MAX-PLANCK-INSTITUT

FUR
INFORMATIK

MPI-1-93-243
-

A Needed Narrowing Strategy

Sergio Antoy
Rachid Echahed
Michael Hanus

November 1993

/

(1)

o[

INFORMATIK

Im Stadtwald
D 66123 Saarbrucken

Germany

Authors’ Addresses

Sergio Antoy

Department of Computer Science
Portland State University
Portland, OR 97207

U.S.A.

antoy@cs.pdx.edu

Rachid Echahed

IMAG-LGI

CNRS

F-38041 Grenoble
France
echahed@imag.fr

Michael Hanus

Max-Planck-Institut fiir Informatik
Im Stadtwald

D-66123 Saarbriicken

Germany

michael@mpi-sb.mpg.de

Publication Notes

A short version of this report is to appear in the Proceedings of the 21st ACM Symposium on
Principles of Programming Languages, pages 268-279, Portland, Oregon, January 1994.

Acknowledgements

We would like to acknowledge the support of The Oregon Center for Advanced Technology
Education (OCATE) for parts of the collaborative efforts that lead to the writing of this paper.

The research of Michael Hanus was supported in part by the German Ministry for Research
and Technology (BMFT) under grant ITS 9103 and by the ESPRIT Basic Research Working
Group 6028 (Construction of Computational Logics).

Abstract

Narrowing is the operational principle of languages that integrate functional
and logic programming. We propose a notion of a needed narrowing step that,
for inductively sequential rewrite systems, extends the Huet and Lévy notion
of a needed reduction step. We define a strategy, based on this notion, that
computes only needed narrowing steps. Our strategy is sound and complete
for a large class of rewrite systems, is optimal w.r.t. the cost measure that
counts the number of distinct steps of a derivation, computes only independent
unifiers, and is efficiently implemented by pattern matching.

Keywords

Functional Programming, Logic Programming, Functional Logic Programming, Narrowing, Lazy
Evaluation, Needed Reduction

1 Introduction

In recent years, most proposals with a sound and complete operational semantics for the integration
of functional and logic programming languages [4, 10] were based on narrowing, e.g., [5, 15, 17, 19,
37, 44]. Narrowing, originally introduced in automated theorem proving [46], solves equations by
computing unifiers with respect to an equational theory [14]. Informally, narrowing unifies a term
with the left-hand side of a rewrite rule and fires the rule on the instantiated term.

Example 1 Consider the following rewrite rules defining the operations “less than or equal to”
and addition for natural numbers, which are represented by terms built with 0 and s:

0< X — true Ri
s(X) <0 — false Ro
s(X)<s(Y)—-X<Y Rs

0+X = X R4
s(X)+Y — s(X+Y) Rs

The rules of “<” will be used in following examples. To narrow the equation Z+s(0) ~ s(s(0)), rule
Rj is applied by instantiating Z to s(X). To narrow the resulting equation, s(X + s(0)) ~ s(s(0)),
Ry is applied by instantiating X to 0. The resulting equation, s(s(0)) =~ s(s(0)), is trivially true.
Thus, {Z — s(0)} is the equation’s solution.

A brute-force approach to finding all the solutions of an equation would attempt to unify each rule
with each non-variable subterm of the given equation. The resulting search space would be huge
even for small rewrite programs. Therefore, many narrowing strategies for limiting the size of the
search space have been proposed, e.g., basic [25], innermost [15], outermost [12], outer [49], lazy
[9, 36, 44], or narrowing with redundancy tests [6, 31]. Each strategy demands certain conditions
of the rewrite relation to ensure the completeness of narrowing (the ability to compute all the
solutions of an equation.)

Our contribution is a strategy that, for inductively sequential systems [1], preserves the com-
pleteness of narrowing and performs only steps that are “unavoidable” for solving equations. This
characterization leads to the optimality of our strategy with respect to the number of “distinct”
steps of a derivation. Advantages of our strategy over existing ones include: the large class of rewrite
systems to which it is applicable, both the optimality of the derivations and the independence of
the unifiers it computes, and the ease of its implementation.

The notion of an unavoidable step is well-known for rewriting. Orthogonal systems have the
property that in every term t not in normal form there exists a redex, called needed, that must
“eventually” be reduced to compute the normal form of ¢ [24, 30, 39]. Furthermore, repeated
rewriting of needed redexes in a term suffices to compute its normal form, if it exists. Loosely
speaking, only needed redexes really matter for rewriting in orthogonal systems. We extend this
fact to narrowing in inductively sequential systems, a subclass of the orthogonal systems.

Restricting our discussion to this subclass is not a limitation for the use of narrowing in program-
ming languages. Computing a needed redex in a term is an unsolvable problem. Strongly sequential
systems are, in practice, the largest class for which the problem becomes solvable. Inductively se-
quential systems are a large constructor-based subclass of the strongly sequential systems.

After some preliminaries in Section 2, we present our strategy in Section 3. We formulate the
soundness and completeness results in Section 4. We address our strategy’s optimality in Section 5.
We compare related work in Section 6. Our conclusion is in Section 7.

2 Preliminaries

We recall some key notions and notations about rewriting. We are consistent with the conventions
of [11, 29]. First of all, we fix the notations for terms.

Definition 1 A many-sorted signature ¥ is a pair (S, Q) where S is a set of sorts and Q is a family
of operation sets of the form Q = (Q,slw € S*,s € §). Let X = (Xs|s € S) be an S-sorted,
countably infinite set of variables. Then the set T (X, X)s of terms of sort s built from ¥ and X
is the smallest set containing X such that f(t1,...,t,) € T(%, X)s whenever f € Q) and
ti € T(E,X)s,. If f € Qc,, we write f instead of f(). T(X,X') denotes the set of all terms. The set
of variables occurring in a term ¢ is denoted by Var(t). A term t is called ground term if Var(t) = 0.
A term is called linear if it does not contain multiple occurrences of one variable. In the following
Y stands for a many-sorted signature.

In practice, most equational logic programs are constructor-based, i.e., symbols, called constructors,
that construct data terms are distinguished from those, called defined functions or operations, that
operate on data terms (see, for instance, the Equational Interpreter [40] and the functional logic
languages ALF [19], BABEL [37], K-LEAF [16], LPG [5], SLOG [15]). Hence we define:

Definition 2 A many-sorted signature X is constructor-based iff the set of operations €2 is par-
titioned into two disjoint sets C and D. C is the set of constructors and D is the set of defined
operations. The terms in T (C,X) are called constructor terms. A term f(t1,...,t,) (n > 0) is
called innermost if f € D and tq,...,t, are constructor terms. A constructor-based term rewriting
system R is a set of rewrite rules, | — r, such that [and r have the same sort, [is innermost, and
Var(r) C Var(l).

In the rest of this paper we assume that R is a constructor-based term rewriting system. Substitu-
tions are essential to the notions of rewriting and narrowing.

Definition 3 A substitution is a mapping o: X — T (X, X)) with o(z) € T (X, X), for all variables
x € X, such that its domain Dom(o) = {x € X | o(x) # x} is finite. We frequently identify a
substitution o with the set {z — o(z) | z € Dom(o)}. Substitutions are extended to morphisms
on T(3,X) by o(f(t1,...,tn)) = f(o(t1),...,0(ty)) for every term f(t1,...,t,). A substitution o
is called constructor substitution if o(z) is a constructor term for all x € Dom(o). The composition
of two substitutions o and 7 is defined by (0 o 7)(x) = o(7(x)) for all z € X. The restriction o}y
of a substitution o to a set V' of variables is defined by o () = o(z) if x € V and oy (z) = z if
x & V. A substitution o is more general than o', denoted by o < ¢, if there is a substitution 7
with ¢’ = 7oo. If V is a set of variables, we write o = o'[V] iff o}y, = a|’V, and we write o < o'[V]
iff there is a substitution 7 with ¢’ = 70 ¢[V]. Two substitutions ¢ and ¢’ are independent on a
set of variables V' iff there exists some x € V such that o(z) and ¢/(x) are not unifiable.

A term ¢’ is an instance of t if there is a substitution o with ¢ = o(¢). In this case we write
t<t'. Aterm t' is a variant of t if t <t and ¥/ < t.

A unifier of two terms s and ¢ is a substitution o with o(s) = o(t). A unifier o is called most
general (mgu) if o < ¢’ for every other unifier ¢’. Most general unifiers are unique up to variable
renaming. By introducing a total ordering on variables we can uniquely choose the most general
unifier of two terms. Hence we denote by mgu(s,t) the most general unifier of s and t.

We use in our proofs that a unifier is an idempotent substitution and that any variable in the
domain of a unifier is already contained in one of the terms being unified. Positions, too, are
essential to the notions of rewriting and narrowing.

Definition 4 An occurrence or position is a sequence of positive integers identifying a subterm in
a term. For every term t, the empty sequence, denoted by A, identifies ¢ itself. For every term of
the form f(t1,...,t%), the sequence i - p, where i is a positive integer not greater than k£ and p is a
position, identifies the subterm of ¢; at p. The subterm of ¢ at p is denoted by t|, and the result of
replacing t|, with s in ¢ is denoted by t[s],. If p and ¢ are positions, we write p < ¢ if p is above or
is a prefiz of ¢, and we write p || ¢ if the positions are disjoint (see [11] for details). The expression
p-q denotes the position resulting from the concatenation of the positions p and ¢, i.e., we overload
the symbol “.”.

We are now ready to define rewriting.

Definition 5 A rewrite step is an application of a rewrite rule to a term, i.e., t —, g s if there
exist a position p, a rewrite rule R = [— r and a substitution ¢ with t|, = o(l) and s = t[o(r)],.
In this case we say t is rewritten (at position p) to s and t|, is a redex of t. We will omit the
subscripts p and R if they are clear from the context. A redex t|, of t is an outermost redex if there
is no redex t|, of t with ¢ < p. % denotes the transitive and reflexive closure of —. < denotes the
symmetric closure of <. A term ¢ is reducible to a term s if t = s. A term ¢ is called #rreducible
or in normal form if there is no term s with ¢ — s. A term s is a normal form of t if t is reducible
to the irreducible term s.

Rewriting is computing, i.e., the value of a functional expression is its normal form obtained by
rewriting. Functional logic programs compute with partial information, i.e., a functional expression
may contain logical variables. The goal is to compute values for these variables such that the
expression is evaluable to a particular normal form, e.g., a constructor term [16, 37]. This is done
by narrowing.

