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Abstract. Feferman has proposed FS0, a theory of finitary inductive
systems, as a framework theory that allows a user to reason both in and
about an encoded theory. I look here at how practical FS0 really is. To
this end I formalise a sequent calculus presentation of classical proposi-
tional logic, and show this can be used for work in both the theory and
the metatheory. the latter is illustrated with a discussion of a proof of
Gentzen’s Hauptsatz.
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§ 1 Introduction

§ 1.1 Background In order to be easier to use, proof development systems
provide a range of facilities such as ‘lemmas’, tactic languages and uniform proof
procedures, so that the work of building proofs can be automated as much as
possible. For the most part, in fact, formal derivations of ‘real’ theorems can be
built only because of such facilities, since they are so big that it is not practical
for the user of a system to enter every atomic step by hand. In fact a lot
of proofs are in essence not very big; most of the size of a formal derivation
represents the work of fitting the original intuition into the given theory. A
tactic language, or other similar facility, is a way for the user to automate
some of this work, leaving him free to concentrate on the important parts of
proofs, and also, incidentally, to speed things up, since a machine can usually
build derivations much more quickly and reliably than a user manually entering
rules.

Mathematics is not done with a proof development system in quite the same
way as it is done in a textbook, even when the two look like one another. For
instance in a book on algebra one might read

‘If A is an abelian group, then, for all a, b in A, the equivalence

n times︷ ︸︸ ︷
(a ◦ b) ◦ · · · ◦ (a ◦ b) =

n times︷ ︸︸ ︷
(a ◦ · · · ◦ a) ◦

n times︷ ︸︸ ︷
(b ◦ · · · ◦ b),

holds’

followed with a proof. This allows another proof, further on, to go, in one step,

a = (b ◦ c) ◦ (b ◦ c) ◦ (b ◦ c)
= (b ◦ b ◦ b) ◦ (c ◦ c ◦ c),

with the step justified by an appeal to the theorem proved earlier. On the other
hand, instead of a book, imagine a proof development system for algebra; there
the theorem cannot be stated, since it is not a theorem of abelian group theory,
it is, rather, a meta-theorem, a theorem about abelian group theory.
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Even if it is not possible to state the theorem though, it is still possible,
in a sense, to state the proof. Since this is a description of how to effect the
transformation inside the theory, it can be translated into the tactic language
as a program that does that transformation. Then it is possible to build proofs
in the system almost like before; i.e.

a = (b ◦ c) ◦ (b ◦ c) ◦ (b ◦ c)
...

= (b ◦ b ◦ b) ◦ (c ◦ c ◦ c)

where the gap is filled automatically by running the program. This looks the
same as in the book, but there are important differences. First, there is no
guarantee that the program will succeed in filling the gap, only the assurance of
whoever wrote it. Secondly, even if the program succeeds, the safety of the step
it allows is guaranteed by the fact that it actually builds the bridging proof,
and this can take time — imagine if n is 65535.

Of course, even on a machine it is not always necessary to use a tactic; a lot
of theorems can be stated in the language of group theory itself. For instance,
one can say that

∀a, b[
65535 times︷ ︸︸ ︷

(a ◦ b) ◦ · · · ◦ (a ◦ b) =
65535 times︷ ︸︸ ︷

(a ◦ · · · ◦ a) ◦
65535 times︷ ︸︸ ︷
(b ◦ · · · ◦ b)],

prove it, and store it as a lemma, then whenever an instance of this special fact is
needed, the stored lemma can be recalled and instantiated with the appropriate
a and b; there is no need to rebuild the proof. What is missing from most proof
development systems is a facility like this, but at the ‘meta-level’, so that the
general case can be stated, proved, and (re)used in the same way.

Proof development systems based on framework theories offer this possi-
bility. Such systems are advertised as not specialised for proving theorems in
some particular theory (such as group theory) but instead easily adapted to
different sorts of theories (first or higher order, classical, intuitionistic or linear,
modal, etc.). Another way to look at them, however, is as being specialised for
proving theorems in some framework theory designed for the express purpose
of describing other theories. The idea being that, given a formal description of
a theory written in the language of the framework, it is possible to build deriva-
tions in the theory via the framework. In fact the description of the theory in
the framework is a metatheory, and theorems derived in a theory declared in
the framework are really simple metatheorems in the metatheory. But if simple
metatheorems can be proved, why not more complex ones, e.g. the more general
sorts proposed above?

§ 1.2 Outline of paper Not all the framework theories that have been
proposed are very good for proving these ‘real’ metatheorems — they may
have been designed with other ends in mind. However Feferman has proposed
as a framework the theory FS0, which he has designed, among other things,
expressly as a tool not only for formalising, and working in theories, but also
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for metatheoretic analysis of them; in other words, to do exactly the sort of
things I have just described.

In this paper I look at how well FS0 behaves, in a worked example, in its
designated rôles. The paper divides into three parts. The first part, sections
§ 2 to § 5, is structured as follows: section § 2 is background detail about FS0

and my notation, section § 3 describes the theory that I formalise, a sequent
calculus for a complete fragment of classical propositional logic, section § 4 looks
at a formalisation of this theory, and section § 5 looks briefly at how easy it is
to build derivations in that formalisation. The second part, sections § 6 and
§ 7 is a discussion of a proof in FS0 of a fundamental metatheorem, Gentzen’s
Hauptsatz (also known as the cut elimination theorem), for the theory just
formalised, and some possible applications. Finally the third part, sections § 8
and § 9, looks at related and possible further work, and draws some conclusions.

