
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
Towards Automating Duality

Chris Brink & Dov Gabbay & Hans Jürgen Ohlbach

MPI–I–93–220 May 1993

���
�

�� k

I N F O R M A T I K

Im Stadtwald

W 6600 Saarbrücken

Germany

Author’s Address

Chris Brink
Dept. of Mathematics
University of Cape Town
7700 Rondebosch
South Africa
email: cbrink@maths.uct.ac.za

Dov M. Gabbay
Imperial College of Science, Technology and Medicin
Dept. of Computing
Huxley Building, 180 Queen’s Gate
London SW7 2AZ,
England
email: dg@doc.ic.ac.uk

Hans Jürgen Ohlbach
Max–Planck–Institut für Informatik
Im Stadtwald
D-6600 Saarbrücken 11
F. R. Germany
email: ohlbach@mpi-sb.mpg.de

Publication Notes

This paper has also appeared as a Research Report of the Department of Mathematics at the University
of Cape Town.

Acknowledgements

This work was supported by the ESPRIT project 3125 MEDLAR, by the “Sonderforschungsbereich” 314,
“Künstliche Intelligenz und wissensbasierte Systeme” of the German Research Council (DFG) and by the
BMFT funded project LOGO (ITS 9102).

Parts of the paper were written while the third author was visiting the University of Cape Town.
The second author is a SERC Senior Research Fellow.

Abstract

Dualities between different theories occur frequently in mathematics and logic — be-
tween syntax and semantics of a logic, between structures and power structures, be-
tween relations and relational algebras, to name just a few. In this paper we show for
the case of structures and power structures how corresponding properties of the two
related structures can be computed fully automatically by means of quantifier elimi-
nation algorithms and predicate logic theorem provers. We illustrate the method with
a large number of examples and we give enough technical hints to enable the reader
who has access to the Otter theorem prover to experiment herself.

Contents

1 Introduction 2

2 Power Structures and Dualities 4

3 A Brief Tutorial about Logic and Theorem Proving 6
3.1 Predicate Logic . 7
3.2 Resolution and Paramodulation . 8

4 A Framework for Automating Duality 10
4.1 The Top–Down Direction . 10
4.2 The Bottom–Up Direction . 11

5 Quantifier Elimination 13

6 The Theorem Prover Otter 15

7 Strategies and Heuristics for the Bottom–Up Direction 17
7.1 General Options for Restricting the Search Space . 18
7.2 The Ideal Search Procedure . 19

8 Examples 20
8.1 Binary Relations . 21
8.2 Ternary Relations . 36

9 Summary 48

1

1 Introduction

To any logic satisfying certain minimal requirements there corresponds both an algebra and a relational
semantics, and the general picture of such relationships can be presented as in the figure below.

Relational
structures

Logic Algebra
ALGEBRAIC LOGIC

CORRESPONDENCE
THEORY DUALITY THEORY

c
c

c
c

c
c

c
c

c
c

c
c

ccI

R#
#
#
#
#

#
#
#

#
#
#
#

##�

	

-�

As a paradigm case, consider the modal logic S4. Its algebraic counterpart is the variety of closure
algebras, related to the logic through the Lindenbaum/Tarski construction and an algebraic completeness
result. The Kripke semantics of S4, on the other hand, is given by the theory of quasi-orders (reflexive
transitive relations). Finally, quasi-orders and closure algebras are related to each other through a power
construction first used in a (now famous but long neglected) paper of Jónsson and Tarski [JT51][JT52].

Algebraic Logic, broadly speaking, stands in the tradition of the algebraization of classical proposi-
tional logic as the variety of Boolean algebras. This has been generalised to many extensions of classical
propositional logic (notably modal logics), yielding various Boolean Algebras with Operators ([Jón92]),
and also to variations on classical propositional logics (e.g. intuitionistic logic, relevance logic, many-
valued logics), typically yielding distributive lattices with operators. These propositional cases are fairly
well understood (Blok and Pigozzi [BP89]), but the problem of algebraization of first- and higher-order
logics has proved much more difficult. The cylindric algebras of Henkin, Monk and Tarski [HMT71]
[HMT85], the monadic algebras of Halmos [Hal62] and the work of Craig [Cra74] are all attempts to
present algebraic versions of first-order logic. For a comprehensive overview see Nemeti [Nem92].

Duality Theory, from the perspective of non-classical logic (Bull and Segerberg [BS84]), studies the
relationship between the semantics of a logic and its algebra, and how to obtain each from the other.
Typically, the semantics is defined with reference to some relational structure (sometimes called a frame,
or model structure); the corresponding algebra is obtained by a power construction, and from the algebra
the model structure can be recovered by imposing a relational structure on the set of ultrafilters. More
generally, duality theory studies the relationship between algebras and relational structures without
necessarily referring to any logic. The variety of relation algebras is a case in point. These algebras arose
in response to the problem posed by Tarski [Tar41] of finding equational axioms that would capture the
calculus of binary relations, in the same way as the axioms for Boolean algebras capture the calculus of
sets. Already in [JT51] [JT52] it was established that relation algebras stand in a duality relationship to

2

structures called generalized Brandt groupoids, whereas the relationship of algebras of relations to first-
order logic was only fully presented by Tarski and Givant in [TG87]. A different but related perspective
on duality is that of the topologist. Stone [Sto37] related Boolean algebras to topological spaces, and the
study of certain lattices and their topological duals became a topic of study in its own right (Johnstone
[Joh82]). Through the work of Priestley [Pri70] and Hansoul [Han83] this extends also to lattices with
operators, which are dual to topological spaces endowed with relational structure. By this route the
semantics of some logics are in full topological duality to their algebras.

Correspondence Theory (or definability theory) considers the classical definability of nonclassical for-
mulae (specifically propositional modal formulae) when viewed as relational principles (Van Benthem
[vB84]). The notion of expressing the ‘meanings’ of modalities in terms of a possible-world semantics
goes back to Kripke [Kri59], who coded principles of logic as properties of an accessibility relation between
possible worlds. More generally, the question arises which modal formulae define first-order relational
conditions - and how do they do it? Conversely, which first-order relational conditions are modally
definable?

The relevance of these well-established studies to Computer Science is gradually becoming clear. One
obvious application is to so-called program logics (e.g. dynamic logic, Kozen [Koz81]), many of which are
variations on modal or multi-modal logic. Such logics have been explicitly linked to Boolean algebras with
operators (Pratt [Pra90]), and suggestions have been made on the use of relation algebras for program
specification (Jónsson [Jón], Hoare and He Jifeng [HJ87]). Denotational semantics of programming
languages seems another promising area, particularly in view of the presentation of domain theory in
logical form (Abramsky [Abr87]), and the constructions required for powerdomains. Finally, formalisms
such as bilattices (Ginsberg [Gin88]) and various deontic and epistemic logics proposed for AI research
again fit the triangular pattern of logic-algebra-semantics. One recent example is that the independently-
conceived system KL-ONE for knowledge representation (Brachman and Schmolze [BS85]) can be viewed
as having a semantics of relations interacting with sets, and thus to have both a modal logic presentation
(Schild [Sch91]) and an algebraic one (Brink and Schmidt [BS92]).

The fact that there are well-established areas of research relating logic, algebra and semantics shows
that translation of individual formulae from a logical to an algebraic (equational) and to a structural (first-
order) version is not a trivial matter. Many such translations are known; all of these have been found by
traditional pencil-and-paper methods. Recently, however, Gabbay and Ohlbach [GO92] have proposed
to inject a measure of automated reasoning into the area, by the use of an algorithm (called SCAN)
for quantifier elimination in second-order logic. They give a number of examples from correspondence
theory, showing how Hilbert axioms may by means of SCAN be translated into first-order properties of
the accessibility relation.

The aim of this paper is to continue research in this area by considering the automation of duality
theory, in both directions. More particularly, it is to marry the use of SCAN to the concept of power
structures, presented in Brink [Bri92] as a useful cross-disciplinary unifying concept. Being ‘more math-
ematical’, we hope in this way to make the proposal of automation accessible also to mathematicians
unfamiliar with the intricacies of non-classical logics. It turns out that the methods for finding corre-
spondences between Hilbert axioms and properties of the relational structures (correspondence theory)
and for finding correspopnding properties for structures and power structures (duality theory) are almost
identical. Therefore this paper is as relevant to correspondence theory as it is to duality theory.

The mathematical theory of power structures is introduced in the next section. The ‘duality al-
gorithms’ make use of recent developments in resolution based theorem proving. Since the paper also
addresses mathematicians and logicians who might not be familiar with automated theorem proving,
we give a very brief overview on these topics in section 3, and in section 6 we introduce the theorem
prover Otter. Otter serves as our vehicle for making the algorithms work on a computer. The general
framework for automating duality is presented in section 4. The kernel of the algorithms, the quantifier
elimination algorithm, is introduced in section 5. Eventually we present a large number of examples.

3

2 Power Structures and Dualities

The theory of Boolean algebras with operators was introduced in Jónsson and Tarski [JT51],[JT52]. The
operators on the elements of the Boolean algebra are assumed to be additive in each argument. One way
in which a Boolean algebra with operators arises is as the power algebra of a relational structure. If a
relational structure is defined over some set A, then its power algebra is defined over the power set of A.
This power algebra is a Boolean algebra of sets, with the usual set-theoretic operations ∪, ∩ and ′, but
with additional operators on the Boolean algebra which are the power operations of the relations defined
over A.

Definition 2.1 For any set A, and any (n+1)-ary relation R ⊆ An+1, the power operation R↑ : P(A)n →
P(A) is defined by:

R↑(X0, . . . , Xn−1) = {xn | (∃x0 ∈ X0) . . . (∃xn−1 ∈ Xn−1)[Rx0 . . . xn]},

for every X0, . . . , Xn−1 ⊆ A.
For any relational structure A = (A;R1, . . . , Rm), the power algebra P(A) is defined by:

P(A) = (P(A);R↑
1, . . . , R

↑
m).

For example, if R is a binary relation, then R↑ : P(A)n → P(A) is defined by R↑(X) = {y | (∃x ∈
X)[Rxy]}. Adding the operations ∪, ∩ and ′ to the power algebra P(A) yields a Boolean algebra with

operators R↑
1, . . . , R

↑
m. Jónsson and Tarski further proved that all Boolean algebras with operators arise

in this fashion, thus obtaining a representation theorem.

Theorem 2.2 Any Boolean algebra with operators is isomorphic to a subalgebra of the power algebra of
some relational structure.

An operator on sets is called normal if whenever one of the arguments of the operator is the empty
set, then so is the outcome. A Boolean algebra with operators is normal if all its operators are normal.
For these algebras, the inverse of the power construction of definition 2.1 provides a mechanism to obtain
the underlying relational structure of the Boolean algebra with operators.

Definition 2.3 For any set A, and any n-ary operator F : P(A)n → P(A), the underlying (n+1)-ary
base relation F ↓ ⊆ An+1 is defined by:

F ↓x0 . . . xn−1xn iff xn ∈ F ({x0}, . . . , {xn−1}).

For any Boolean algebra P(A) with operators F1, . . . , Fm, the underlying relational structure A is
defined by:

A = (A;F ↓
1 , . . . , F

↓
m).

Theorem 2.4 For any relation R ⊆ An+1, (R↑)↓ = R, and for any normal and additive operator
F :P(A)n → P(A), (F ↓)↑ = F .

In the context of duality theory, the Jónsson/Tarski construction provides a mechanism to translate
between second-order properties defining the possible world semantics of a logic, and properties of oper-
ators defined on the Lindenbaum/Tarski algebra of the logic. The next two lemmas list a number of such
translations, the first between properties of a unary operation and its corresponding binary relation, and
the second between properties of a binary operation and its corresponding ternary relation. Traditional
proofs can be found in [Bri89]; our machine-generated proofs appear in section 8.

Lemma 2.5 Let F : P(U) → P(U) be normal and completely additive, and let R ⊆ U2 be F ↓, then
properties of R correspond to properties of F as (ii) to (i) below. Conversely, let R ⊆ U2 be any relation,
and let F = R↑, then F : P(U) → P(U) is normal and completely additive, and properties of F correspond
to properties of R as (i) to (ii) below.

4

(a) (i) ∀X ⊆ U : X ̸= ∅ ⇒ F (X) ̸= ∅,
(ii) Domain (R) = U ;

(b) (i) ∀X ⊆ U : X ⊆ F (X),
(ii) R is reflexive over U ;

(c) (i) ∀X ⊆ U : F (X) ⊆ X,
(ii) R is the identity relation over a subset of U ;

(d) (i) F : P(U) → P(U) is the identity function,
(ii) R ⊆ U2 is the identity relation;

(e) (i) E ⊆ U is a fixed point of F : F (E) = E,
(ii) (∃e ∈ E)[Rex] iff x ∈ E;

(f) (i) ∀X ⊆ U : F (F (X)) ⊆ F (X),
(ii) R is transitive;

(g) (i) ∀X ⊆ U : F (X) ⊆ F (F (X)),
(ii) R is dense [∀x, y ∈ U : Rxy ⇒ (∃z)[Rxz&Rzy]];

(h) (i) ∀X,Y ⊆ U : F (X)
∩
Y = ∅ iff X

∩
F (Y) = ∅,

(ii) R is symmetric;
(i) (i) F maps singletons onto singletons,

(ii) R is a unary operation over U ;
(j) (i) F is an involution over P(U),

(ii) R is an involution over U .

Notice that the function F is the algebraic counterpart of the 3–operator in modal logic. This becomes
clear when we compare the definition of F with the semantics of 3.

x ∈ F (X) ⇔ ∃x0 R(x0, x) ∧ x0 ∈ X
x |= 3X ⇔ ∃x0 R(x, x0) ∧ x0 |= X

The only difference is that the arguments of the R–relation are exchanged, which is due to different
tradition in the different communities.

Lemma 2.6 Let F : P(U)2 → P(U) be normal and completely additive, and let R ⊆ U3 be F ↓, then
properties of R correspond to properties of F as (ii) to (i) below. Conversely, let R ⊆ U3 be any relation,
and F = R↑, then F : P(U)2 → P(U) is normal and completely additive, and properties of F correspond
to properties of R as (i) to (ii) below.

(a) (i) F has no divisors of zero [∀X,Y ⊆ U : F (X,Y) = ∅ ⇒ X = ∅ or Y = ∅],
(ii) ∀x, y ∈ U,∃z ∈ U such that Rxyz;

(b) (i) F is commutative [∀X,Y ⊆ U : F (X,Y) = F (Y,X)],
(ii) F is (1, 2)-symmetric [∀x, y, z ⊆ U : Rxyz ⇒ Ryxz];

(c) (i) F is upper semi-idempotent [∀X ⊆ U : X ⊆ F (X,X)],
(ii) R is totally reflexive [∀x ⊆ U : Rxxx];

(d) (i) F is lower semi-idempotent [∀X ⊆ U : F (X,X) ⊆ X],
(ii) R is 3-prime [∀x, y, z ∈ U : Rxyz ⇒ z = x or z = y];

(e) (i) F is idempotent [∀X ⊆ U : F (X,X) = X],
(ii) R is totally reflexive and 3-prime;

(f) (i) F associates from left to right [∀X,Y, Z ⊆ U : F (F (X,Y), Z) ⊆ F (X,F (Y,Z))],
(ii) R2 associates from left to right

[∀x, y, z, u ∈ U : (∃v)[Rxyv ∧Rvzu] ⇒ (∃w)[Rxwu ∧Ryzw]]
Abbreviation: [R2(xy)zu⇒ R2x(yz)u];

(g) (i) F associates from right to left [∀X,Y, Z ⊆ U : F (X,F (Y, Z)) ⊆ F (F (X,Y), Z)],
(ii) R2 associates from right to left

[∀x, y, z, u, ∈ U : (∃w)[Rxwu ∧Ryzw] ⇒ (∃v)[Rxyv ∧Rvzu]]
Abbreviation: [R2x(yz)u⇒ R2(xy)zu];

(h) (i) F is associative,

5

(ii) R2 is associative [R2(xy)zu iff R2x(yz)u];
(i) (i) E ⊆ U is a left identity of F [∀X ⊆ U : F (E,X) = X],

(ii) E ⊆ U is a set of left identities of R [∀x, y ⊆ U : (∃e ∈ E)[Rexy] iff x = y].

Consider for example the modal logic S4. Its Kripke semantics is given by the theory of quasi-orders,
sometimes called S4-model structures, while its algebraic counterpart is given by the variety of closure
algebras. From any S4-model structure A = (A,R), with set of worlds A and quasi-order R, one obtains
a corresponding closure algebra P(A) = (P(A), R↑) with closure operator R↑. Properties of R then
translate to properties of R↑ as in lemma 2.5. For any closure algebra P(A) = (P(A), F) over the power
set of A, one obtains a corresponding S4-model structure A = (A,F ↓) with quasi-order F ↓. Properties
of F then translate to properties of F ↓ as in lemma 2.5.

As a second example, consider the relevance logic R¬, the logic obtained from the (standard) relevance
logic R ([AB75]) by adding a Boolean negation operation ¬. Its Kripke semantics is given by the theory
of R¬-relational structures, while its algebraic counterpart is given by the class of R¬-algebras. The
following definitions are from [Bri89].

Definition 2.7 An R¬-model structure is a relational structure
U = (U ;R,∗ , E), where R ⊆ U3, ∗ : U → U and E ⊆ U are such that:

(a) R is totally reflexive: Raaa,
(b) (1,2)-symmetric: Rabc⇒ Rbac,
(c) and has identity elements in E: (∃e ∈ E)[Reab] iff a = b,
(d) R2 is associative: (∃x)[Rabx &Rxcd] iff (∃y)[Rayd &Rbcy],
(e) ∗ is an involution: a∗∗ = a,
(f) and R and ∗ obey the rule: Rabc⇒ Rac∗b∗.

