numbers is a total ordering with a left, but no right, endpoint. The less-than
relation on the real numbers is a dense total ordering without endpoints.

2.2 Predicate logic

We consider first-order predicate logic with equality; more specifically, first-order lan-
guages with function symbols, variables, and (interpreted) predicate symbols <, ≤, and
≈.1 A term is an expression f(t1, . . . , tn) or x, where f is a function symbol of arity
n, x is a variable, and t1, . . . , tn are terms. An atomic formula (or simply atom) is an
expression s ≈ t, called an equality, or an expression s < t or s ≤ t, called a strict or
non-strict inequality, respectively, where s and t are terms. A literal is an expression A
(a positive literal) or ¬A (a negative literal), where A is an atomic formula. We also
write s ̸≈ t instead of ¬(s ≈ t) and use a similar notation for inequalities. When we
speak of the priority of a predicate symbol, we take < to have the highest and ≈ the
lowest priority. The symbol � is used to denote (strict or non-strict) inequalities; the
symbol � to denote equalities and inequalities. A clause is a finite multiset of literals.
We write a clause by listing its literals, ¬A1, . . . ,¬Am, B1, . . . , Bn; or as a disjunction
¬A1 ∨ · · · ∨¬Am ∨B1 · · · ∨Bn; or as a sequent A1, . . . , Am → B1, . . . , Bn. An expression
is said to be ground if it contains no variables.

By a (Herbrand) interpretation we mean a set I of ground atomic formulas. We say
that an atom A is true (and ¬A, false) in I if A ∈ I; and that A is false (and ¬A,
true) in I if A ̸∈ I. A ground clause is true in an interpretation I if at least one of its
literals is true in I; and is false otherwise. In general, a clause is said to be true in I if
all its ground instances are true. The empty clause is false in every interpretation. We
say that I is a model of a set of clauses N (or that N is satisfied by I) if all elements of
N are true in I. Occasionally, a model of N will also be called an N -interpretation. A
set N is satisfiable if it has a model, and unsatisfiable otherwise. For instance, any set
containing the empty clause is unsatisfiable.

We intend ≈ to be interpreted as an equality relation2 and < as a strict ordering.
Also, x ≤ y is meant to be interpreted as x < y∨x ≈ y. (From a logical point of view, the
symbol ≤ is therefore superfluous. But for theorem proving purposes shorter formulas
are generally preferable, and it is better to avoid replacing a non-strict inequality by
a disjunction.) The most problematic properties of these relations—for an automated

1Uninterpreted predicate symbols can be encoded in a many-sorted language with function symbols
and equality, by representing a formula P (t1, . . . , tn) as an equality fP (t1, . . . , tn) ≈ trueP .

2An equality relation is a congruence on ground terms.
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theorem prover—are the transitivity properties. By a transitivity interpretation we mean
a model of the set TR of all transitivity axioms

x �1 y, y �2 z → x � z

where � is the highest-priority symbol of �1 and �2. For example, x ̸< y∨y ̸≈ z∨x < z
is a transitivity axiom. The set PO consisting of the axioms in TR and the axioms

x < y → x ≤ y

→ x ≤ x

x < x →

encodes that < is a strict ordering and ≤ a quasi-ordering (with < contained in its strict
part). Interpretations satisfying PO are called partial orderings for short. If in addition
the totality axiom

x < y ∨ y ≤ x

is satisfied, the interpretation is called a total ordering. In that case, < coincides with
the strict part of ≤.

2.3 Chaining

Many theorem provers build in transitivity by so-called chaining rules,

C , u < s D , t < v

Cσ , Dσ , uσ < vσ

where σ is a most general unifier of s and t; see Slagle (1972). For instance, with chaining
we may deduce s < t from s < u and u < t. Specific variants of this inference rule can be
found in calculi for dense total orderings (Bledsoe and Hines 1980, Bledsoe, Kunen and
Shostak 1985) and in paramodulation calculi for equality (Robinson and Wos 1969). In
its full generality, the chaining rule is not practical, as the search space spanned by the
inferences may be huge. Variable chainings, that is, chainings with a premise C ∨u < x
or D ∨ y < v, are particularly prolific. Fortunately, they can be completely excluded in
the case of dense total orderings without endpoints (Bledsoe, Kunen and Shostak 1985)
and considerably restrained in the case of paramodulation (Brand 1975 was the first to
prove that paramodulation into a variable is unnecessary).

Chaining essentially generates the transitive closure of a given binary relation. For
example, from a < b and b < c and c < d we may deduce a < c and b < d and a < d. In
other words, whenever there is a (finite) chain of equalities and/or inequalities

x1 �1 x2 �2 · · · �n−1 xn

the equality or inequality x1 � xn can be deduced, where � is the highest-priority
predicate among all �i. The basic idea of the term rewriting approach is to consider
not arbitrary chains, but only those in which the intermediate terms x2, . . . , xn−1 are
in a certain sense simpler than the endpoints x1 and xn. Moreover, the equality or
inequality x1 � xn is not necessarily deduced, but instead the corresponding chain may
be implicitly represented by a rewrite system. We employ these ideas for the design of
refutationally complete chaining systems in which various constraints are imposed on
inference rules. Two concepts are of importance in this context: rewrite systems and
simplification orderings.
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2.4 Simplification orderings

An ordering ≻ is well-founded if there is no infinite sequence t1 ≻ t2 ≻ · · ·. An ordering
on ground terms is called a reduction ordering if it is well-founded and satisfies the
following property: whenever s ≻ t then u[s] ≻ u[t], for all terms u, s, and t. A reduction
ordering is called a simplification ordering if it also satisfies the subterm property : A[s] ≻
s, for all expressions A and proper subexpressions s of A. A reduction ordering is
complete if it is total on ground terms. (Complete reduction orderings are simplification
orderings.)

Later on, we shall extend the term ordering ≻ to an ordering on literals. Also, any
ordering ≻ on a set S can be extended to an ordering on finite multisets over S (which
for simplicity we also denote by ≻) as follows: M ≻ N if (i) M ̸= N and (ii) whenever
N(x) > M(x) then M(y) > N(y), for some y such that y ≻ x. An ordering on literals
can thus be extended to an ordering on clauses. If ≻ is a total (resp. well-founded)
ordering, so is its multiset extension.