§ 2 The theory FS0 and notational conventions

I refer to Feferman’s paper [9] for details of FS0. Here I will just give a quick
survey, together with a description of how my notation differs from what is
described there.

§ 2.1 What is FS0 The theory FS0 is a conservative extension of primitive
recursive arithmetic, a weak second order theory of s-expressions and primitive
recursive functions. It is like a version of Pure Lisp [15] where only certain
functions can be defined, but that is supplemented with facilities for defining
recursively enumerable classes, and with induction over such classes.

S-expressions are defined inductively as follows: O is an s-expression, and
if a and b are s-expressions, then so is (a, b) — one can think of the comma
as a function of arity two, the equivalent of cons in Lisp. For the sake of
clarity, like Feferman, I take the comma as associating to the left, so that
(a, b, c) ≡ ((a, b), c). An important difference between FS0 and Lisp is that in
FS0 the value O is used to stand for ‘true’, and anything else is ‘false’; while in
Lisp the situation is the other way about. Thus I can define abbreviations for
particular s-expressions as

True , O

False , (O,O)

(I use , to indicate a declaration of formal definitional equivalence and I write
defined names with an initial capital letter and variables with an initial lower-
case letter — the occasional exception to this is when I use single upper-case
letters as class variables, but this use will always be clear in context).

A set of simple functions for operating on s-expressions is available including,
for instance, projection functions π1 and π2, where π1(a, b) = a and π2(a, b) = b,
corresponding to car and cdr of Lisp. There are also second order combinators
for functional composition, pairing and structural recursion. However I will
not, for the most part, make explicit use of these — defining functions with
them is a tedious exercise and my implementation of the system has a compiler
available that can take sets of conditional equations and automatically build
appropriate functions out of primitive components (assuming, of course, that it
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can see that the equations define a primitive recursive function). Instead I will
use a notation similar to that of my implementation for the functions I define
here. In that notation I can define an And function simply by saying that it is
a solution to the equations

And(True, a) = a

And(False, a) = False

(for convenience sake, I assume that equations are read in the given order,
and that the conditions on an equation implicitly include the negations of the
conditions on all the previous equations — also notice that the definition is not
typed, so there is no requirement, for instance, that a evaluate to something
that looks like the boolean constants defined above).

In FS0 comprehension is available for Σ0
1-formulae, and in the same way that

my implementation is able to build functions automatically from equational
definitions, it is also able to build sets corresponding to the comprehension of
such formulae. So I can write the definition of a class A, the extension of some
predicate, as

A , { (a, b, c) | ∃d, e, . . . P (a, b, c, d, e, . . .) }

(where P (a, b, c, d, e, . . .) is some quantifier free formula with no free variables
other than a, b, c, d, e, . . .), and the system will build the concrete definition
itself.

Finally, I can define a class C, that is the closure of a class B under a rule

b ∈ C c ∈ C
∃d, e, . . . P (a, b, c, d, e, . . .)

a ∈ C

(exactly like in Feferman’s notation) as

C , I2(B,A).

And induction over such classes is provided by FS0 with the axiom

B ⊂ X → ∀x, y, z[y ∈ X → z ∈ X →
(x, y, z) ∈ A → x ∈ X] → I2(B,A) ⊂ X.

§ 3 An informal description of Gentzen’s calculus

The version of natural deduction invented by Gentzen, the sequent calculus,
combines the virtues of being both practical to use for building derivations, and
having good metatheoretic properties. This makes it perfect for the current
purpose, since I want a theory in which I can prove theorems, and with which
I can also hope to do useful metatheory. In this section I give an informal
description of (one form of) the calculus, like one might find in a book.

§ 3.1 The language The language of wffs (well formed formulae) used here
is just the ∨,¬ fragment of the language of propositional logic; i.e.

• The atomic propositions Pn are in the language,

• If A is in the language, then ¬A is in the language,

• If A and B are in the language, then A ∨B is in the language.
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§ 3.2 The calculus for classical propositional logic In the following, A
and B vary over wffs, Γ and ∆ vary over lists of wffs, and a decorated Γ′ or ∆′′

indicates that it a permuted sublist of the undecorated form. A decorated wff,
A†, is called principal.

A sequent is written
Γ ⊢ ∆,

which should be read as ‘if all the wffs in Γ are true, then some wff in ∆ is true.’
There is one class of axioms, which are called basic,

basic.
A†,Γ ⊢ A†,∆

Then there are two rules (left, and right — depending on which side of the
sequent they affect) for each connective. For negation these are

A†,Γ ⊢ ∆
R neg

Γ ⊢ ¬A†,∆
and

Γ ⊢ A†,∆
L neg,

¬A†,Γ ⊢ ∆

and for disjunction,

Γ ⊢ A†, B†,∆
R or

Γ ⊢ A ∨B†,∆
and

A†,Γ′ ⊢ ∆′ B†,Γ′′ ⊢ ∆′′

L or.
Γ, A ∨B† ⊢ ∆

To this set of rules a structural rule,

Γ′ ⊢ ∆′

struct,
Γ ⊢ ∆

and a cut rule,
Γ′ ⊢ A†,∆′ A†,Γ′′ ⊢ ∆′′

cut.
Γ ⊢ ∆

are added.
It should be easy to see that these rules are enough so that for any valid

formula A of the fragment of classical propositional logic I use, the sequent

⊢ A

is provable. The Hauptsatz says that if a formula can be proved using these
rules, then it is can be proved without cut. The proof Gentzen gives is essentially
an algorithm for restructuring any derivation to remove all uses of cut.