Definition 2.8 An R¬-algebra is an algebra A = (A;∨,¬, 1, ◦,∼, e) such that:
(a) (A;∨,¬, 1) is a Boolean algebra,
(b) ∼ is an involution: ∼∼ a = a,
(c) with the De Morgan properties: ∼ (a ∨ b) =∼ a∧ ∼ b,
(d) (A; ◦, e) is a commutative monoid,
(e) which is lattice-ordered: a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c),
(f) ◦ is upper semi-idempotent: a ≤ a ◦ a,
(g) and has the antilogism property: a ◦ b ≤ c iff (a ◦ ∼ c) ≤∼ b.

In order to show that R¬-algebras arise from R¬-model structures by way of the power construction, the
operations on R¬ must be additive. Since the De Morgan negation ∼ is not additive, definition 2.8 is
reformulated using the star operation ⋆ : A→ A, defined by

a⋆ =∼ ¬a,

instead of ∼. The new definition agrees with definition 2.8 above in all respects except these: ∼ is
replaced by ⋆, and axioms (b), (c) and (g) become, respectively:

(b)′ ⋆ is an involution: a⋆⋆ = a,
(c)′ which is additive: (a ∨ b)⋆ = a⋆ ∨ b⋆,
(g)′ ◦ has the property: a ◦ (b⋆) ≤ ¬c iff a ◦ (c⋆) ≤ ¬b.

The advantage of the alternative definition is that it turns an R¬-algebra into a Boolean algebra with
operators. Lemma 2.6 then provides the translation between properties of R and properties of ◦, and
between properties of ∗ and properties of ⋆.

3 A Brief Tutorial about Logic and Theorem Proving

The methods we are going to present in this paper rely heavily on recent developments in predicate
logic and resolution based theorem proving. Since the paper addresses mathematicians and logicians

6

who might not be that familiar with resolution based theorem proving, we give a very brief overview on
predicate logic and resolution based theorem proving. For more information we refer to the textbooks in
this area [CL73, Lov78, BB91, WOLB91].

3.1 Predicate Logic

Predicate Logic, as any other logic, is defined via specifying the syntax of the formulae and characterizing
the true formulae (tautologies) in some way. This can be done either by giving a model theoretic semantics
or by means of a procedure that characterizes the true formulae syntactically. An axiomatization in the
Hilbert style, a Gentzen calculus, a Resolution calculus are some of the syntax oriented options. If both
a semantics and a syntactic characterization of true formulae are given, they should agree on the same
formulae.

First–order predicate logic (PL1) is an extension of propositional logic. The logical connectives are
¬ (negation), ∧ (and), ∨ (or), ⇒ (implication) and ⇔ (equivalence). In addition we have the universal
quantifier ∀ and the existential quantifier ∃. The non–logical syntax elements are variables (usually written
x, y, z, u, v, w), constant symbols (written a, b, c, d), function symbols (written f, g, h, k) and predicate
symbols (written P,Q,R). Function and predicate symbols have a fixed arity. From variable, constant
and function symbols, terms are built according to the rules: (i) variable and constant symbols are terms
(ii) if t1, . . . , tn are terms and f is a function symbol of arity n then f(t1, . . . , tn) is a term. If t1, . . . , tn
are terms and P is a predicate symbol of arity n then P (t1, . . . , tn) is an atom. A literal is either an atom
P (t1, . . . , tn) or a negated atom ¬P (t1, . . . , tn).

PL1 formulae are built according to the rules (i) each atom is a formula, (ii) if Φ and Ψ are formulae,
x is a variable then ¬Φ, Φ ∧Ψ, Φ ∨Ψ, Φ ⇒ Ψ, Φ ⇔ Ψ, ∀x Φ and ∃x Φ are formulae.

While first–order predicate logic does not allow quantification over functions and predicates, this is al-
lowed in second–order predicate logic. In second–order predicate logic a formula like ∀P ∃f ∀x P (f(x), P, f)
is allowed.

The semantics of first–order predicate logic, developed by Alfred Tarski, assigns elements of a certain
set (‘domain’, ‘universe’ of the interpretation) to variable and constant symbols, n–place functions to n–
ary function symbols and n–place relations to n–ary predicate symbols. Terms are interpreted as function
applications, atoms as functions to boolean values and logical connectives as boolean functions. The
quantifiers are interpreted as expected. Each such assignment of mathematical objects to the syntactic
symbols yields an interpretation. Each formula is either true or false in each particular interpretation. If
it is true in an interpretation, this interpretation is called a model of the formula. Tautologies are formulae
which are true in all interpretations. Contradictions are formulae which are false in all interpretations.
A formula Φ entails Ψ (written Φ |= Ψ) iff Ψ is true in all models of Φ. The semantics of second–order
predicate logic is an extension of the semantics for PL1 in that variables can also be mapped to functions
and relations (this is extremely brief, things are more complicated.)

There are various normal forms of PL1–formulae. The one we shall use in the sequel is the conjunctive
normal form or clause form. A clause is simply a disjunction of literals L1 ∨ . . . ∨ Lm (usually written as
a set L1, . . . , Ln). An arbitrary PL1–formula can be transformed into a list (conjunction) of clauses by
the following rules:

1. eliminate all equivalence signs by the rule (Φ ⇔ Ψ) → (Φ ⇒ Ψ) ∧ (Ψ ⇒ Φ),

2. eliminate all implications by the rule (Φ ⇒ Ψ) → (¬Φ ∨Ψ),

3. move all negation signs in front of the atoms: (¬¬Φ) → Φ, (¬(Φ∨Ψ)) → (¬Φ∧¬Ψ), (¬(Φ∧Ψ)) →
(¬Φ ∨ ¬Ψ), (¬∀x Φ) → (∃x ¬Φ), (¬∃x Φ) → (∀x ¬Φ),

4. eliminate all existential quantifiers by the so called Skolemization operation: (∃xΦ) → (Φ[x/f(y1, . . . , yk)])
where y1, . . . , yk are the free variables occurring in Φ, f is a newly generated Skolem function, and
Φ[x/f(y1, . . . , yk)] means replacing all occurrences of x by f(y1, . . . , yk) in Φ,

5. drop all universal quantifiers,

7

6. use the distributivity rules ((Φ∨Ψ)∧Γ) → ((Φ∧Γ)∨(Ψ∧Γ)) and ((Φ∧Ψ)∨Γ) → ((Φ∨Γ)∧(Ψ∨Γ))
to move the ∧ sign up to the top.

3.2 Resolution and Paramodulation

The resolution calculus, invented by John Alan Robinson [Rob65b] with the two rules binary resolution
and factorization is a sound and refutation complete calculus operating on clauses: a PL1–formula is
contradictory if and only if there is a sequence of resolutions and factorizations producing the empty
clause as the elementary contradiction. This principle is used in many theorem provers for doing refutation
theorem proving fully automatically.

The resolution rule takes two clauses with complementary literals and generates a new clause.

L,K1, . . . ,Kk σ is the most general unifier
¬L′,M1, . . . ,Mm of L and L′

σK1, . . . , σKk, σM1, . . . , σMm

and the factorization rule generates a new clause from a clause with two ‘unifiable’ literals.

L,L′,K1, . . . ,Kk σ is the most general unifier of L and L′

σL, σK1, . . . , σKk

A unifier σ for two terms or literals L and L′ is a substitution for the variables in L and L′ that makes
them equal. σ is most general if it instantiates as few variables as possible. For example, a most general
unifier for P (x, f(y)) and P (g(z), z) is {x 7→ g(f(y)), z 7→ f(y)}.

Various modifications and refinements of resolution have been developed. The most important ones
for the purpose of this paper are UR–resolution (‘Unit Resulting’ resolution) and Hyperresolution. UR–
resolution takes a clause with n+ 1 literals (the ‘nucleus) and n unit clauses i.e. clauses with one literal,
such that a sequence of resolutions would produce a new unit clause [MOW76]. This sequence of resolu-
tions is done simultaneously.

The general schema for UR-resolution can be represented graphically as follows:

unit clauses: K1 · · · Kn

· · ·
resolvable with
simultaneous
unifier σ

‘nucleus’: L1 · · · Ln Ln+1

UR-resolvent: σLn+1

Boxes represent literals and a sequence of boxes represents a clause.
UR-resolution is not complete in general. It does not always find a proof if there exists one. An

extension of UR-resolution, hyperresolution, however is complete [Rob65a]. Instead of unit clauses,
hyperresolution takes as many clauses with positive (negative) literals only as the ‘nucleus’ has negative
(positive) literals, and generates by simultaneous resolution a new positive (negative) clause. A graphical
illustration is:

8

electrons: p p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p
¬K1 · · · ¬Kn p p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p

· · ·
resolvable with
simultaneous
unifier σ

nucleus: L1 · · · Ln ¬Ln+1 · · · ¬Ln+m

hyper-
resolvent: σp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p

· · · σp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p pp p p p p p p p p p p p p p ¬σLn+1 · · · ¬σLn+m

While UR- and hyperresolution have been invented to improve the search behaviour of theorem
provers, the so called paramodulation rule has a different quality [RW69]. Paramodulation builds the
meaning of the equality symbol directly into the calculus. In the simplest version, paramodulation takes
an equation a = b and a clause containing a and replaces the a by the b. If the terms contain variables and
the equation is only one literal in a longer clause, an appropriate generalization of this idea is necessary.
The general paramodulation rule is therefore:

L[t],K1, . . . ,Kk σ is the most general unifier
l = r,M1, . . . ,Mm of l and a term occurrence t in L
σL[t→ r], σK1, . . . , σKk, σM1, . . . , σMm L[t→ r]means the occurrence of t replaced by r

An example is
P (c, h(f(a, y), b)), Q(y) σ = {x 7→ a, y 7→ d}
f(x, d) = g(x), R(x) l is f(x, d), t is f(a, y)
P (c, h(g(a), b)), Q(d), R(a)

Paramodulation together with resolution and factorization are refutation complete for first order logic
with equality. Special versions of paramodulation turned out to be very useful. The most important
one is demodulation (or rewriting). In demodulation, the demodulant is a unit equation (unit clause with
equality literal) that is applied almost like paramodulation to simplify new clauses as soon as possible. The
differences to paramodulation are: (i) the demodulator is applied only from left to right, (ii) the unifier
must be a ‘matcher’, i.e. it instantiates only the variables in the demodulator and (iii) paramodulation
with the demodulator is done destructively, i.e. the old clause is deleted.

A typical application is: The demodulator is x × x−1 = 1 (we use infix notation here). A clause
P (f(y)× f(y)−1), Q(y) would be demodulated to P (1), Q(y) as soon as it appears in the search process,
whereas a clause P (f(y)×f(a)−1), Q(y) could not be demodulated because the y needs to be instantiated
with a, and this is not allowed (paramodulation would do this).

Further notions which are important for clausal theorem proving are tautology and subsumption. A
clause is a tautology if it contains a literal positive as well as negative. In refutation theorem proving
(the goal is to derive a contradiction from the axioms together with the negated theorem), tautologies
can (and should) be deleted as soon as possible. A clause A subsumes a clause B if an instance of A is
a subset of B. For example P (x) subsumes P (a), Q because the ‘x 7→ a’–instance of P (x) is a subset of
the second clause. Subsumed clauses can also be deleted without loosing refutation completeness. One
distinguishes forward subsumption — a newly generated clause which is subsumed by an older one is
deleted — and backward subsumption — all old clauses which are subsumed by a newly generated one
are deleted.

Inference rules like resolution and paramodulation are nondeterministic. There are in general many
alternatives in a clause set where they can be applied. Any implementation, however, has to apply them
in a certain order. This gives the possibility to use selection heuristics and strategies for improving the

9

performance of the system. Ordering strategies order the possible inference steps in a certain way, whereas
restriction strategies forbid certain inferences completely. The restriction strategy which is important for
our purposes is the so called set of support (SOS) strategy. The idea for this strategy came from the
observation that resolutions between axiom clauses will never produce a contradiction — if the axioms
are consistent. Therefore the SOS strategy starts with a distinguished subset of the initial clauses, the
set of support and allows only inferences if at least one of the partners is in the set of support. The new
clauses are put into the set of support again. The initial set of support has to be chosen by the user of
the theorem prover. Typical candidates for the initial set of support are the negated theorem clauses.

4 A Framework for Automating Duality

Developing dualities as for example

(b) (i) ∀X ⊆ U : X ⊆ F (X),
(ii) R is reflexive over U

from lemma 2.5 consists of four problems:

Top-Down Direction
1. Given (i), find a suitable candidate for (ii).
2. Verify the equivalence of (i) and (ii).

Bottom-Up Direction
3. Given (ii), find a suitable candidate for (i).
4. Verify the equivalence of (i) and (ii).

Up to now there was no method for solving the problems 1 and 3, except by pure guessing or by
very special methods in certain limited cases (Sahlquist formulae in modal logic, for example [vB84]).
Of course, people with experience in this quickly develop enough intuition for solving relatively simple
problems of this kind. The more complex the formulae are, however, the less reliable is the intuition.

In contrast to this, our method is fully automatic and solves the guessing problem together with the
verification problem in one go.

4.1 The Top–Down Direction

The top-down direction of the duality problem can be stated as follows: Given
(a) some functions F which are defined in terms of other relations and functions using the membership
predicate ∈:

(1) Def(F,R): ∀X1, . . . , Xn ∀x x ∈ F (X1, . . . , Xn) ⇔ Φ.

where Φ contains no occurrence of F , and
(b) a property Ψ(F) of F that can be formulated in first–order predicate logic using again the special
membership predicate ∈, find a formula Γ(R) such that

(2) Def(F,R) ⇒ Ψ(F) ⇔ Γ(R).

In the case of power structures, Def(F,R) is given by definition 2.1

(3) ∀X1, . . . , Xn ∀x x ∈ F (X1, . . . , Xn)) ⇔ ∃x1, . . . , xn x1 ∈ X1 ∧ . . . ∧ xn ∈ Xn ∧R(x1, . . . , xn, x)

The version we need for the examples in lemma 2.5 is

(4) ∀X ∀y y ∈ F (X) ⇔ ∃x x ∈ X ∧R(x, y)

Thus, the first requirement, a suitable predicate logic formulation for the definition of F is fulfilled in
the case of power structures.

10

The second requirement is that the property of F has to be formulated as a predicate logic formula in
terms of the ∈ predicate. The structure of this formula Ψ(F) must be such that application of Def(F,R)
as rewrite rule from left to right eliminates F completely and the resulting formula is of the structure

(5) Ψ′ = QX1, . . . , Xn Ψ′′(. . . ∈ X1, . . . , . . . ∈ Xn) or equivalently
(6) Ψ′ = QX1, . . . , Xn Ψ′′(X1(. . .), . . . , Xn(. . .))

where Q is an existential or a universal quantifier. In the version (6), the set variables Xi have been
replaced by their characteristic predicates. This brings to light the second–order nature of the problem
which had been hidden in the membership predicate. Since Def is an equivalence, rewriting Ψ(F) to
Ψ′(R) is an equivalence transformation in the theory of Def(F,R), i.e. Def(F,R) ⇒ Ψ(F) ⇔ Ψ′(R).

We illustrate this with the property (b)(i) of lemma 2.5: ∀X ⊆ U : X ⊆ F (X). First of all, the
property is reformulated in terms of the membership predicate

∀X ∀y y ∈ X ⇒ y ∈ F (X).

The condition X ⊆ U is obsolete because U denotes the whole domain of our interpretation. Now (4) is
applied as rewrite rule and we get

∀X ∀y y ∈ X ⇒ (∃x x ∈ X ∧R(x, y)).

or
∀X ∀y X(y) ⇒ (∃x X(x) ∧R(x, y)).

respectively. The function F is eliminated now, but the resulting second–order formula is not yet satis-

factory. What we are after is a first–order property in terms of the relation R. To this end, a formula
Γ(R) has to be found which is equivalent to Ψ′(R), but does not contain the predicate variables Xi.
This turned out to be the kernel of the problem. It can be solved by a quantifier elimination procedure
that computes for a second–order formula an equivalent first–order formula — if there is one and the
procedure succeeds. The particular quantifier elimination procedure we shall employ is discussed in some
detail in the next section.

To summarize, the recipe for the top-down direction is:

1. Formulate the definition of the functions F in the style of (1).
2. Formulate the property Ψ(F) in terms of the membership predicate.
3. Eliminate F from Ψ.
4. Replace the set variables Xi by their characteristic predicates.
5. Apply quantifier elimination.

4.2 The Bottom–Up Direction

In the bottom–up direction of the duality problem we want to compute from the property Γ(R) of the
relation R and the definition Def(F,R) for the function F a corresponding property Ψ(F). There are
two different methods for computing Ψ. In the first method we exploit that

(∃R Γ(R) ∧Def(F,R)) ⇔ Ψ(F)

implies
Def(R,F) ⇒ (Γ(R) ⇔ Ψ(F)

for the particular Ψ and R. This reduces the problem again to a quantifier elimination problem. The
quantifier ∃R has to be eliminated from ∃R Γ(R) ∧ Def(F,R)). If this succeeds, we are done. Unfor-
tunately it succeeds only in relatively simple cases. The reason is that both Def and Ψ are essentially
second–order formulae. Only if this second–order nature is not relevant there is a chance with this
method. An evidence for failure is that Γ(R) is recursive, as for example transitivity.

11

The second method is much more complicated and it needs some heuristic guidance. It consists of
a guessing and verification step. The guessing step, however, can be systematized such that the whole
procedure is again fully automatic.