Finally, we extend an ordering ≻ to non-ground expressions by defining: E ≻ E′ if
and only if Eσ ≻ E′σ, for all ground instances Eσ and E′σ. Thus, we have E ̸≽ E′ if
E′σ ≻ Eσ, for some ground instances Eσ and E′σ. We say that a literal L is maximal
in a clause C if L′ ≻ L, for no literal L′ in C; and that L is strictly maximal in C if
L′ ≽ L, for no L′ in C.3

For a survey on (reduction) orderings see Dershowitz (1987).

2.5 Rewrite systems

Let I be a set of ground atomic formulas and ≻ be a simplification ordering. We use
the equalities and inequalities in I as rewrite rules. More precisely, we write u �I v if
u � v is an inequality in I and write u ≈I v if u = w[s] and v = w[t], for some term w
and equality s ≈ t or t ≈ s in I. Furthermore, we write u �L

I v, if u ≻ v, and u �R
I v, if

v ≻ u. The subscripts are dropped if I is clear from the context.
By a proof (in I) we mean a finite sequence u0 �1 u1 �2 u2 . . . un−1 �n un (in I),

where n ≥ 0. More specifically, we speak of a proof of u0 ≤ un. We speak of a proof of
u0 < un if in addition at least one of the symbols �i is < (and hence n ≥ 1); and of a
proof of u0 ≈ un if all symbols �i are ≈. (If n = 0, we have a proof of u0 ≈ u0.) By the
transitive closure of I we mean the set of all atoms u � v provable in I. A rewrite proof
is a sequence

u0 < u1

or
u0 �

L
1 · · · �L

m−1 um �R
m · · · �R

n un.

By the rewrite closure of I we mean the set of all atoms u � v that are provable by a
rewrite proof in I.

In proving the completeness of chaining systems we construct Herbrand models for
certain clause sets, describing interpretations by rewrite closures. A key question is
under which circumstances the rewrite closure of a set I is a transitivity interpretation;
a question, it turns out, that is related to commutation properties of the rewrite relations
�I .

3Depending on the ordering on ground terms, this extension to non-ground expressions may or may
not be decidable. In the latter case one will have to employ a safe and decidable approximation.
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If a sequence u0 �1 · · · �n un is not a rewrite proof then either (i) there is a
subsequence ui−1 �

R
i ui �

L
i+1 ui+1, or (ii) ui−1 and ui are identical or incomparable (i.e.,

ui−1 ̸≻ ui and ui ̸≻ ui−1), for some i. A subsequence u �R
1 t �L

2 v, called a peak, is
said to commute if u � v is provable by a rewrite proof, where � is the highest-priority
symbol of �1 and �2. Commutation allows us to deal with case (i). If ≻ is a complete
simplification ordering, then case (ii) applies only if ui−1 = ui.

For example, if I contains the atoms a < b and b < c and c < d, and if a ≻ b ≻ c ≻ d,
then a <L b and b <L c and c <L d. The relation <L evidently commutes with the
(empty) relation <R. If we choose the ordering differently, b ≻ c ≻ d ≻ a, there is a
peak, a <R b <L c, that does not commute. There are rewrite proofs of a < b and b < c,
but not of a < c.

The following lemma relates commutation and transitivity.

Lemma 1 Let ≻ be a complete simplification ordering and I be a Herbrand interpre-
tation that contains no strict inequality t < t. The rewrite closure of I is a transitivity
interpretation if and only if all peaks in I commute.

Proof. Suppose that all peaks in I commute. It is sufficient to show that whenever u � v
is provable in I, then there also exists a rewrite proof. If a sequence u = u0 �1 · · · �k

uk = v contains peak, then by commutation the peak can be replaced by a rewrite proof.
Moreover, any proof step ui ≈ ui+1 or ui ≤ ui+1, where ui = ui+1, can be eliminated
from a proof. (Strict inequalities t < t cannot always be eliminated, which is the reason
why we have to exclude them.) The multiset of terms {u′

0, . . . , u
′
n} used in the resulting

new proof u = u′
0 �1 · · · �n u′

n = v is smaller than the multiset {u0, . . . , uk} with
respect to the (multiset extension of the) simplification ordering ≻. Since the ordering
≻ is well-founded, we may conclude that every sequence of rewrites can be transformed
to a rewrite proof.

For the converse observe that by transitivity of the rewrite closure of I any peak
must have a rewrite proof. 2

The lemma provides the starting point for our investigation of chaining techniques for
total orderings, as peaks can be made to commute by applying suitable chaining infer-
ences. (In the above example the peak a <R b <L c commutes once the inequality a < c
has been deduced from a < b and b < c by chaining.) Similar, so-called “critical pair
lemmas” form the basis of all completion procedures; Levy and Agust́ı (1993) appear
to have been the first to apply these techniques to non-symmetric rewrite relations. We
go beyond usual completion procedures in that we consider general clauses, and thus
have to deal with negative literals and disjunctions of literals. Particular emphasis will
be given to the question of (the necessity of) variable chainings. For a discussion of the
general aspects of these questions we refer to our work on rewrite techniques for transi-
tive relations (Bachmair and Ganzinger 1993). In this paper we look at total orderings,
primarily dense total orderings without endpoints.

3 Maximal chaining

3.1 Inference rules

The predicate ≤ for non-strict inequality can be defined in terms of strict inequality and
equality. It is also possible, though, to express equality in terms of inequality, repre-
senting u ≈ v by (the conjunction of) two inequalities u ≤ v and v ≤ u. This, indeed,
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is the framework in which previous chaining inference systems have been formalized,
the advantage being that no specific inference mechanisms for equality are needed. The
necessary properties of the implicit equality relation are specified by the set EEF of
clauses ∨

1≤i≤n

xi < yi ∨
∨

1≤i≤n

yi < xi ∨ f(x1, . . . , xn) ≤ f(y1, . . . , yn)

where f ranges over all function symbols in F ; see Bledsoe, Kunen and Shostak (1985).
The necessity of including these axioms is a disadvantage. Later on, we will build equality
into the inference mechanism via paramodulation, thereby obviating any explicit equality
axioms. (Another advantage of equational inference systems is that further simplification
techniques such as demodulation become available, which are indispensable in actual
implementations.)

In this section all atomic formulas are assumed to be (strict or non-strict) inequalities.
Totality can be expressed as a clause x < y ∨ y ≤ x or x ≤ y ∨ y ≤ x. By TA we denote
the set of these two clauses. They can be used to transform negative inequalities into
positive ones: replace x ̸< y by y ≤ x and x ̸≤ y by y < x. Thus, we only need to
consider disjunctions of positive inequalities.

We build the irreflexivity and transitivity properties directly into the inference mech-
anism.

