
1

Unification of
Terms With Exponents

Rolf Socher-Ambrosius

MPI–I–93–217 May 1993

2

Unification Of
Terms With Exponents

Rolf Socher-Ambrosius*

Max-Planck-Institut für Informatik, Im Stadtwald
W-6600 Saarbrücken, Germany
e-mail: socher@mpi-sb.mpg.de

Abstract. In an ICALP (1991) paper, H. Chen and J. Hsiang introduced a
notion that allows for a finite representation of certain infinite sets of terms. These
so called ω-terms find an application in logic programming, where they can serve
to represent finitely an infinite number of answers or to avoid nontermination in
certain cases. Another application is in the field of equational logic. Using ω-
terms, it is possible to avoid a certain type of divergence of ordered completion. In
all cases, unification is the basic computational aspect of this notation. Chen and
Hsiang give a complete and terminating unification algorithm for ω-terms.
Recently, H. Comon introduced terms with exponents, thus significantly extending
Chen and Hsiang’s notion of ω-terms. He provides a fairly complicated unification
algorithm. This paper introduces a further syntactic generalization of Comon’s
notion together with a comparatively simple inference system for unification.

* This research was funded by the German Ministery for Research and Technology

(BMFT) under grant ITS 9103.

3

1 Introduction
Infinite computations in first order logic often come together with a certain type
of recursive data structure. For instance, in logic programming, recursive clauses
usually account for looping derivations.

1 Example (simplified from [4]) Consider the following logic program:

(1) P(x) ← R(x), Q(x).

(2) R(a).
(3) R(f(x)) ← R(x).

(4) Q(d).

If we ask for the goal ← P(x), then the program does not terminate due to infinite
backtracking. If the goal is ← R(x), then we obtain an infinite set of answers x = a,
x = f(a), x = f(f(a)),…. Clearly, this case of nontermination is due to the recursive
clause (3).

As another case in point, unification in non-regular order-sorted signatures
does not terminate in general [13]. Consider the following example:

2 Example Assume we are given an order-sorted signature with the sorts S and T
and the following declarations:

a ∈ S a ∈ T

f : S → S f : T → T

As the term a has no unique least sort, this signature is not regular. Accordingly,
the unification problem xS = xT yields the infinite set of solutions xS = xT = a, xS =
xT = f(a), xS = xT = f(f(a)), …. This kind of non-termination is due to the same rea-
sons as in the first example, which can be seen by the relativized [13] formulation

 PS(a). PT(b).

PS(f(x)) ← PS(x). PT(f(x)) ← PT(x).

In equational logic, one is usually interested in having a convergent rewrite
system for a given equational specification. This allows, for instance, to compute
values of ground terms, to prove equational consequences, or to solve equations
by narrowing techniques. There are well known techniques [2,7] to complete such
specifications in order to obtain convergent systems. In many cases, however,
this process diverges producing an infinite set of rewrite rules. The following
example originates from [1] and [7].

3 Example We consider the specification of the natural numbers with the gcd-
function:

4

x + 0 = x g(x,0) = x g(x+y,y) = g(x,y)

x + s(y) = s(x+y) g(0,y) = y g(x,y+x) = g(x,y)

 In this example, ordered completion using a recursive path ordering with precedence
+ > s diverges. Among others, the following equations are derived:

g(s(x+y),s(y)) = g(x,s(y)), g(s(s(x+y)),s(s(y))) = g(x,s(s(y))), …

In all these examples, it is the unability to express recursive data structures
like fn(x) in the language of terms that accounts for nontermination. In [1], the
problem of diverging completion is tackled by embedding techniques. The base
specification is enriched by a copy of the natural numbers. New function symbols
are introduced, in our example the two-place function S, in order to express the
object sn(x) by the term S(n,x). Appropriate equations are added to the base
specification, such that ordered completion eventually yields a convergent sys-
tem.

Ohlbach [10] uses a data structure called abstraction trees with continuations
to represent recursive clauses. The emphasis in this paper lies more in the issue
of efficient representation of terms. This data structure does not yield a
terminating and complete unification algorithm.

Chen and Hsiang [3,4] take a different approach. They extend the usual
notion of terms in order to allow for objects such as fn(x), or f(a, g(·))m(x). The
computational aspect of those so called ω-terms is mirrored by an appropriate
unification algorithm. They show that using ω-terms avoids nontermination in
cases such as example 1. In this example, the second and third clause would be
replaced by the fact R(fn(a)), thus discarding the recursive clause that gives rise
to the looping behaviour of the program. However, their notion of ω-terms is un-
necessarily restricted in that neither variables in the repeated pattern nor
nested repetitions like fn(gm(x)) are allowed.