§ 4 Formalising the calculus

In section § 3 above, I have described a sequent calculus presentation of a frag-
ment of classical propositional logic. That description is enough for an analysis
in a book, but I have ignored details and taken things for granted. For instance
I assume that you know what a list and what a permutation, or a sublist, of a
list is; what rules are and what the closure of a set under a collection of rules
is. But if I am to formalise the theory on a machine, I cannot assume any of
this; I have exactly the resources that the framework theory, in this case FS0,
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makes available, and all the ‘missing’ details in the last presentation have to be
formalised along with everything else. So the first thing to do is describe the
things that I took for granted: wffs, lists of wffs, permutations, etc. (some of
this is directly — or almost directly — provided by FS0; e.g. lists, or closure
under a set of rules). In section § 4.1 I will describe these in FS0, and then in
section § 4.2 I will describe the theory itself.

§ 4.1 Preliminaries

the class of wffs The first class to define is that of wffs. The definition I
gave in section § 3.1 can be easily translated, since it is already an inductively
defined class where it is only ever necessary to appeal to at most two previous
members and thus the basic facilities available in FS0 can be used directly.

The translation from the syntax of section § 3.1 into FS0 is as follows (I use
a pair of square quotation marks p·q to indicate the translation in a readable
manner):

pPnq ≡ (Prop, pnq)
p¬Aq ≡ (Neg, pAq)

pA ∨Bq ≡ (Disj, (pAq, pBq)),

where ‘Prop’, ‘Neg’ and ‘Disj ’ are the names of distinct s-expressions.
After assigning s-expressions to the three names the class of atomic propo-

sitions can be defined as

Atomic , { (Prop, a) | ⊤ }

(i.e. the class of all tuples where the left-hand part is the constant Prop, and
the right hand part is unconstrained — ⊤ is some tautology). This is a concise
version of the equivalent definition

Atomic , { (b, a) | b = Prop }.

And the rules for negated and disjoint formulae can be defined

Neg–gen , { ((Neg, a), a, a) | ⊤ }
Or–gen , { ((Disj, (a, b)), a, b) | ⊤ },

so that the definition of the class of wffs is simply

Wffs , I2(Atomic,Or–gen ∪Neg–gen).

The class of lists Since s-expressions are already available, lists can be de-
fined easily, taking O as the empty list. One rule,

Wff–list–gen , { ((a, g), g, g) | a ∈ Wffs },

is needed, so that a definition of lists of wffs is

Wff–list , I2({O},Wff–list–gen).
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Predicates for ’membership’ and ‘subset’ (or ‘permuted sublist’) are also
needed; these have the behaviour that the equivalent Lisp functions on lists
would have, and can be defined simply as solutions to the equations

Member(a,O) = False

Member(a, (a, g)) = True

Member(a, (b, g)) = Member(a, g)

and

Subset(O, d) = True

Subset(g, d) = And(Member(π1g, d),
Subset(π2g, d)).

In order to make the presentation more readable, from now on I will abbreviate
Subset as

g @ d ≡ Subset(g, d) = True.

Sequents With facilities for treating primitive lists in hand, sequents can be
defined as pairs of lists of wffs; i.e.

pΓ ⊢ ∆q ≡ (pΓq, p∆q)

or, formally,

Seq , { (g, d) | g ∈ Wff–list , d ∈ Wff–list }.

§ 4.2 Defining the theory Now a sequent calculus for classical proposi-
tional logic can be formalised as a subclass of Seq.

The axioms The class of basic sequents is then defined as

Basic , { ((a, g), (a, d)) | ((a, g), (a, d)) ∈ Seq }.

The rules The rules can be defined in pretty much the same way. Since
they are all fairly similar, I will give definitions of just three of them (those
that I discuss later). The definitions here should be compared with the earlier
informal ones.

First, take the most complex of the logical rules: L or. This can be defined
as

Lor–r , { ((((Disj, (aL, aR)), g), d), ((aL, g
′), d′), ((aR, g

′′), d′′)) |
((((Disj, (aL, aR)), g), d) ∈ Seq,

d′ @ d, d′′ @ d, g′ @ g, g′′ @ g }

(notice that the rule needs to check that the goal is a sequent, i.e. that nothing
that is not a wff is accidentally included in g or d). Similarly, its dual, R or,
can be defined as

Ror–r , { ((g, ((Disj, (aL, aR)), d)),

(g, (aL, (aR, d))),

(g, (aL, (aR, d)))) | ⊤ }.
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Notice that this definition takes two identical subderivations; this is because
direct use is made of the facilities which FS0 provides for defining recursively
enumerable classes (i.e. the I2(·, ·) constructor) when the theory itself is for-
malised. This does not affect the theory though, as will be seen later, it does in
a small way affect the way metatheory is done (this quirk has already appeared
in the definitions of Neg–gen and Wff–list–gen).

A final example is the definition of the rule that is to be shown unnecessary:
cut. This can be defined as

Cut–r , { ((g, d), (g′, (a, d′)), ((a, g′′), d′′)) |
(g, d) ∈ Seq,

g′ @ g, d′′ @ d, d′ @ d, g′′ @ g }.

The definitions of the rules (R neg, L neg, struct) are just variations on these
patterns.

The theory The theory of sequent calculus for classical propositional logic
can now be defined simply as

Logic–r , Rneg–r ∪ Lneg–r ∪ Ror–r ∪ Lor–r

SC , I2(Basic, Logic–r ∪ Struct–r ∪ Cut–r),

With this definition, a sequent Γ ⊢ ∆ is provable if and only if pΓ ⊢ ∆q ∈ SC .
It is easy to see that there is an isomorphism between derivations in the system
described in section § 3 and derivations in SC .