Definition 6 A term ¢ is narrowable to a term s if there exist a non-variable position p in ¢ (i.e.,
tl, ¢ X), a variant | — r of a rewrite rule in R with Var(t) N Var(l — r) = () and a unifier o of
t|p and [such that s = o(t[r],). In this case we write t ~»p, ;. 5 5. If o is a most general unifier
of t|, and [, the narrowing step is called most general. We write g 54ty if there is a narrowing
sequence tg ~p; Ri,o1 t1 ~pa,Ra,00 " “pn,Rn,on tn With 0 =0, 0---002007.

Since the instantiation of the variables in the rule [— 7 by ¢ is not relevant for the computed result
of a narrowing derivation, we will omit this part of ¢ in the example derivations in this paper.

Example 2 Referring to Example 1,

A+ B~ p Ry, {As(0),B—0} S(0+0)
and
A+ B~op Ry, (ass(x)} S(X + B)
are narrowing steps of A + B, but only the latter is a most general narrowing step.

Padawitz [42] too distinguishes between narrowing and most general narrowing, but in most papers
narrowing is intended as most general narrowing (e.g., [25]). Most general narrowing has the ad-
vantage that most general unifiers are uniquely computable, whereas there exist many independent
unifiers. Dropping the requirement that unifiers be most general is crucial to the definition of
needed narrowing step, since these steps may be impossible with most general unifiers.

Narrowing solves equations, i.e., computes values for the variables in an equation such that the
equation becomes true, where an equation is a pair t ~ t' of terms of the same sort. Since we do

not require terminating term rewriting systems, normal forms may not exist. Hence, we define the
validity of an equation as a strict equality on terms in the spirit of functional logic languages with
a lazy operational semantics such as K-LEAF [16] and BABEL [37].

Definition 7 An equation is a pair t =~ t’ of terms of the same sort. A substitution o is a solution
for an equation t ~ t’ iff o(¢t) and o(t’) are reducible to a same ground constructor term.

Our definition of solution is weaker than convertibility, i.e., o(t) < o(t/). This is due to the fact
that we are discussing constructor-based, not necessarily terminating rewrite systems.

Equations can also be interpreted as terms by defining the symbol & as a binary operation
symbol, more precisely, one operation symbol for each sort. Therefore all notions for terms, such
as substitution, rewriting, narrowing etc., will also be used for equations. The semantics of = is
defined by the following rules, where A is assumed to be a right-associative infix symbol, and c is
a constructor of arity 0 in the first rule and arity n > 0 in the second rule.

c~c — true
c(Xl,...,Xn)%c(Yl,...,Yn) — (Xlel)/v--/\(anYn)
true N X — X

These are the equality rules of a signature. It is easy to see that the orthogonality status of a
rewrite system (see below) is not changed by these rules. The same holds true for the inductive
sequentiality, which will be defined shortly. With these rules a solution of an equation is computed
by narrowing it to true—an approach also taken in K-LEAF' [16] and BABEL [37]. The equivalence
between the reducibility to a same ground constructor term and the reducibility to true using the
equality rules is addressed by Proposition 1.

We also require orthogonality, which ensures the good-behavior of computations.

Definition 8 A term rewriting system R is orthogonal if for each rule [— r € R the left-hand side
[is linear (left-linearity) and for each non-variable subterm (|, of [there exists no rule I’ — ' € R
such that {|, and I’ unify (non-overlapping).

Our strategy extends to narrowing the rewriting notion of need. The idea, for rewriting, is to
reduce in a term only certain redexes which must be reduced to compute the normal form of ¢.
In orthogonal term rewriting systems, every term not in normal form has a redex that must be
reduced to compute the term’s normal form. The following definition [24] formalizes this idea.

Definition 9 Let A =t —,, ;. t’ be a rewrite step of some term ¢ into ¢ at position u with rule
I — r. The set of descendants (or residuals) of a position v by A, denoted v \ A, is

0 if u =,
v\A=2< {v} if u Lo,
{up'q such that r|, =2} if v =wupq and l|, = x, where z is a variable.

The set of descendants of a position v by a rewrite derivation B is defined by induction as follows

{v} if B is the null derivation,
v\ B = U w\ B"” if B= B'B", where B’ is the initial step of B.
wev\B’

A position u of a term t is called needed iff in every rewrite derivation of ¢ to a normal form a
descendant of t|, is rewritten at its root.

A position uniquely identifies a subterm of a term. The notion of descendant for terms stems
directly from the corresponding notion for positions.

A more intuitive definition of descendant of a position or term is proposed in [30]. Let ¢ 5S¢
be a reduction sequence and s a subterm of ¢. The descendants of s in ¢’ are computed as follows:
Underline the root of s and perform the reduction sequence t = t'. Then, every subterm of ¢ with
an underlined root is a descendant of s.

Example 3 Consider the operation that doubles its argument by means of an addition. The rules
of addition are in Example 1.

double(X) - X + X Re

In the following reduction of double(0 + 0) we show, by means of underlining, the descendants of
0+0.

double(0_+ 0) =4 rq (0+0) + (0_+0)

The set of descendants of position 1 by the above reduction is {1, 2}.

3 Owutermost-needed narrowing

An efficient narrowing strategy must limit the search space. No suitable rule can be ignored, but
some positions in a term may be neglected without losing completeness. For instance, Hullot [25] has
introduced basic narrowing, where narrowing is not applied at positions introduced by substitutions,
Fribourg [15] has proposed innermost narrowing, where narrowing is applied only at an innermost
position, and Holldobler [22] has combined innermost and basic narrowing. Narrowing only at
outermost positions is complete only if the rewrite system satisfies strong restrictions such as non-
unifiability of subterms of the left-hand sides of rewrite rules [12]. Lazy narrowing [9, 36, 44], akin to
lazy evaluation in functional languages, attempts to avoid unnecessary evaluations of expressions.
A lazy narrowing step is applied at outermost positions with the exception that inner arguments of
a function are evaluated, by narrowing them to their head normal forms, if their values are required
for an outermost narrowing step. Unfortunately, the property “required” depends on the rules tried
in following steps, and looking-ahead is not a viable option.

We want to perform only narrowing steps that are necessary for computing solutions. Naively,
one could say that a narrowing step t ~p, i, » t' is needed iff p is a position of ¢, o is the most
general unifier of ¢|, and [, and o(t|,) is a needed redex. Unfortunately, a substantial complication
arises from this simple approach. If ¢’ is a normal form, the step is trivially needed. However, some
instantiation performed later in the derivation could “undo” this need.

Example 4 Referring to Example 1, consider the term t = X <Y + Z. According to the naive
approach, the following narrowing step of ¢ at position 2

would be needed, since X < Z is a normal form. This step is indeed necessary to solve the inequality
if s(z), for some term x, is eventually substituted for X, although this claim may not be obvious
without the results presented in this note. However, the same step becomes unnecessary if 0 is
substituted for X, as shown by the following derivation, which computes a more general solution
of the inequation without ever narrowing any descendant of ¢ at 2.

X < Y + ZMA,Rl,{XHO} true

Thus, in our definition, we impose a condition strong enough to ensure the necessity of a narrowing
step, no matter which unifiers might be used later in the derivation.

Definition 10 A narrowing step t ~»p, g, t' is called needed or outermost-needed iff, for every
17 > o, p is the position of a needed or outermost-needed redex of 7(t), respectively. A narrow-
ing derivation is called needed or outermost-needed iff every step of the derivation is needed or
outermost-needed, respectively.

Our definition adds, with respect to rewriting, a new dimension to the difficulty of computing needed
narrowing steps. We must take into account any instantiation of a term in addition to any derivation
to normal form. Luckily, as for rewriting, the problem has an efficient solution in inductively
sequential systems. We forgo the requirement that the unifier of a narrowing step be most general.
The instantiation that we demand in addition to that for the most general unification ensures
the need of the position irrespective of future unifiers. It turns out that this extra instantiation
would eventually be performed later in the derivation. Thus we are only “anticipating” it, and
the completeness of narrowing is preserved. This approach, however, complicates the notion of
narrowing strategy.

According to [12, 42], a narrowing strategy is a function from terms into non-variable positions
in these terms so that exactly one position is selected for the next narrowing step. Unfortunately,
this notion of narrowing strategy is inadequate for narrowing with arbitrary unifiers, which, as
Example 4 shows, are essential to capture the need of a narrowing step.

Definition 11 A narrowing strategy is a function from terms into sets of triples. If S is a narrowing
strategy, t is a term, and (p,l — r,0) € S(t), then p is a position of ¢, | — r is a rewrite rule, and
o a substitution such that t ~», ;. , o(t[r],) is a narrowing step.

We now define a class of rewrite systems for which there exists an efficiently computable needed
narrowing strategy. Systems in this class have the property that the rules defining any operation
can be organized in a hierarchical structure called definitional tree [1], which is used to implement
needed rewriting. This note generalizes that result to narrowing.

The symbols branch, rule, and exempt, used in the next definition, are uninterpreted functions
used to classify the nodes of the tree. A pattern is an innermost term contained in each node.

Definition 12 7T is a partial definitional tree, or pdt, with pattern m w.r.t. a constructor-based
rewrite system R iff one of the following cases holds:

T = branch(m,0,T1,...,Ty), where 7 is a pattern, o is the occurrence of a variable of m, the
sort of 7|, has constructors cy,...,cg, for some k£ > 0, and for all 4 in {1,...,k}, 7; is a pdt
with pattern m[c;(X1,...,Xn)]o, where n is the arity of ¢; and X, ..., X,, are new variables.

T = rule(m,l — r), where 7 is a pattern and | — r is a rewrite rule in R such that [= 7.

T = exempt(m), where 7 is a pattern and [£ 7 for every rule [— r in R.

T is a definitional tree of an operation f iff T is a pdt with f(X,..., X)) as the pattern argument,
where n is the arity of f and X1,..., X, are new variables.

We call inductively sequential an operation f of a rewrite system R iff there exists a definitional
tree T of f such that the rules contained in 7 are all and only the rules defining f in R. We call
inductively sequential a rewrite system R iff any operation of R is inductively sequential.

Example 5 We show a pictorial representations of definitional trees of the operations defined
in Example 1. A branch node of the picture shows the pattern of a corresponding node of the

definitional tree. A leaf node of the picture shows the right sides of a rule contained in a rule node
of the tree. The occurrence argument of a branch node is shown by emboldening the corresponding
subterm in the pattern argument.

X1 <X Yi+Y2
/\ /\
0<Xo s(X3) < Xo 0+ Y, s(Y3) +Ys

/\
tjue 5(X3) <0 s(X3) < s(Xy) Yi S(Ygi’YQ)
faése X3 i X4

Inductively sequential systems are constructor-based and strongly sequential [1]. We conjecture
that these two classes are the same. Inductively sequential systems model the first-order functional
component of programming languages, such as ML and Haskell, that establish priorities among
rules by textual precedence or specificity [28]. We now give an informal account of our strategy.