In the guessing step a theorem prover is used for synthesizing a candidate formula as a Skolem term.
To this end, the connectives necessary to build Ψ(F) as a term are axiomatized as function symbols and
a formula

∃f ∀x x ∈ f

is proved constructively. The binding Ψ(F) of f used in the proof is the desired candidate formula. We
enumerate the proofs and try to verify the generated formula with the top–down method. If there are
enough connectives available the correct result should eventually be found.

Usually there are different options for the formulation of Ψ. If it can be expected that Ψ can be
formulated in terms of the set connectives union, intersection, complement and subset, things are simpler.
The axioms for these connectives are:

∀X,Y ∀x x ∈ union(X,Y) ⇔ (x ∈ X ∨ x ∈ Y)
∀X,Y ∀x x ∈ intersection(X,Y) ⇔ (x ∈ X ∧ x ∈ Y)
∀X ∀x x ∈ complement(X) ⇔ (¬x ∈ X)
∀X,Y ∀x x ∈ subset(X,Y) ⇔ (x ∈ X ⇒ x ∈ Y)

The subset connective is actually an abbreviation: subset(X,Y) = complement(X) ∪ Y and can be
used to model the normal subset relation as a function.

The input to the theorem prover consists of these axioms, together with Def(F,R) and Γ(R). The
theorem to be proven is ∃f ∀x x ∈ f . The result are proofs with bindings for f , for example f =
subset(F (X), F (F (X))), i.e. F (X) ⊆ F (F (X)).

Things get more complicated if the formula Ψ contains special predicates on sets and logical connec-
tives. The correspondence

(i) (i) F maps singletons onto singletons,
(ii) R is a unary operation over U

of lemma lemma 2.5 is such a case. In order to synthesize ‘F maps singletons onto singletons’ we must
axiomatize a predicate singleton, the connective implies and synthesize the term

implies(singleton(X), singleton(F (X))).

That means in particular that singleton must be defined as a function. This is only possible by means
of a Holds–predicate:

∀X Holds(singleton(X)) ⇔ ∀x, y x ∈ X ∧ y ∈ X ⇔ x = y

The axiom for the implication as function is

∀X Holds(implies(X,Y)) ⇔ Holds(X) ⇒ Holds(Y).

From axioms of this kind we could try to prove ∃fHolds(f). Unfortunately this approach turned out
to be intractable for technical reasons. Since automated theorem provers usually negate the theorem and
search for a refutation, the negation of ∃f Holds(f) which is ∀f¬Holds(f) is added to the formula set.
This causes the problem that all formulae with negated occurrence of Holds get subsumed and deleted.
The problem becomes unsolvable. Turning subsumption off is no solution because the search space gets
so terribly large that no interesting theorem can be proven.

A much more elegant solution comes from the possible worlds idea in modal logic. We make the
Holds–predicate and the ∈–relation world dependent. That means we use the definitions

∀w ∀X Holds(w, singleton(X)) ⇔ ∀x, y ∈ (w, x,X)∧ ∈ (w, y,X) ⇔ x = y
∀w ∀X Holds(w, implies(X,Y)) ⇔ Holds(w,X) ⇒ Holds(w, Y).

12

and prove a theorem ∃f ∀w Holds(w, f). From a logical point of view, this ‘world’–argument is redundant,
but it avoids the subsumption problem. The negated theorem ∀f∃w ¬Holds(w, f) gets Skolemized to
¬Holds(k(w), f) and does not subsume anything.

Summarizing, we propose the following procedure for computing Ψ(F) from Def(F,R) and Γ(R):

1. Try quantifier elimination for ∃R Def(R,F) ∧ Γ(R).
If this does not succeed:

2. Try to find a solution in terms of set connectives.

(a) Axiomatize the set connectives.

(b) From these axioms together with Def(F,R) and Γ(R) prove the theorem
∃f ∀x x ∈ f .

(c) Each binding for f is a candidate for Ψ(F) that needs to be verified with the top–down method.

3. Try to find a solution in terms of general connectives and predicates on sets.

(a) Axiomatize the connectives and the predicates on sets (for example ‘singleton’, ‘emptyset’ etc.)
with a world dependent Holds–predicate

(b) From these axioms together with Def(F,R) and Γ(R) prove the theorem
∃f ∀w Holds(w, f).

(c) Each binding for f is a candidate for Ψ(F) that needs to be verified with the top–down method.

The procedures will be illustrated in detail in the examples section.

5 Quantifier Elimination

In [GO92] we have developed an algorithm which can compute for second–order formulae of the kind
∃P1, . . . , Pk Φ where Φ is a first–order formula, an equivalent first–order formula — if there is one. Since
∀P1, . . . , Pk Φ⇔¬∃P1, . . . , Pk ¬Φ this algorithm can also be applied to our case. Related methods can
also be found in [Ack35a, Ack35b, Ack54, Sza92, BGW92, Sim93].

The definition of the algorithm is:

Definition 5.1 (The SCAN Algorithm)
Input to SCAN is a formula α = ∃P1, . . . , Pn ψ with predicate variables P1, . . . , Pn and an arbitrary
first–order formula ψ.
Output of the SCAN — if it terminates — is a formula φα which is logically equivalent to α, but not
containing the predicate variables P1, . . . , Pn.
SCAN performs the following three steps:

1. ψ is transformed into clause form.

2. All C–resolvents and C–factors with the predicate variables P1, . . . , Pn have to be generated. C–
resolution (‘C’ for constraint) is defined as follows:

P (s1, . . . , sn) ∨ C P (. . .) and ¬P (. . .)
¬P (t1, . . . , tn) ∨D are the resolution literals
C ∨D ∨ s1 ̸= t1 ∨ . . . ∨ sn ̸= tn

and the C-factorization rule is defined analogously:

P (s1, . . . , sn) ∨ P (t1, . . . , tn) ∨ C
P (s1, . . . , sn) ∨ C ∨ s1 ̸= t1 ∨ . . . ∨ sn ̸= tn

.

13

Notice that only C-resolutions between different clauses are allowed (no self resolution). A C-
resolution or C-factorization can be optimized by destructively resolving literals x ̸= t where the
variable x does not occur in t with the reflexivity equation. C–resolution and C–factorization takes
into account that second order quantifiers may well impose conditions on the interpretations which
must be formulated in terms of equations and inequations.

As soon as all resolvents and factors between a particular literal and the rest of the clause set have
been generated (the literal is ‘resolved away’), the clause containing this literal must be deleted
(purity deletion). If all clauses are deleted this way, this means that α is a tautology.

All equivalence preserving simplifications may be applied freely. These are for example:

• Tautologous resolvents can be deleted.

• Subsumed clauses can be deleted.

• Subsumption factoring can be performed. Subsumption factoring means that a factor subsumes
its parent clause. This may be realized by just deleting some literals. For example Q(x), Q(a),
where x is a variable, can be simplified to Q(a).

• Subsumption resolution can also be performed. Subsumption resolution means that a resolvent
subsumes its parent clause, and this again may be realized by deleting some literals [OS91].
For example the resolvent between P,Q and ¬P,Q,R is just Q,R such that ¬P can be deleted
from the clause.

If an empty clause is generated, this means that α is contradictory.

3. If the previous step terminates and there are still clauses left then reverse the skolemization. If this
is not possible, the only chance is to take parallel (second–order) Henkin quantifiers [Hen61].

<

The next example illustrates the different steps of the SCAN algorithm in more detail. The input is:
∃P ∀x, y ∃z (¬P (a) ∨Q(x)) ∧ (P (y) ∨Q(a)) ∧ P (z).
In the first step the clause form is to be computed:

C1 ¬P (a), Q(x))
C2 P (y), Q(a)
C3 P (f(x, y))

f is a Skolem function.
In the second step of SCAN we begin by choosing ¬P (a) to be resolved away. The resolvent between

C1 and C2 is C4 = Q(x), Q(a) which is equivalent to Q(a) (this is one of the equivalence preserving
simplifications). The C-resolvent between C1 and C3 is C5 = (a ̸= f(x, y), Q(x)). There are no more
resolvents with ¬P (a). Therefore C1 is deleted. We are left with the clauses

C2 P (y), Q(a)
C3 P (f(x, y))
C4 Q(a)
C5 a ̸= f(x, y), Q(x)

.

Selecting the next two P -literals to be resolved away yields no new resolvents. Thus, C2 and C3 are
simply to be deleted as well. All P -literals have now been eliminated. Restoring the quantifiers we then
get

∀x ∃z Q(a) ∧ (a ̸= z ∨Q(x))

as the final result.

The SCAN algorithm is correct in the sense that its result is really equivalent to the input formula.
It cannot be complete, i.e. there may be second–order formulae which have a first–order equivalent,

14

but SCAN cannot find it. This is not possible in general, otherwise the theory of arithmetic would be
enumerable.

The points where SCAN can fail are (i) the resolution does not terminate and (ii) reversing Skolem-
ization is not possible. In the second case there is a (again second–order) solution in terms of parallel
Henkin quantifiers.

6 The Theorem Prover Otter

Among the currently available tools which can be used for our purposes, the theorem prover Otter,
developed by Bill McCune, turned out to be the most appropriate one. We give a brief description of
those features of Otter which are relevant for our purposes. Most of it is taken from the Otter manual.
Those features which are not relevant for this paper are omitted. The reader who wants to experiment
with Otter can find the details in the Otter manual [McC89] or in [WOLB91].

Otter (Organized Techniques for Theorem-proving and Effective Research) is a resolution-style the-
orem prover, similar in scope and purpose to the aura [Smi88] and lma/itp [LO84] theorem provers,
all of them developed at Argonne National Laboratory. The primary design considerations have been
performance, portability, and compactness and simplicity of the code. The programming language C is
used.

Otter features the inference rules binary resolution, hyperresolution, UR-resolution, and binary
paramodulation. These inference rules take a small set of clauses and infer a clause; if the inferred clause
is new, interesting, and useful, it is stored and may become available for subsequent inferences.

Other features of Otter are the following:

• Statements of the problem may be input either with first-order formulas or with clauses (a clause
is a disjunction with implicit universal quantifiers and no existential quantifiers). If first-order
formulas are input, Otter translates them to clauses.

• Forward demodulation rewrites and simplifies newly inferred clauses with a set of equalities, and
back demodulation uses a newly inferred equality (which has been added to the set of demodulators)
to rewrite all existing clauses.

• Forward subsumption deletes an inferred clause if it is subsumed by any existing clause, and back
subsumption deletes all clauses that are subsumed by an inferred clause.

• Weight functions and lexical ordering decide the “goodness” of clauses and terms.

• Answer literals give information about the proofs that are found.

Otter is not automatic. Even after the user has encoded a problem into first-order logic or into
clauses, the user must choose inference rules, set options to control the processing of inferred clauses, and
decide which input formulas or clauses are to be in the initial set of support and which (if any) equalities
are to be demodulators. If Otter fails to find a proof, the user may wish to try again with different
initial conditions.

Otter uses the given-clause algorithm, which can be viewed as a simple implementation of the
set of support strategy. Otter maintains three lists of clauses: axioms, sos (set of support), and
demodulators. Otter appends clauses that have been given to usable rather than keeping them in a
separate list.
The main loop for inferring and processing clauses and searching for a refutation is

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

15

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

The procedure for processing a newly inferred clause new cl is

1. (optional) Output new_cl.

2. Demodulate new_cl.

3. (optional) Orient equalities.

4. Merge identical literals (leftmost copy is kept).

5. (optional) Sort literals.

6. (optional) Discard new_cl and exit if new_cl has too many literals.

7. Discard new_cl and exit if new_cl is a tautology.

8. (optional) Discard new_cl and exit if new_cl is too ‘heavy’.

9. (optional) Discard new_cl and exit if new_cl is subsumed by any clause

in axioms or sos (forward subsumption).

10. (optional) Apply unit deletion.

11. Integrate new_cl and append it to sos.

12. (optional) Output kept clause.

13. If new_cl has 0 literals, a refutation has been found.

14. If new_cl has 1 literal, then search axioms and sos for

unit conflict (refutation) with new_cl.

15. (optional) Print the proof if a refutation has been found.

16. (optional) Try to make new_cl into a demodulator.

17. (optional) Back demodulate if Step 16 made new_cl into a demodulator.

18. (optional) Discard each clause in axioms and each clause in sos that

is subsumed by new_cl (back subsumption).

19. (optional) Factor new_cl and process factors.

Steps 17–19 are delayed until steps 1–16 have been applied to all clauses inferred from the current
given clause.

Input to Otter consists of a small set of commands, some of which indicate that a list of objects
(clauses, formulas, or weight templates) follows the command. All lists of objects are terminated with
end of list.

set(flag name). % set a flag

clear(flag name). % clear a flag

assign(parameter name,integer). % assign an integer to a parameter

list(usable). % read axioms in clause form

list(sos). % read set of support in clause form

list(demodulators). % read demodulators in clause form

formula list(usable). % read axioms in formula form

formula list(sos). % read set of support in formula form

weight list(weight list name). % read weight templates
Otter recognizes two kinds of options: flags and parameters. Flags are Boolean-valued options; they

are changed with the set and the clear commands, which take the name of the flag as the argument.
Parameters are integer-valued options; they are changed with the assign command, which takes the
name of the parameter as the first argument and an integer as the second. Examples are

set(binary_res). % switch on binary resolution

clear(back_sub). % do not use back subsumption

assign(max_proofs, 300). % stop after the 300th proof

assign(max_weight, 100). % delete all clauses ‘heavier’ than 100.

Answer Literals

The main use of answer literals is to record, during a search for a refutation, instantiations of variables
in input clauses. For example, if the theorem under consideration states that an object exists, then the

16

denial of the theorem contains a variable, and an answer literal containing the variable can be appended
to the denial. If a refutation is found, then the empty clause has an answer literal that contains the
object whose existence has just been proved.

Any literal whose predicate symbol starts with $ans, $Ans, or $ANS is an answer literal. Most
routines—including the ones that count literals and decide whether a clause is positive or negative—
ignore any answer literals. The inference rules insert, into the children, the appropriate instances of any
answer literals in the parents. If factoring is enabled, otter does attempt to factor answer literals.

Weighting and Demodulation

The details of the input syntax should be self explaining in the examples (‘|‘ is used for ∨). In our
application, we need, however, a combination of weighting and demodulation which needs to be explained
in more detail. Suppose you want to get rid of clauses which contain terms of the kind F(F(...)), i.e.
double nesting of F should be avoided. This can be achieved simply by specifying a weighting template

weight_list(purge_gen).

weight(F(F(*1)),200).

end_of_list.

and setting the maximum weight, say to 100. Clauses containing such terms become ‘too heavy’ and
are deleted. (*n in the weighting templates means that the weight of the subterm is multiplied with n.
The weight of the term is then added to the second argument of the weight specification to get the final
weight.)

Things get more complicated, if clauses with particular terms are to be deleted, for example clauses
with terms s(p,s(q,p)) where p and q are arbitrary terms, but the two occurrences of p must be
identical. These clauses can be deleted by demodulating them to some term junk and making the term
junk too heavy:

list(demodulators).

(s(x,s(y,x)) = junk).

end_of_list.

weight_list(purge_gen).

weight(junk,200).

end_of_list.

Finally, in our application we avoid ‘junk proofs’ by rewriting $ans–literals to $T which stands for
truth and causes the clauses to be deleted as tautologies. For example

list(demodulators).

($ans(F(s(x,y))) = $T).

end_of_list.

causes all clauses with this pattern to be deleted immediately.

7 Strategies and Heuristics for the Bottom–Up Direction

The purpose of this paper is not only to explain the methods in general terms, but also to demonstrate
that it really works. Moreover we want to enable the reader who has access to a theorem prover like
Otter to experiment himself. A naive approach to such experiments, however, will definitely result in
frustration. To avoid frustration we have to give a number of more or less technical hints.

Let us briefly repeat the method for the bottom–up direction
In order to compute Ψ(F) from Def(F,R) and Γ(R):

1. Try quantifier elimination for ∃R Def(R,F) ∧ Γ(R).
If this does not succeed:

17

2. Try to find a solution in terms of set connectives.

(a) Axiomatize the set connectives:

∀X,Y ∀x x ∈ union(X,Y) ⇔ (x ∈ X ∨ x ∈ Y)
∀X,Y ∀x x ∈ intersection(X,Y) ⇔ (x ∈ X ∧ x ∈ Y)
∀X ∀x x ∈ complement(X) ⇔ (¬x ∈ X)
∀X,Y ∀x x ∈ subset(X,Y) ⇔ (x ∈ X ⇒ x ∈ Y)

(b) From these axioms together with Def(F,R) and Γ(R) prove the theorem
∃f ∀x x ∈ f .

(c) Each binding for f is a candidate for Ψ(F) that needs to be verified with the top–down method.

3. Try to find a solution in terms of general connectives and predicates on sets.

(a) Axiomatize the connectives and the predicates on sets with world dependent Holds–predicate
and world dependent ∈–predicate:

∀w ∀X,Y Holds(w, or(X,Y)) ⇔ (Holds(w,X) ∨Holds(w, Y))
∀w ∀X,Y Holds(w, and(X,Y)) ⇔ (Holds(w,X) ∧Holds(w, Y))
∀w ∀X Holds(w, not(X)) ⇔ (¬Holds(w,X)
∀w ∀X Holds(w, implies(X,Y)) ⇔ Holds(w,X) ⇒ Holds(w, Y).

∀w ∀X Holds(w, singleton(X)) ⇔ ∀x, y ∈ (w, x,X)∧ ∈ (w, y,X) ⇔ x = y
∀w ∀X Holds(w, empty(X)) ⇔ ¬∃x ∈ (w, x,X)
∀w ∀X Holds(w, notempty(X)) ⇔ ∃x ∈ (w, x,X).