§ 5 Using SC

The class SC is a complete formal specification of the sequent calculus in FS0,
but being formal is not enough: a framework should allow useable formalisations
of theories, so that proofs of theorems can actually be built, otherwise one could
equally use PRA. I have not yet shown, and it is certainly not obvious, that
the formalisation given here is usable.

One immediate criticism, for instance, is that it looks as if a lot of work has
to be done by every time a rule is applied: e.g. four applications of the Subset
predicate have to be evaluated at every application of Lor–r . Further, this is a
function defined inside FS0 rather than a part of the implementation, so it will
be evaluated using a probably not very efficient interpreter, possibly written in
a language that is, itself, interpreted or semi-interpreted. This means that the
user is working two big steps away from the machine, and so will probably find
that building proofs is tiresomely slow.

This sort of problem can be fixed by shifting as much of the work as possible
from inside FS0 to the supporting theorem prover, so that one (and probably,
in terms of running time, by far the more costly) level of implementation can
be ‘stepped around’. This can be done by developing a clutch of lemmas cor-
responding to rule applications. For instance, a lemma that could be used for
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the Lor–r rule might look like

∀a, b ∈ Wffs∀g, d ∈ Wff–list
[((a, g), d) ∈ SC →

((b, g), d) ∈ SC →
(((Disj, (a, b)), g), d) ∈ SC ],

which, in terms of the abstract version of the theory described in section § 3, is,
essentially, the derived rule

A,Γ ⊢ ∆ B,Γ ⊢ ∆

A ∨B,Γ ⊢ ∆
.

Now it is no longer necessary to run any Subset tests; the work (once the lemma
has been proven) is shifted from the implementation of SC to the lemma and
substitution mechanisms of the implementation of FS0, which might be in, for
instance, RPG, Fortran or COBOL, and is (hopefully) much more efficient.
Even if it is not efficient, it can probably be made efficient by being carefully
rewritten, and such optimisation makes much more sense than optimising any
particular piece of FS0 itself, since it will work equally with any declared theory.

A further point about such collections of lemmas is that they can be ex-
tended in any direction; if some special style of proof search is needed, then a
set of special lemmas tailored for it can be supplied, and these will be exactly
as efficient as basic rules — in a sense the distinction between basic and derived
rules has been blurred. In section § 6 I argue that it is practically possible in
FS0 to supply new rules of pretty much arbitrary complexity, derived or even
just admissible, this way.

§ 6 Doing metatheory

I now have a formalisation, SC , of classical propositional logic in FS0 which I
can use to build derivations of theorems. This is the first suggested use of FS0.
I still have to show that it can be used for the second: proving theorems about
a formalised theory. To do this in this section I look at how one might go about
formalising one of the basic metatheoretic results of logic in FS0: Gentzen’s
Hauptsatz.

§ 6.1 Expressing the theorem The first thing I have to do is to express
the theorem, and to do this a version of the theory that does not have the cut
rule is needed. This can be defined simply in exactly the same way as SC , but
with cut deleted, as

SCCF , I2(Basic,Logic–r ∪ Struct–r)

and it is easy to see that

SCCF ⊂ SC .

The other direction,

SC ⊂ SCCF , (1)

is the Hauptsatz, and the rest of this section discusses its proof.
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§ 6.2 An overview of the proof Proofs of the Hauptsatz are easy to find
in books on proof theory, for instance, Girard gives a detailed discussion in [10,
§2.3], though the presentation in [20] is closer to that here. Those proofs how-
ever, cannot be directly translated into FS0, since they make use of transfinite
induction principles which it does not have. Alongside these proofs are, often,
remarks to the effect that a proof in primitive recursive arithmetic is possi-
ble [10, §2.3.11], but not practical; Girard, for instance, describes the details as
‘. . . straightforward, but terribly long’. And since the proof is not practical, it is
not given, only sketched. Part of the intended purpose of FS0, which has only
the same induction as primitive recursive arithmetic, is to make such proofs
practical (even to the extent that they can be put on a machine).

Since I cannot use transfinite induction to prove the theorem directly, I have
to find another, more indirect, way. I do this by mapping, inside FS0, the usual
transfinite ordering onto the natural numbers using a primitive recursive func-
tion, so that that part of the ordering that is needed for the proof is preserved
(i.e. the mapping is not monotonic — that is not possible — but it suffices
for the current purpose). I can then use the values that result from this as a
‘complexity measure’ to label derivations. I also ensure that the complexity
of a derivation is 0 if and only if it does not use cut. Then I can show, using
simple induction on the structure of derivations, that a derivation can be trans-
formed into another with a lower complexity (unless the complexity is already 0)
and, given this, that a derivation can be progressively transformed into another
with a complexity of 0. The other parts of the proof, i.e. the transformations
performed on a derivation, are the same as one would need for a proof using
ordinary transfinite induction.

Overview of the rest of this section The rest of this section is structured
as follows: in section § 6.3 I define the natural numbers, in section § 6.4 I define
a measure of complexity on derivations, in section § 6.5 I show how to prove the
central lemma of complexity reduction for proofs, and finally in section § 6.6 I
quickly put everything together to get the main result.

§ 6.3 The natural numbers Since I will measure the complexity of deriva-
tions with natural numbers, the first thing I have to do is define them. A number
can be represented by a list that long; i.e.

p0q ≡ O

ps(n)q ≡ (O, pnq),

so that a formal definition is just

Nat–gen , { ((O,n), n, n) }
Nat , I2({O},Nat–gen).