Irreflexivity Resolution:
C , s < t

Cσ
where σ is the most general unifier of s and t and sσ < tσ is maximal in Cσ.

Maximal Chaining:

C , u1�1s1, . . . , um�msm D , t1�
′
1v1, . . . , tn�

′
nvn

Cσ , Dσ ,
∨

1≤i≤m,1≤j≤n uiσ �i,j vjσ

where (i) σ is the most general unifier of s1, . . . , sm, t1, . . . , tn and �i,j is the highest-
priority symbol of �i and �′

j, (ii) uiσ ̸≽ s1σ, for all 1 ≤ i ≤ m, and uσ ̸≽ s1σ, for all
terms u in C, and (iii) viσ ̸≽ t1σ, for all 1 ≤ i ≤ n, and vσ ̸≻ t1σ, for all terms v in D,
and t1σ occurs in Dσ only in inequalities v � t1σ.

For example, from x < f(a) ∨ b < f(x) and f(y) < c ∨ f(a) < d we may deduce
a < c ∨ a < d ∨ b < c ∨ b < d (assuming f(a) is the maximal term in the clause).

The conclusion of a maximal chaining inference can also be obtained by a sequence
of m × n ordinary chaining inferences, interspersed with factoring inferences; but an
important difference is that with maximal chaining the intermediate clauses need not
be deduced. In this regard, the effect of maximal chaining is similar to that of hyper-
resolution. Chaining inferences are restricted to the maximal terms in a clause; maximal
chaining is designed to eliminate these terms.

The inference system MC≻ consisting of irreflexivity resolution and maximal chain-
ing represents our basic inference mechanism for total orderings. (We also assume that
the premises of an inference have no variables in common; if necessary, the variables in
one premise are renamed.) Below we shall outline further improvements to the calculus
for richer structures, such as dense total orderings without endpoints. These improve-
ments ultimately derive from the concept of redundancy (of clauses and inferences)
discussed in the next section.
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3.2 Redundancy

Simplification and deletion techniques, such as subsumption, tautology deletion, con-
densement, demodulation, contextual rewriting, etc., have proved to be indispensable
for actual implementations of theorem provers. We have developed a framework, based
on the notion of redundancy, for formalizing and reasoning about such techniques (Bach-
mair and Ganzinger 1994). The main ideas are sketched below.

Let ≻ be a well-founded ordering on clauses and N and S be sets of clauses. We
say that a ground instance Cσ of some clause C (which need not be an element of N)
is S-redundant with respect to N if there exist ground instances C1σ1, . . . , Ckσk of N
such that Cσ is true in every S-model of C1σ1, . . . , Ckσk and Cσ ≻ Cjσj, for all j with
1 ≤ j ≤ k. The clause C is S-redundant if all its ground instances are.

Tautologies are S-redundant in this sense, for any set S, and most cases of proper
subsumption are also covered by this notion of redundancy.4 According to the definition,
the axioms in S are all S-redundant. We are interested in PO-redundancy. (Since these
axioms are built into the chaining mechanism, we expect them to be redundant.)

If an inference system is in a certain sense compatible with this notion of redun-
dancy, then redundant formulas can be ignored by inferences. A ground inference (i.e.,
an inference in which the premises and the conclusion are ground clauses) is called sim-
plifying (with respect to ≻) if its conclusion is smaller than its maximal premise. A
non-ground inference is simplifying if all its ground instances are. We next define a
suitable well-founded ordering on ground (instances of) clauses, with respect to which
irreflexivity resolution and maximal chaining are simplifying. It is not difficult to find
such an ordering; the reason we present one that is relatively complicated is that we
apply the same ordering to variable elimination and superposition inferences.5

The clause ordering is based on an ordering on literals. Let L be a literal u � v or
¬(u � v) in a ground instance Cσ of a clause C. We have to distinguish between positive
and negative literals; let sL be 1 if L is a negative literal, and 0 otherwise. We shall
compare literals primarily by looking at their terms; let maxL be the maximal term,
and minL the minimal term of u and v. The argument position of the maximal term is
also of importance; let pL be 1 if L is an (strict or non-strict) inequality with maxL = u,
and 0 otherwise. We need to distinguish between the different predicates; let rL be 2
if L is a strict inequality, 1 if L is a non-strict inequality, and 0 otherwise. Finally,
certain characteristics of the clause C are crucial for dealing with variable elimination.
Let nC be the number of different variables occurring as an argument of an equality or
inequality in C. For example, if C is the clause x < f(y) ∨ z ≤ f(z), then nC = 2, as
both x and z (but not y) qualify. We define nL = −1, if C is the totality axiom; nL = 0,
if � is ≈; and nL = nC , otherwise.

6

Now, with each literal L we associate the tuple (maxL, sL, pL, nL, rL,minL), and
compare such tuples using the ordering ≻ in the first and last component, and the usual
ordering on natural numbers in the other components. The corresponding ordering on
literals is also denoted by the symbol ≻. Its multiset extension is an ordering on ground
(instances of) clauses.

For example, if s ≻ t, we associate with an occurrence of a literal s < t in a ground

4The definition of redundancy does not, for instance, cover cases where two clauses subsume each
other.

5This ordering is the key to our refutational completeness proofs.
6We shall see that the number nC decreases under variable elimination. The totality axiom is needed

to justify variable elimination; its special role is reflected in the ordering.
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instance of C the tuple (s, 0, 1, nC , 2, t); with t ̸< s the tuple (s, 1, 0, nC , 2, t); and with
s ≤ s the tuple (s, 0, 1, nC , 1, s).

It can easily be checked that irreflexivity resolution or maximal chaining inferences
are simplifying with respect to this clause ordering. (In the case of irreflexivity resolution,
one literal is removed and the number nC can only decrease. In the case of maximal
chaining, the maximal term occurs as the first argument of an inequality in the maximal
premise, whereas in the conclusion it may occur only as the second argument of an
inequality, if at all.)

A ground inference with conclusion B and maximal premise C is called S-redundant
with respect to N if either some premise is S-redundant, or else there exist ground
instances C1, . . . , Ck of N such that B is true in every S-model of C1, . . . , Ck and C ≻c

Cj, for all j with 1 ≤ j ≤ k. A non-ground inference is called S-redundant if all its
ground instances are S-redundant.

We say that a set of clauses N is saturated up to S-redundancy if all inferences from
N are S-redundant. Since the inferences in MC≻ are simplifying, they can be rendered
redundant by adding the conclusion to the given set of clauses. Thus, computing the
closure of a clause set under these inferences yields a saturated set.