The axioms for the set connectives, formulated with world dependent ∈–predicate may also
be necessary in general. For the examples in this paper they are not necessary.

(b) From these axioms together with Def(F,R) and Γ(R) prove the theorems
∃f ∀w Holds(w, f).

(c) Each binding for f is a candidate for Ψ(F) that needs to be verified with the top–down method.

The first trial, quanitifier elimination of ∃R Def(R,F) ∧ Γ(R) succeeds only in a few simple cases.
In the more complicated cases we have to apply the guess and verify method. The guessing part, which
amounts to enumerating proofs, requires some guidance to restrict the search space.

7.1 General Options for Restricting the Search Space

In the guessing part, a theorem prover synthesizes logical formulae as terms. If logical connectives
and predicates are encoded as function symbols, the theorem prover does not know about the theory
behind these symbols (boolean algebra). In our case, this does not cause any incompleteness because the
connectives are axiomatized properly. But it causes a lot of redundancy and useless steps. There are two
things one can do against this phenomena.

1. Use a sort mechanism with sorts Set and Bool to distinguish between predicates, logical connectives
and set variables. Typical sort declarations are:

singleton : Set→ Bool
implies : Bool ×Bool → Bool
union : Set× Set→ Set
F : Set→ Set

This avoids the generation of nonsense terms like singleton(singleton(X)).

If the theorem prover does not support sorts — and this is the case for Otter — there are two
possibilities to simulate the effect of sorts:

18

(a) Injection Functions
If there are no two sorts with common subsorts in the sort hierarchy, one can represent a term
s of sort B as a nested term A1(. . . An(B(s)) . . .) where A1 . . . AnB is the path in the sort
hierarchy from the top sort A1 to the actual sort B. This trick makes the unsorted unification
behave like sorted unification. In our case there are only the sorts Set and Bool. Terms s of
sort Set can be represented simply as Set(s) and terms t of sort Bool can be represented as
Bool(t). For example the definition of the singleton–predicate would be

∀w ∀X Holds(w,Bool(singleton(Set(X))))
⇔ ∀x, y ∈ (w, x, Set(X))∧ ∈ (w, y, Set(X)) ⇔ x = y.

(b) Unfortunately injection functions make the formulae almost unreadable Therefore we chose a
simpler method which is sufficient for our examples. Using a demodulator

(singleton(singleton(x)) = junk).

clauses with unwanted terms of this kind are deleted as soon as they are generated.

2. Ideally one would like to have the unification theory for boolean algebras for the logical connectives
and the set connectives in order to enable subsumption modulo this theory. If this theory is not
available, and this is usually the case, we must simulate the effect using demodulation. The idea
is: Each clause containing a term that can be simplified by pure logical means, in particular those
simplifying to true, can be deleted. The reason is that our axiomatization ensures that the simplified
version eventually gets generated anyway. Typical demodulators are:

(complement(complement(x)) = junk).
(implies(x, x) = junk).
(implies(x, implies(y, x)) = junk).
(subset(x, subset(y, x)) = junk).
. . .

7.2 The Ideal Search Procedure

The main parameter responsible for the size of the search space is the language, i.e. the set of connectives
we provide for formulating Ψ(F). In most cases of our example set, the subset connective is sufficient. If
in addition to this, union, intersection, complement etc. are axiomatized, the search space is blown up
for nothing. But the appropriate set of connectives is unknown in general. Therefore the first heuristic of
the general procedure is: Start several search processes in parallel on different processors, each one with
a different subset of the available connectives. In networks of workstations, this should be no problem.
Since we knew the solution for our examples below in advance, we tried only the relevant subset of
connectives and predicates.

Even with a limited number of connectives and predicates, we have to control the enumeration of
the proofs (even with a tight control, almost 2000 proofs had to be generated for the example a) with
ternary relations below before the right one appeared.) One way to control the enumeration of proofs
is by limiting the size of the terms during the search and increasing the limit step by step. In the ideal
search procedure, this might be the simplest way to do it. With the Otter theorem prover it turned
out to be more effective if certain nesting of terms are restricted. For example no case occurred so far
where nested subset connectives were needed. Limiting the direct nesting of set connectives and logical
connectives and increasing this limit step by step seems to work quite well.

In our example cases we applied the following heuristics:

1. No connectives inside the F–function are allowed.

2. No nested set connectives, logical connectives and set predicates are allowed. Of course, set predi-
cates like singletonmay occur inside logical connectives like implies. But terms like implies(. . . , implies(. . . , . . .))
were not allowed.

19

3. Control the nesting of the F–function

The restrictions 1 and 2 are the first level of the search. It is sufficient for the examples. Only F needs
to be nested more than once in some cases.

A reasonable and fair policy for enumerating the allowed syntactic structure for Ψ(F), however, has
yet to be worked out.

8 Examples

We go through the examples of lemma 2.5 and lemma 2.6 one by one and show the top–down and
bottom-up solutions together with the technical details necessary to repeat the experiment with the
Otter theorem prover. The list of examples was compiled (in [Bri89]) before our method had been
developed. Thus, this is not a selection of cases where our method just happens to work.

Let us briefly repeat the recipe for the top–down direction
1. Formulate the definition of the functions F in the style of (1) (page 10).
2. Formulate the property Ψ(F) in terms of the membership predicate.
3. Eliminate F from Ψ.
4. Replace the set variables by their characteristic predicates.
5. Apply quantifier elimination. The SCAN algorithm proceeds as follows:
6. If the formula is universally quantified: Negate it.
7. Generate a clause form.
8. ‘Resolve away’ all predicates to be eliminated and delete the pure clauses afterwards.
9. Reconstruct the quantifiers.
10. If the original formula had been negated, negate the result again.

The only example in our list which requires more than two or three resolution steps is example (f)
for ternary relations. We use this example to demonstrate the use of the Otter theorem prover for
performing quantifier elimination. In all the other examples quantifier elimination is done by hand.

The bottom–up direction has been discussed in detail in section 7. For lack of a particular optimized
version for this direction we use Otter as it is. The control parameters for Otter which are the same
for all examples are:

set(unit_deletion).

assign(max_proofs,2000).

assign(max_weight,100).

set(para_from).

All other parameters are listed for the examples separately. The following abbreviations are used for
the connectives and predicates:

e = membership relation ∈
H = Holds–predicate
ep = emptyset–predicate ∅
ne = not emptyset–predicate ¬∅
sg = singleton predicate
s = subset connective ⊆
i = implication ⇒.

The naming convention for variable symbols and constant symbols is: Variable symbols are taken
from the end of the alphabet u, v, w, x, y, z. Constant symbols which are generated from existential
quantifiers are written underlined. That means for example x is a Skolem constant stemming from a ‘∃x’
quantification.

Weightings and demodulators like

20

(i(x,x) = junk).

($ans(i(i(x,y),z)) = $T).

($ans(i(x,i(y,z))) = $T).

($ans(i(x,x)) = $T).

($ans(junk) = $T).

prevent the generation of nested connectives. (In a fully automated procedure this would be gradually
relaxed.)

The CPU times for most of the examples range from a few seconds to a few minutes on a Macintosh
IIfx. Only for example (a) for ternary relations, more than 1 hour was needed on a Solburn machine.

8.1 Binary Relations

We begin with the examples of lemma 2.5. They correlate a binary relation R with a unary function F .
The definition of F for this case (def. 2.1) is used as a rewrite rule:

(r1) (y ∈ F (X)) → (∃x x ∈ X ∧R(x, y))

Example a

(a) (i) ∀X ⊆ U : X ̸= ∅ ⇒ F (X) ̸= ∅,
(ii) Domain (R) = U

Direction (i) → (ii) (Top–Down)

Logical Formulation: (∃x x ∈ X) ⇒ (∃y y ∈ F (X))
Rewritten: (∃x X(x)) ⇒ (∃y (∃x X(x) ∧R(x, y)))
Negated and Clausified: X(x)

¬X(x),¬R(x, y)
X ‘Resolved Away’: ¬R(x, y)
Quantifiers Reconstructed: ∃x ∀y ¬R(x, y)
Negated again: ∀x ∃y R(x, y) (which means domain(R) = U)

Direction (ii) → (i) (Bottom-Up)

First trial: Quantifier Elimination
∃R Γ(R) ∧Def(F,R) =
∃R (∀x ∃y R(x, y)) ∧ (∀y e(y, F (X)) ⇔ ∃x e(x,X) ∧R(x, y))

Clauses:
R(x, f(x))
¬e(y, F (X)), e(g(y), X)
¬e(y, F (X)), R(g(y), y)
¬e(x,X),¬R(x, y), e(y, F (X))

R resolved away
¬e(y, F (X)), e(g(y), X)
¬e(x,X), e(f(x), F (X))

Quantifiers reconstructed:
∀y e(y, F (X)) ⇒ ∃z e(z,X)
∀x e(x,X) ⇒ ∃y e(y, F (X))

The set notation of the combined formula is:
(∃x x ∈ X ⇔ (∃y y ∈ F (X)) which implies X ̸= ∅ ⇒ F (X) ̸= ∅

21

Although the quantifier elimination trial was successful, we also show the theorem prover version. It
illustrates the use of the world dependent Holds–predicate.

Otter Protocol:

set(binary_res).

formula_list(usable).

(all w (all z (all X (e(w,z,F(X)) <-> (exists x (e(w,x,X) & R(x,z))))))).

(all w (all X (all Y (H(w,i(X,Y)) <-> (H(w,X) -> H(w,Y)))))).

(all w (all X (H(w,ne(X)) <-> (exists x e(w,x,X))))).

end_of_list.

formula_list(sos).

(all x (exists y R(x,y))).

-(exists f (all w (H(w,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

7 -e(w,z,F(x1)) | e(w,$f1(w,z,x1),x1). 8 -e(w,z,F(x1)) | R($f1(w,z,x1),z).

9 e(w,z,F(x1)) | -e(w,x,x1) | -R(x,z). 10 -H(w,i(x2,x3)) | -H(w,x2) | H(w,x3).

11 H(w,i(x2,x3)) | H(w,x2). 12 H(w,i(x2,x3)) | -H(w,x3).

13 -H(w,ne(x4)) | e(w,$f2(w,x4),x4). 14 H(w,ne(x4)) | -e(w,x,x4).

end_of_list.

list(sos).

15 R(x,$f3(x)).

16 -H($f4(x5),x5) | $ans(x5).

end_of_list.

% Heuristic: Avoid double nestings of i,F,ne.

weight(i(i(*1,*1),*1),200). weight(i(*1,i(*1,*1)),200).

weight(F(F(*1)),200). weight(ne(ne(*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (i(x,x) = junk). 2 ($ans(i(i(x,y),z)) = $T).

3 ($ans(i(x,i(y,z))) = $T). 4 ($ans(i(x,x)) = $T).

6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

9 e(x,y,F(z)) | -e(x,u,z) | -R(u,y).

11 H(x,i(y,z)) | H(x,y).

12 H(x,i(y,z)) | -H(x,z).

13 -H(x,ne(y)) | e(x,$f2(x,y),y).

14 H(x,ne(y)) | -e(x,z,y).

15 R(x,$f3(x)).

16 -H($f4(x),x) | $ans(x).

17 [binary,15,9] e(x,$f3(y),F(z)) | -e(x,y,z).

19 [binary,16,12] $ans(i(x,y)) | -H($f4(i(x,y)),y).

21 [binary,16,11] $ans(i(x,y)) | H($f4(i(x,y)),x).

26 [binary,19,14] $ans(i(x,ne(y))) | -e($f4(i(x,ne(y))),z,y).

30 [binary,21,13] $ans(i(ne(x),y)) | e($f4(i(ne(x),y)),$f2($f4(i(ne(x),y)),x),x).

48 [binary,17,26] -e($f4(i(x,ne(F(y)))),z,y) | $ans(i(x,ne(F(y)))).

22

49 [binary,48,30] $ans(i(ne(v64),ne(F(v64)))).

------------ end of proof -------------

In set notation, the answer is ∀X X ̸= ∅ ⇒ F (X) ̸= ∅

Example b

(b) (i) ∀X ⊆ U : X ⊆ F (X),
(ii) R is reflexive over U

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀y y ∈ X ⇒ y ∈ F (X)
Rewritten: ∀y X(y) ⇒ (∃x X(x) ∧R(x, y))
Negated and Clausified: X(y)

¬X(x),¬R(x, y)
X ‘Resolved Away’: ¬R(y, y)
Quantifiers Reconstructed: ∃y ¬R(y, y)
Negated again: ∀y R(y, y)

Direction (ii) → (i) (Bottom-Up)
First trial: Quantifier Elimination

∃R Γ(R) ∧Def(F,R) =
∃R (∀x R(x, x)) ∧ (∀y e(y, F (X)) ⇔ ∃x e(x,X) ∧R(x, y))

Clauses:
R(x, x)
¬e(y, F (X)), e(g(y), X)
¬e(y, F (X)), R(g(y), y)
¬e(x,X),¬R(x, y), e(y, F (X))

R resolved away
¬e(y, F (X)), e(g(y), X)
¬e(x,X), e(x, F (X))

Quantifiers reconstructed:
∀y e(y, F (X)) ⇒ ∃x e(x,X)
∀x e(x,X) ⇒ e(x, F (X)

The logical notation of the second formula (the first one is true anyway) is:
∀x x ∈ X ⇒ x ∈ F (X) which means nothing else than X ⊆ F (X)

Again we list the result of the guess and verify procedure.

Otter Protocol

set(binary_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

end_of_list.

formula_list(sos).

(all x R(x,x)).

-(exists f (all z (e(z,f) & -$ans(f)))).

23

end_of_list.

Clauses:

list(usable).

6 -e(z,F(x1)) | e($f1(z,x1),x1). 7 -e(z,F(x1)) | R($f1(z,x1),z).

8 e(z,F(x1)) | -e(x,x1) | -R(x,z). 9 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

10 e(z,s(x2,x3)) | e(z,x2). 11 e(z,s(x2,x3)) | -e(z,x3).

end_of_list.

list(sos).

12 R(x,x). 13 -e($f2(x4),x4) | $ans(x4).

end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(F(*1)),200). weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

8 e(x,F(y)) | -e(z,y) | -R(z,x). 10 e(x,s(y,z)) | e(x,y).

11 e(x,s(y,z)) | -e(x,z). 12 R(x,x).

13 -e($f2(x),x) | $ans(x).

14 [binary,12,8] e(x,F(y)) | -e(x,y).

15 [binary,13,11] $ans(s(x,y)) | -e($f2(s(x,y)),y).

17 [binary,13,10] $ans(s(x,y)) | e($f2(s(x,y)),x).

33 [binary,14,15] -e($f2(s(x,F(y))),y) | $ans(s(x,F(y))).

35 [binary,33,17] $ans(s(v64,F(v64))).

------------ end of proof -------------

In set notation, the answer is X ⊆ F (X).

Example c

(c) (i) ∀X ⊆ U : F (X) ⊆ X,
(ii) R is the identity relation over a subset of U

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀y y ∈ F (X) ⇒ y ∈ X
Rewritten: ∀y (∃x X(x) ∧R(x, y))) ⇒ X(y)
Negated and Clausified: X(x)

¬R(x, y)
¬X(y)

X ‘Resolved Away’: ¬R(x, y)
x ̸= y

Quantifiers Reconstructed: ∃x, y ¬R(x, y) ∧ x ̸= y
Negated again: ∀x, y R(x, y) ⇒ x = y

24

Direction (ii) → (i) (Bottom-Up)
Otter Protocol

set(binary_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

end_of_list.

formula_list(sos).

(all x (all y (R(x,y) -> (x = y)))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

6 -e(z,F(x1)) | e($f1(z,x1),x1). 7 -e(z,F(x1)) | R($f1(z,x1),z).

8 e(z,F(x1)) | -e(x,x1) | -R(x,z). 9 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

10 e(z,s(x2,x3)) | e(z,x2). 11 e(z,s(x2,x3)) | -e(z,x3).

end_of_list.

list(sos).

13 -R(x,y) | (x = y). 14 -e($f2(x4),x4) | $ans(x4).

end_of_list.

% Heurisitc: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(F(*1)),200). weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

6 -e(x,F(y)) | e($f1(x,y),y). 7 -e(x,F(y)) | R($f1(x,y),x).

10 e(x,s(y,z)) | e(x,y). 11 e(x,s(y,z)) | -e(x,z).

13 -R(x,y) | (x = y). 14 -e($f2(x),x) | $ans(x).

15 [binary,14,11] $ans(s(x,y)) | -e($f2(s(x,y)),y).

17 [binary,14,10] $ans(s(x,y)) | e($f2(s(x,y)),x).

21 [binary,13,7] ($f1(x,y) = x) | -e(x,F(y)).

51 [para_from,21,6] -e(x,F(y)) | e(x,y).

58 [binary,51,17] e($f2(s(F(x),y)),x) | $ans(s(F(x),y)).

59 [binary,58,15] $ans(s(F(v65),v65)).

------------ end of proof -------------

In set notation, the answer is F (X) ⊆ X.

Example d

(d) (i) F : P(U) → P(U) is the identity function,
(ii) R ⊆ U2 is the identity relation

This example combines examples b) and c).

25

Example e

(e) (i) E ⊆ U is a fixed point of F : F (E) = E,
(ii) (∃e ∈ E)[Rex] iff x ∈ E

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀x x ∈ F (E) ⇔ x ∈ E

Rewritten: ∀x (∃e e ∈ E ∧R(e, x)) ⇔ x ∈ E

Direction (ii) → (i) (Bottom-Up)

Otter Protocol

set(binary_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

end_of_list.

formula_list(sos).