The patterns of a definitional tree are a finite set partially ordered by the subsumption pre-
ordering and complete in the sense of [23]. Let ¢t = f(¢1,...,tx) be a term to narrow. We unify ¢
with some maximal element of the set of patterns of a definitional tree of f. Let m denote such a
pattern, 7 the most general unifier of ¢ and «, and 7 the pdt in which 7 is contained. If 7 is a rule
pdt, then we narrow 7(t) at the root with the rule contained in 7. If 7 is an ezempt pdt, then 7(t)
cannot be narrowed to a constructor-rooted term. If 7 is a branch pdt, then we recur on 7(t,),
where o is the occurrence contained in 7 and 7 is the anticipated substitution. The result of the
recursive invocation is suitably composed with 7 and o. The details of this composition are in the
formal definition presented below.

We derive our outermost-needed strategy from a mapping, A, that implements the above com-
putation. A takes two arguments, an operation-rooted term ¢ and a definitional tree T of the root
of t, and non-deterministically returns a triple, (p, R, o), where p is a position of ¢, R is either a
rule [— r of R or the distinguished symbol “?”, and ¢ is a substitution. If R =1 — r, then our
strategy performs the narrowing step t ~ 1, » o(t[r]p). If R = 7, then our strategy gives up,
since it is impossible to narrow t to a constructor-rooted term.

In the following definition, pattern(7T) denotes the pattern argument of 7.

Definition 13 The function A takes two arguments, an operation-rooted term ¢ and a pdt T such
that pattern(7) and t unify. The function A yields a set of triples of the form (p, R, o), where p
is a position of t, R is either a rewrite rule or the distinguished symbol “?”, and o is a unifier of
pattern(T) and t. Thus, let ¢ be a term and 7 a pdt in the domain of A\. The function A is defined
by strong arithmetical induction on the number of occurrences of operation symbols in ¢ with a

nested structural induction on 7 as follows.
(A, R, mgu(t,m)) if T = rule(w, R);
(A, 2, mgu(t,m)) if T = exempt(rw);

(p,R,0) it T =branch(m,o0,T1,...,Tx),
t and pattern(T;) unify, for some i, and
A T) 2 (p, R,0) € A(t, To);

(o-p,R,coT) if T =branch(m,0,T1,...,Ti),
t and pattern(T;) do not unify, for any i,
T = mgu(t,),
T’ is a definitional tree of the root of 7(¢|,), and
(s R, 0) € M7 (t]o), T).

The function A is well-defined in the third case since, by the definition of pdt, there exists a proper
subpdt T; of T such that pattern(7;) and ¢ unify if £|, is constructor-rooted or a variable. Similarly, A
is well-defined in the fourth case since this case can only occur if ¢|, is operation-rooted. In this case
T|var(t) 18 @ constructor substitution since 7 is a linear innermost term. Since ¢ is operation-rooted
and o # A, 7(t|,) has fewer occurrences of operation symbols than ¢. Since t|, is operation-rooted,
so is 7(t|,). By the definition of pdt, pattern(T’) < 7(t|,), i.e., pattern(T") and 7(t|,) unify. This
implies that A is well-defined in this case too.

As in proof procedures for logic programming, we have to apply variants of the rewrite rules with
fresh variables to the current term. Therefore, we assume in the following that the definitional
trees contain new variables if they are used in a narrowing step.

The computation of A\(¢,7) may entail a non-deterministic choice when 7 is a branch pdt—the
integer ¢ when t|, is constructor-rooted or a variable. The substitution 7 when t|, is operation-
rooted is the anticipated substitution guaranteeing the need of the computed position. It is pushed
down in the recursive call to A to ensure the consistency of the computation when ¢ is non-linear.
The anticipated substitution is neglected when ¢|, is not operation-rooted, since the pattern in 7;
is an instance of w. Hence, o extends the anticipated substitution.

Example 6 We trace the computation of A for the initial step of a derivation of X <Y + Z, which
was discussed in Example 4.

MX <Y + Z,branch(X; < Xo,1,...))
MX <Y + Z,branch(s(X3) < X2,2,...))
MY + Z, branch(Y1 + Y2,1,...))
MY + Z,rule(0 4+ Ya,Ry))
(A, Ry, {Y — 0, Y2 — Z})
(AR, {Y — 0,Ys — Z})
(2,R4, {X — S(Xg),XQ —0+2Y—0Y;— Z})
(2,R4, {X — s(X3), X0~ 0+ 2,Y = 0,Ys — Z})

We prove two simple technical lemmas concerning the mutual relationships between the patterns
of the pdts of a definitional tree.

Lemma 1 Let T be a pdt, p and q two positions of T, and m, and 7, the patterns of the pdts at
the positions p and q of T respectively. If p < q, then 7, < mg.

Proof If p < ¢, then there exists a position r such that ¢ = p - r. The proof is by induction on
r. Base case: r = A implies p = ¢ and consequently 7, = 7. Ind. case: r =i -1/, for some positive
integer i and position 7’. Let 7T, be the pdt of T at p. T, = branch(my,0,Tpy, ..., Tp,), for some
position o, and pdts Ty, ..., Tp,, for some k > i. Let m,, be the pattern in 7. Since ,, is obtained
by instantiating with a constructor term the variable of m, at o, m, < m,,. By construction, m,
is equal to the pattern of the pdt of 7, at r/. By the induction hypothesis,), < 7. By the
transitivity of “<”, m, < m,. O

Lemma 2 The patterns in the pdts of two disjoint positions of a definitional tree T do not unify.

Proof The proof is by structural induction on the pdt T .

T = rule(w, R), for some pattern 7 and rule R, or T = exempt(r), for some pattern 7.

There are no disjoint positions in 7 and the claim vacuously holds.

T = branch(m,0,T1,...,Tx), for some pattern 7, position o, and pdts Ty, ..., Ty, for some k > 0.

Let p and ¢ be two disjoint positions in 7. Both p and ¢ differ from A, hence there exist
integers ¢ and j in {1,...k}, and positions p’ and ¢’ such that p =i -p and ¢ = j-¢. If
1 = j, then p’ and ¢’ are disjoint positions of 7;. The patterns of 7 at p and ¢ are equal to the
patterns of 7; at p’ and ¢’ respectively. The latter do not unify by the induction hypothesis.
If i # j, then, by Lemma 1, the patterns of 7 at p and ¢ are instances of the root patterns
of T; and 7T; respectively. The latter do not unify, since have a different symbol at position o,
thus the former do not unify either. O

We are interested only in narrowing derivations that end in a constructor term. Our key result is
that if A, on input of a term ¢, computes a position p and a substitution o, and 7 extends o, then
n(t) must “eventually” be narrowed at p to obtain a constructor term. “Eventually” is formalized
by the notion of descendant, which, initially proposed for rewriting [24], is extended to narrowing
simply by replacing —, ;—, with ~ ;_, » in Definition 9.

Theorem 1 Let R be an inductively sequential rewrite system, t an operation-rooted term, and T
a definitional tree of the root of t. Let (p,R,0) € A\(t,T) and n extend o, i.e., n > 0.

1. In any narrowing derivation of n(t) to a constructor-rooted term a descendant of n(t|,) is
narrowed to a constructor-rooted term.

2. If R=1—r, thent~p g o o(tlr]p) is an outermost-needed narrowing step.

3. If R="7, then n(t) cannot be narrowed to a constructor-rooted term.

Proof The proof is by arithmetical induction on the number of occurrences of operation symbols
in t with a nested structural induction on the pdt 7. We consider the cases of the definition of A.

T = rule(m, R'), for some pattern 7 and rule R'.

In this case (p, R,0) = (A, R', mgu(t,)). Since n(t) is operation-rooted and is a descendant of
itself, claim number 1 trivially holds. Let R' = [— r, for some terms [and r. By the definition
of a definitional tree, 7 = [, which implies that o(l) = o(t|,). Thus, t ~p r - o(t[r],) is a
narrowing step. Since R is orthogonal, its redex schemes do not overlap, consequently, R
keeps matching any descendant of 7(t) obtained by reductions strictly below A. Thus 7(t) is
a needed redex of itself and it is obviously outermost. Claim number 3 vacuously holds.

T = exempt(rw), for some pattern 7.

In this case (p, R,0) = (A, 7, mgu(t,7)). Since n > o, n unifies 7 and t too. We could extend
R by changing the ezempt node into a rule node in which the left-hand side of the rule is
obviously 7 and the right-hand side is arbitrary. Thus, similar to the previous case, m would
keep unifying with any descendant of 1(¢) obtained by reductions strictly below the root.
Thus, by Lemma 2 there exists no rule in R that would unify with 7n(¢). Thus, n(¢) cannot
be narrowed to a constructor-rooted term which implies claim number 3 and, trivially, claim
number 1. Claim number 2 vacuously holds.

T = branch(m,0,T1,...,Tx), for some pattern 7, position o, and pdts Ti,...,Ti, for some k > 0.
We consider the two subcases of the definition of A for branch nodes.

t|, is either constructor-rooted or is a variable.

By the definition of pdt, there exists some i in {1,...k} such that pattern(7;) and t
unify. By the definition of A\, A(¢£,7) = A(¢,7;). By the induction hypothesis, all the
claims hold already for A(¢,7;) and they are independent of 7;.

t|, is operation-rooted.

By the definition of A, 7 and ¢ unify. Let 7 = mgu(¢, 7). Since t|, is operation-rooted, so
is 7(t],). Let T’ be a definitional tree of the root of 7(t|,). Let (p/, R',0’) € A(7(t|o), T")
such that (p,R,0) = (o-p', R',0’ o 7), where p’ is a position of t|,, R’ is either a rule
or “?”, and ¢’ is a substitution. In this case (t|o)|y = t|oy = t|p. By Lemma 2, any
rule whose left-hand side might unify with ¢ is contained in a leaf of 7;. If [— 7 is
a rule contained in a leaf of 7;, then, by Lemma 1, pattern(7;) < l. Thus, by the
definition of definitional tree, [has a constructor symbol at position o. However, the
case being considered assumes that ¢, has an operation symbol at position o. Hence
in any narrowing derivation of 7(t) that includes a step at the root a descendant of
n(t|,) must be narrowed to a constructor-rooted term. Since t is operation-rooted, also
n(t) is operation-rooted, and in any narrowing derivation of 7(t) to a constructor-rooted
term a descendant of 7n(t) is narrowed at the root, and, consequently, a descendant of
n(t|o) is narrowed to a constructor-rooted term. By the definition of A, 7(¢|,) has fewer
occurrences of operation symbols than ¢. Thus, by the induction hypothesis on ¢, for
any 7' > o', in any narrowing derivation of 1'(7(¢|,)) to a constructor-rooted term a
descendant of /(7 (t|)) is narrowed to a constructor-rooted term. Since n > o, n = ¢oo
for some substitution ¢. Let ' = ¢poo’ > ¢’ which implies 1/ (7(t)) = n(t) since o = o’o7.
Hence in any narrowing derivation of 7(t|,) to a constructor-rooted term a descendant
of n(t|,) is narrowed to a constructor-rooted term. Thus, claim number 1 holds by
transitivity.