3.3 Refutational completeness

We claim that if a set N is saturated up to PO-redundancy under MC≻, then it either
contains the empty clause or has a total ordering as model. Our approach for proving this
claim is straightforward. We define a (transfinite) sequence of “partial” interpretations,
one for each ground instance of a clause in N , beginning with the “empty” interpretation
and considering clauses in increasing order according to the given well-founded ordering
≻. Whenever a clause C is false in the current partial interpretation IC , we extend
IC by adding an inequality of C that extends the ordering described by IC in a least
restrictive way. The clause C is satisfied in the extended interpretation.

Let us first formally define which inequality is chosen from C to extend an interpre-
tation I. Let C be a ground clause with maximal term s and I be an interpretation.
By PI(C) we denote some inequality s � t or t � s in C, such that (i) PI(C) is an
inequality s � t, if C contains any inequality s �′ t′ at all; (ii) if PI(C) is an inequality
s � t, there is no inequality s �′ t′ in C, such that either t < t′ is true in I or else t ≤ t′

is true in I and �′ has lower priority than �; (iii) if PI(C) is an inequality t � s, there
is no inequality t′ �′ s in C, such that either t′ < t is true in I or else t′ ≤ t is true in I
and �′ has lower priority than �.

For example, suppose a ≻ b ≻ c and let C be the clause a < b ∨ a < c. If b < c is
true in I, then PI(C) is a < c. Extending I by a < b yields a non-minimal extension of
I to a model of C, as a < c follows from a < b and b < c by transitivity.

Now, for every ground instance C of a clause in N , let RC be the set
∪

C≻D ED and
IC the rewrite closure of RC . If C is false in IC and does not contain s < s, where s
is the maximal term in C, then EC = {PIC (C)}. In all other cases, EC = ∅. We say
that C produces PIC (C), and call C productive, if EC = {PIC (C)}. By IC we denote the
rewrite closure of RC ∪EC . Finally, by R we denote the set

∪
C EC and by I the rewrite

closure of R.
Evidently, a productive clause C is false in IC , but true in IC . The key properties

of the interpretations IC are summarized in the following lemma.
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Lemma 2 Let N be a set of clauses that is saturated up to PO-redundancy but does
not contain the empty clause. Let I be the interpretation constructed from all ground
instances of N ∪TA. Then for every ground instance C of a clause in N ∪TA we have:

(1) if C is productive it is non-redundant;
(2) IC satisfies PO; and
(3) C is true in IC.

Proof. We use induction on ≻. Let C be a ground instance of a clause in N , such that
the assertion holds for all smaller ground instances of N .

(1) The induction hypothesis may be used to show that IC is a partial ordering and
all ground instances of N and the totality axioms that are smaller than C are true in IC .
Therefore, if C were PO-redundant it would have to be true in IC . But as a productive
clause C is false in IC .

(2) To prove that IC is a transitivity interpretation, it suffices, by Lemma 1, to
show that all peaks in IC commute. By the induction hypothesis, peaks in IC commute.
Suppose there is a peak u1 �

′
1 s �1 v1 in IC that is not also a peak in IC . Then s �1 v1

must be produced by C, so that C can be written as C ′ ∨ s �1 v1 ∨ · · · ∨ s �n vn, where
C ′ contains no inequality s �′ v and vj ≤ vi is true in IC , for all i and j with i < j.
The inequality u1 �′

1 s on the other hand must be produced by some smaller clause D
of the form D′ ∨ u1 �′

1 s ∨ · · · ∨ um �′
m s, where the maximal term s does not occur in

D′ and ui ≤ uj is true in IC , whenever i < j. We have to show that there is a rewrite
proof of u1 � v1 in IC , where � is the highest-priority symbol of �′

1 and �1.
Let us first assume that C is a ground instance v1 ≤ s∨s < v1 or v1 < s∨s ≤ v1 of a

totality axiom. We consider the first case, the second is similar. Take the smaller ground
instance v1 ≤ u1 ∨ u1 < v1 of the totality axiom, which by the induction hypothesis is
true in IC . We know that u1 ≤ s is true in ID, and hence in IC . If v1 ≤ u1 were true in
IC , then v1 ≤ s would also have to be true in (the partial ordering) IC , which contradicts
the assumption that C, as a productive clause, is false in IC . In short, we may infer
that u1 < v1 is true in IC .

Let us therefore assume that C is not an instance of TA. Since D cannot be an
instance of TA either, the clause

C ′′ = C ′ ∨D′ ∨
∨

1≤i≤m,1≤j≤n

ui �i,j vj,

where �i,j is the highest-priority symbol of �′
i and �j, is the conclusion of a maximal

chaining from ground instances of N . By saturation up to redundancy and part (1),
C ′′ must follow from PO and ground instances of N smaller than C. By the induction
hypothesis, all of these clauses, and hence C ′′, are true in IC . On the other hand, C is
productive, so that C and C ′ are false in IC . Similarly, D′ is false in ID and remains
false in IC . (Inequalities produced by a clause D̃ ≻ D have a maximal term s̃ ≽ s and
therefore cannot contribute to any rewrite proof of an inequality in D′.) We may thus
infer that some disjunct ui �i,j vj is true in IC . Moreover, both u1 ≤ ui and vj ≤ v1 are
true in I. Thus, if � is ≤ or if �i,j is <, we are done. Suppose � is < (so that either �1

or �′
1 is <) and �i,j is ≤ (so that both �′

i and �j are ≤). We distinguish two subcases.
If u1 < s is true in IC , then we may use (part (iii) of) the definition of PIC (C)

to infer that ui ≤ u1 is false in IC . By the induction hypothesis, the ground instance
u1 < ui ∨ ui ≤ u1 of TA is true in IC , which implies that u1 < ui, and hence u1 < v1, is
true in IC .
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If s < v1 is true in IC , then we may use (part (ii) of) the definition of PIC (C) to infer
that s ≤ vj is false in IC . The ground instance vj < s ∨ s ≤ vj of TA is smaller than
C,7 so that by the induction hypothesis we may infer that vj < s is true in IC . Again
this implies that u1 < v1 is true in IC .

To show irreflexivity of < let us assume that u is the smallest term for which u < u
is true in IC . Since u < u cannot be produced by any clause, there must exist a rewrite
proof u �L · · · �L v �R · · · �R u in IC . We may use transitivity to infer that v < v is
also true in IC , but as u ≻ v this contradicts the assumption that u is the smallest term
with this property.