(all x ((exists y (e(y,E) & R(y,x))) <-> e(x,E))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

6 -e(z,F(x1)) | e($f1(z,x1),x1). 7 -e(z,F(x1)) | R($f1(z,x1),z).

8 e(z,F(x1)) | -e(x,x1) | -R(x,z). 9 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

10 e(z,s(x2,x3)) | e(z,x2). 11 e(z,s(x2,x3)) | -e(z,x3).

end_of_list.

list(sos).

12 -e(y,E) | -R(y,x) | e(x,E). 13 e($f2(x),E) | -e(x,E).

14 R($f2(x),x) | -e(x,E). 15 -e($f3(x4),x4) | $ans(x4).

end_of_list.

% Heuristic: Avoid double nestings of s.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(F(*1)),200). weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

6 -e(x,F(y)) | e($f1(x,y),y). 7 -e(x,F(y)) | R($f1(x,y),x).

10 e(x,s(y,z)) | e(x,y). 11 e(x,s(y,z)) | -e(x,z).

12 -e(x,E) | -R(x,y) | e(y,E). 15 -e($f3(x),x) | $ans(x).

16 [binary,15,11] $ans(s(x,y)) | -e($f3(s(x,y)),y).

18 [binary,15,10] $ans(s(x,y)) | e($f3(s(x,y)),x).

32 [binary,18,7] $ans(s(F(x),y)) | R($f1($f3(s(F(x),y)),x),$f3(s(F(x),y))).

33 [binary,18,6] $ans(s(F(x),y)) | e($f1($f3(s(F(x),y)),x),x).

26

97 [binary,12,16] -e(x,E) | -R(x,$f3(s(y,E))) | $ans(s(y,E)).

223 [binary,97,33] -R($f1($f3(s(F(E),x)),E),$f3(s(y,E))) | $ans(s(y,E)) | $ans(s(F(E),x)).

224 [binary,223,32] $ans(s(F(E),E)).

------------ end of proof -------------

% We continue the search.

---------------- PROOF ----------------

8 e(x,F(y)) | -e(z,y) | -R(z,x). 10 e(x,s(y,z)) | e(x,y).

11 e(x,s(y,z)) | -e(x,z). 13 e($f2(x),E) | -e(x,E).

14 R($f2(x),x) | -e(x,E). 15 -e($f3(x),x) | $ans(x).

16 [binary,15,11] $ans(s(x,y)) | -e($f3(s(x,y)),y).

18 [binary,15,10] $ans(s(x,y)) | e($f3(s(x,y)),x).

25 [binary,16,8] $ans(s(x,F(y))) | -e(z,y) | -R(z,$f3(s(x,F(y)))).

38 [binary,13,18] e($f2($f3(s(E,x))),E) | $ans(s(E,x)).

43 [binary,14,18] R($f2($f3(s(E,x))),$f3(s(E,x))) | $ans(s(E,x)).

258 [binary,25,38] $ans(s(x,F(E))) | -R($f2($f3(s(E,y))),$f3(s(x,F(E)))) | $ans(s(E,y)).

259 [binary,258,43] $ans(s(E,F(E))).

------------ end of proof -------------

The result of the first proof is F (E) ⊆ E and the result of the second proof is E ⊆ F (E). Together we
have F (E) = E.

Example f

(f) (i) ∀X ⊆ U : F (F (X)) ⊆ F (X),
(ii) R is transitive

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀z z ∈ F (F (X)) ⇒ z ∈ F (X)
Rewritten: ∀z (∃y (∃x X(x) ∧R(x, y)) ∧R(y, z)) ⇒ (∃u X(u) ∧R(u, z))
Negated and Clausified: X(x)

R(x, y)
R(y, z)
¬X(u),¬R(u, z)

X ‘Resolved Away’: R(x, y)
R(y, z)
¬R(x, z)

Quantifiers Reconstructed: ∃x, y, z ¬R(x, y) ∧R(y, z) ∧ ¬R(x, z)
Negated again: ∀x, y, z R(x, y) ∧R(y, z) ⇒ R(x, z)

Direction (ii) → (i) (Bottom-Up)

Otter Protocol

set(hyper_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

end_of_list.

formula_list(sos).

(all x (all y (all z ((R(x,y) & R(y,z)) -> R(x,z))))).

27

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

3 -e(z,F(x1)) | e($f1(z,x1),x1). 4 -e(z,F(x1)) | R($f1(z,x1),z).

5 e(z,F(x1)) | -e(x,x1) | -R(x,z). 6 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

7 e(z,s(x2,x3)) | e(z,x2). 8 e(z,s(x2,x3)) | -e(z,x3).

end_of_list.

list(sos).

9 -R(x,y) | -R(y,z) | R(x,z). 10 -e($f2(x4),x4) | $ans(x4).

end_of_list.

% Heuristic: Avoid double nestings of s.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

3 -e(x,F(y)) | e($f1(x,y),y). 4 -e(x,F(y)) | R($f1(x,y),x).

5 e(x,F(y)) | -e(z,y) | -R(z,x). 7 e(x,s(y,z)) | e(x,y).

8 e(x,s(y,z)) | -e(x,z). 9 -R(x,y) | -R(y,z) | R(x,z).

10 -e($f2(x),x) | $ans(x).

12 [hyper,10,7] $ans(s(x,y)) | e($f2(s(x,y)),x).

15 [hyper,12,4] $ans(s(F(x),y)) | R($f1($f2(s(F(x),y)),x),$f2(s(F(x),y))).

16 [hyper,12,3] $ans(s(F(x),y)) | e($f1($f2(s(F(x),y)),x),x).

19 [hyper,16,4] $ans(s(F(F(x)),y))

R($f1($f1($f2(s(F(F(x)),y)),F(x)),x),$f1($f2(s(F(F(x)),y)),F(x))).

20 [hyper,16,3] $ans(s(F(F(x)),y)) | e($f1($f1($f2(s(F(F(x)),y)),F(x)),x),x).

115 [hyper,19,9,15] $ans(s(F(F(x)),y)) |

R($f1($f1($f2(s(F(F(x)),y)),F(x)),x),$f2(s(F(F(x)),y))).

171 [hyper,115,5,20] $ans(s(F(F(x)),y)) | e($f2(s(F(F(x)),y)),F(x)).

174 [hyper,171,8] $ans(s(F(F(x)),y)) | e($f2(s(F(F(x)),y)),s(z,F(x))).

175 [binary,174,10] $ans(s(F(F(x)),F(x))).

------------ end of proof -------------

In set notation, the answer is F (F (X)) ⊆ F (X).

Example g

(g) (i) ∀X ⊆ U : F (X) ⊆ F (F (X)),
(ii) R is dense [∀x, y ∈ U : Rxy ⇒ (∃z)[Rxz ∧Rzy]]

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀y y ∈ F (X) ⇒ y ∈ F (F (X))
Rewritten: ∀y (∃x X(x) ∧R(x, y)) ⇒ (∃z (∃u X(u) ∧R(u, z)) ∧R(z, y))
Negated and Clausified: X(x)

R(x, y)
¬X(u),¬R(u, z),¬R(z, y)

X ‘Resolved Away’: R(x, y)

28

¬R(x, z),¬R(z, y)
Quantifiers Reconstructed: ∃x, y R(x, y) ∧ (∀z ¬R(x, z) ∨R(z, y))
Negated again: ∀x, y R(x, y) ⇒ (∃z R(x, z) ∧R(z, y))

Direction (ii) → (i) (Bottom-Up)

Otter Protocol

set(hyper_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

end_of_list.

formula_list(sos).

(all x (all y (R(x,y) -> (exists z (R(x,z) & R(z,y)))))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

7 -e(z,F(x1)) | e($f1(z,x1),x1). 8 -e(z,F(x1)) | R($f1(z,x1),z).

9 e(z,F(x1)) | -e(x,x1) | -R(x,z). 10 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

11 e(z,s(x2,x3)) | e(z,x2). 12 e(z,s(x2,x3)) | -e(z,x3).

end_of_list.

list(sos).

13 -R(x,y) | R(x,$f2(x,y)). 14 -R(x,y) | R($f2(x,y),y).

15 -e($f3(x4),x4) | $ans(x4).

end_of_list.

% Heuristic: Avoid double nestings of s.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

6 -e(x,F(y)) | e($f1(x,y),y). 7 -e(x,F(y)) | R($f1(x,y),x).

8 e(x,F(y)) | -e(z,y) | -R(z,x). 10 e(x,s(y,z)) | e(x,y).

11 e(x,s(y,z)) | -e(x,z). 12 -R(x,y) | R(x,$f2(x,y)).

13 -R(x,y) | R($f2(x,y),y). 14 -e($f3(x),x) | $ans(x).

16 [hyper,14,10] $ans(s(x,y)) | e($f3(s(x,y)),x).

19 [hyper,16,7] $ans(s(F(x),y)) | R($f1($f3(s(F(x),y)),x),$f3(s(F(x),y))).

20 [hyper,16,6] $ans(s(F(x),y)) | e($f1($f3(s(F(x),y)),x),x).

25 [hyper,19,13] $ans(s(F(x),y)) |

R($f2($f1($f3(s(F(x),y)),x),$f3(s(F(x),y))),$f3(s(F(x),y))).

26 [hyper,19,12] $ans(s(F(x),y)) |

R($f1($f3(s(F(x),y)),x),$f2($f1($f3(s(F(x),y)),x),$f3(s(F(x),y)))).

219 [hyper,26,8,20] $ans(s(F(x),y)) | e($f2($f1($f3(s(F(x),y)),x),$f3(s(F(x),y))),F(x)).

29

223 [hyper,219,8,25] $ans(s(F(x),y)) | e($f3(s(F(x),y)),F(F(x))).

226 [hyper,223,11] $ans(s(F(x),y)) | e($f3(s(F(x),y)),s(z,F(F(x)))).

227 [binary,226,14] $ans(s(F(x),F(F(x)))).

------------ end of proof -------------

In set notation, the answer is F (X) ⊆ F (F (X)).

Example h

(h) (i) ∀X,Y ⊆ U : F (X)
∩
Y = ∅ iff X

∩
F (Y) = ∅,

(ii) R is symmetric

Direction (i) → (ii) (Top–Down)

Logical Formulation: (¬(∃x x ∈ F (X) ∧ x ∈ Y)) ⇒ (¬(∃x x ∈ X ∧ x ∈ F (Y)))
Rewritten: (¬(∃x (∃z z ∈ X ∧R(z, x)) ∧ x ∈ Y))

⇒ (¬(∃x x ∈ X ∧ (∃y y ∈ Y ∧R(y, x))))
Negated and Clausified: ¬X(z),¬R(z, x), Y (x)

X(x)
Y (y)
R(y, x)

X,Y ‘Resolved Away’: ¬R(x, y)
R(y, x)

Quantifiers Reconstructed: ∃x, y ¬R(x, y) ∧R(y, x)
Negated again: ∀x, y R(x, y) ⇒ R(y, x)

Direction (ii) → (i) (Bottom-Up)
An alternative formulation for (i) is F (F (X ′)′) ⊆ X where X ′ means the complement of X. By axioma-
tizing the complement function (c) we aim for this version.

Otter Protocol

set(binary_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x (all X (e(x,c(X)) <-> -e(x,X)))).

end_of_list.

formula_list(sos).

(all x (all y (R(x,y) -> R(y,x)))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

9 -e(z,F(x1)) | e($f1(z,x1),x1). 10 -e(z,F(x1)) | R($f1(z,x1),z).

11 e(z,F(x1)) | -e(x,x1) | -R(x,z). 12 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

13 e(z,s(x2,x3)) | e(z,x2). 14 e(z,s(x2,x3)) | -e(z,x3).

15 -e(x,c(x4)) | -e(x,x4). 16 e(x,c(x4)) | e(x,x4).

end_of_list.

list(sos).

17 -R(x,y) | R(y,x). 18 -e($f2(x5),x5) | $ans(x5).

30

end_of_list.

% Heuristic: Avoid double nestings of s,F and c.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(F(*1)),200). weight(c(c(*1)),200).

weight(c(s(*1,*1)),200). weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 (c(c(x)) = junk).

3 ($ans(s(s(x,y),z)) = $T). 4 ($ans(s(x,s(y,z))) = $T).

5 ($ans(s(x,x)) = $T). 6 ($ans(F(x)) = $T).

7 ($ans(c(x)) = $T). 8 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

9 -e(x,F(y)) | e($f1(x,y),y). 10 -e(x,F(y)) | R($f1(x,y),x).

11 e(x,F(y)) | -e(z,y) | -R(z,x). 13 e(x,s(y,z)) | e(x,y).

14 e(x,s(y,z)) | -e(x,z). 15 -e(x,c(y)) | -e(x,y).

16 e(x,c(y)) | e(x,y). 17 -R(x,y) | R(y,x).

18 -e($f2(x),x) | $ans(x).

20 [binary,18,14] $ans(s(x,y)) | -e($f2(s(x,y)),y).

22 [binary,18,13] $ans(s(x,y)) | e($f2(s(x,y)),x).

29 [binary,17,11] -R(x,y) | e(x,F(z)) | -e(y,z).

30 [binary,20,16] $ans(s(x,y)) | e($f2(s(x,y)),c(y)).

49 [binary,22,10] $ans(s(F(x),y)) | R($f1($f2(s(F(x),y)),x),$f2(s(F(x),y))).

50 [binary,22,9] $ans(s(F(x),y)) | e($f1($f2(s(F(x),y)),x),x).

92 [binary,50,15] $ans(s(F(c(x)),y)) | -e($f1($f2(s(F(c(x)),y)),c(x)),x).

137 [binary,29,30] -R(x,$f2(s(y,z))) | e(x,F(c(z))) | $ans(s(y,z)).

802 [binary,137,92] -R($f1($f2(s(F(c(F(c(x)))),y)),c(F(c(x)))),$f2(s(z,x))) |

$ans(s(z,x)) | $ans(s(F(c(F(c(x)))),y)).

803 [binary,802,49] $ans(s(F(c(F(c(v65)))),v65)).

------------ end of proof -------------

In set notation, the answer is F (F (X ′)′) ⊆ X.

Example i

(i) (i) F maps singletons onto singletons,
(ii) R is a unary operation over U

Direction (i) → (ii) (Top–Down)

Logical Formulation: (∀x, y x ∈ X ∧ y ∈ X ⇒ x = y)
⇒ (∀y, z y ∈ F (X) ∧ z ∈ F (X) ⇒ y = z)

Rewritten: (∀x, y x ∈ X ∧ y ∈ X ⇒ x = y)
⇒ (∀y, z (∃x x ∈ X ∧R(x, y)) ∧ (∃x′ x′ ∈ X ∧R(x′, z)) ⇒ y = z)

Negated and Clausified: ¬X(x),¬X(y), x = y
X(x)
R(x, y)
X(x′)
R(x′, z)
y ̸= z

X ‘Resolved Away’: ¬R(x, y)
R(x′, z)

31

y ̸= z
x ̸= x′

Quantifiers Reconstructed: ∃x, x′, y, z R(x, y) ∧R(x, z) ∧ y ̸= z ∧ x ̸= x′

Negated again: ∀x, x′, y, z R(x, y) ∧R(x, z) ∧ x = x′ ⇒ y = z which is equivalent to
∀x, y, z R(x, y) ∧R(x, z)∧ ⇒ y = z

Direction (ii) → (i) (Bottom-Up)

Otter Protocol

set(binary_res).

formula_list(usable).

(all w (all z (all X (e(w,z,F(X)) <-> (exists x (e(w,x,X) & R(x,z))))))).

(all w (all X (all Y (H(w,i(X,Y)) <-> (H(w,X) -> H(w,Y)))))).

(all x (x = x)).

(all w (all X (H(w,sg(X)) <-> (all x (all y ((e(w,x,X) & e(w,y,X)) -> (x = y))))))).

end_of_list.

formula_list(sos).

(all x (all y (all z ((R(x,y) & R(x,z)) -> (y = z))))).

-(exists f (all w (H(w,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

7 -e(w,z,F(x1)) | e(w,$f1(w,z,x1),x1). 8 -e(w,z,F(x1)) | R($f1(w,z,x1),z).

9 e(w,z,F(x1)) | -e(w,x,x1) | -R(x,z). 10-H(w,i(x2,x3)) | -H(w,x2) | H(w,x3).

11 H(w,i(x2,x3)) | H(w,x2). 12 H(w,i(x2,x3)) | -H(w,x3).

13 (x = x).

14 -H(w,sg(x4)) | -e(w,x,x4) | -e(w,y,x4) | (x = y).

15 H(w,sg(x4)) | e(w,$f3(w,x4),x4). 16 H(w,sg(x4)) | e(w,$f2(w,x4),x4).

17 H(w,sg(x4)) | ($f3(w,x4) != $f2(w,x4)).

end_of_list.

list(sos).

18 -R(x,y) | -R(x,z) | (y = z). 19 -H($f4(x5),x5) | $ans(x5).

end_of_list.

% Heuristic: Avoid double nestings of i and F.

weight_list(purge_gen).

weight(i(i(*1,*1),*1),200). weight(i(*1,i(*1,*1)),200).

weight(F(F(*1)),200). weight(sg(s(*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (i(x,x) = junk). 2 ($ans(i(i(x,y),z)) = $T).

3 ($ans(i(x,i(y,z))) = $T). 4 ($ans(i(x,x)) = $T).

5 ($ans(sg(x)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

7 -e(x,y,F(z)) | e(x,$f1(x,y,z),z). 8 -e(x,y,F(z)) | R($f1(x,y,z),y).

10 -H(x,i(y,z)) | -H(x,y) | H(x,z). 11 H(x,i(y,z)) | H(x,y).