We consider the two cases for R'.

R’ is a rule.

By the induction hypothesis on t, 7(t|o) ~>p ro 0 (7(t|o)[r]y) is an outermost-
needed narrowing step, hence, t ~», g, o(t[r]p) is a narrowing step. The need of
n(t|p) with respect to n(t) is an immediate consequence of claim number 1. By
the definition of A\, m and ¢ unify, and by the definition of definitional tree, 7 is an
innermost term and o is a position of . These conditions imply that there is only
one operation symbol in o (t) above o, the root of o(t). In constructor-based systems,
redexes occur only at positions of operation symbols. We have proved above that
n(t) is not a redex. Thus, there are no redexes in 7(t) above o and, by the induction

10

hypothesis on ¢, the redex 7(t|,) is outermost in 7(t) too. Claim number 3 vacuously
holds.
R =7.

We have proved above that in any narrowing derivation of n(¢) to a constructor-
rooted term a descendant of 7(t|,) is narrowed to a constructor-rooted term. By
the induction hypothesis on t, for any ' > o', n/(7(t|,)) cannot be narrowed to
a constructor-rooted term. Since 1 > o, n = ¢ o ¢ for some substitution ¢. Let
n' = ¢ oo’ > o’ which implies n = 1/ o 7 since 0 = ¢’ o 7. Thus n(t|,) = 7' (7(t|o))
cannot be narrowed to a constructor-rooted term. Hence 7(¢) cannot be narrowed
to a constructor-rooted term. Claim number 2 vacuously holds. O

We say that a narrowing derivation is computed by A iff for each step t ~», r » t' of the derivation,
(p, R, o) belongs to A(t,T). The function A implements our narrowing strategy as discussed next.
The theorem shows (claim 2) that our strategy A computes only outermost-needed narrowing
steps. The theorem, however, does not show that the computation succeeds, i.e., a narrowing step
is computed for any operation-rooted, hence expectedly narrowable, term. This requirement may
seem essential, since to narrow a term “all the way” a strategy should compute a narrowing step,
when one exists. Indeed, in incomplete rewrite systems, A may fail to compute any narrowing step
even when some step could be computed.

Example 7 Consider an incompletely defined operation, f, taking and returning a natural number.
f(0) =0

The term ¢t = f(s(f(0))) can be narrowed (actually rewritten, since it is ground) to its normal
form, f(s(0)). The only redex position of ¢ is 1 -1, but A returns the set {(1,7,{})}.

The inability of A to compute certain outermost-needed narrowing steps is a blessing in disguise.
The theorem (claim 3) justifies giving up a narrowing attempt as soon as the failure to find a rule
occurs—without further attempts to narrow ¢ at other positions with the hope that a different rule
might be found after other narrowing steps or that the position might be deleted [7] by another
narrowing step. If (p,?,0) € A(¢,T), no equation having o(t) as one side can be solved. Any
amount of work applied toward finding a solution would be wasted. This is an opportunity for
optimization. In fact o(t) may be narrowable at other positions different from p and an equation
with o(t) as a side may even have an infinite search space. However, any amount of work applied
toward finding a solution would be wasted.

Example 8 Consider the following term rewriting system for subtraction:

X-0—-X Ry
s(X)—s(Y) > X-Y Ro

This term rewriting system is inductively sequential and a definitional tree, T, of the operation
“—” has an exempt node for the pattern 0 — s(X), i.e., the system is incomplete and (A,7,{}) €
A(0—s(X),T). Therefore we can immediately stop the needed narrowing derivation of the equation
0 — s(X) ~ Y — Z while there would be infinitely many narrowing derivations for the right-hand
side of this equation.

The definition of our outermost-needed narrowing strategy does not determine the computation
space for a given inductively sequential rewrite system in a unique way. The concrete strategy

11

depends on the definitional trees, and there is some freedom to construct these. For a discussion on
how to compute definitional trees from rewrite rules and the implications of some non-deterministic
choices of this computation see [1]. As we will show in Section 5, this does not affect the optimality
of our strategy w.r.t. computed solutions. But in case of failing derivations a definitional tree which
is “unnecessarily large” could result in unnecessary derivation steps.

E.g., a minimal definitional tree of the operation “—” in Example 8 has an exempt node for the
pattern 0 — s(X). However, Definition 12 also allows a definitional tree with a branch node for the
pattern 0 — s(X) which has ezempt nodes for the patterns 0 — s(0) and 0 — s(s(X1)). Our strategy
would perform some unnecessary steps if this definitional tree were used for narrowing the term
0 — s(t), where t is an operation-rooted term. These unnecessary steps can be avoided if all branch
nodes in a definitional tree are useful, i.e., there is at least one rule node in each branch subpdt.

However, the non-determinism of the trees of certain operations makes it possible that some
work may be wasted when a narrowing derivation computed by A terminates with a non-constructor
term. The problem seems inevitable and is due to the inherent parallelism of certain operations,
such as =; this issue is discussed in some depth in [1, Display (8)]. The problem occurs only in
terms with two or more outermost-needed narrowing positions, one of which cannot be narrowed
to a constructor-rooted term.

4 Soundness and completeness

Outermost-needed narrowing is a sound and complete procedure to solve equations if we add the
equality rules to narrow equations to true. The following proposition shows the equivalence between
the reducibility to a same ground constructor term and the reducibility to ¢rue using the equality
rules.

Proposition 1 Let R be a term rewriting system without rules for ~ and A. Let R’ be the system
obtained by adding the equality rules to R. The following propositions are equivalent for all terms
t and t':

1. t and t' are reducible in R to a same ground constructor term.

2. t =t is reducible in R' to ‘true’.

Proof To show that claim 1 implies claim 2, consider a ground constructor term u such that
t 5w and t' = u using rules from R. Hence t ~ t' = u ~ u using rules from R’. To show claim 2,
it is sufficient to show u ~ u > true using the equality rules. This is done by induction on the
structure of u. Base case: If u is a 0-ary constructor, say ¢, then u = u can be directly reduced to
true using the equality rule ¢ ~ ¢ — true. Induction step: Let u = ¢(t1,...,t,). Then

urmu — (B Rt) A Aty = ty)

is a rewrite step using the equality rule for the n-ary constructor ¢. By the induction hypothesis,
t; ~ t; = true using the equality rules (i = 1,...,n). Moreover, true A - - - A true can be reduced to
true using the equality rule for A.

To show that claim 2 implies claim 1, consider a reduction sequence ¢ ~ t' = true using rules
from R’. We show the existence of a ground constructor term u such that ¢t = u and ¢’ = u using
rules from R by induction on the number, say k, of ~-rule applications in this reduction sequence.
Base case (k = 1): There is exactly one application of a ~-rule:

t~t S sx~s — r 5 true

12

r cannot have the symbol A at the root, otherwise there must be further applications of a ~-rule
in the derivation r = true. Hence the applied ~-rule is of the form ¢ ~ ¢ — true which implies
claim 1. Induction step (k > 1): Then there is a first application of a ~-rule:

txt S sx~s = r S true

r # true, otherwise there are no further applications of a ~-rule in r - true. Therefore s =
c(tyy. . o tn), 8 =c(ty,...,th), and r = (t; R th) A--- A (t, = t!). Since r > true, an A-rule must
be applied to the root in this sequence, i.e., r = true A1’ = true. Thus t; ~ t) 5 true with at
most k —1 ~-rule applications. By the induction hypothesis, there is a ground constructor term u;
such that t; = u; and t) % wy using rules from R. By a further induction on the arguments t;, t!
we can show the existence of ground constructor terms w1, ...,u, such that ¢; 2 w; and t 5w
using rules from R. Altogether, we obtain the derivations

t S ety ... tn) = c(ug, ... up)
t S oe(th,.) S (), ..., ul)
using rules from R. This implies claim 1. O

The soundness of outermost-needed narrowing is easy to prove, since outermost-needed narrowing
is a special case of general narrowing.

Theorem 2 (Soundness of outermost-needed narrowing) Let R be an inductively sequential rewrite
system extended by the equality rules. If t =~ t' ~, true is an outermost-needed narrowing deriva-
tion, then o is a solution for t ~t'.

Proof Ift~t 5, true, there exists a derivation

~
t Rt ~p, Ri,o1 11 ~py, Ro,on """ “Ppp, Rnyon In

such that t, = true and ¢ = g, 0 --- 0 1. By induction on the number n of narrowing steps it is
easy to prove that o(t ~ t') = true. By Proposition 1, this implies that o(t) and o (') are reducible
to a same ground constructor term without using the equality rules. By Definition 7, ¢ is a solution
fort =~ t'. |

In order to prove completeness of the outermost-needed narrowing strategy we lift the completeness
result for the corresponding rewrite strategy [1] to narrowing derivations. For this purpose we recall
the definition of the outermost-needed rewrite strategy for inductively sequential systems. Similarly
to A, this rewrite strategy is implemented by a function, ¢, that takes two arguments, an operation-
rooted term, ¢, and a definitional tree, T, of the root of ¢ (the definition of ¢ is a slightly modified
version of the definition given in [1] extended to non-ground terms). Throughout an interleaved
descent down both ¢ and T, ¢ computes a position p and, whenever possible, a rule R such that the
rewriting of ¢ at p by means of R is outermost-needed. We recall that computing needed reductions
is unsolvable in the general case of sequential systems, and might be expensive in the case of
strongly sequential systems. In practice, the computation of our function is efficiently performed
by pattern matching.

Definition 14 The function ¢ takes two arguments, an operation-rooted term t and a pdt T such
that pattern(7T) < t. The function ¢ yields a pair, (p, R), where p is a position of ¢ and R is either
a rewrite rule or the distinguished symbol “?”. Thus, let ¢ be a term and 7 be a pdt in the domain

13

of ¢. The function ¢ is defined by structural induction on ¢ with a nested structural induction on
T as follows.