The remaining axioms of PO are satisfied for any rewrite closure.
(3) If C is redundant, it follows from PO and smaller ground instances of N . By the

induction hypothesis, all these clauses are true in IC , hence C is true in IC (and IC).
If C is productive, it is evidently true in IC , as EC ⊆ IC . If C is not productive, it is
either true in IC , or else is of the form C ′ ∨ s < s, where s is the maximal term in C.
Since N is saturated up to redundancy, the irreflexivity resolution inference

C ′ , s < s

C ′

is redundant. In other words, C ′ follows from PO and clauses smaller than C. We may
use the induction hypothesis to infer that C ′ is true in IC . 2

We now obtain the following refutational completeness result.

Theorem 1 Let N be a set of clauses with subset EEF , where F is the given set of
function symbols. If N is saturated up to PO-redundancy with respect to MC, then it
has a total ordering as model if and only if it does not contain the empty clause.

Proof. If N contains the empty clause, it has no model. Suppose N does not contain
the empty clause. Let I be the interpretation constructed from all ground instances of
N ∪ TA. We may use Lemma 2 to show that I is a model of N ∪ PO ∪ TA, and hence
satisfies all clauses specifying a total ordering. 2

This theorem applies to arbitrary total orderings. The chaining mechanism can be
improved for more specific theories, such as dense total orderings without endpoints.

3.4 Variable elimination

A variable chaining is a maximal chaining in which one of the terms si or tj is a variable.
Variable chaining can be quite prolific, as the unification of terms required for an in-
ference always succeeds if the terms are variables. Fortunately, the ordering constraints
in conditions (ii) and (iii) considerably cut down on the number of variable chainings.
More specifically, the ordering constraints can only be satisfied if each term si or tj is
either a non-variable or an unshielded variable; that is, a variable that does not occur
in a subterm f(. . . , x, . . .). For example, the variable x is unshielded in a < x ∨ x < b.
Certain unshielded variables can be eliminated in any total ordering. More occurrences
of unshielded variables can be eliminated in total orderings without endpoints. If the
ordering is also dense all unshielded variables can be eliminated.

7The fourth component nL in the tuples associated with literals is crucial at this point.
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Variable Elimination:

C , u1 �1 x, . . . , um �m x , x �′
1 v1, . . . , x �′

n vn
C ,

∨
1≤i≤m,1≤j≤n ui �i,j vj

where x is an unshielded variable not occurring in C, ui and vi, and where �i,j is the
lowest-priority symbol of �i and �′

j.

This inference rule is sound for total dense orderings without endpoints. It has
been used by Bledsoe, Kunen and Shostak (1985) in their chaining calculus. Weaker
variable elimination rules can be applied to non-dense orderings. For example, in any
total ordering a < b is equivalent to a < x∨ x < b. In an ordering without left endpoint
a disjunction C ∨

∨
i ti < x, where x does not occur in C or any term ti, is equivalent

to C. In a total, “discrete” ordering, in which s(x) denotes the “successor” of x, the
disjunction a ≤ x∨x ≤ b is equivalent to a ≤ b∨a ≈ s(b). This can also be generalized to
a variable elimination rule. (The equation a ≈ s(b) can be translated into a conjunction
of inequations or, alternatively, one may use the equational inference systems described
in the next section.)

Lemma 3 (i) A clause C ∨ x ≤ x is PO-redundant with respect to any set of clauses.
(ii) A clause C ∨ x < x is PO-redundant with respect to any set of clauses that

contains C.
(iii) Let C ′ be a clause C ∨

∨
i ui �i x∨

∨
j x �j vj with an unshielded variable x not

occurring in C, ui, vi, and let C ′′ be C ∨
∨

i,j ui �i,j vj, where �i,j is the lowest-priority
symbol of �i and �′

j. Then C ′ is either a totality axiom or else is PO-redundant with
respect to any set N that contains C ′′ and the totality axioms.

Proof. (i) A clause C ∨ x ≤ x is satisfied in any partial ordering and hence is PO-
redundant.

(ii) Observe that C ∨ x < x is true in any model of C and that C is smaller than
C ∨ x < x.

(iii) We sketch the main ideas. Take ground instances D′ = D∨
∨

i ai �i c∨
∨

j c �j bj
and D′′ = D ∨

∨
i,j ai �i,j bj of C ′ and C ′′, respectively. Since C ′′ does not contain the

unshielded variable x, but otherwise contains the same terms as C ′, we have nC′ > nC′′ .
Consider the maximal literal L′′ in D′′. Then there is an inequality L′ in D′ with the
same or bigger maximal term occurring in the same argument position, so that the tuple
associated with L′ is bigger than the tuple associated with L′′ in one of the first four
components. In short, we have D′ ≻ D′′.

Let Ta be the set of all disjunctions c < ai ∨ ai ≤ c and ai < c∨ c ≤ ai; and let Tb be
the set of all disjunctions c < bj ∨ bj ≤ c and bj < c ∨ c ≤ bj. All of these disjunctions
are ground instances of the totality axioms. It can be shown that D′ is true in every
model of TR ∪ A ∪ {D′′} and in every model of TR ∪ B ∪ {D′′}. Also, if none of the
terms ai or c is maximal in D′, then clearly all clauses in Ta are smaller than D′. On
the other hand, if some term ai or c is maximal in D′, then that term occurs as the first
argument of an inequality in D′, which we may use to infer that all clauses in Tb are
smaller than D′. In sum, D′ is TR-redundant with respect to TA ∪ {D′′}. 2

The lemma not only indicates that variable elimination is simplifying, but that in the
presence of the totality axioms the premise in any of the elimination rules is rendered
redundant by its conclusion. The variable elimination rules may therefore be called
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simplification rules: their premises can be replaced by the respective conclusion. In
other words, variable elimination can be made mandatory, in that no other inference
rule needs to be applied to a clause with an unshielded variable, which also means that
variable chainings are not needed. The compatibility of variable elimination with other
chaining systems has been shown by Richter (1984) and Hines (1992).

By CV ≻ we denote the calculus consisting of irreflexivity resolution and maximal
chaining plus variable elimination. Also, let DO(d, l, r) denote the set PO plus all
clauses

x < y → x < d(x, y)

x < y → d(x, y) < y

→ l(x) < x

→ x < r(x)

which encodes the properties of a dense ordering without endpoints.