12 H(x,i(y,z)) | -H(x,z).

14 -H(x,sg(y)) | -e(x,z,y) | -e(x,u,y) | (z = u).

32

15 H(x,sg(y)) | e(x,$f3(x,y),y). 16 H(x,sg(y)) | e(x,$f2(x,y),y).

17 H(x,sg(y)) | ($f3(x,y) != $f2(x,y)). 18 -R(x,y) | -R(x,z) | (y = z).

19 -H($f4(x),x) | $ans(x).

20 [binary,19,12] $ans(i(x,y)) | -H($f4(i(x,y)),y).

22 [binary,19,11] $ans(i(x,y)) | H($f4(i(x,y)),x).

26 [binary,20,16] $ans(i(x,sg(y))) | e($f4(i(x,sg(y))),$f2($f4(i(x,sg(y))),y),y).

27 [binary,20,15] $ans(i(x,sg(y))) | e($f4(i(x,sg(y))),$f3($f4(i(x,sg(y))),y),y).

28 [binary,20,11] $ans(i(x,y)) | H($f4(i(x,y)),i(y,z)).

31 [binary,22,14] $ans(i(sg(x),y)) | -e($f4(i(sg(x),y)),z,x) |

-e($f4(i(sg(x),y)),u,x) | (z = u).

37 [binary,18,8] -R($f1(x,y,z),u) | (u = y) | -e(x,y,F(z)).

46 [binary,26,7] $ans(i(x,sg(F(y)))) |

e($f4(i(x,sg(F(y)))),$f1($f4(i(x,sg(F(y)))), $f2($f4(i(x,sg(F(y)))),F(y)),y),y).

48 [binary,27,8] $ans(i(x,sg(F(y)))) |

R($f1($f4(i(x,sg(F(y)))),$f3($f4(i(x,sg(F(y)))),F(y)),y),

$f3($f4(i(x,sg(F(y)))),F(y))).

66 [binary,37,16] -R($f1(x,$f2(x,F(y)),y),z) | (z = $f2(x,F(y))) | H(x,sg(F(y))).

115 [binary,31,7] $ans(i(sg(x),y)) | -e($f4(i(sg(x),y)),z,x) | ($f1($f4(i(sg(x),y)),u,x) = z) |

-e($f4(i(sg(x),y)),u,F(x)).

203 [binary,66,17] -R($f1(x,$f2(x,F(y)),y),$f3(x,F(y))) | H(x,sg(F(y))).

212 [binary,203,10] -R($f1(x,$f2(x,F(y)),y),$f3(x,F(y))) | -H(x,i(sg(F(y)),z)) | H(x,z).

452 [para_from,115,48,unit_del,27] $ans(i(sg(x),sg(F(x)))) |

R(y,$f3($f4(i(sg(x),sg(F(x)))),F(x))) |

-e($f4(i(sg(x),sg(F(x)))),y,x) | $ans(i(sg(x),sg(F(x)))).

499 [binary,452,212,unit_del,46,28] $ans(i(sg(x),sg(F(x)))) | H($f4(i(sg(x),sg(F(x)))),y) |

$ans(i(sg(x),sg(F(x)))) | $ans(i(sg(x),sg(F(x)))).

500 [binary,499,20] $ans(i(sg(x),sg(F(x)))).

------------ end of proof -------------

In set notation the answer is singleton(X) implies singleton(F (X)).

Example j

(j) (i) F is an involution over P(U), i.e. F (F (X)) = X
(ii) R is an involution over U , i.e.

∀x, y, z R(x, y) ∧R(y, z) ⇒ x = z and ∀x ∃y R(x, y) ∧R(y, x).

We split the equation into the two parts F (F (X)) ⊆ X and X ⊆ F (F (X)).

First Part: F (F (X)) ⊆ X

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀z z ∈ F (F (X)) ⇒ z ∈ X
Rewritten: ∀z (∃y (∃x x ∈ X ∧R(x, y)) ∧R(y, z)) ⇒ z ∈ X
Negated and Clausified: X(x)

R(x, y)
R(y, z)
¬X(z)

X ‘Resolved Away’: R(x, y)
R(y, z)
x ̸= z

Quantifiers Reconstructed: ∃x, y, z R(x, y) ∧R(y, z) ∧ x ̸= z
Negated again: ∀x, y, z R(x, y) ∧R(y, z) ⇒ x = z

33

Direction (ii) → (i) (Bottom-Up)

Otter Protocol

set(binary_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x (x = x)).

end_of_list.

formula_list(sos).

(all x (all y (all z ((R(x,y) & R(y,z)) -> (x = z))))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

7 -e(z,F(x1)) | e($f1(z,x1),x1). 8 -e(z,F(x1)) | R($f1(z,x1),z).

9 e(z,F(x1)) | -e(x,x1) | -R(x,z). 10 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

11 e(z,s(x2,x3)) | e(z,x2). 12 e(z,s(x2,x3)) | -e(z,x3).

13 (x = x).

end_of_list.

list(sos).

14 -R(x,y) | -R(y,z) | (x = z). 15 -e($f2(x4),x4) | $ans(x4).

end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(F(*1)),200). weight(F(s(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

7 -e(x,F(y)) | e($f1(x,y),y). 8 -e(x,F(y)) | R($f1(x,y),x).

11 e(x,s(y,z)) | e(x,y). 12 e(x,s(y,z)) | -e(x,z).

14 -R(x,y) | -R(y,z) | (x = z). 15 -e($f2(x),x) | $ans(x).

16 [binary,15,12] $ans(s(x,y)) | -e($f2(s(x,y)),y).

18 [binary,15,11] $ans(s(x,y)) | e($f2(s(x,y)),x).

30 [binary,18,8] $ans(s(F(x),y)) | R($f1($f2(s(F(x),y)),x),$f2(s(F(x),y))).

31 [binary,18,7] $ans(s(F(x),y)) | e($f1($f2(s(F(x),y)),x),x).

32 [binary,14,8] -R(x,y) | ($f1(x,z) = y) | -e(x,F(z)).

75 [para_from,32,7] -e(x,F(y)) | e(z,y) | -R(x,z).

107 [binary,75,16] -e(x,F(y)) | -R(x,$f2(s(z,y))) | $ans(s(z,y)).

533 [binary,30,107] $ans(s(F(x),y)) | -e($f1($f2(s(F(x),y)),x),F(y)).

534 [binary,533,31] $ans(s(F(F(v65)),v65)).

------------ end of proof -------------

In set notation, the answer is F (F (X)) ⊆ X.

34

Second Part: X ⊆ F (F (X))

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀x x ∈ X ⇒ x ∈ F (F (X))
Rewritten: ∀x x ∈ X ⇒ (∃y (∃z z ∈ X ∧R(z, x)) ∧R(y, x))
Negated and Clausified: X(x)

X(z),¬R(z, y),¬R(y, x)
X ‘Resolved Away’: ¬R(x, y),¬R(y, x)
Quantifiers Reconstructed: ∃x ∀y ¬R(x, y) ∨ ¬R(y, x)
Negated again: ∀x ∃y R(x, y) ∧R(y, x)

Direction (ii) → (i) (Bottom-Up)

Otter Protocol

set(binary_res).

formula_list(usable).

(all z (all X (e(z,F(X)) <-> (exists x (e(x,X) & R(x,z)))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x (x = x)).

end_of_list.

formula_list(sos).

(all x (exists y (R(x,y) & R(y,x)))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

7 -e(z,F(x1)) | e($f1(z,x1),x1). 8 -e(z,F(x1)) | R($f1(z,x1),z).

9 e(z,F(x1)) | -e(x,x1) | -R(x,z). 10 -e(z,s(x2,x3)) | -e(z,x2) | e(z,x3).

11 e(z,s(x2,x3)) | e(z,x2). 12 e(z,s(x2,x3)) | -e(z,x3).

13 (x = x).

end_of_list.

list(sos).

14 R(x,$f2(x)). 15 R($f2(x),x).

16 -e($f3(x4),x4) | $ans(x4).

end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(F(*1)),200). weight(F(s(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

9 e(x,F(y)) | -e(z,y) | -R(z,x). 11 e(x,s(y,z)) | e(x,y).

35

12 e(x,s(y,z)) | -e(x,z). 14 R(x,$f2(x)).

15 R($f2(x),x). 16 -e($f3(x),x) | $ans(x).

17 [binary,14,9] e($f2(x),F(y)) | -e(x,y).

18 [binary,15,9] e(x,F(y)) | -e($f2(x),y).

19 [binary,16,12] $ans(s(x,y)) | -e($f3(s(x,y)),y).

21 [binary,16,11] $ans(s(x,y)) | e($f3(s(x,y)),x).

39 [binary,17,21] e($f2($f3(s(x,y))),F(x)) | $ans(s(x,y)).

43 [binary,18,19] -e($f2($f3(s(x,F(y)))),y) | $ans(s(x,F(y))).

44 [binary,43,39] $ans(s(v64,F(F(v64)))).

------------ end of proof -------------

In set notation, the answer is X ⊆ F (F (X)).

8.2 Ternary Relations

We continue with the examples of lemma 2.6. They correlate a ternary relation R with a binary function
F . The definition of F for this case (def. 2.1) is used as a rewrite rule:

(r1) (z ∈ F (X,Y)) → (∃x, y x ∈ X ∧ y ∈ Y ∧R(x, y, z))

Example a

(a) (i) F has no divisors of zero [∀X,Y ⊆ U : F (X,Y) = ∅ ⇒ X = ∅ or Y = ∅],
(ii) ∀x, y ∈ U,∃z ∈ U such that Rxyz

Direction (i) → (ii) (Top–Down)

Logical Formulation: (¬∃z z ∈ F (X,Y)) ⇒ ((¬∃x x ∈ X) ∨ (¬∃y y ∈ Y))
Rewritten: (¬∃z (∃x, y x ∈ X ∧ y ∈ Y ∧R(x, y, z))) ⇒ ((¬∃x x ∈ X) ∨ (¬∃y y ∈ Y))
Negated and Clausified: ¬X(x),¬Y (y),¬R(x, y, z)

X(x)
Y (y)

X,Y ‘Resolved Away’: ¬R(x, y, z)
Quantifiers Reconstructed: ∃x, y ∀z ¬R(x, y, z)
Negated again: ∀x, y ∃z R(x, y, z))

Direction (ii) → (i) (Bottom-Up)

First trial: Quantifier Elimination
∃R Γ(R) ∧Def(F,R) =
∃R (∀x, y ∃z R(x, y, z)) ∧ (∀z e(z, F (X,Y)) ⇐ ∃x, y e(x,X) ∧ e(y, Y) ∧R(x, y, z))

(the ‘⇐’ part of the definition of F is irrelevant.)
Clauses:

R(x, y, f(x, y))
¬e(x,X),¬e(y, Y),¬R(x, y, z), e(z, F (X,Y))

R resolved away
¬e(x,X),¬e(y, Y), e(f(x, y), F (X,Y))

Quantifiers reconstructed:
∀x, y e(x,X) ∧ e(y, Y) ⇒ ∃z e(z, F (X,Y))

The set notation of this formula is:
(∃x x ∈ X ∧ ∃y y ∈ Y ⇒ (∃z z ∈ F (X,Y))

whose contraposition means nothing else than
F (X,Y) ̸= ∅ ⇒ F (X) ̸= ∅ ∨ F (Y) ̸= ∅

36

Although the quantifier elimination trial was successful, we also show again the theorem prover version.
It illustrates the use of the world dependent Holds–predicate in a more complex setting.

Otter Protocol:

set(binary_res).

formula_list(usable).

(all w all z all X all Y (e(w,z,F(X,Y)) <->

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all w (all X (all Y (H(w,i(X,Y)) <-> (H(w,X) -> H(w,Y)))))).

(all w (all X (all Y (H(w,or(X,Y)) <-> (H(w,X) | H(w,Y)))))).

(all w (all X (H(w,ep(X)) <-> (all x -e(w,x,X))))).

end_of_list.

formula_list(sos).

(all a (all b (exists c R(a,b,c)))).

-(exists f (all w (H(w,f) & -$ans(f)))).

end_of_list.

Clauses:

list(usable).

11 -e(w,z,F(x1,x2)) | e(w,$f2(w,z,x1,x2),x1).

12 -e(w,z,F(x1,x2)) | e(w,$f1(w,z,x1,x2),x2).

13 -e(w,z,F(x1,x2)) | R($f2(w,z,x1,x2),$f1(w,z,x1,x2),z).

14 e(w,z,F(x1,x2)) | -e(w,x,x1) | -e(w,y,x2) | -R(x,y,z).

15 -H(w,i(x3,x4)) | -H(w,x3) | H(w,x4).

16 H(w,i(x3,x4)) | H(w,x3).

17 H(w,i(x3,x4)) | -H(w,x4).

18 -H(w,or(x5,x6)) | H(w,x5) | H(w,x6).

19 H(w,or(x5,x6)) | -H(w,x5).

20 H(w,or(x5,x6)) | -H(w,x6).

21 -H(w,ep(x7)) | -e(w,x,x7).

22 H(w,ep(x7)) | e(w,$f3(w,x7),x7).

end_of_list.

list(sos).

23 R(x8,x9,$f4(x8,x9)).

24 -H($f5(x10),x10) | $ans(x10).

end_of_list.

% Heuristic: Avoid double nestings of i, or, ep and F

weight_list(purge_gen).

weight(i(i(*1,*1),*1),200). weight(i(*1,i(*1,*1)),200).

weight(i(or(*1,*1),*1),200). weight(or(*1,ep(F(*1,*1))),200).

weight(or(ep(F(*1,*1)),*1),200). weight(or(or(*1,*1),*1),200).

weight(or(*1,or(*1,*1)),200). weight(or(i(*1,*1),*1),200).

weight(or(*1,i(*1,*1)),200). weight(ep(i(*1,*1)),200).

weight(ep(or(*1,*1)),200). weight(F(i(*1,*1),*1),200).

weight(F(*1,i(*1,*1)),200). weight(F(or(*1,*1),*1),200).

weight(F(*1,or(*1,*1)),200). weight(F(ep(*1),*1),200).

weight(F(*1,ep(*1)),200). weight(F(F(*1,*1),*1),200).

weight(F(*1,F(*1,*1)),200). weight(ep(ep(*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

37

1 (i(x,x) = junk). 2 (i(x,or(x,y)) = junk).

3 (F(x,x) = junk). 4 ($ans(i(i(x,y),z)) = $T).

5 ($ans(i(x,i(y,z))) = $T). 6 ($ans(i(x,x)) = $T).

7 ($ans(or(x,y)) = $T). 8 ($ans(ep(x)) = $T).

9 ($ans(F(x,y)) = $T). 10 ($ans(junk) = $T).

end_of_list.

----> UNIT CONFLICT at 6699.19 sec

---------------- PROOF ----------------

14 e(x,y,F(z,u)) | -e(x,v,z) | -e(x,w,u) | -R(v,w,y).

16 H(x,i(y,z)) | H(x,y). 17 H(x,i(y,z)) | -H(x,z).

19 H(x,or(y,z)) | -H(x,y). 20 H(x,or(y,z)) | -H(x,z).

21 -H(x,ep(y)) | -e(x,z,y). 22 H(x,ep(y)) | e(x,$f3(x,y),y).

23 R(x,y,$f4(x,y)). 24 -H($f5(x),x) | $ans(x).

27 [binary,24,17] $ans(i(x,y)) | -H($f5(i(x,y)),y).

29 [binary,24,16] $ans(i(x,y)) | H($f5(i(x,y)),x).

32 [binary,23,14] e(x,$f4(y,z),F(u,v)) | -e(x,y,u) | -e(x,z,v).

34 [binary,27,20] $ans(i(x,or(y,z))) | -H($f5(i(x,or(y,z))),z).

36 [binary,27,19] $ans(i(x,or(y,z))) | -H($f5(i(x,or(y,z))),y).

43 [binary,29,21] $ans(i(ep(x),y)) | -e($f5(i(ep(x),y)),z,x).

60 [binary,34,22] $ans(i(x,or(y,ep(z)))) |

e($f5(i(x,or(y,ep(z)))),$f3($f5(i(x,or(y,ep(z)))),z),z).

68 [binary,36,22] $ans(i(x,or(ep(y),z))) |

e($f5(i(x,or(ep(y),z))),$f3($f5(i(x,or(ep(y),z))),y),y).

750 [binary,32,43] -e($f5(i(ep(F(x,y)),z)),u,x) | -e($f5(i(ep(F(x,y)),z)),v,y) |

$ans(i(ep(F(x,y)),z)).

14468 [binary,750,68] -e($f5(i(ep(F(x,y)),or(ep(x),z))),u,y) | $ans(i(ep(F(x,y)),or(ep(x),z))).

14473 [binary,14468,60] $ans(i(ep(F(x,v66)),or(ep(x),ep(v66)))).

------------ end of proof -------------

In set notation, the answer is F (X,Y) = ∅ ⇒ X = ∅ ∨ Y = ∅.

Example b

(b) (i) F is commutative [∀X,Y ⊆ U : F (X,Y) = F (Y,X)],
(ii) F is (1, 2)-symmetric [∀x, y, z ⊆ U : Rxyz ⇒ Ryxz]

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀z z ∈ F (X,Y) ⇒ z ∈ F (Y,X)
Rewritten: ∀z (∃x, y x ∈ X ∧ y ∈ Y ∧R(x, y, z)) ⇒ (∃y, x x ∈ X ∧ y ∈ Y ∧R(y, x, z))
Negated and Clausified: X(x)

Y (y)

R(x, y, z)

¬X(x),¬Y (y),¬R(y, x, z)
X,Y ‘Resolved Away’: R(x, y, z)

¬R(y, x, z)

Quantifiers Reconstructed: ∃x, y, z R(x, y, z) ∧ ¬R(y, x, z)
Negated again: ∀x, y, z R(x, y, z) ⇒ R(y, x, z))

Direction (ii) → (i) (Bottom-Up)

Otter Protocol:

set(ur_res).

formula_list(sos).