Recently, H. Comon [5] introduced terms with exponents, thus significantly
extending Chen and Hsiang’s notion of ω-terms. There is no variable restriction
for those terms with exponents, and also nested iterations are allowed. Comon
presents a fairly complicated unification algorithm.

Salzer’s so called R-terms [11] provide a further generalization of terms with
exponents. He can handle term sequences “growing in two dimensions” such as

f(x,x), f(f(x,x),f(x,x)), f(f(f(x,x),f(x,x)),f(f(x,x),f(x,x))),….

In this paper, we adopt Comon’s notions for terms with exponents with two
slight generalizations: First, we allow integer expressions to occur as exponents.
For instance, we allow terms like f2n(x), gn+m(x), or hn−m(x). The first two
examples actually do not increase the expressive power of the syntax, they can
easily be seen equivalent to (ff)n(x) and gn(gm(x)), respectively. The term hn−m(x),

5

however, can not appropriately be expressed using Comon’s notions. As an exam-
ple, consider the following recursive logic program:

(1) P(a, g(g(g(a)))) ←
(2) P(f(x), y) ← P(x, g(y))

The original notion of terms with exponents is not adequate to replace the two
clauses with a single fact. Using the extended notion, however, the clause P(fn(a),
g3-n(a)) does the job. As a second generalization of Comon’s terms with
exponents, we allow a very restricted form of term sequences “growing in two
dimensions”. The notion of terms with exponents presented in this paper thus
stands between Comon’s and Salzer’s notions with respect to its expressive
power.

We shall present an inference system for unification of terms with exponents,
which is based on the ideas presented in [5]. The presentation of the rules,
however, emphasizes the similarity to the well-known system for unification of
ordinary terms. This results in a straightforward termination proof. Finally, we
shall discuss possible extension and limitations of this approach.

2 Notation
We assume given a signature F of function symbols, each function symbol f
coming with an arity arity(f) ≥ 0, a denumerable set V of variables, and a denu-
merable set VN of integer variables (also called parameters), and a symbol ∗. The
sets F, V, and VN are assumed to be mutually disjoint, and the symbol ∗ is not
contained in any of these sets. The set L of (linear) integer expressions is defined
by

L = {k0 + k1N1 + … + knNn | kj ≠ 0 for j = 1,…,n}

where the Ni are pairwise different parameters and the kj are integer constants.
Using the common rewrite rules for linear integer arithmetic, it is clear that L is
closed under addition, subtraction and linear multiplication.

We shall use the letters x,y,z for variables, N,M,K for integer variables, and
α, β, γ for integer expressions.

4 Definition The set T of terms with exponents is the least set that satisfies:

a) V ⊆ T

b) If f ∈ F, arity(f) = n and t1,…,tn ∈ T, then ft1…tn ∈ T

c) If C ∈ C–{∗}, u ∈ T, and α ∈ L, then Cα u ∈ T

d) If s ∈ T and P ⊆ Pos(s) is a nonempty set of positions such that s|p' = s|q'
holds for any p, q ∈ P and for any p' ≤ p, q' ≤ q with |p'| = |q'|, then s[∗]P ∈
C

6

e) Pos(x) = {Λ}

f) Pos(ft1…tn) = {Λ} ∪ 1⋅Pos(t1) ∪ … ∪ n⋅Pos(tn)

g) Pos(Cα u) = ∅

In part d, s[∗]P means the term obtained from s by replacing s|p by ∗ for each p ∈ P.
The elements of C are called contexts. The characteristic of the context C is
defined by char(C) = P. Two contexts C and D of the same characteristic are called
similar, written C ~ D. The context C = ∗ is called trivial. If C = s[∗]P, and u is a
term or context, then Cu denotes the term or context s[u]P. We call a term of the
form Cα u an N-term.

From the definition, it is clear the set C of contexts together with the
concatenation operation and the trivial context as identity is isomorphic to the
free semigroup generated by the set C1 of contexts of length 1. Each context C of
length n, n ≥ 0, can thus uniquely be represented in the form c1…cn, n ≥ 0, with ci

∈ C1 for i = 1,…,n. The number n is called the length of the context C, written |C|.
As an example, the context C = f(g(h(∗,a)),g(h(∗,a))) can be represented in the
form f(∗,∗)g(∗)h(∗,a). Thus |C| = 3. If C = c1…cn is a nontrivial context, then
char1(C) is defined as char(c1).

A context C is called a prefix of the term or context t, if t = Ct' for some t'.

5 Example a) The expression t = f(∗)N x is an element of T. A more common way
to write such a term is the form t = fN(x).

b) The expression g(f(∗),f(∗))Nx is a term.