Lemma 4 Let N be a set of clauses that is saturated up to PO-redundancy with respect
to MC and contains EEF as a subset, where F is the given set of function symbols. If
N contains no unshielded variables, then N ∪ DO(d, l, r) is also saturated up to PO-
redundancy, where d, l and r are function symbols not in F .8

Proof. The only possible inferences between clauses in N and DO(d, l, r) would be vari-
able chainings, of which there are none, as there are no clauses with unshielded vari-
ables. Inferences from PO are trivially PO-redundant. The only other inference from
DO(d, l, r) which is the chaining of the two axioms for d produces a tautology and is
therefore redundant too. Since N is assumed to be saturated, inferences from N are also
redundant in N and hence in N ∪DO(d, l, r). In short, N ∪DO(d, l, r) is saturated. 2

The significance of this lemma rests on the fact that with variable elimination it is
possible to eliminate clauses with unshielded variables. Clauses C∨x ≤ x are redundant,
whereas a clause C ∨ x < x with unshielded variable x becomes redundant once C has
been deduced by irreflexivity resolution. (This is the only situation in which irreflexivity
resolution needs to be applied to a clause C ∨s < t, where s or t is a variable.) All other
unshielded variables can be eliminated by variable elimination. In the next section
we briefly discuss the main aspects of the saturation process; for further details see
(Bachmair and Ganzinger 1994).

3.5 Saturation

Theorem proving may be viewed as a process of saturating a given set of clauses. A
theorem proving derivation is a (possibly infinite) sequence S0, S1, . . . of clause sets, such
that each set Si+1 is obtained from its predecessor Si either by deleting some redundant
clauses, or by adding (one or more) conclusions of inferences, the premises of which are
in Si. The limit S∞ of such a derivation is the set

∪
i

∩
j≥i Sj of all persisting clauses.

A theorem proving derivation is said to be fair if the every conclusion of an inference,
the premises of which are in S∞, is contained in some set Si. A fair derivation can be
constructed by systematically applying inferences to persisting formulas.

8The function symbols d, l, and r are Skolem symbols for which no equality axioms are needed
(Bledsoe, Kunen and Shostak 1985).
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Note that fairness imposes no restriction on deletion of redundant formulas. If vari-
able elimination is applied exhaustively, no clause with an unshielded variable persists.
In other words, the limit of such a derivation contains no clauses with unshielded vari-
ables.

We have the following theorem, cf. (Bachmair and Ganzinger 1994).

Theorem 2 The limit of a fair theorem proving derivation is saturated up to redun-
dancy.

In sum, any theorem prover based on maximal chaining is refutationally complete, pro-
vided the inference rules are applied in a fair way, as defined above.

4 Chaining with superposition

The chaining calculus described above requires explicit equality axioms. Equality can
also be built in via paramodulation (originally introduced by Robinson and Wos 1969),
which in fact may be seen as a form of “subterm chaining” (as discussed in Bachmair
and Ganzinger 1993). We now allow all three symbols ≈, < and ≤ to occur in clauses.
This is logically redundant as ≤ can be expressed as a disjunction in ≈ and <, but
from a practical point of view, and as was confirmed by our experimentation with the
Saturate system, it is more appropriate to handle the three relations simultaneously
and specifically so as to avoid duplication of terms as much as possible.9 For the same
reason we allow negative equalities s ̸≈ t that would otherwise have to be transformed
into disjunctions s < t∨t < s. Thus, clauses may contain positive and negative equalities
in addition to positive inequalities.

Totality can be expressed as a clause TE

x < y ∨ y < x ∨ x ≈ y

and the anti-symmetry axiom AS

x ≤ y , y ≤ x → x ≈ y

specifies the relationship between equality and inequality.
The calculus CS consists of three parts: a chaining calculus for inequalities, a super-

position calculus for equalities, and further chaining rules that connect equalities with
inequalities. Superposition is a form of paramodulation in which ordering constraints
are imposed on the inference rules. We use the superposition calculus of Bachmair and
Ganzinger (1994). Symmetry of equality is built in as an inference rule

C , u ≈ v

C , v ≈ u

where u or v is a maximal term in the premise. (In practice, equations are usually
considered as unordered pairs to avoid unnecessary duplication of formulas.)

9Testing the solvability of ordering constraints for the lexicographic path ordering is NP-complete
in the number of terms that are involved in an inference (Nieuwenhuis 1993) and may easily become a
bottleneck in practice.
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Reflexivity Resolution:
u ̸≈ v , C

Cσ

where σ is a most general unifier of u and v and uσ ̸≈ vσ is a maximal literal in Cσ.

Superposition:
C , t ≈ s D , L′[s′]

Cσ , Dσ , L[t]σ

where (i) σ is a most general unifier of s and s′; (ii) tσ ≈ sσ is strictly maximal in Cσ
and tσ ̸≽ sσ; (iii) L′ is either an equality u[s] ≈ v or v ≈ u[s], or the negation thereof,
such that vσ ̸≽ uσ and L′σ is strictly maximal in Dσ, if it is a positive equality, and
just maximal in Dσ if it is negative; and (v) s′ is not a variable.

Equality Factoring:

C , t ≈ s , t′ ≈ s′

Cσ , tσ ̸≈ t′σ , t′σ ≈ s′σ

where (i) σ is a most general unifier of s and s′, (ii) tσ ̸≽ sσ, and (iii) sσ ≈ tσ is maximal
in (C ∨ s ≈ t ∨ s′ ≈ t′)σ.

Superposition is a restricted form of subterm chaining applied to equations. We need
a similar form of “maximal subterm chaining” with equations into inequations. These
inference rules are designed to reduce maximal terms.

Equality Chaining Left:

C , u ≈ s D , t1[s1]p�1v1, . . . , tn[sn]p�nvn
Cσ , Dσ , t1[u]p�1v1, . . . , tn[u]p�nvn

where (i) σ = ρτ with ρ the most general unifier of s, s1, . . . , sn, and τ the most general
unifier of t1[s1]ρ, . . . , tn[sn]ρ, (ii) uσ ̸≽ sσ, and uσ ≈ sσ is strictly maximal in Cσ, (iii)
viσ ̸≽ t1σ, for all 1 ≤ i ≤ n, and vσ ̸≻ t1σ, for all terms v in D, and t1σ occurs in Dσ
only in equalities or inequalities v � t1σ, and (iv) none of the si is a variable.