(A, R) if T = rule(r, R);

(A,7) if T = exempt(n);

o(t,T;) if T =branch(m,0,T1,...,Ti) and pattern(T;) < t, for some i;
o(t,T)={(0-p,R) if T =branch(m,0,Ti,...,Tk),

t|, is operation-rooted,
T’ is a definitional tree of the root of t|,, and

(tlo,) = (0,).
(0,7) if T = branch(m,0,Ti,...,Tx) and t|, is a variable

The function ¢ is well-defined in the third case since, by the definition of pdt, a proper subpdt T; of
T with pattern(T;) < ¢t must uniquely exist iff ¢, is constructor-rooted. Similarly, ¢ is well-defined
in the fourth case since t|, is a proper subterm of ¢ and pattern(7") < t|, by the definition of pdt.

The following theorem shows that the function ¢ computes outermost-needed redexes. The proof
parallels that of Theorem 1.

Theorem 3 Let R be an inductively sequential rewrite system, t an operation-rooted term, T a
definitional tree of the root of t, and ¢(t,T) = (p, R).

1. In any reduction sequence of t to a constructor-rooted term a descendant of t|, is reduced to
a constructor-rooted term.

2. If R is a rule of R, then t|, is an outermost-needed redex of t matched by R.
3. If R=7, then t cannot be reduced to a constructor-rooted term.

Proof The proof is by arithmetical induction on the number of occurrences of operation symbols
in t with a nested structural induction on the pdt 7. We consider the cases of the definition of .

T = rule(w, R'), for some pattern 7 and rule R'.

In this case (p, R) = (A, R'). Since t is operation-rooted and is a descendant of itself, claim
number 1 trivially holds. By the definition of ¢, m < t. By the definition of definitional tree,
R is a rule whose left-hand side is equal to 7, Thus, t is a redex, it is matched by R, and it is
obviously outermost. Since R is orthogonal, its redex schemes do not overlap, consequently,
R keeps matching any descendant of ¢ obtained by reductions strictly below A. Thus ¢ is a
needed redex. Claim number 3 vacuously holds.

T = exempt(m), for some pattern .

In this case (p, R) = (A, 7). By the definition of ¢, m < t. We could extend R by changing
the ezempt node into a rule one in which the left-hand side of the rule is obviously 7 and
the right-hand side is arbitrary. Thus, similar to the previous case, m keeps matching any
descendant of ¢ obtained by reductions strictly below the root. Thus, by Lemma 2 there exists
no rule in R for a reduction of ¢ at the root. Thus, ¢ cannot be reduced to a constructor-
rooted term which implies claim number 3 and, trivially, claim number 1. Claim number 2
vacuously holds.

T = branch(mw,0,T1,...,Tx), for some pattern 7, position o, and pdts Ti,...,Ti, for some k > 0.
We consider the three subcases of the definition of ¢ for branch nodes.

14

t|, is constructor-rooted.

By the definition of pdt, there exists some i in {1,...k} such that pattern(7;) < t. By
the definition of ¢, (¢, T) = ¢(t,T;). By the induction hypothesis, all the claims hold
already for o(t,7;) and they are independent of 7;.

t|, is operation-rooted.

Let 77 be a definitional tree of the root of t|,. Let o(t|,,T7') = (p/, R’), where p’ is
a position of t|, and R’ is either a rule or “?”. In this case (p,R) = (o-p/,R") and
(tlo)lpy = tlopr = t|p. By the definition of ¢, 7 < ¢t. By Lemma 2 any rule that might
reduce ¢t at the root is contained in a leaf of 7;. If [— r is a rule contained in a leaf of
Ti, then, by Lemma 1, pattern(7;) < [. Thus, by the definition of definitional tree, [has
a constructor symbol at position o. However, the case being considered assumes that
t does not have a constructor symbol at position o. Hence, in any reduction sequence
of ¢ that includes a reduction at the root a descendant of t|, must be reduced to a
constructor-rooted term. Since t is operation-rooted, in any reduction sequence of ¢ to
a constructor-rooted term a descendant of ¢ is reduced at the root, and, consequently, a
descendant of t|, is reduced to a constructor-rooted term. By the induction hypothesis
on t, in any reduction sequence of t|, to a constructor-rooted term a descendant of t|, is
reduced to a constructor-rooted term. Thus, claim number 1 holds by transitivity.

We consider the two cases for R’.
R’ is a rule.

By the induction hypothesis on ¢, t|, is an outermost-needed redex of t|, matched
by R', hence, t|, is a redex of ¢t matched by R’. The need of t|, with respect to t
is an immediate consequence of claim number 1. By the definition of ¢, w < ¢, and
by the definition of definitional tree, 7 is an innermost term and o is a position of
7. These conditions imply that there is only one operation symbol in ¢ above o, the
root of t. In constructor-based systems, redexes occur only at positions of operation
symbols. We have just proved that ¢ is not a redex. Thus, there are no redexes in ¢
above o and, by the induction hypothesis on ¢, the redex |, is outermost in ¢ too.
R =7.

By claim number 1, in any reduction sequence of ¢ to a constructor-rooted term a
descendant of t|, is reduced to a constructor-rooted term. By the induction hypoth-
esis in ¢, t|, cannot be reduced to a constructor-rooted term. Thus, ¢ cannot be
reduced to a constructor-rooted term.

t|, is a variable.

In this case (p, R) = (0,7). The proofs of claims number 1 and 3 are similar to those of

the previous case, but do not require induction hypotheses. Claim number 2 vacuously
holds. O

The following lemma shows the close ties between ¢ and A, which are instrumental to lift outermost-
needed reduction sequences to corresponding narrowing derivations. This will allow us to prove the
completeness of the outermost-needed narrowing strategy.

Lemma 3 Let R be an inductively sequential rewrite system. Let t be an operation-rooted term,
T be a definitional tree of the root of t, and o be a constructor substitution. If o(t) —, g t' with
(p,R) = p(co(t),T), then there exists a substitution 6 such that

1. (p,R,0) € AX(t,T)

15

2. 0 < coVar(t)]

Proof The proof is by arithmetical induction on the number of occurrences of operation symbols
in ¢ with a nested structural induction on the pdt T.

T = rule(m, R'), for some pattern 7 and rule R'.

In this case (p,R) = (A, R') and m < o(t). This implies the existence of a substitution ¢
with ¢(7) = o(t). Hence 7 and t are unifiable (we assume that 7w and ¢ are variable disjoint,

otherwise take a new variant of the definitional tree) and there exists a most general unifier
0 of m and ¢t with 6 < o[Var(t)]. By the definition of A, (p, R,0) € A(t,T).

T = exempt(m): This case cannot occur since R # 7.

T = branch(mw,0,T1,...,Tx), for some pattern 7, position o, and pdts Ti,...,Ti, for some k > 0.
We consider the three subcases of the definition of ¢ for branch nodes.

o(t)]o is constructor-rooted.

By the definition of pdt, there exists some 7 in {1,...k} such that pattern(T;) < o(t).
By the definition of ¢, p(o(t), T) = ¢(o(t), T;). By the induction hypothesis, (p, R,0) €
Ao (t),Ti) and 6 < o[Var(t)]. By the definition of A (note that pattern(7;) and t unify),
(p,R,0) € \(t,T).

o(t)|, is operation-rooted.

By the definition of ¢, 7 < o(t). o(t) and pattern(7;) do not unify for each i in {1,...k}
since o(t)|, is operation-rooted but pattern(7;) has a constructor symbol at position o.
Let 77 be a definitional tree of the root of o(t)|, and ¢(o(t)|s, 7') = (p/, R'). By the
definition of ¢, (p, R) = (o-p/, R"). Since m < o(t), there exists the most general unifier 7
of m and o(t) with 7 < o[Var(t)] (we assume that 7 and ¢ are variable disjoint, otherwise
take a new variant of the definitional tree). 7)) is a constructor substitution since m
is a linear innermost term and ¢ is operation-rooted. Let ¢’ be a constructor substitution
such that ¢’ o7 = o[Var(t)]. Since o is a constructor substitution, o is a position of ¢,
and t|, is operation-rooted. Moreover, o(t) —p r t' implies o’(7(t|o)) —>p ' t'|o. Since
o is different from the root position, ¢ is operation-rooted, and 7)yy,,(;) is a constructor
substitution, 7(t|,) has fewer occurrences of operation symbols than ¢. Hence we can
apply the induction hypothesis to 7(t|,) and ¢’ and we obtain a substitution #’ with
(p',R,0") € X(1(t|],), T') and @ < o'[Var(7(t|,))]. By the definition of \, (o-p’, R, 0'o71) €
A, T), ie, (p,R,0o7) € Nt,T). 0 < o'[Var(r(t|,))] implies 8’ < o'[Var(7(t))] since ¢’
instantiates only variables from 7(¢|,) and new variables of the definitional tree. Hence
0’ o7 < ¢’ o T[Var(t)] which is equivalent to ' o 7 < o[Var(t)].

o(t)|, is a variable: This case cannot occur since R # 7. O

The following lemma shows how to lift an outermost-needed rewrite step to an outermost-needed
narrowing step.

Lemma 4 Let R be an inductively sequential rewrite system. Let o be a constructor substitution,
V' be a finite set of variables, t be an operation-rooted term with Var(t) CV, and T be a definitional
tree of the root of t. If o(t) =, r s with (p, R) = ¢(o(t),T), then there exist an outermost-needed
narrowing step t ~»p, r.g t' and a constructor substitution o’ such that (p, R,0) € X(t,T), o'(t') =s
and o’ 0 = o[V].

16

Proof Let R bel — r. Since o(t) —p, r s, there exists a substitution p such that p(l) = o(t)|,
= o(t|p). Let ¢ = poo (we assume Dom(p) C Var(R) and R is a rule with new variables not
occurring in V' and the image of o, otherwise take an appropriate variant of R). By Lemma 3,
there is a triple (p, R,0) € A(t,T) with 8 < ¢[Var(t)]. Then there exists ¢’ such that o’ 0 0 = ¢[V]
(w.lo.g. we assume that 0(z) = z for all z € V —Var(t)). This implies 0’ 00 = o[V] by definition of
¢. By claim 2 of Theorem 1, t ~»,, g g t' is an outermost-needed narrowing step. o’ is a constructor
substitution since ¢y is. Finally, o'(t') = o’(0(t[r],)) = ¢(t[r],) = o(t)[p(r)], = s O

Outermost-needed narrowing instantiates variables to constructor terms. Thus, we only show that
outermost-needed narrowing is complete for constructor substitutions as solutions of equations.
This is not a limitation in practice, since more general solutions would contain unevaluated or
undefined expressions. This is not a limitation with respect to related work, since most general
narrowing is known to be complete only for irreducible solutions [42], and lazy narrowing is complete
only for constructor substitutions [16, 37]. The following theorem shows the completeness of our
strategy, A, and consequently of outermost-needed narrowing.