A construction such as (f(∗)Ng(∗))M x cannot be represented using the syntax
above, because the set of positions of the term f(∗)Ng(y) is empty.

For technical reasons, we define extensions L * and T* of L and T ,
respectively, as follows: L* = L ∪ {α + q | α ∈ L, q ∈ Q| } and T* = T ∪ {Cα−k/c u |
C ∈ C, u ∈ T, c = |C|, 1 ≤ k < c}. Obviously, any exponent α ∈ L* can be written
uniquely in the form α = α' + α" with α' ∈ L and α" ∈ Q| , 0 ≤ α" < 1.

We shall usually refer to the elements of T* simply as terms. Usual terms,
that is, elements of T having no exponents, will also be called simple terms.

We shall often work with examples where only monadic functions occur. In
this case we use a more convenient notation that resembles the well-known
notation fn(x). We shall, for instance, write (fg)NghMx rather than (f(g(∗)))N

g(h(∗))M x.

We define the set of variables of a term t by

a) Var(x) = {x}

b) Var(f(t1,…,tn)) = Var(t1) ∪ … ∪ Var(tn)

c) Var(Cαu) = Var(C) ∪ Var(u)

7

We define the leading function symbol Head(t) of a nonvariable term t by
Head(ft1…tn) = f and Head(Cαu) = Head(C).

The intended meaning of the construction Cα is an α-fold iteration of the
context C. The following definition captures this meaning.

6 Definition a) For any nontrivial context C, we define

C0 = ∗
Ca = CCa' where a ∈ Q| , a ≥ 1 and a' = a−1
Ck/c = C' where c = |C| and C = C'D with |C'| = k

A term t is called VN-ground, iff t contains no parameters, and positive, iff
additionally it is equivalent to a simple term. A VN-ground term that is not
positive is called negative. As a matter of simplicity, we shall not distinguish
between a positive VN-ground term and its simple counterpart. We shall thus
assume in the following that each exponent α is an element of L– IN.

An equation is an unordered pair (s,t) of terms, written in the form s = t, or an
unordered pair α = β of integer expressions. An equational system E is a finite
conjunction of equations.

A substitution σ on T is a pair (σ1,τ) of a mapping σ1:V → T and an endomor-
phism τ : L → L. The application of σ to terms is defined by

a) xσ = xσ1 if x ∈ V

b) (ft1…tn)σ = ft1σ…tnσ

c) (Cα u)σ = (Cσ)ασ uσ

d) ασ = ατ for α ∈ L.

Of course, we are interested only in the initial model of L. Therefore, we
introduce a congruence ≅ on non-negative terms by s ≅ t iff sσ = tσ holds for all
positive VN-ground instances sσ of s and for all positive VN-ground instances tσ
of t. In [4], the relation ≅ is called strong equivalence.

From Definition 6, we immediately obtain the relations Ca+b = Ca Cb for all a,
b ∈ IN, Cna u = (Cn)a u for all a, n ∈ IN, and C(DC)a = (CD)a C for all a ∈ IN, and
henceforth the following lemma.

7 Lemma For all contexts C, D and terms u, for all n ∈ IN , and for all α, β ∈ L,
the following holds:

a) Cα+β u ≅ Cα Cβ u and Cnα u ≅ (Cn)α u

b) Cnα u ≅ (Cn)α u

c) C(DC)α u ≅ (CD)α Cu

The following lemma follows easily from properties of semigroups, too.

8

8 Lemma Let C be a context, let u and v be contexts or terms, and let n,m be
natural numbers such that n ≥ m. Then

Cm u = Cn v iff u = Cn−m v

The substitution σ is a unifier of the equation s = t, iff sσ and tσ are VN-
ground terms with sσ = tσ. An equational system

E ≡ x1 = t1 ∧ … ∧ xn = tn ∧ N1 = α1 ∧ … ∧ Nk = αk (1)

is in solved form, iff each integer variable Ni and each variable xj occurs only once
in E. The system E is a (particular) solution of the system E', iff additionally
each unifier of E is also a unifier of E'. The set of all solutions of a system E' will
be denoted by Sol(E'). The set E of equational systems in solved form is a general
solution of E, iff Sol(E) = E'∈E

∪ Sol(E').