38

(all w all z all X all Y (e(w,z,F(X,Y)) <->

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x all y all z (R(x,y,z) -> R(y,x,z))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(sos).

7 -e(z,F(x1,x2)) | e($f2(z,x1,x2),x1).

8 -e(z,F(x1,x2)) | e($f1(z,x1,x2),x2).

9 -e(z,F(x1,x2)) | R($f2(z,x1,x2),$f1(z,x1,x2),z).

10 e(z,F(x1,x2)) | -e(x,x1) | -e(y,x2) | -R(x,y,z).

11 -e(z,s(x3,x4)) | -e(z,x3) | e(z,x4).

12 e(z,s(x3,x4)) | e(z,x3).

13 e(z,s(x3,x4)) | -e(z,x4).

14 -R(x5,x6,x7) | R(x6,x5,x7).

15 -e($f3(x8),x8) | $ans(x8).

end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(s(*1,*1),*1),200). weight(F(*1,s(*1,*1)),200).

weight(F(F(*1,*1),*1),200). weight(F(*1,F(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x,y)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

7 -e(x,F(y,z)) | e($f2(x,y,z),y).

8 -e(x,F(y,z)) | e($f1(x,y,z),z).

9 -e(x,F(y,z)) | R($f2(x,y,z),$f1(x,y,z),x).

10 e(x,F(y,z)) | -e(u,y) | -e(v,z) | -R(u,v,x).

12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z).

14 -R(x,y,z) | R(y,x,z).

15 -e($f3(x),x) | $ans(x).

17 [ur,12,15] e($f3(s(x,y)),x) | $ans(s(x,y)).

20 [ur,13,15] -e($f3(s(x,y)),y) | $ans(s(x,y)).

25 [ur,7,17] e($f2($f3(s(F(x,y),z)),x,y),x) | $ans(s(F(x,y),z)).

26 [ur,8,17] e($f1($f3(s(F(x,y),z)),x,y),y) | $ans(s(F(x,y),z)).

29 [ur,9,17] R($f2($f3(s(F(x,y),z)),x,y),$f1($f3(s(F(x,y),z)),x,y),$f3(s(F(x,y),z))) |

$ans(s(F(x,y),z)).

31 [ur,10,20,26,25] -R($f1($f3(s(F(x,y),z)),x,y),$f2($f3(s(F(u,v),w)),u,v),$f3(s(v6,F(y,u)))) |

$ans(s(v6,F(y,u))) | $ans(s(F(x,y),z)) | $ans(s(F(u,v),w)).

45 [ur,29,14] $ans(s(F(x,y),z)) |

R($f1($f3(s(F(x,y),z)),x,y),$f2($f3(s(F(x,y),z)),x,y),$f3(s(F(x,y),z))).

46 [binary,45,31] $ans(s(F(v67,v68),F(v68,v67))).

------------ end of proof -------------

In set notation, the answer is F (X,Y) ⊆ F (Y,X). Since this is symmetric, we can conclude F (X,Y) = F (Y,X).

39

Example c

(c) (i) F is upper semi-idempotent [∀X ⊆ U : X ⊆ F (X,X)],
(ii) R is totally reflexive [∀x ⊆ U : Rxxx]

Direction (i) → (ii) (Top–Down)

Logical Formulation: (∃x x ∈ X ⇒ x ∈ F (X,X)
Rewritten: (∃x x ∈ X ⇒ ¬(∃x, y y ∈ X ∧ y ∈ X ∧R(x, y, x))
Negated and Clausified: X(x)

¬X(x),¬X(y),¬R(x, y, x)
X ‘Resolved Away’: ¬R(x, x, x)
Quantifiers Reconstructed: ∃x ¬R(x, x, x)
Negated again: ∀x R(x, x, x))

Direction (ii) → (i) (Bottom-Up)

Otter Protocol:

set(ur_res).

formula_list(sos).

(all w all z all X all Y (e(w,z,F(X,Y)) <->

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x R(x,x,x)).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(sos).

7 -e(z,F(x1,x2)) | e($f2(z,x1,x2),x1).

8 -e(z,F(x1,x2)) | e($f1(z,x1,x2),x2).

9 -e(z,F(x1,x2)) | R($f2(z,x1,x2),$f1(z,x1,x2),z).

10 e(z,F(x1,x2)) | -e(x,x1) | -e(y,x2) | -R(x,y,z).

11 -e(z,s(x3,x4)) | -e(z,x3) | e(z,x4).

12 e(z,s(x3,x4)) | e(z,x3).

13 e(z,s(x3,x4)) | -e(z,x4).

14 R(x5,x5,x5).

15 -e($f3(x6),x6) | $ans(x6).

end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(s(*1,*1),*1),200). weight(F(*1,s(*1,*1)),200).

weight(F(F(*1,*1),*1),200). weight(F(*1,F(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x,y)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

10 e(x,F(y,z)) | -e(u,y) | -e(v,z) | -R(u,v,x).

40

12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z).

14 R(x,x,x).

15 -e($f3(x),x) | $ans(x).

17 [ur,12,15] e($f3(s(x,y)),x) | $ans(s(x,y)).

20 [ur,13,15] -e($f3(s(x,y)),y) | $ans(s(x,y)).

32 [ur,10,17,17,14] e($f3(s(x,y)),F(x,x)) | $ans(s(x,y)).

33 [binary,32,20] $ans(s(v64,F(v64,v64))).

------------ end of proof -------------

In set notation, the answer is X ⊆ F (X,X).

Example d

(d) (i) F is lower semi-idempotent [∀X ⊆ U : F (X,X) ⊆ X],
(ii) R is 3-prime [∀x, y, z ∈ U : Rxyz ⇒ z = x or z = y]

Direction (i) → (ii) (Top–Down)

Logical Formulation: ∀z z ∈ F (X,X) ⇒ z ∈ X
Rewritten: ∀z (∃x, y x ∈ X ∧ y ∈ Y ∧R(x, y, z)) ⇒ z ∈ X
Negated and Clausified: X(x)

Y (y)

R(x, y, z)

¬X(z)
X ‘Resolved Away’: R(x, y, z)

z ̸= x
z ̸= y

Quantifiers Reconstructed: ∃x, y, z R(x, y, z) ∧ z ̸= x ∧ z ̸= y
Negated again: ∀x, y, z R(x, y, z) ⇒ (z = x ∨ z = y)

Direction (ii) → (i) (Bottom-Up)

Otter Protocol:

set(hyper_res).

formula_list(sos).

(all w all z all X all Y (e(w,z,F(X,Y)) <->

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x (x = x)).

(all x all y all z (R(x,y,z) -> ((z = x) | (z = y)))))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(sos).

7 -e(z,F(x1,x2)) | e($f2(z,x1,x2),x1).

8 -e(z,F(x1,x2)) | e($f1(z,x1,x2),x2).

9 -e(z,F(x1,x2)) | R($f2(z,x1,x2),$f1(z,x1,x2),z).

10 e(z,F(x1,x2)) | -e(x,x1) | -e(y,x2) | -R(x,y,z).

11 -e(z,s(x3,x4)) | -e(z,x3) | e(z,x4).

12 e(z,s(x3,x4)) | e(z,x3).

13 e(z,s(x3,x4)) | -e(z,x4).

14 (x = x).

15 -R(x5,x6,x7) | (x7 = x5) | (x7 = x6).

41

16 -e($f3(x8),x8) | $ans(x8).

end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(s(*1,*1),*1),200). weight(F(*1,s(*1,*1)),200).

weight(F(F(*1,*1),*1),200). weight(F(*1,F(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x,y)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

7 -e(x,F(y,z)) | e($f2(x,y,z),y).

8 -e(x,F(y,z)) | e($f1(x,y,z),z).

9 -e(x,F(y,z)) | R($f2(x,y,z),$f1(x,y,z),x).

11 -e(x,s(y,z)) | -e(x,y) | e(x,z).

12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z).

15 -R(x,y,z) | (z = x) | (z = y).

16 -e($f3(x),x) | $ans(x).

17 [hyper,12,16] e($f3(s(x,y)),x) | $ans(s(x,y)).

21 [hyper,13,12] e(x,s(y,z)) | e(x,s(z,u)).

22 [hyper,21,16] e($f3(s(x,y)),s(y,z)) | $ans(s(x,y)).

24 [hyper,7,17] e($f2($f3(s(F(x,y),z)),x,y),x) | $ans(s(F(x,y),z)).

26 [hyper,8,17] e($f1($f3(s(F(x,y),z)),x,y),y) | $ans(s(F(x,y),z)).

32 [hyper,9,17] R($f2($f3(s(F(x,y),z)),x,y),$f1($f3(s(F(x,y),z)),x,y),$f3(s(F(x,y),z))) |

$ans(s(F(x,y),z)).

34 [hyper,32,15] $ans(s(F(x,y),z)) | ($f3(s(F(x,y),z)) = $f2($f3(s(F(x,y),z)),x,y)) |

($f3(s(F(x,y),z)) = $f1($f3(s(F(x,y),z)),x,y)).

191 [para_from,34,24] e($f3(s(F(x,y),z)),x) | $ans(s(F(x,y),z)) |

($f3(s(F(x,y),z)) = $f1($f3(s(F(x,y),z)),x,y)).

211 [hyper,191,11,22] $ans(s(F(x,y),x)) | ($f3(s(F(x,y),x)) = $f1($f3(s(F(x,y),x)),x,y)) |

e($f3(s(F(x,y),x)),z).

224 [para_from,191,22] e($f1($f3(s(F(x,y),z)),x,y),s(z,u)) |

$ans(s(F(x,y),z)) | e($f3(s(F(x,y),z)),x).

240 [hyper,224,11,22] e($f1($f3(s(F(x,y),x)),x,y),s(x,z)) |

$ans(s(F(x,y),x)) | e($f3(s(F(x,y),x)),u).

246 [hyper,240,16] e($f1($f3(s(F(x,y),x)),x,y),s(x,z)) | $ans(s(F(x,y),x)).

251 [hyper,246,11,26] $ans(s(F(x,x),x)) | e($f1($f3(s(F(x,x),x)),x,x),y).

625 [hyper,211,16] $ans(s(F(x,y),x)) | ($f3(s(F(x,y),x)) = $f1($f3(s(F(x,y),x)),x,y)).

710 [para_from,625,16] -e($f1($f3(s(F(x,y),x)),x,y),s(F(x,y),x)) | $ans(s(F(x,y),x)).

711 [binary,710,251] $ans(s(F(v64,v64),v64)).

------------ end of proof -------------

In set notation, the answer is F (X,X) ⊆ X.

Example e

(e) (i) F is idempotent [∀X ⊆ U : F (X,X) = X],
(ii) R is totally reflexive and 3-prime

This result just combines the two previous ones.

42

Example f

(f) (i) F associates from left to right [∀X,Y, Z ⊆ U : F (F (X,Y), Z) ⊆ F (X,F (Y,Z))],
(ii) R2 associates from left to right

[∀x, y, z, u ∈ U : (∃v)[Rxyv ∧Rvzu] ⇒ (∃w)[Rxwu ∧Ryzw]]
Abbreviation: [R2(xy)zu ⇒ R2x(yz)u]

Direction (i) → (ii) (Top–Down)
Logical Formulation:

∀z z ∈ F (F (X,Y), Z) ⇒ z ∈ F (F (X,Y), Z)

Rewritten:
∀z (∃x, y (∃x1, y1 x1 ∈ X ∧ y1 ∈ Y ∧R(x1, y1, x)) ∧ y ∈ Z ∧R(x, y, z)) ⇒

(∃x, y x ∈ X ∧ (∃x1, y1 x1 ∈ X ∧ y1 ∈ Y ∧R(x1, y1, y)) ∧R(x, y, z))

Since this example is quite complicated, we use it for demonstrating the application of the theorem prover for
generating all the resolvents.

Otter Protocol:

set(binary_res).

set(factor).

set(print_kept).

formula_list(sos).

-(all z ((exists x (exists y ((exists x1 (exists y1

(X(x1) & Y(y1) & R(x1,y1,x)))) & Z(y) & R(x,y,z)))) ->

(exists x (exists y (X(x) &

(exists x1 (exists y1 (Y(x1) & Z(y1) & R(x1,y1,y)))) & R(x,y,z)))))).

end_of_list.

-------> sos clausifies to:

1 X($c2).

2 Y($c1).

3 R($c2,$c1,$c4).

4 Z($c3).

5 R($c4,$c3,$c5).

6 -X(x) | -Y(y) | -Z(z) | -R(y,z,u) | -R(x,u,$c5).

7 [factor,6] -X(x) | -Y(x) | -Z($c5) | -R(x,$c5,$c5).

** KEPT: 25 [binary,23,4] -R($c1,$c3,x) | -R($c2,x,$c5).

Clauses 3,5 and 25 are the only generated clauses consisting of R–literals only .
Quantifiers Reconstructed:

∃c1, c2, c3, c4, c5 R(c2, c1, c4) ∧R(c4, c3, c5) ∧ (∀x ¬R(c1, c3, x) ∨ ¬R(c2, x, c5))

Negated again:
∀c1, c2, c3, c4, c5 (R(c2, c1, c4) ∧R(c4, c3, c5)) ⇒ (∃x R(c1, c3, x) ∧R(c2, x, c5)),

or in a more readable notation:
∀x, y, z, u (∃v R(x, y, v) ∧R(v, z, u)) ⇒ (∃w R(x,w, u) ∧R(y, z, w))

Direction (ii) → (i) (Bottom-Up)

Otter Protocol:

set(ur_res).

set(unit_deletion).

formula_list(sos).

(all w all z all X all Y (e(w,z,F(X,Y)) <->

43

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all z all X all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))).

(all x all y all z all u ((exists v (R(x,y,v) & R(v,z,u)))

-> (exists w (R(y,z,w) & R(x,w,u))))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(sos).

2 -e(z,F(x1,x2)) | e($f2(z,x1,x2),x1).

3 -e(z,F(x1,x2)) | e($f1(z,x1,x2),x2).

4 -e(z,F(x1,x2)) | R($f2(z,x1,x2),$f1(z,x1,x2),z).

5 e(z,F(x1,x2)) | -e(x,x1) | -e(y,x2) | -R(x,y,z).

6 -e(z,s(x3,x4)) | -e(z,x3) | e(z,x4).

7 e(z,s(x3,x4)) | e(z,x3).

8 e(z,s(x3,x4)) | -e(z,x4).

9 -R(x5,x6,x) | -R(x,x7,x8) | R(x6,x7,$f3(x5,x6,x7,x8)).

10 -R(x5,x6,x) | -R(x,x7,x8) | R(x5,$f3(x5,x6,x7,x8),x8).

11 -e($f4(x9),x9) | $ans(x9).

end_of_list.

% Heuristic: Avoid double nestings of s and triple nestings of F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(*1,s(*1,*1)),200). weight(F(s(*1,*1),*1),200).

weight(F(F(*1,F(*1,*1)),*1),200). weight(F(F(F(*1,*1),*1),*1),200).

weight(F(*1,F(F(*1,*1),*1)),200). weight(F(*1,F(*1,F(*1,*1))),200).

weight(F(F(*1,*1),F(*1,*1)),200). weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk).

end_of_list.

----> UNIT CONFLICT at 265.00 sec ---->

-------------- PROOF ----------------

2 -e(x,F(y,z)) | e($f2(x,y,z),y).

3 -e(x,F(y,z)) | e($f1(x,y,z),z).

4 -e(x,F(y,z)) | R($f2(x,y,z),$f1(x,y,z),x).

5 e(x,F(y,z)) | -e(u,y) | -e(v,z) | -R(u,v,x).

7 e(x,s(y,z)) | e(x,y).

8 e(x,s(y,z)) | -e(x,z).

9 -R(x,y,z) | -R(z,u,v) | R(y,u,$f3(x,y,u,v)).

10 -R(x,y,z) | -R(z,u,v) | R(x,$f3(x,y,u,v),v).

11 -e($f4(x),x) | $ans(x).

13 [ur,7,11] e($f4(s(x,y)),x) | $ans(s(x,y)).

16 [ur,8,11] -e($f4(s(x,y)),y) | $ans(s(x,y)).

21 [ur,2,13] e($f2($f4(s(F(x,y),z)),x,y),x) | $ans(s(F(x,y),z)).

22 [ur,3,13] e($f1($f4(s(F(x,y),z)),x,y),y) | $ans(s(F(x,y),z)).

24 [ur,21,3] $ans(s(F(F(x,y),z),u)) | e($f1($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),y).

25 [ur,21,2] $ans(s(F(F(x,y),z),u)) |

e($f2($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),x).

30 [ur,4,21] R($f2($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f1($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f2($f4(s(F(F(x,y),z),u)),F(x,y),z)) |

$ans(s(F(F(x,y),z),u)).

44

31 [ur,4,13] R($f2($f4(s(F(x,y),z)),x,y),$f1($f4(s(F(x,y),z)),x,y),$f4(s(F(x,y),z))) |

$ans(s(F(x,y),z)).

263 [ur,30,10,31] $ans(s(F(F(x,y),z),u)) | R($f2($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f3($f2($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f1($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f1($f4(s(F(F(x,y),z),u)),F(x,y),z),$f4(s(F(F(x,y),z),u))),

$f4(s(F(F(x,y),z),u))).