I also need an ordering relation and a function for addition; these can be defined
as solutions to the sets of equations

Plus(m,O) = m

Plus(m,n) = (O,Plus(m,π2n))
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and

Less(a,O) = False

Less(n, (O,n)) = True

Less(n,m) = Less(m,π2n).

Like Subset earlier, for the sake of readability I will abbreviate Less as

m < n ≡ Less(m,n) = True.

§ 6.4 Attaching a measure to a derivation A simple measure of the
complexity of a derivation in an (inductively defined) class is just the number
of steps in it. Given any class

C , I2(B,A),

a new class CC can be defined as

BC , { (x, p1q) | x ∈ B }
AC , { ((x, l), (x′, l′), (x′′, l′′)) |

(x, x′, x′′) ∈ A,
l = Plus(Plus(l′, l′′), p1q) }.

CC , I2(BC , AC)

and it is easy to see that

x ∈ C ↔ ∃l[(x, l) ∈ CC ],

where l is the number of steps taken in some derivation of x.
Such a simple measure cannot be used here; something more complicated is

needed. As I said earlier, the usual way to prove the theorem is with transfinite
induction, and the well-ordering needed is a lexicographical ordering on the pair
⟨D,S⟩, where S is a measure of the size of the derivation and D is a measure of
the ‘cut degree’ (the complexity of the cut formula). I can map this pair into
into the natural numbers as

⟨D,S⟩ 7→ 22
··
·2

S
}
D+1

(i.e., a column D high of 2s). And this can easily be defined in FS0 (using
primitive recursion on D) as the function

N–Ex (pDq, pSq).

Now a working measure of complexity can be associated with derivations, like
in the example above. In fact a pair of numbers m = (c, l) is used, but the com-
plexity is measured just by c; the other number, l, is the size of the derivation.
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First, I define the way the measure works with the ‘logical’ rules. This can be
done by defining classes as

M–Base , { (p0q, p1q) }
M–Step , { ((c, l), (c′, l′), (c′′, l′′)) |

l = Plus(Plus(l′, l′′), p1q),
c = Cr1 ((c′, l′), (c′′, l′′)) },

where

Cr1 ((p0q, l′), (p0q, l′′)) = p0q
Cr1 ((c′, l′), (p0q, l′′)) = (O,Plus(c′, l′′))

Cr1 ((p0q, l′), (c′′, l′′)) = (O,Plus(l′, c′′))

Cr1 ((c′, l′), (c′′, l′′)) = (O,Plus(c′, c′′)).

Then the ‘logical’ rules are extended as

BasicC , { (s,m) | s ∈ Basic,m ∈ M–Base }
Logic–rC , { ((s,m), (s′,m′), (s′′,m′′)) |

(s, s′, s′′) ∈ Logic–r ∪ Struct–r ,
(m,m′,m′′) ∈ M–Step }.

Here Struct–r has been added to the logical rules for the sake of convenience.
With the definitions so far c, the complexity measure, will not take any value
other than p0q. If it ever takes a value other than p0q then it will grow, but so
long as only the ‘logical’ rules and basic are used, this cannot happen. This is
exactly the right behaviour, since a derivation that does not use cut will thus
have an complexity measure of p0q.

I want to use c to track information about cuts in the derivation, and the
modified form of the cut rule has not been defined yet. Before doing so, a
function that measures the number of connectives in a formula is needed, and
this is defined as a solution to the equations

Comp(pPnq) = p0q
Comp(p¬Aq) = (O,Comp(pAq))

Comp(pA ∨Bq) = (O,Plus(Comp(pAq),Comp(pBq))).
Then the new form of the cut rule can be defined as

Cut–rC , { (((g, d), (c, l)), ((g′, (a, d′)), (c′, l′)), (((a, g′′), d′′), (c′′, l′′))) |
(g, d) ∈ Seq,
g′ @ g, d′′ @ d, d′ @ d, g′′ @ g,
c = Cr2 ((c′, l′), (c′′, l′′),Comp(a)),
l = Plus(Plus(l′, l′′), p1q) },

where

Cr2 ((p0q, l′), (p0q, l′′), n) = N–Ex (n,Plus(l′, l′′))

Cr2 ((c′, l′), (p0q, l′′), n) = N–Ex (n,Plus(c′, l′′))

Cr2 ((p0q, l′), (c′′, l′′), n) = N–Ex (n,Plus(l′, c′′))

Cr2 ((c′, l′), (c′′, l′′), n) = N–Ex (n,Plus(c′, c′′))
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So the definition of SCC is

SCC , I2(BasicC ,Logic–rC ∪ Cut–rC),

and I can show that

x ∈ SC ↔ ∃m[(s,m) ∈ SCC ]. (2)

§ 6.5 Reducing the Complexity of a derivation Now I prove the lemma,

(s, (c, l)) ∈ SCC → (s, (p0q, l)) ∈ SCC ∨
∃c1, l1[c1 < c ∧ l1 < c ∧ (s, (c1, l1)) ∈ SCC ], (3)

which is essentially the theorem itself; however, in order to do this I need to
use induction, and induction is not available over such formulae in FS0. The
solution is to define a a class,

SC ∗
C , { (s, (c, l)) | (s, (p0q, l)) ∈ SCC ∨

∃c1, l1[c1 < c ∧ l1 < c ∧ (s, (c1, l1)) ∈ SCC ] },

which is equivalent to the consequent of (3) and then then it is possible to prove
the equivalent statement:

SCC ⊂ SC ∗
C .