Theorem 4 (Completeness of outermost-needed narrowing) Let R be an inductively sequential
rewrite system extended by the equality rules. Let o be a constructor substitution that is a solution
of an equation t =t and V be a finite set of variables containing Var(t)UVar(t'). Then there exists
a derivation t ~ t' 5, true computed by \ such that o’ < o[V].

Proof By Definition 7, there exists a ground constructor term, say u, such that o(t ~ ') = u ~ u.
Since R is extended by the equality rules, o(t ~) % true by Proposition 1. Consider the following
rewriting sequence

S0 —?p1,R1 S1 ~?pa, Ry S2 —7p3, Ry " "

where s9 = o(t = t'), (pi+1, Ri+1) = ©(si, T;) and T; is a definitional tree of the root of s; for
1 =20,1,2,.... The following claims are easy to show by induction on the derivation steps in this
sequence:

1. s; has a constructor-rooted normal form (true).

2. If s; # true, then the root of s; is the operation symbol A or true (by the definition of equality
rules).

3. If s; # true, then R;11 # 7 (claim 3 of Theorem 3) and s;
(claim 2 of Theorem 3).

‘pi 41 is an outermost-needed redex

Hence the derivation sequence is a well-defined outermost-needed rewriting derivation (as long as
s; # true). Since repeated rewriting of needed redexes in a term computes the term’s normal form,
if it exists [24], the sequence is finite and s,, = true is the final term for some n > 0. We will show
by induction on n that there exists a corresponding outermost-needed narrowing derivation

)
LR 1 ~p Ri,o1 U1 ~2po, Ro,on " " “pn, Rn,on tn

such that ¢, = true and o, 0--- 001 < o[V].

n = 1: If we apply Lemma 4 to the rewrite step sg —,, r, S1, we obtain an outermost-needed
narrowing step t &~ t' ~»,, R, -, t1 and a constructor substitution ¢’ such that o’ocoy = o[V]
and o'(t1) = s1 = true. Hence o1 < o[V] and ¢; = true by the definition of equality rules.

17

n > 1: By Lemma 4 applied to the first rewrite step, there exist an outermost-needed narrowing
step t = t' ~, R0, t1 and a constructor substitution o’ such that o’ o 0y = o[V] and
o'(t1) = s1. Let Vi = {y € Var(o1(z)) | = € V}. Applying the induction hypothesis to Vi,
o’ and the derivation

51 _>p27R2 U —>p’n7R7L Sn

yields an outermost-needed narrowing derivation

tl Mp27R270'2 T, R, on tn

with ¢, = true and o, 0 --- 009 < ¢'[V4]. Combining that with the first narrowing step, we
obtain the required outermost-needed narrowing derivation with o, o --- 00y < o[V] since
o' ooy =o[V]. 0

The theorem justifies our earlier remark on the relationship between completeness and anticipated
substitutions. Any anticipated substitution of a needed narrowing step is irrelevant or would
eventually be done later in the derivation, and thus, it does not affect the completeness. Anticipating
substitutions is appealing, even without the benefits related to the need of a step, since less general
substitutions are likely to yield a smaller search space to compute the same set of solutions.

5 Optimality

In Section 3 we showed that our strategy computes only necessary steps. We now strengthen this
characterization by showing that our strategy computes only necessary derivations of minimum
length. First of all, we show that no redundant derivation is computed by A. For this purpose we
prove the following two technical propositions.

Proposition 2 Let tg ~p, 1, —r1,00 t1 -+ ~pp,ln—srn,0n tn b€ a narrowing derivation. Then, Va €
Var(t,) either x € Var(tg) or Jy € Var(ty) such that x € Var(o, o...001(y)).

Proof The proof is by induction on n. The base case, i.e. n = 0, is straightforward. Induction
step: Let Lo ~p) 111,00 17 tn ~poiiilni1—rns1,0ne1 tnt1 be a narrowing derivation. Let x €
Var(tn+1). We distinguish two cases.

x € Var(ty)

By the induction hypothesis, we have either x € Var(ty) or Jy € Var(ty) such that x €
Var(oy o -+ 001(y)). Since x € Var(t,+1), we deduce that x ¢ Dom(o,+1). Hence, either
x € Var(tg) or 3y € Var(ty) such that x € Var(op410---001(y))-

x & Var(ty)
Thus, € Var(l,+1). Since z € Var(ty4+1), we have x € Dom(op+1). Let g be the position of
x in lp41. Then, we have © = 041 (lnt1)|g = Ont1(tn)|p,i1-q- This implies that 3z € Var(t,)
such that € Var(o,+1(2)). By the induction hypothesis, either z € Var(tg) or Iy € Var(ty)
such that z € Var(o, o ---001(y)). We distinguish these two subcases.

z € Var(to)

In this case, z € Dom(o;) for i = i---n. Thus, x € Var(o,410---001(2)). Hence, the
claim holds.

18

Jy € Var(ty) such that z € Var(o,0---001(y))

Since x € Var(op+1(2)), we have x € Var(o,41 0---001(y)). Hence, the claim holds. O

Proposition 3 Let R be an inductively sequential rewrite system. Let t be a term, V = Var(t) and
(p1, R1,01) and (pa, Re,02) two distinct triples in \(t,T). Then, o1y and ogy are independent on
V.

Proof
The proof is by strong arithmetical induction on the number of occurrences of defined operation
symbols in t with a nested structural induction on the pdt T

T = rule(rw, R), for some pattern 7 and rule R, or T = exempt(r), for some pattern 7.

There are no distinct triples in A(¢, 7)) and the claim vacuously holds.

T = branch(m,0,T1,...,Tx), for some pattern 7, position o, and pdts 71, ..., Ty, for some k > 0.

‘We consider the three subcases of the definition of A\ for branch nodes.

t|, is a variable, say x.

In this case t and pattern(7;) unify for all i = 1...k. By the induction hypothesis, for

every i, the substitutions of distinct triples in A(¢, 7;) are independent on V. Moreover, if

(pi, Riy03) € A(t, T;) and (pj, Rj, 05) € A(t,T;) with i # j, then o; and o} are independent

on V since the roots of o;(x) and o;(z) are different constructors. Thus, the claim holds.
t|, is a constructor-rooted.

By the definition of pdt, there exists one i in {1, ...k} such that pattern(7;) and t unify.
By the definition of A\, A(t,7) = A(¢,7;). By the induction hypothesis, the claim holds
for A(t,7;) and thus for A(¢,T) too.

t|, is operation-rooted.

By the definition of A, 7 and ¢ unify. Let 7 = mgu(¢,). Since |, is operation-rooted,
so is 7(t[o). Let 7' be a definitional tree of the root of 7(t|,). 7 is a constructor
substitution since the patterns of definitional trees are linear innermost terms. Thus, ¢|,
contains fewer defined operation symbols than ¢. Therefore, by the induction hypothesis
on tlo, if (p1, R1,01) and (pz2, Rz, 02) are distinct triples in A(7(t,), T'), then o1 yver(r(,))
and 02)yur(r(¢),)) are independent on Var(7(t|,)). Therefore, o1 o 7y and o3 o 7y are
independent on V. Hence, the claim holds. O

The next theorem claims that no redundant derivation is computed by .

Theorem 5 (Independence of solutions) Let R be an inductively sequential rewrite system extended
by the equality rules, e an equation to solve and V = Var(e). Let e &g true and e ~5, true be two
distinct derivations computed by \. Then, o and o' are independent on V.

Proof First, we prove the claim when the initial steps of e ~»>, true and e ~>, true differ. By

. *
our assumption, the derivations that we are considering are of the forms e ~,, e; ~,, true and
€~y €) ~5g, true. This implies that oy and o3 belong to distinct triples in A(e, 7), where 7 is a
definitional tree of ~. By Proposition 3, the substitutions o1}y and o3|, are independent on V. By
definition of independent substitutions, there exists a variable, in V' such that o1(z) and o3(x)
are not unifiable. Since 0 = 03007 and ¢’ = 04 0 03, then o(z) and ¢’(z) are not unifiable. Hence,
oy and U\/V are independent on V'

19

Now, we consider the general case. By our assumption, the derivations that we are considering
are of the forms e «JSUI e; «302 true and e «301 e «303 true, for some ¢ > 1. The sub-derivations
€; «302 true and e; «303 true start from the same equation e; and their initial steps differ. We have
proved that in this case oajyr(e,) and 03jyar(e,) are independent on Var(e;). Hence, by definition of
independent substitutions, there exists a variable y in Var(e;) such that o2yy,(e,) (¥) and o3)yur(e,) (¥)
do not unify. By Proposition 2, either y € V or 3z € V such that y € Var(o1(z)). We distinguish
these two cases.

Case 1. y € V. Then, y € Dom(o1) and, consequently, o2 o 01(y) and o3 o 01(y) dot not unify.
Since, oy = 0 0 o1}y and al’v = 03001y, the claim holds.

Case 2. 3z € V such that y € Var(01(2)). Since 02jyar(e,)(¥) and o3pyer(e,)(y) dot not unify and
y € Var(o1(z)), we deduce that o3 0 01(2) and o3 0 01(2) dot not unify. Since, oy, = 02 0 1)y and
a|’V = 03 0 o1}y, the claim holds. |

We now discuss the cost and length of a derivation computed by our strategy.

If p is a needed position of some term ¢, then in any narrowing derivation of ¢ to a constructor
term there is at least one step associated with p. If this step is delayed and p is not outermost,
then several descendants of p may be created and several steps may become necessary to narrow
this set of descendants, e.g., see Example 3. However, from a practical standpoint, if terms are
appropriately represented, the cost of narrowing ¢ at (some descendant of) p is largely independent
of where the step occurs in the derivation of t. We formalize this viewpoint, which leads to another
optimality result for our strategy.

Definition 15 Let t ~ i ji_y.i ,i t', for i in some set of indices I = {1,...,n}, be a narrowing step
such that for any distinct ¢ and j in I, p* and p’ are disjoint and ¢*cc? = g7o00®. We say that t is nar-
rowable to ¢ in a multistep, denoted t ~» i ji_yyi giy, ., ', iff ' = 0ser o (((E[r']0)[r%]p2) - []pe),

where o ;7 0¢ denotes the composition 6™ o...0 0% o g! (the order is irrelevant.)

When we want to emphasize the difference between a step as defined in Definition 6 and a multistep,
we refer to the former as elementary. Otherwise, we identify an elementary step with a multistep
in which the set of narrowed positions has just one element. A narrowing multistep can be thought
of as a set of elementary steps performed in parallel. In fact, the conditions that we impose on the
positions and substitutions of each elementary step from which a multistep is defined imply that in
a multistep the order in which substitutions are composed and positions are narrowed is irrelevant.