264 [ur,30,9,31] $ans(s(F(F(x,y),z),u)) |

R($f1($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),$f1($f4(s(F(F(x,y),z),u)),

F(x,y),z),$f3($f2($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f1($f2($f4(s(F(F(x,y),z),u)),F(x,y),z),x,y),

$f1($f4(s(F(F(x,y),z),u)),F(x,y),z),$f4(s(F(F(x,y),z),u)))).

279 [ur,263,5,16,25] $ans(s(F(F(x,y),z),F(x,u))) |

-e($f3($f2($f2($f4(s(F(F(x,y),z),F(x,u))),F(x,y),z),x,y),

$f1($f2($f4(s(F(F(x,y),z),F(x,u))),F(x,y),z),x,y),

$f1($f4(s(F(F(x,y),z),F(x,u))),F(x,y),z),$f4(s(F(F(x,y),z),F(x,u)))),u).

306 [ur,279,5,24,22] $ans(s(F(F(x,y),z),F(x,F(u,v)))) |

-R($f1($f2($f4(s(F(F(w,u),v6),v7)),F(w,u),v6),w,u),

$f1($f4(s(F(v8,v),v9)),v8,v),$f3($f2($f2($f4(s(F(F(x,y),z),

F(x,F(u,v)))),F(x,y),z),x,y),$f1($f2($f4(s(F(F(x,y),z),F(x,F(u,v)))),

F(x,y),z),x,y),$f1($f4(s(F(F(x,y),z),F(x,F(u,v)))),F(x,y),z),

$f4(s(F(F(x,y),z),F(x,F(u,v)))))) |

$ans(s(F(F(w,u),v6),v7)) | $ans(s(F(v8,v),v9)).

307 [binary,306,264] $ans(s(F(F(v64,v65),v66),F(v64,F(v65,v66)))).

------------ end of proof -------------

In set notation, the answer is F (F (X,Y), Z) ⊆ F (X,F (Y,Z)).

Example g

(g) (i) F associates from right to left [∀X,Y, Z ⊆ U : F (X,F (Y,Z)) ⊆ F (F (X,Y), Z)],
(ii) R2 associates from right to left

[∀x, y, z, u, ∈ U : (∃v)[Rxvu ∧Ryzv] ⇒ (∃w)[Rxyw ∧Rwzu]]
Abbreviation: [R2x(yz)u ⇒ R2(xy)zu]

This case is symmetric to the previous one.

Example h

(h) (i) F is associative,
(ii) R2 is associative [R2(xy)zu iff R2x(yz)u]

This case combines the two previous results.

Example i

(i) (i) E ⊆ U is a left identity of F [∀X ⊆ U : F (E,X) = X],
(ii) E ⊆ U is a set of left identities of R [∀x, y ⊆ U : (∃e ∈ E)[Rexy] iff x = y].

It is again advantageous to split the equation F (E,X) = X into the two cases F (E,X) ⊆ X and F (E,X) ⊇ X.

Direction (i) → (ii) (Top–Down)
‘⊆–Part

Logical Formulation: ∀y y ∈ F (E,X) ⇒ y ∈ X
Rewritten: ∀y (∃e, x e ∈ E ∧ x ∈ X ∧R(e, x, y)) ⇒ y ∈ X
Negated and Clausified: E(e)

X(x)

45

R(e, a, y)

¬X(y)

X ‘Resolved Away’: E(e)
R(e, a, y)

e ̸= y

Quantifiers Reconstructed: ∃x, y, e E(e) ∧R(e, x, y) ∧ x ̸= y)
Negated again: ∀x, y (∃e E(e) ∧R(e, x, y)) ⇒ x = y)

‘⊇–Part

Logical Formulation: ∀y y ∈ X ⇒ y ∈ F (E,X)
Rewritten: ∀y y ∈ X ⇒ (∃e, x e ∈ E ∧ x ∈ X ∧R(e, x, y))
Negated and Clausified: X(y)

¬E(e),¬X(x),¬R(e, x, y)

X ‘Resolved Away’: ¬E(e),¬R(e, y, y)

Quantifiers Reconstructed: ∃y ∀e ¬E(e) ∨ ¬R(e, y, y)
Negated again: ∀y ∃e E(e) ∧R(e, y, y))

Both parts together yield ∀x, y (∃e E(e) ∧R(e, x, y)) ⇔ x = y.

Direction (ii) → (i) (Bottom-Up)

‘⊆–Part

Otter Protocol:

set(ur_res).

formula_list(sos).

(all w all z all X all Y (e(w,z,F(X,Y)) <->

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x (x = x)).

(all x all y ((exists z (e(z,E) & R(z,x,y))) <-> (x = y))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(sos).

7 -e(x,F(y,z)) | e($f2(x,y,z),y).

8 -e(x,F(y,z)) | e($f1(x,y,z),z).

9 -e(x,F(y,z)) | R($f2(x,y,z),$f1(x,y,z),x).

10 e(x,F(y,z)) | -e(u,y) | -e(v,z) | -R(u,v,x).

11 -e(x,s(y,z)) | -e(x,y) | e(x,z).

12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z).

14 (x = x).

15 -e(x,E) | -R(x,y,z) | (y = z).

16 e($f3(x,y),E) | (x != y).

17 R($f3(x,y),x,y) | (x != y).

18 -e($f4(x),x) | $ans(x).end_of_list.

% Heuristic: Avoid double nestings of s and F.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(s(*1,*1),*1),200). weight(F(*1,s(*1,*1)),200).

46

weight(F(F(*1,*1),*1),200). weight(F(*1,F(*1,*1)),200).

weight(junk,200).

end_of_list.

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x,y)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

10 e(x,F(y,z)) | -e(u,y) | -e(v,z) | -R(u,v,x).

12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z).

14 (x = x).

16 e($f3(x,y),E) | (x != y).

17 R($f3(x,y),x,y) | (x != y).

18 -e($f4(x),x) | $ans(x).

20 [ur,12,18] e($f4(s(x,y)),x) | $ans(s(x,y)).

23 [ur,13,18] -e($f4(s(x,y)),y) | $ans(s(x,y)).

28 [ur,16,14] e($f3(x,x),E).

30 [ur,17,14] R($f3(x,x),x,x).

39 [ur,10,28,20,30] e($f4(s(x,y)),F(E,x)) | $ans(s(x,y)).

40 [binary,39,23] $ans(s(v64,F(E,v64))).

------------ end of proof -------------

In set notation, the answer is X ⊆ F (E,X).

‘⊇–Part

set(ur_res).

formula_list(sos).

(all w all z all X all Y (e(w,z,F(X,Y)) <->

(exists x exists y (e(w,x,X) & e(w,y,Y) & R(x,y,z))))).

(all z (all X (all Y (e(z,s(X,Y)) <-> (e(z,X) -> e(z,Y)))))).

(all x (x = x)).

(all x all y ((exists z (e(z,E) & R(z,x,y))) -> (x = y)))).

-(exists f (all z (e(z,f) & -$ans(f)))).

end_of_list.

Clauses:

list(sos).

7 -e(x,F(y,z)) | e($f2(x,y,z),y). 8 -e(x,F(y,z)) | e($f1(x,y,z),z).

9 -e(x,F(y,z)) | R($f2(x,y,z),$f1(x,y,z),x).

10 e(x,F(y,z)) | -e(u,y) | -e(v,z) | -R(u,v,x).

11 -e(x,s(y,z)) | -e(x,y) | e(x,z). 12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z). 14 (x = x).

15 -e(x,E) | -R(x,y,z) | (y = z). 16 -e($f3(x),x) | $ans(x).

end_of_list.

weight_list(purge_gen).

weight(s(s(*1,*1),*1),200). weight(s(*1,s(*1,*1)),200).

weight(F(s(*1,*1),*1),200). weight(F(*1,s(*1,*1)),200).

weight(F(F(*1,*1),*1),200). weight(F(*1,F(*1,*1)),200).

weight(junk,200).

end_of_list.

47

list(demodulators).

1 (s(x,x) = junk). 2 ($ans(s(s(x,y),z)) = $T).

3 ($ans(s(x,s(y,z))) = $T). 4 ($ans(s(x,x)) = $T).

5 ($ans(F(x,y)) = $T). 6 ($ans(junk) = $T).

end_of_list.

---------------- PROOF ----------------

7 -e(x,F(y,z)) | e($f2(x,y,z),y).

8 -e(x,F(y,z)) | e($f1(x,y,z),z).

9 -e(x,F(y,z)) | R($f2(x,y,z),$f1(x,y,z),x).

12 e(x,s(y,z)) | e(x,y).

13 e(x,s(y,z)) | -e(x,z).

15 -e(x,E) | -R(x,y,z) | (y = z).

16 -e($f3(x),x) | $ans(x).

18 [ur,12,16] e($f3(s(x,y)),x) | $ans(s(x,y)).

26 [ur,7,18] e($f2($f3(s(F(x,y),z)),x,y),x) | $ans(s(F(x,y),z)).

27 [ur,8,18] e($f1($f3(s(F(x,y),z)),x,y),y) | $ans(s(F(x,y),z)).

29 [ur,27,13] $ans(s(F(x,y),z)) | e($f1($f3(s(F(x,y),z)),x,y),s(u,y)).

30 [ur,9,18] R($f2($f3(s(F(x,y),z)),x,y),$f1($f3(s(F(x,y),z)),x,y),$f3(s(F(x,y),z))) |

$ans(s(F(x,y),z)).

41 [ur,30,15,26] $ans(s(F(E,x),y)) | ($f1($f3(s(F(E,x),y)),E,x) = $f3(s(F(E,x),y))).

70 [para_from,41,29] $ans(s(F(E,x),y)) | e($f3(s(F(E,x),y)),s(z,x)).

74 [binary,70,16] $ans(s(F(E,y),y)).

------------ end of proof -------------

In set notation, the answer is F (E, Y) ⊆ Y.

9 Summary

We have shown how corresponding properties of relations in a structure and the corresponding functions in the
power structure can be computed automatically in both directions. In the direction from power structures to
structures we used a quantifier elimination method whereas in the other direction an automated guess and verify
method was proposed. The guessing part, however, could also be automated using a theorem prover which can
enumerate proofs.

The duality problem for power structures is prototypical for many other applications, in particular for com-
puting the correspondences between an axiomatic description of a logic by means of an Hilbert calculus and its
model theoretic semantics. The examples we have investigated in this paper can be transferred directly to modal
logic. Figuring out these correspondences is the key for developing efficient calculi for new logics.

As long as there is no special implementation of the algorithms (which is not complicated, but takes time), we
would like to encourage the reader to experiment with the Otter theorem prover. It has been ported to many
machines and is easily available.

48

References

[AB75] A.R. Anderson and N.D. Belnap. Entailment: The Logic of Relevance and Necessity. Princeton
University Press, 1975.

[Abr87] S. Abramsky. Domain theory in logical form. In Proceedings, Symposium on Logic in Computer
Science, pages 47–53, Ithaca, NY, 1987.

[Ack35a] Wilhelm Ackermann. Untersuchung über das Eliminationsproblem der mathematischen Logik. Math-
ematische Annalen, 110:390–413, 1935.

[Ack35b] Wilhelm Ackermann. Zum Eliminationsproblem der mathematischen Logik. Mathematische Annalen,
111:61–63, 1935.

[Ack54] Wilhelm Ackermann. Solvable Cases of the Decision Problem. North–Holland Pu. Co., 1954.

[BB91] Karl-Hans Bläsius and Hans-Jürgen Bürckert. Deduction Systems in Artificial Intelligence. Ellis
Horwood Series in Artificial Intelligence, 1991.

[BGW92] Leo Bachmair, Harald Ganzinger and Uwe Waldmann. Theorem proving for hierarchic first-order
theories, 1992. To appear in Proc. ALP’92, Lecture Notes in Comp. Science.

[BP89] W.J. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the American Mathematical Society,
77(396):1–78, January 1989.

[Bri89] C. Brink. R¬-algebras and R¬-model structures as power constructs. Studia Logica, 48:85-109, 1989.

[Bri92] C. Brink. Power structures. Algebra Universalis, 1992. To appear.

[BS84] R. Bull and K. Segerberg. Basic modal logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume II, pages 1–88. Reidel, Dordrecht, Holland, 1984.

[BS85] R.J. Brachman and J.G. Schmolze. An overview of the kl-one knowledge representation system.
Cognitive Science, 9(2):171–216, 1985.

[BS92] C. Brink and R.A. Schmidt. Subsumption computed algebraically. Computers and Mathematics with
Applications, 23:329–342, 1992. Special Issue on Semantic Networks in Artificial Intelligence.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics Series. Academic Press, New York, 1973.

[Cra74] W. Craig. Logic in algebraizable form, volume 72 of Studies in Logic and Foundations of Mathematics.
North-Holland, 1974.

[Gin88] M.L. Ginsberg. Multivalued logics: a uniform apporoach to reasoning in artificial intelligence. Com-
puting Intelligence, 4:265–316, 1988.

[GO92] Dov M. Gabbay and Hans Jürgen Ohlbach. Quantifier elimination in second–order predicate logic.
South African Computer Journal, 7:35–43, July 1992. Appeared also in Proc. of KR92, Morgan
Kaufmann, 1992, pages 425–436.

[Hal62] P.R. Halmos. Algebraic Logic. Chelsea, New York, 1962.

[Han83] G. Hansoul. A duality for Boolean algebras with operators. Algebra Universalis, 17:34–49, 1983.

[Hen61] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods, pages 167–183. Pergamon
Press, Oxford, 1961.

[HJ87] C.A.R. Hoare and He Jifeng. The weakest prespecification. Information Processing Letters, 24:127–
132, 1987.

[HMT71] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras I, volume 64 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1971.

[HMT85] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras II, volume 115 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1985.

[Joh82] P.T. Johnstone. Stone spaces. Cambridge studies in advanced mathematics. Cambridge University
Press, 1982.

[Jón] B. Jónsson. Program specifications as Boolean operators: A very preliminary draft. Department of
Mathematics, Vanderbilt University, Nashville, TN.

49

[Jón92] B. Jónsson. A survey of Boolean algebras with operators. Congress of Young Mathematicians,
Montreal, 1991.

[JT51] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. American Journal of Mathematics,
73:891–939, 1951.

[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators, Part II. American Journal of Mathematics,
74:127–162, 1952.

[Koz81] D. Kozen. On the duality of dynamic algebras and Kripke models. In E. Engeler, editor, Logic of
Programs, volume 125 of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1981.

[Kri59] S.A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24:1–14, 1959.

[LO84] Ewing Lusk and Ross Overbeek. The automated reasoning system ITP. Tech. Report ANL-84/27,
Argonne National Laboratory, Argonne, Ill., April 1984.

[Lov78] Don Loveland. Automated Theorem Proving: A Logical Basis., volume 6 of Fundamental Studies in
Computer Science. North-Holland, New York, 1978.

[McC89] William W. McCune. OTTER User’s Guide. Mathematical and Computer Science Division, Argonne
National Laboratory, april 1989.

[Nem92] I. Nemeti. Algebraizations of quantifier logics, an introductory overview. Studia Logica, to appear.

[MOW76] John D. McCharen, Ross Overbeek, and Lawrence Wos. Complexity and related enhancements for
automated theorem-proving programs. Computers and Mathematics with Applications, 2:1–16, 1976.

[OS91] Hans Jürgen Ohlbach and Jörg H. Siekmann. The Markgraf Karl refutation procedure. In Jean Luis
Lassez and Gordon Plotkin, editors, Computational Logic, Essays in Honor of Alan Robinson, pages
41–112. MIT Press, 1991.

[Pra90] V.R. Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In C.H. Bergman,
R.D. Maddux, and D.L. Pigozzi, editors, Algebraic Logic and Universal Algebra in Computer Science,
volume 425 of Lecture Notes in Computer Science, pages 77–110. Springer-Verlag, 1990.

[Pri70] H.A. Priestley. Representation of distributive lattices by means of ordered Stone spaces. Bulletin of
the London Mathematical Society, 2:186–190, 1970.

[Rob65a] John Alan Robinson. Automated deduction with hyper-resolution. International Journal of Computer
Mathematics, 1(3):227–234, 1965.

[Rob65b] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
Association for Computing Machinery (JACM), 12(1):23–41, 1965.

[RW69] G. Robinson and Larry Wos. Machine Intelligence, volume 4, chapter Paramodulation and TP in
First Order Theories with Equality., pages 135–150. Edinburgh University Press, Edinburgh, 1969.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In Proc. of
IJCAI 91, pages 466–471. Morgan Kaufmann, 1991.

[Sim93] Harold Simmons. The Monotonous Elimination of Predicate Variables. Forthcoming in Journal of
Logic and Computation, 1993.

[Smi88] Brian Smith. Reference manual for the environmental theorem prover: An incarnation of AURA.
Tech. Report ANL-88-2, Argonne National Laboratory, Argonne, Ill., 1988.

[Sto37] M.H. Stone. The theory of representations for Boolean algebras. American Mathematical Society,
6:37–111, 1937.

[Sza92] Andrzej Sza las. On correspondence between modal and classical logic: Automated approach. Technical
Report MPI–I–92–209, Max Planck Institut für Informatik, Saarbrücken, March 1992.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73–89, 1941.

[TG87] Alfred Tarski and Steven Givant. A Formalization of Set Theory without Variables. American Math-
ematical Society Colloquium Publications 41, Providence, Rhode Island, 1987.

[vB84] Johan van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume II, pages 167–248. Reidel, Dordrecht, Holland, 1984.

[WOLB91] Larry Wos, Ross Overbeek, Ewing Lusk and Jim Boyle. Automated Reasoning. Introduction and
Applications, Second Edition, McGraw–Hill Inc., 1991.

50