The base case The base case is trivial. I have to show that

sC ∈ BasicC → sC ∈ SC ∗
C ,

and can argue thus:
sC ∈ BasicC → sC = (s,m) ∧ s ∈ Basic ∧m ∈ M–Base

[for some s and m]
→ m = (p0q, p1q)
→ (s, (p0q, p1q)) ∈ SCC

→ sC ∈ SC ∗
C .

The step case This is more complicated. I have to show that, given

s′C ∈ SC ∗
C , (4)

s′′C ∈ SC ∗
C , (5)

(sC , s
′
C , s

′′
C) ∈ Logic–rC ∪ Cut–rC , (6)

it follows that
sC ∈ SC ∗

C .

I can do this by analysing a hierarchy of cases. The transformations are well
known, and there seems little point in describing all of them, so I will give the
general procedure, and then discuss one of the most complicated cases in detail;
the others follow the same pattern.
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By (4) and (5), given s′C = (s, (c, l)) and s′′C = (s′′, c′′, l′′)), there are
(s′, (c′1, l

′
1)) and (s′′, (c′′1 , l

′′
1 )) in SCC and either one of c′ and c′′ is an encoded

natural number other than p0q or both of them are p0q.
Assuming the former, then either c′1 < c′ and l′1 < c′, and c′′1 ≤ c′′ and

l′′1 ≤ c′′ (depending on whether or not c′′ = p0q), or vice versa. By (6) I can
again separate into two subcases. If

(sC , s
′
C , s

′′
C) ∈ Logic–rC ,

then it is easy to show that

((s, (c1, l1)), (s
′, (c′1, l

′
1)), (s

′′, (c′′1 , l
′′
1 )) ∈ Logic–rC ,

where

c1 = Cr1 ((c′1, l
′
1), (c

′′
1 , l

′′
1 ))

l1 = (O,Plus(l′1, l
′′
1 ))

and to show that sC ∈ SC ∗
C I have only to show that c1 < c and l1 < c, which

is a matter of simple manipulation.
Alternatively, if (sC , s

′
C , s

′′
C) ∈ Cut–rC , then the argument follows the same

pattern, except that the new values are

c1 = Cr2 ((c′1, l
′
1), (c

′′
1 , l

′′))

l1 = (O,Plus(l′1, l
′′
1 )).

Now consider when both c′ and c′′ are p0q. Again, by (6) there are two
subcases: (sC , s

′
C , s

′′
C) is in either Logic–rC or Cut–rC . In the first case it is

easy to show that c is also p0q. The cut rule is the interesting case — then the
final derivation of sc = ((g, d), (c, l)) has to be of the form

((g′, (a, d′)), (p0q, l′)) (((a, g′′), d′′), (p0q, l′′))
Cut–rC ,

((g, d), (c, l))

where

g′ @ g, d′′ @ d, d′ @ d, g′′ @ g,

c = Cr2 ((p0q, l′), (p0q, l′′),Comp(a)),

l = (O,Plus(l′, l′′)).

The proof proceeds by analysing the ways that ((g′, (a, d′)), (p0q, l′)), or more
briefly s′C , might have been derived. Most of these cases are very similar, so
only one (the most complicated, and the reason why transfinite induction is
used) will be considered here. First note that, because c′ = p0q, s′C cannot
have been derived using Cut–rC , and that there is a case for each of the other
original rules of SC , i.e. basic, Lor–r , etc.

Consider the case where s′C is derived by Ror–r , i.e. a = ((Disj, (aL, aR))
and ((g′, ((Disj, (aL, aR)), d

′)); then(p0q, l′)) is shown to be in SCC by

((g′, (aL, (aR, d
′))), (p0q, l′′′)) ((g′, (aL, (aR, d

′))), (p0q, l′′′))
Ror–r .

((g′, ((Disj, (aL, aR)), d
′)), (p0q, l′))
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Then there are two possible ways that (((a, g′′), d′′), (p0q, l′′)) could have
been derived: either by a thinning or ‘right’ rule, or by Lor–r — it is not
possible for Lneg–r to derive a sequent with a disjunction as principle formula.
Consider the case when Lor–r was the rule used; then the principle formula is
a′ = a; i.e. the derivation is:

(((aL, g
′′′), d′′

′
), (p0q, l′′′)) (((aR, g

′′′′), d′′
′′
), (p0q, l′′′′))

Lor–r ,
((((Disj, (aL, aR)), g

′′), d′′), (p0q, l′′))

where
g′′

′ @ g′′, d′′
′ @ d′′, g′′

′′ @ g′′, d′′
′′ @ d′′.

An alternative derivation for sC is

((g, (aR, d)), (c
′
1, l

′
1)) (((aR, g

′′′′), d′′
′′
), (p0q, l′′′′))

Cut–rC ,
((g, d), (c1, l1))

where

((g′, (aL, (aR, d
′))), (p0q, l′′′)) (((aL, g

′′′), d′′
′
), (p0q, l′′′))

Cut–rC
((g, (aR, d)), (c

′
1, l

′
1))

Then all that is left to be done is to check that these are proper derivations and
that c1 < c and l1 < c, which is not hard.

§ 6.6 Eliminating the cuts Now, with lemma (3), it is an easy matter to
prove that

(s, (a, l)) ∈ SCC → ∃l[(s, (p0q, l)) ∈ SCC ] (7)

and, finally, that

(s, (p0q, l)) ∈ SCC → s ∈ SCCF. (8)

Then by composing (2), (7) and (8), the theorem, (1), follows.

§ 7 Using Metatheory

With a proof of the Hauptsatz available, the next question is: ‘of what use is
the result to practical people?’1.