Equality Chaining Right:

C , u ≈ s D , v1�1t1[s1]p, . . . , vn�ntn[sn]p
Cσ , Dσ , v1�1t1[u]p, . . . , vn�ntn[u]p

where (i) σ = ρτ with ρ is the most general unifier of s, s1, . . . , sn, τ the most general
unifier of t1[s1]ρ, . . . , tn[sn]ρ, (ii) uσ ̸≽ sσ, and uσ ≈ sσ is strictly maximal in Cσ, (iii)
viσ ̸≽ t1σ, for all 1 ≤ i ≤ n, and vσ ̸≻ t1σ, for all terms v in D, and t1σ occurs in Dσ
only in equalities, and (iv) none of the si is a variable.

Finally, we also need to be able to deduce equalities implicitly specified by inequal-
ities, so that the anti-symmetry axiom is satisfied. For that purpose we modify the
maximal chaining rule as follows.
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Inequality Chaining:

C , u1�1s1, . . . , um�msm D , t1�
′
1v1, . . . , tn�

′
nvn

Cσ , Dσ ,
∨

1≤i≤m,1≤j≤n ineq(i, j)

where (i) σ is the most general unifier of s1, . . . , sm, t1, . . . , tn, (ii) ineq(i, j) is the strict
inequality uiσ < vjσ if �i or �′

j is <, and the disjunction uiσ < vjσ ∨ uiσ ≈ t1σ
otherwise,10 (iii) uiσ ̸≽ s1σ, for all 1 ≤ i ≤ m, and uσ ̸≽ s1σ, for all terms u in C, and
(iv) viσ ̸≽ t1σ, for all 1 ≤ i ≤ n, and vσ ̸≻ t1σ, for all terms v in D, and t1σ occurs in
Dσ only in inequalities v � t1σ.

For example, from a ≤ f(x) and f(a) ≤ b ∨ f(y) < c we may deduce a < b ∨ f(a) ≈
a ∨ a < c (assuming f(a) is the maximal term in the clause). Inequality chaining is like
maximal chaining, except that when two non-strict inequalities are chained we split the
resulting non-strict inequality into a strict inequality and an equality.

The calculus CS consists of the above inference rules plus irreflexivity resolution.
(Maximal chaining is replaced by inequality chaining.) It can easily be shown that all
inference rules in CS are simplifying. To prove the refutational completeness proof of
CS we use the same approach as for MC, but have to modify the definition of the
interpretations IC and I. Let I be an interpretation. A ground term t is said to be
reducible with respect to I if we have t ≈L

I s (or equivalently s ≈R
I t), for some term s.

Terms that are not reducible are said to be irreducible.
Let C be a ground clause with maximal term s and I be an interpretation. Let PI(C)

be an inequality s < t if C contains s � t and t < t′ is false in I, for any inequality
s � t′ in C; and let PI(C) be t < s if C contains t � s, but no inequality s � u, and
t′ < t is false in I, for any inequality t′ � s in C.

Let N be a set of ground clauses and C be a clause in N with maximal term s. As
before, let RC be the set

∪
C≻D ED and IC the rewrite closure of RC . The set EC is

defined as follows:

• If s occurs in a negative literal in C or else is reducible with respect to IC , then
EC = ∅. (For the remaining cases, we assume that s is irreducible and occurs only
in positive literals.)

• If C is false in IC and contains some inequality s � t or t � s, but not s < s, then
EC = {PIC (C)}.

• If C is false in IC and can be written as C ′∨s ≈ t, where s ≈ t is a strictly maximal
literal and C ′ is false in the rewrite closure of RC ∪ {s ≈ t}, then EC = {s ≈ t}.

• Otherwise, EC = ∅.

Again, we call C productive if EC ̸= ∅. By IC we denote the rewrite closure of RC ∪EC .
Finally, by R we denote the set

∪
C EC and by I the rewrite closure of R.

The key properties of the interpretation I are summarized in the following lemma.

Lemma 5 Let N be a set of clauses that is saturated up to PO-redundancy under CS
and contains EE as a subset, but does not contain the empty clause. Let I be the
interpretation constructed from all ground instances of N ∪ TE. Then for every ground
instance C of a clause in N we have:

10Multiple copies of an equation uiσ ≈ t1σ resulting from different inequalities tj < vj and tk < vk
can of course be merged into one.
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(1) if C is productive it is non-redundant;
(2) IC satisfies PO;
(3) C is true in IC.

Furthermore, I is a model of the anti-symmetry axiom.

Proof. We use induction on ≻. Let C be a ground instance of a clause in N , such that
the assertion is satisfied for all smaller ground instances of N .

(1) This part is the same as for Lemma 2.
(2) This part is similar to Lemma 2, except that we have to use inequality chaining

instead of maximal chaining. We outline the differences between the two cases.
Transitivity, as we have seen, reduces to a commutation property. Let C be a clause

C ′∨ s �1 v1∨ · · · ∨ s �n vn, where C
′ contains no inequality s �′ v and vj ≤ vi is true in

IC , for all i and j with i < j; and let D be a clause D′ ∨ u1 �
′
1 s∨ · · · ∨ um �′

m s, where
D′ contains no inequality s � u or u � s and ui ≤ uj is true in IC , whenever i < j. We
assume that C produces s < v1 and D produces ui < s, and have to show that there
is a rewrite proof of u1 � v1 in IC , where � is < if �′

1 or �1 is <, and ≤ otherwise.
Note that the term s must be irreducible with respect to IC (for otherwise C cannot be
productive).

We know that D is not an instance of TE. Let us first assume that C is not an
instance of TE either. Then the clause

C ′′ = C ′ ∨D′ ∨
∨

1≤i≤m,1≤j≤n

ui < vj ∨
∨
k∈K

uk ≈ s

is the conclusion of an inequality chaining inference from ground instances of N . (Here
K = ∅, if all symbols �′

i are <, and K is the set of all indices k for which �k is ≤,
otherwise.) The equations uk ≈ s are all false in IC , as s is irreducible and s ≻ uk, for
all k. Since C ′ and D′ are also false in IC , some strict inequation ui < vj is true in IC ,
which implies that u1 < v1 is true in IC .

Suppose C is a ground instance v1 < s ∨ s < v1 ∨ s ≈ v1 of a totality axiom in TE.
By the induction hypothesis, the smaller ground instance v1 < u1 ∨ u1 < v1 ∨ u1 ≈ v1 is
true in IC . Since u1 < s is true, and v1 < s false in IC , we may infer that both v1 < u1

and u1 ≈ v1 are false in IC . Consequently, u1 < v1 must be true in IC .
The remaining axioms in PO can be shown to be true in IC in the same way as in

the proof of Lemma 2.
(3) If C is productive, it is evidently true in IC . Suppose C is non-productive. If C

is false in IC , then it must violate some other condition imposed on productive clauses.
We distinguish according subcases.