To claim that our strategy is optimal, we assign a “cost” to both a step and a derivation. By
convention, an elementary step has unit cost. However, it does not seem appropriate, for practical
reasons, to set the cost of a multistep equal to the number of positions narrowed in the step. We
will justify our choice after giving our definition of cost.

For any set I and equivalence relation ~ on I, |I| denotes the cardinality of I, and I/~ denotes
the quotient of I modulo ~.

Definition 16 Let o = to,\»@ivRi’U@ieIltl Py R oi)ier, be a narrowing (multi)derivation.
The symbol ~,, denotes the equivalence relation on I,, defined as follows: for any ¢ and j in I,,,
i~y j iff the subterms identified by these indices have a common ancestor, more precisely, there

exists some m, less than n, such that for some position ¢ in t,,, both Ok€[n+10'2+1(tn|pi+l) and

~

o kelnﬂaﬁﬂ(tn]pj +1) are descendants of o keIer10§1+1(tm|q)~
We call a family any maximal subset of equivalent indices. The cost of the n-th step of « is the
number of families in I,,, i.e., |I;,/~y|. The cost of «, denoted cost(«), is the total cost of its steps.

20

We say that a family is complete iff it cannot be enlarged, and we say that a step is complete
iff all its families are complete, more precisely, I,, is complete iff if 4 is in I, then for any position
q of ope [naﬁ 41(tn—1) such that p’, and q have a common ancestor in some term of a, there exists

some j in I, such that ¢ = p/,. We say that a derivation is complete iff all its steps are complete.

If I is the set of indices of a narrowing step and ¢ and j belong to I, then i ~ j iff p; and p; are, using
an anthropomorphic metaphor, blood related. A complete derivation is characterized by narrowing
complete “families,” i.e., sets containing all the pairwise blood related subterms of a term. Note
that the blood related subterms of a term are all equal and that their positions are pairwise disjoint,
thus all of them can be included in a multistep. Our choice of cost measure is suggested by the
observation that if t ~, r , ', and ¢ and p are blood related positions, then narrowing ¢ at ¢ “when
t is being narrowed at p” involves no additional computation of a substitution and/or a rule, and
consequently no additional computation of a substituting term (the instantiation of the right side
of a rule,) since the reducts of blood related subterms are all equal, too. This implies that all the
members of a family could be “shared” in the representation of t. When this is being done (as in
efficient implementations of narrowing [19]), a multistep entailing a whole family does not differ,
in practice, from an elementary step.

Theorem 6 If & =t ~>, u is a complete outermost-needed narrowing multiderivation of a term
t into a constructor term u, then o has minimum cost. Le., for any multiderivation B =t ~>, u,
cost(a) < cost(p).

The foundations for a detailed proof would take us too far beyond the boundaries of this paper.
Thus, we present only a proof outline.

Proof Outline. Huet and Leévy [24] formalize, in orthogonal systems, the idea of performing two
reduction sequences back-to-back, say A and B, beginning with the same term. Performing B after
doing A is denoted by A LI B. Maranget [33] defines, in labeled term rewriting systems, a notion
of complete reduction based on families and on a cost measure which inspired ours. He proves
the following non-trivial, but intuitive, results: (1) if A is outermost-needed complete and B is
complete, then cost(A U B) < cost(B U A), i.e., in comparing complete reduction sequences it is
never more costly to begin with outermost-needed steps, and (2) every reduction sequence A has an
associated complete sequence, A, and cost(A) < cost(A), i.e., in comparing steps it is never more
costly to include all blood related members. From these results it is relatively easy to show that
no reduction sequence of a term to its normal form is cheaper than the outermost-needed complete
sequence.

Coming to the proof of our theorem, we lift « to its canonical rewrite sequence, A = o(t) = u,
and likewise 5 to B, and adapt the proofs in [33] to our situation. O

Completeness is essential to achieve minimum cost. In fact, if we stick to elementary derivations,
the outermost-needed strategy yields the longest derivation among those that narrow terms only
at needed positions. Families of blood related subterms are created only by non-right-linear rules.
The following example highlight these issues.

Example 9 We follow up on Example 3. It is immediate to verify that an outermost-needed
narrowing elementary derivation (actually a reduction sequence, since the term is ground) of
double(0 + 0) has 4 steps. The following elementary derivation is shorter.

double(0 + 0) ~1 g, 1y double(0) ~p rg (3 0 +0~p g, 3 0
This derivation is shorter than the outermost-needed one, because its first step narrows the subterm

at position 1. By contrast, the first step of the outermost-needed derivation narrows the initial term

21

at the root. This step yields two descendants of position 1, which are both needed. Sharing these
blood related subterms would save one step.

Elementary steps are easier to understand and to implement than multisteps. To achieve optimality,
we need multisteps only as far as blood related terms are concerned. Full sharing of blood related
subterms implies that no family ever contains more than a single member, in practice, and thus
any elementary step becomes trivially complete. In turn, this equates derivations of minimum cost
with those of minimum length. Techniques for rewriting “terms” with shared subterms go under
the name of term graph rewriting [47] and adapting them to narrowing, for the systems we are
considering, poses no major problem [3].

6 Related work

There are three research topics related to our work: (1) the concept of need as the foundation of
laziness, (2) strategies for using narrowing in programming, and (3) implementations of narrowing
in Prolog.

6.1 Narrowing and need

Seminal studies on the concept of need in rewriting appear in [24, 39]. Subsequent variations and
extensions, e.g., [7, 21, 27, 30, 33, 40, 41, 45, 48], do not address narrowing, but limit the discussion
to rewriting. We have introduced a concept of need for narrowing that extends a similar concept for
rewriting. We have shown that the concept of need for narrowing is inherently more complicated
than that for rewriting. In orthogonal systems, a reduction step has one degree of freedom, the
selection of the position, but a narrowing step has two, both the position and the unifier.

We have discussed only inductively sequential systems. Further research will extend this class
to strongly sequential and/or weakly orthogonal systems. The extension to weakly orthogonal
systems would weaken our strong optimality result, but include additional non-determinism. Sekar
and Ramakrishnan [45] propose necessary sets as a generalization of the notion of need for weakly
orthogonal systems. Antoy [1] suggests rewriting necessary sets of redexes using parallel definitional
trees and a function analogous to A. This approach can be extended to narrowing without major
problems.

6.2 Narrowing strategies

The trade-off between power and efficiency is central to the use of narrowing, especially in pro-
gramming. To this aim, several narrowing strategies, e.g., [6, 9, 12, 13, 14, 15, 16, 18, 20, 22, 31,
35, 36, 37, 38, 44, 49] have been proposed. The notion of completeness has evolved accordingly.
Plotkin’s classic formulation [43] has been relaxed to completeness w.r.t. ground solutions (e.g.
[15]) or completeness w.r.t. strict equality and domain-based interpretations, as in [16, 37]. The
latter appear more appropriate for narrowing as the computational paradigm of functional logic
programming languages in the presence of infinite data structures and computations.

We briefly recall the underlying ideas of a few major strategies and compare them with ours
using the following example. We choose a strongly terminating rewrite system with completely
defined operations, otherwise all the eager strategies would be immediately excluded. At the end
of this section, we summarize the characteristics of these major strategies in a table.

22

Example 10 The symbols a, b, and ¢ are constructors, whereas f and g are defined operations.

g(a, X) — b(a) Ry

fla) = a R g(b(X),a) — a Rs
fO(X)) = b(f(X)) Ro g(b(X),b(Y)) = cla) Rg
fle(X)) = a Rs g(b(X),c(Y)) = b(a) Ry
g(c(X),Y) — b(a) Rg

The equation to solve is g(X, f(X)) = c(a). Our strategy computes only three derivations, only
one of which yields a solution.

9(X, f(X)) = c(a) ~1ry {xa} bla) = c(a)

9(X, f(X)) = c(a) ~1 Re, {Xse(xy)y bla) = c(a)

9(X, f(X)) = c(a) ~19R,, {xsb(x1)} 9(0(X1),b(f(X1))) = cla) ~>yy true
Basic narrowing [25] avoids positions introduced by the instantiations of previous steps. Its
completeness, and that of its variations, e.g., [6, 20, 22, 31, 35, 38|, is known for convergent rewrite

systems (see [35] for a systematic study.) This strategy may perform useless steps and computes
an infinite search space for our benchmark example.

Q

Q

Innermost narrowing [15] narrows only innermost terms. It is ground complete only for strongly
terminating constructor-based systems with completely defined operations. It may perform useless
steps and it computes an infinite number of derivations for our benchmark example.

Outermost narrowing [12, 13| narrows outermost operation-rooted terms. This strategy is
ground complete only for a restrictive class of rewrite systems. It computes no solution for our
benchmark example.

Outer narrowing [49] selects an inner position only when a step at an outer position is impossi-
ble. This strategy is complete for constructor-based systems. Outer narrowing behaves as needed
narrowing on the benchmark example, however the strategy is not characterized as computing
needed steps. Furthermore, [49] describes the enumeration of derivations for E-matching, but not
the computation of derivations for general E-unification.

Lazy narrowing [9, 16, 18, 37, 36, 44], similar to outer, narrows an inner term only when the step
is demanded to narrow an outer term. For these strategies, the qualifier “lazy” is used as a synonym
of “outermost” or “demand driven,” rather than in the technical sense we propose. The complete-
ness of these strategies is generally expensive to achieve: [18] requires an ad-hoc implementation of
backtracking, with the potential of evaluating some term several times; [16] requires flattening of
functional nesting and a specialized WAM-like machine in which terms are dynamically reordered;
[37] requires a transformation of the rewrite system which, for our benchmark example, increases
the number of operations and lengthen the derivations.

In the requirement columns of the following table C, T and CB denote “confluence”, “termination”
and “constructor-based systems”, respectively.

23

Strategy Requirements Completeness Optimality
¢! T!| B others independent length nf
solutions derivations

basic [25] X | X complete

completely
innermost [15] X | X | X | defined ground complete

operations
outermost [12, 13] | X | X | X | uniformity ground complete (X)
outer [49] X X complete (X)

- complete w.r.t.

lazy [9, 16, 37, 44] | X X | nonambiguity strict equality
needed X X< inductive complete w.r.t. X X

sequentiality | strict equality

LSE narrowing, a refinement of basic narrowing with additional redundancy tests, ensures that the
identical solution (up to variable renaming) is not computed by two different derivations. However,
it may be the case that one solution is an instance of another. Hence different solutions computed
by LSE narrowing are not independent. Outermost narrowing computes independent solutions if
the rules satisfy additional conditions [12, Theorem 3]. Outer narrowing computes independent
solutions but only for the E-matching problem.