The most immediate application is to show the consistency of SC ; given (1)
it is not hard to show that not every sequent is derivable in SC ; e.g.

p⊢ ¬(A ∨ ¬A)q /∈ SC ,

1Strictly speaking, the answer to this question is: ‘not much, since no one, in practice, is
interested in propositional logic, and anyway the various corollaries discussed here all have,
for the propositional case, easier proofs that do not need the Hauptsatz.’ However scaling
the proof up for predicate logic, where the same results much more usefully hold, is not hard;
the problem of dealing with bound variables in predicate logic is an independent, though
large, problem — bound variables do not introduce anything new into the proof presented
here, though they do make case analysis quite a bit bigger. The issue of how to treat bound
variables in FS0 is explored in [13] and [14].
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since if a formula is in SC it is in SCCF , and an analysis of cases shows that
this formula cannot be derived in SCCF .

This proof of the consistency is one example of a range of practical corol-
laries of the result. The most important after consistency is probably either
Herbrand’s theorem or the interpolation theorem [6]. The commonest justifica-
tion for proof development systems is formal software verification, an activity
which needs particularly powerful tools for structuring and combining collec-
tions of theories. The interpolation theorem is precisely the tool needed to track
the relationships in such collections.

Showing the consistency of the implementation is something that can be
done without considering the structure of the proof of the Hauptsatz itself,
however an important point about the proof is that it is constructive. This is
significant if, for instance, it is used to build a proof of the interpolation theorem,
since one might then actually want to use the proof to extract interpolants.
Unfortunately there are problems with this: if the proof here is considered as a
program it is not a very good one — the problem is not the size of the complexity
measure, which is a fairly accurate assessment2 of the upper bound on the
computation (and the bound is enormous — far outside the bounds of feasible
computation — though it should be remembered that it is for a worst case),
but that it is ‘sloppily coded’, i.e. from a programmer’s point of view it does
not do as much work on each iteration as it might, and it has bad normalisation
properties. However these are programming rather than mathematical issues
and (the second at least) can be addressed by the programmer’s slogan, ‘get it
right, then make it fast’ — a proof in hand can always be optimised if and as
necessary.

§ 8 Related work

Related work divides into several parts: there is complementary work that has
been done in FS0, and there is work on frameworks, and on doing, and using,
metatheory in other proof development systems.

§ 8.1 Using FS0 as a framework This paper can be thought of as com-
plementary to [14], where a full sequent calculus of first order logic is presented
and the problems of working on a machine are discussed in more detail. In that
paper a much simpler metatheorem (the existence of equivalent prenex normal
forms for formulae) is discussed — the intention of the paper is rather to look
at how it is possible to work with a formalised binding mechanism. The issues
are also examined in my thesis [13]. So far as I, or Feferman, knows, this is the
only work which has been done on practical applications of FS0 as a framework.

§ 8.2 Other work similar to FS0 The approach of FS0 can be traced back
to the work of Post in the thirties. He was the first to formalise the idea of
a proof system as a recursively enumerable set, and his work was built on by
Smullyan in the sixties. Their intention, however, was to capture the idea of
a derived formula; they did not really look at the possibility of doing proof
theory in their proposed systems, even in theory. Gödel, who had slightly
different concerns at the time, must, for his incompleteness results, have been

2At least for predicate logic — see the previous footnote.
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the first to do this. The first suggestion that such a theory might be actually
be used, as the basis of a mechanical proof development system, was by Davis
and Schwartz [7], but their paper does not convincingly address the practical
issues involved.

More recently Basin and Constable, in [2], have suggested an approach that
is in many ways similar to what is described here: the chief difference is that
they define a logic in terms of an abstract data type, rather than building it
explicitly, and they do not concern themselves particularly with the logic used
to treat this data type — they happen to use a type-theoretic approach (with
abstract data types implemented as Σ-types) but this seems to be incidental,
they insist only on a constructive metatheory sufficiently powerful to support
such abstraction. They also point out that the FS0 approach can be directly
formulated in their system using inductive types. This is true, but ignores one
intended purpose of FS0, which is to give a simple, finite, description of what
exactly a formal system is. Also, as is pointed out below in section § 9, while the
enormous proof theoretic strength of their supporting system is useful, it does
not seem to be necessary for most purposes. However, one definite advantage
of using abstract data types is that there are no ‘quirks’ like those mentioned,
for example, in the definition of Ror–r above.

§ 8.3 Research in type-theoretic frameworks The largest body of work
on theories suitable for use in framework proof development systems must be
that based on type theories. This work goes back to the Automath project,
which is surveyed in [8], and details of the theories that were used can be found
in [24]. More recently, work at Edinburgh has built on this with the ‘Edinburgh
Logical Framework’ (also called LF ); details of the theory of this can be found
in [11], and a collection of worked examples is described in [1].

The idea is to exploit the idea of an isomorphism between propositions
and types, so that terms inhabiting a type are isomorphic to proofs of the
corresponding proposition. The great advantage of this is that substitution for
terms and formulae comes practically for free, since there is already a general
substitution mechanism available in the lambda calculus facilities that come
with the type theory. This is a very flexible approach, but it does have some
problems: it is not always possible to take a presentation as given and encode
it directly and intuitively in the LF; skill, and knowledge of proof theory may
be needed, and the resulting encoding may not obviously correspond to the
original presentation.