(3.1) Suppose C is an instance Ĉσ of a clause Ĉ in N , such that xσ is reducible with
respect to IC , for some variable x in Ĉ. Let t be a ground term, such that xσ ≈L

IC
t,

and let τ be the same substitution as σ, except that xτ = t. Since Ĉσ ≻ Ĉτ , we may
use the induction hypothesis to infer that C ′ = Ĉτ is true in IC′ , and hence in IC . But
since xσ ≈ t is also true in IC , and C ′ differs from C only in that some occurrences of
xσ are replaced by t, the clause C is also true in IC .

For the remaining subcases we assume that C is a reduced ground instance Ĉσ of a
clause in N in the sense that xσ is irreducible for all variables x in Ĉ.11

(3.2) If C is of the form C ′ ∨ s < s, the same arguments as in Lemma 2 apply.

11This assumption is needed for lifting subterm chaining inferences.
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(3.3) If C is of the form C ′ ∨ s ̸≈ s, we may adapt case (3.2) by using reflexivity
resolution instead of irreflexivity resolution.

(3.4) If s is reducible with respect to IC , we may apply superposition or equality
chaining. We discuss one representative case.

Suppose C is of the form C ′ ∨ s ̸≈ t, where s ̸≈ t is a maximal literal in C, s ≻ t,
and s contains a subterm u, for some equation u ≈ v, with u ≻ v, produced by a clause
D = D′ ∨ u ≈ v (smaller than C). By superposition we obtain C ′′ = C ′ ∨D′ ∨ s[v] ̸≈ t
from C and D. Since C and D are reduced ground instances of clauses Ĉ and D̂,
respectively, the clause C ′′ is a ground instance of the conclusion of a superposition
inference from Ĉ and D̂. By saturation up to PO-redundancy, C ′′ must logically follow
from PO and ground instances of N smaller than C. Since all of these clauses are true
in IC , we may infer that C ′′ is true in IC , which implies that C is true in IC .

(3.5) The only remaining case not yet covered is of a clause C = C ′′ ∨ s ≈ t′ ∨ s ≈ t,
where s is irreducible by RC and t ≈ t′ is true in IC . By equality factoring we obtain
the clause C ′′ ∨ t ̸≈ t′ ∨ s ≈ t′, which by saturation up to PO-redundancy is true in IC .
Consequently, C is also true in IC , which completes the proof of part (3).

Finally, it is straightforward to show that all ground instances u ≤ v∨v ≤ u → u ≈ v
are true in I. Suppose u ≤ v and v ≤ u are true in I, hence provable by rewrite proofs.
Since R contains only equations or strict inequalities, each rewrite proof is either a proof
of an equation or of a strict inequality. Since u < v is false (for otherwise irreflexivity is
violated), we may conclude that there is a proof of u ≈ v. 2

Using this lemma, we obtain the following completeness result.

Theorem 3 Let N be a set of clauses that is saturated up to PO-redundancy (with
respect to CS). Then N has a total ordering with equality as a model if and only if it
does not contain the empty clause.

The variable elimination rule applies as previously, but the presence of equality
complicates matters somewhat. The elimination of literals x < x, x ≤ x, x ≈ x, and
x ̸≈ x is obvious. To eliminate an unshielded variable x from a clause D we translate
all (positive and negative) equalities with x into inequalities, and then apply the usual
variable elimination rule. More precisely, a clause

D = C ∨
∨

1≤i≤m

x ̸≈ ui ∨
∨

1≤j≤n

x ≈ vj

where x is an unshielded variable, is transformed to the formula

C ∨
∨

1≤i≤m

(x < ui ∨ ui < x) ∨
∨

1≤j≤n

(x ≤ vj ∧ vj ≤ x)

in which x does not occur in an equality. The formula can be translated into 2n clauses,
to which the usual variable elimination rule can be applied. Let us denote by V ED

the set of all these clauses, with x eliminated. Unfortunately, some ground instances
of clauses in V ED may be larger than the corresponding ground instance of Dσ with
respect to our clause ordering. Consequently, clauses are not necessarily rendered PO-
redundant by variable elimination. However, those ground instances of D, in which x is
instantiated to the maximal term in the clause, are PO-redundant.

Lemma 6 Let D be a clause with an unshielded variable x of the above form and σ be a
substitution such that xσ is a maximal term in Dσ. Then Dσ is redundant with respect
to any set N that contains the clauses in V ED and the totality axioms.
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To sum up these considerations, a clause with an unshielded variable x is not necessarily
redundant, but inferences involving this variable (chaining through x, superposition from
x, [ir]reflexivity resolution applied to [in]equalities with x) are redundant. (The ordering
constraints for such inferences require x to be instantiated with the maximal term, in
which case the corresponding instances of the C are redundant, as indicated by the
lemma.) The lemma thus indicates that variable chaining is not needed.

5 Summary

We have presented chaining-based inference systems for total orderings that extend pre-
vious work in several respects: we impose ordering constraints on chaining inferences;
we build equality directly into the inference mechanism; and we establish refutational
completeness in the presence of a notion of redundancy that covers such important
simplification techniques as tautology deletion, subsumption, condensement, and de-
modulation. The completeness proofs of our results are conceptually simple. We deal
with variable elimination as a simplification rule, separately from the chaining rules;
an approach that better clarifies the connection between these essential components of
chaining systems.

The improvements are not only of theoretical significance, as experimental evidence
indicates that equational inference mechanisms, such as superposition and demodulation,
are preferable to explicit axiomatizations of equality. Some form of equational reasoning
appears to be used in the provers described by Bledsoe and Hines (1980), Hines (1988)
and Hines (1990), and inference systems with equational reasoning capabilities may
provide a better approximation to actual implementation practice than other chaining
systems.

The superposition calculus, as described above, contains an explicit factoring rule
for equalities, whereas maximal chaining implicitly encodes factoring for inequalities.
An alternative to maximal chaining would be ordered chaining (as in Bachmair and
Ganzinger 1993) with inequality factoring.

In algebraic structures such as ordered rings one may have axioms

x < y → x+ z < y + z

x < y → −y < −x

that express monotonicity or anti-monotonicity properties of an ordering with respect to
certain functions. The techniques we have discussed should be extended to such cases.
An important question in this context is to what extent chaining through or below
variables is necessary. Our techniques may also be useful in the context of chaining and
variable elimination for set theory, an application that has been studied by Hines (1990).
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