To summarize, the distinguishing features of our strategy are the following: with respect to
eager strategies, completeness for non-terminating rewrite systems; with respect to the so-called
lazy strategies, a sharp characterization of laziness; with respect to any strategy, optimality and
ease of computation.

6.3 Narrowing in Prolog

Implementations of narrowing in Prolog [2, 8, 26, 32] are proposed as a prototypical and portable
integration of functional and logic languages. For example, [8, 26] have been proposed as an
alternative to the specialized machines required for K-LEAF [16] and BABEL [37] respectively.
The most recent proposals [2, 32] are based on definitional trees and appear to compute needed
steps for inductively sequential systems, although both methods neither formalize nor claim this
property. The scheme in [2] computes A directly by pattern matching. The patterns involved in
the computation of A\ are a superset of those contained in a definitional tree. This is suggested by
claim 1 of Theorem 1 that shows a “strong” need for the positions computed using A—mnot only
the terms at these positions must be eventually narrowed, but they must be eventually narrowed
to head mormal forms. The resulting implementation takes advantage of this characteristic and its
performance appears to be superior to the other proposals.

7 Concluding remarks

We have proposed a new narrowing strategy obtained by extending to narrowing the well-known
notion of need for rewriting. Need for narrowing appears harder to handle than need for rewriting—
to compute a needed narrowing step one must also look ahead a potentially infinite number of
substitutions. Remarkably, there is an efficiently algorithm for this computation in inductively
sequential systems.

We have contained our discussion to narrowing operation-rooted terms. This limitation shortens
our discussion and suffices for solving equations. Extending our results also to constructor-rooted
terms is straightforward. To compute an outermost-needed narrowing step of a constructor-rooted

24

term it suffices to compute an outermost-needed narrowing step of any of its maximal operation-
rooted subterms.

We have shown how our strategy is easily implemented by pattern matching, and we have
reported, in the previous section, its good performance in Prolog with respect to other similar
attempts. We have also shown that our strategy computes only independent and optimal deriva-
tions. Although all the previously proposed lazy strategies have the latter as their primary goal,
our strategy is the only one for which this result is formalized and proved.

We want to conclude with a general assessment of the “overall quality” of the narrowing strategy
used by a programming language. The key factor is the trade-off between the size of the class of
rewrite systems for which the strategy is complete and the efficiency of its computations. We prove
both completeness and optimality for inductively sequential systems. We believe that it is possible
to extend our result to strongly sequential systems and, in a weaker form, to weakly orthogonal
systems.

Acknowledgement

Aart Middeldorp suggested us how to prove [34] our conjecture that the classes of inductively
sequential systems and constructor-based strongly sequential systems are the same.

References

[1] S. Antoy. Definitional trees. In ALP’92, pages 143-157. Springer LNCS 632, 1992.

[2] S. Antoy. Lazy rewriting in logic programming. Technical Report 90-17, Rev. 2, Portland
State University, Portland, OR, 1992. (Submitted for publication).

[3] H. Barendregt, M. van Eekelen, J. Glauert, R. Kenneway, and M. Sleep. Term graph rewriting.
In PARLE’87, pages 141-158. Springer LNCS 259, 1987.

[4] M. Bellia and G. Levi. The relation between logic and functional languages: a survey. Journal
of Logic Programming, 3(3):217-236, 1986.

[5] D. Bert and R. Echahed. Design and implementation of a generic, logic and functional pro-
gramming language. In ESOP-§6, pages 119-132. Springer LNCS 213, 1986.

[6] A.Bockmayr, S. Krischer, and A. Werner. An optimal narrowing strategy for general canonical
systems. In Proc. of the 3rd Intern. Workshop on Conditional Term Rewriting Systems, pages
483-497. Springer LNCS 656, 1992.

[7] G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and J. C.
Reynolds, editors, Algebraic methods in semantics, chapter 5. Cambridge University Press,
Cambridge, UK, 1985.

[8] P. H. Cheong. Compiling lazy narrowing into Prolog. New Generation Computing, 1992. (to
appear).

[9] J. Darlington and Y. Guo. Narrowing and unification in functional programming - an evalu-
ation mechanism for absolute set abstraction. In Proc. of the Conference on Rewriting Tech-
niques and Applications, pages 92—-108. Springer LNCS 355, 1989.

25

[10]

[11]

[20]

[21]

22]
[23]

[24]

D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Relations, and Equa-
tions. Prentice Hall, 1986.

N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pages 243-320.
North Holland, Amsterdam, 1990.

R. Echahed. On completeness of narrowing strategies. In Proc. CAAP’8S8, pages 89-101.
Springer LNCS 299, 1988.

R. Echahed. Uniform narrowing strategies. In Proceedings of the Third International Confer-
ence on Algebraic and Logic Programming, pages 2569-275, Volterra, Italy, September 1992.

M. J. Fay. First-order unification in an equational theory. In Proc. 4th Workshop on Automated
Deduction, pages 161-167, Austin (Texas), 1979. Academic Press.

L. Fribourg. SLOG: A logic programming language interpreter based on clausal superposition
and rewriting. In Proc. IEEFE Internat. Symposium on Logic Programming, pages 172-184,
Boston, 1985.

E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: a logic plus functional
language. The Journal of Computer and System Sciences, 42:139-185, 1991.

J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules for logic program-
ming. In D. DeGroot and G. Lindstrom, editors, Logic Programming, Functions, Relations,
and Equations, pages 295-363. Prentice Hall, 1986.

W. Hans, R. Loogen, and S. Winkler. On the interaction of lazy evaluation and backtracking.
In Proc. of the 4th International Symposium on Programming Language Implementation and
Logic Programming, pages 355-369. Springer LNCS 631, 1992.

M. Hanus. Compiling logic programs with equality. In Proc. of the 2nd Int. Workshop on Pro-
gramming Language Implementation and Logic Programming, pages 387—401. Springer LNCS
456, 1990.

A. Herold. Narrowing techniques applied to idempotent unification. Technical Report SR-86-
16, SEKI, 1986.

C. M. Hoffmann and M. J. O’Donnell. Implementation of an interpreter for abstract equations.
In 11th ACM Symposium on the Principle of Programming Languages, Salt Lake City, 1984.

S. Holldobler. Foundations of Equational Logic Programming. Springer LNCS 353, 1989.

G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors. JCSS,
25:239-266, 1982.

G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In J.-L. Lassez
and G. Plotkin, editors, Computational logic: essays in honour of Alan Robinson. MIT Press,
Cambridge, MA, 1991. Previous version: Call by need computations in non-ambiguous linear
term rewriting systems, Technical Report 359, INRIA, Le Chesnay, France, 1979.

J.-M. Hullot. Canonical forms and unification. In Proc. 5th Conference on Automated Deduc-
tion, pages 318-334. Springer LNCS 87, 1980.

26

[26]

[27]

28]

[29]

J. A. Jiménez-Martin, J. Marifio-Carballo, and J. J. Moreno-Navarro. Efficient implementation
of lazy narrowing into PROLOG. In LOPSTR’92, 1993. Previous version: Some Techniques for
the Efficient Implementation of Lazy Narrowing, Technical Report -FIM.75/LyS/92, Facultad
de Informatica, Universidad Politecnica de Madrid, 1992.

J. R. Kennaway. Sequential evaluation strategies for parallel-or and related reduction systems.
Annals of Pure and Applied Logic, 43:31-56, 1989.

J. R. Kennaway. The specificity rule for lazy pattern-matching in ambiguous term rewrite
systems. In Third European Symp. on Programming, pages 256270, 1990. LNCS 432.

J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, Vol. II, pages 1-112. Oxford University Press, 1992.
Previous version: Term rewriting systems, Technical Report CS-R9073, Stichting Mathema-
tisch Centrum, Amsterdam, 1990.

J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting systems. Journal of
Symbolic Computation, pages 161-195, 1991. Previous version: Technical Report CS-R8932,
Stichting Mathematisch Centrum, Amsterdam, The Netherlands, 1989.

S. Krischer and A. Bockmayr. Detecting redundant narrowing derivations by the LSE-SL
reducibility test. In Proc. RTA’91. Springer LNCS 488, 1991.

R. Loogen, F. Lopez Fraguas, and M. Rodriguez Artalejo. A demand driven computation
strategy for lazy narrowing. In Proc. of the 5th International Symposium on Programming
Language Implementation and Logic Programming, pages 184—200. Springer LNCS 714, 1993.

L. Maranget. Optimal derivation in weak lambda-calculi and in orthogonal terms rewriting
systems. In 17th Annual Symp. on Principles of Prog. Languages, pages 255-269. ACM, 1990.

A. Middeldorp, August 1993. Personal Communication.

A. Middeldorp and E. Hamoen. Counterexamples to completeness results for basic narrowing
(extended abstract). In Proceedings of the Third International Conference on Algebraic and
Logic Programming, pages 244-258, Volterra, Italy, September 1992.

J. J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo. Lazy narrowing in a
graph machine. In Proc. Second International Conference on Algebraic and Logic Programming,
pages 298-317. Springer LNCS 463, 1990.

J. J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with functions and
predicates: The language BABEL. Journal of Logic Programming, 12:191-223, 1992.

W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic Computation,
7:295-317, 1989.

M. J. O’'Donnell. Computing in Systems Described by FEquations. Springer LNCS 58, 1977.
M. J. O'Donnell. Equational Logic as a Programming Language. MIT Press, 1985.

M. J. Oyamaguchi. Nv-sequentiality: A decidable condition for call-by-need computations in
term rewriting systems. SIAM Journal on Computation, 22(1):114-135, 1993.

27

[42]

[43]
[44]

[45]

P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on
Theoretical Computer Science. Springer, 1988.

G.D. Plotkin. Building-in equational theories. Machine Intelligence, 7:73-90, 1972.

U. S. Reddy. Narrowing as the operational semantics of functional languages. In Proc. IEEE
Internat. Symposium on Logic Programming, pages 138-151, Boston, 1985.

R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic: Beyond strong sequen-
tiality. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 230-241, Philadelphia, PA, June 1990.

J. R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. Journal of the ACM, 21(4):622-642, 1974.

M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors. Term Graph Rewriting
Theory and Practice. J. Wiley & Sons, Chichester, UK, 1993.

S. Thatte. A refinement of strong sequentiality for term rewriting with constructors. Infor-
mation and Computation, 72:46-65, 1987.

J.-H. You. Enumerating outer narrowing derivations for constructor-based term rewriting
systems. Journal of Symbolic Computation, 7:319-341, 1989.

28