There is also the fact that the LF is not very good for doing metatheory: it
cannot deal with the notion of an admissible rule (though simple derived rules
are certainly possible). However it is not really fair to criticise the system for
this, since it was developed with different concerns in mind. In particular the
type theory it is based on was deliberately chosen to be as weak as possible so
that it would be easier (or even just become possible) to develop various sorts
of uniform proof procedures — it is intended to be used with tactics rather
than metatheory; see, for instance, [19]. This does not mean that it is not
possible to do general metatheory in any LF style system. LF is a fragment of
the very powerful Calculus of Constructions, it is possible to move an encoding
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(carefully) into this and make use of the more powerful facilities there to develop
metatheoretic results, such as admissible rules —- in fact Taylor works through
some small examples of this approach in [23], where he develops a pair of verified
tactics for the theory of semigroups. Pollack, in unpublished work, has also
considered a proof of the deduction theorem (this is also done with FS0 in [13]).
Similar ideas are implicit in the work of Basin and Howe [3] which looks at how
to use a (very powerful) Martin-Löf style type theory as a LF style framework.

Other work that uses lambda calculus style frameworks, but does not use
the notion of propositions as types, can be found also in work on Isabelle [18],
and Lambda Prolog [16], systems based on higher order intuitionistic logic.

Clearly then, it is a matter of choice and circumstance whether a type-
theoretic, or Post-style, framework is suitable for some particular piece of work.

§ 8.4 Miscellaneous work There is also other less classifiable work that
should be mentioned. In [5], Boyer and Moore develop, and describe the imple-
mentation of, a metatheorem as an extension to their theorem prover, Nqthm.
The work is very similar to the example explored in section § 1; their system
relies on a uniform proof procedure supplemented with a powerful lemma facil-
ity, and they look at how it can be modified so that a whole class of lemmas
characterised by a single metatheorem can be added, so as to avoid having to
add, piecemeal, each instance that is needed to prove some particular theorem.
They do not do this by using a framework logic, but by taking advantage of the
fact that their theorem prover is implemented in a system that is an extension
of the system it proves theorems about. Thus they use the system to prove the
theorem and then ‘reflect’ (they do not use the word) it into the implementa-
tion. This is interesting, not only because it is a practical example of using
metatheory to extend a theorem prover, but also because it works with a logic
that is, in many ways, similar to FS0 in that it resembles Lisp restricted to
primitive recursive functions3.

Another example of metatheory in Nqthm is the proof, by Shankar [21], of
the Church-Rosser theorem. The distinction here is that this is metatheory as
mathematics for its own sake, rather than as a means for making work in the
object theory easier. However it is one of the most substantial metatheoretic
results that has been formalised and machine checked. Also, similar work done
by Berardi in a LF-style framework is described in [4].

§ 9 Conclusions

The point of this paper is to try to show that FS0 does what Feferman claims it
should; it provides a simple and flexible characterisation of the idea of a formal
theory, and it can be used as a framework in which it is practically possible to
formalise a theory, prove theorems of that theory, and also prove substantial
metatheorems about it — especially metatheorems that might help a user in
proving further theorems in the theory.

§ 9.1 Doing metatheory As I said earlier, Girard mentions in passing that
a proof of the Hauptsatz in PRA is possible but impractically long. And this

3Since then, however, Nqthm has been extended with a more powerful induction principle
using ordinal notations, though so far as I know this has not as yet been needed.
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is after he has developed, in considerable detail, the machinery of a Gödel
encoding of the sequent calculus, etc. The proof sketched here is developed from
first principles in a theory which is a conservative extension of PRA and is a
practical proposition for machine proof. (Admittedly, I only treat propositional
logic here, not full predicate logic, but the proof can easily be extended, and
as argued in [14], a binding mechanism can be dealt with in FS0). One can
also argue that the Hauptsatz is almost a ‘one off’ piece of metatheory: the
amount of effort needed to prove it is exceptional, since a lot of the other results
that one might want are corollaries of it. In particular, many metatheorems
corresponding to admissible rules become available with little more work.

One might wonder if the proof would have been easier if I had not been
restricted to using only Σ0

1-induction, and clearly this does make things slightly
more complex than they would otherwise be, e.g. there would be no need to
worry about giving an explicit bound on the induction. But an explicit bound
is a useful thing to have, since it provides a measure of the complexity of an
algorithm (and in this case shows that in general it is far outside the limits of
what is practically computable). If it was felt to be necessary, however, there
are simple ways to extend FS0 to allow much stronger induction principles —
though at the cost of non-finitist proofs.

There are some problems with using FS0 that perhaps cannot be properly
fixed: any attempt to interpret the resulting proofs as programs is going to find
that they do not have very good normalisation properties, simply because of
the nature of a primitive recursive/inductive theory. There are some ways that
the theory could be extended to improve the problem, but perhaps only at the
cost of damaging it in other ways by making it much more complex, and such
aesthetic considerations are practically important for instance, for pedagogic
reasons (another intention behind the theory) or if one were to try, as Feferman
has suggested, to prove the second incompleteness theorem.

§ 9.2 Further work There are many possible directions of further work.
My current intention is to implement a version of Talcott’s theory of binding
structures [22]. This is a sufficiently general framework so that it should be
easily reusable for any particular theory that a user wants to implement and
would provide an effective answer to the criticism that there is no facility for
handling substitution in FS0. Beyond that I have no specific plans. The obvious
project is a full machine checked proof of cut elimination, and an exploration of
some of its corollaries, such as the interpolation theorem. The other possibility
is a machine checked proof of the second incompleteness theorem, the other
basic result of syntactic metatheory. This would be interesting for itself, and
the machinery that would have to be developed along the way would, I believe,
be independently useful.
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