3 An Inference System for Unification
For unification of ordinary terms, the decomposition rule plays an important role.
Decomposition is a transformation of an equation {fs1…sn = ft1…tn} into a system
{s1 = t1,…,sn = tn} of equations between the immediate subterms. In order to
introduce decomposition for terms with exponents, we first have to define an
appropriate notion of immediate subterms. Consider the following example: Let

t = (fg)N x = (fg)(fg)…(fg) x

Then the immediate subterm of t (at position 1) can be written

(gf)(gf)…(gf) gx = (gf)N−1 gx = (gf)N−1/2 x

This leads to the following definitions:

9 Definition (Immediate Subterm) a) We define a mapping ρ on contexts by

∗ρ = ∗
(c1…cn)ρ = c2…cnc1

b) Let t be a term with Head(t) = f, and let 1 ≤ i ≤ arity(f). If t is not an N-term, we
define t↓i = t|i. If t = Cαu is an N-term, we define

t ↓i = (Cρ)α −1 cu if i ∈char1(C)

C |i otherwise

⎧
⎨
⎪

⎩⎪

where c = |C|.

10 Example Consider the term t = (f(g(∗),b))Nx. (See fig. 1a). According to
definition 9, the immediate subterm of t is (See fig. 1b)

t↓1 = g(f(∗,b))N−1/2(x)

9

f

g b

x

N
f

g b

f
g b

x

f
g b

f
g b

x

f
g b

g

f
b

x

g

g

Figure 1a Figure 1b

11 Lemma Let t be a term with leading function symbol f. Then

t ≅ f(t↓1,…,t↓n)

Proof. The assertion of the lemma is obvious, if t is not an N-term. So let t = Cαu
with C ≠ ∗. First, we prove that t↓i ≅ (CCα−1u)|i holds for i = 1,…,n. This will
readily imply the assertion of the lemma, since

f((CCα−1u)|1,…,(CCα−1u)|n) = CCα−1u ≅ Cαu = t

So let i ∈ {1,…,n}, and let C = c1D with c1 ∈ C1. If i ∉ char1(C), then

t↓i = C|i = (CCα−1u)|i

If i ∈ char1(C), then C|i = D, and we obtain from definition 9,

t↓i = (Cρ)α−1/c u = (Dc1)α−1/c u ≅ (Dc1)α−1 (Dc1)(c−1)/c u ≅
(Dc1)α−1 D u ≅ D(c1D)α−1 u = C|i Cα−1 u = (CCα−1u)|i

which concludes the proof of the lemma.

With this notion of an immediate subterm, the usual inference system for uni-

fication, consisting of the rules Trivial, Clash, Merge, Occur-Check and Decompo-
sition, is almost sufficient for unification of terms with exponents. We only have
to add an inference rule (Eliminate) that eliminates integer variables. We thus
obtain a system that enumerates all solutions of a given equation. This system,
however, is in general not terminating.

12 Definition (Inference System I1 for Unification) The system I1 consists of
the rules shown in fig. 2. We write ⇒ for the derivation relation w.r.t. I1.

10

Trivial t=t

⊥

Clash s=t
⊥

if Head(s) ≠ Head(t)

Merge
x=t∧P

x=t∧P{x←t}

if x ∉ Var(t), x ∈ Var(P) and t ∈ V ⇒ t ∈ Var(P)

Occur-Check x=t
⊥

if x ∈ Var(t)

Decompose s=t
s↓1=t↓1∧…∧s↓n=t↓n

if Head(s) = Head(t) has arity n

Eliminate Cαu=t
α=0∧u=t

if α ∈ L

Figure 2

The rules of system I1 are to be understood don’t-know-nondeterministic, that
is, all alternative rule applications have to be explored in order to find all solu-
tions. The symbols ⊥ and

⊥

 denote the logical values false and true, respecti-
vely. Moreover, it should be noted that equations are defined as unordered pairs
of terms, and consequently the inference rules Merge and Occur Check also apply
to equations of the form t = x, and Eliminate also applies to equations of the
form t = Cα u.

13 Example a) Consider the equation

fNgfMx = (fg)Ky (1)

The following successful derivations compute all solutions:

fNgfMx = (fg)Ky ⇒E K = 0 ∧ y = fNgfMx

⇓D

fN−1gfM x = (gf)K−1/2 y
⇓E

N=1 ∧ gfM x = (gf)K−1/2 y

⇓D

11

N=1 ∧ fM x = (fg)K−1 y ⇒E N=1 ∧ M=0 ∧ x = (fg)K−1 y
⇓D ⇓D

N=1 ∧ fM−1 x = (gf)K−1−1/2 y N=1 ∧ K=1 ∧ fM x = y
⇓E

N=1 ∧ M = 1 ∧ x = (gf)K−1−1/2 y

There are other derivations, such as

fNgfMx = (fg)Ky ⇒D fN−1gfM x = (gf)K−1/2 y ⇒C ⊥

which, however, do not yield solutions. Moreover, all I1-derivations are terminating.

b) Consider the equation

(ff)N x = fM y (2)

There is an infinite derivation

 (ff)N x = fM y ⇒D (ff)N−1/2 x = fM−1 y ⇒D (ff)N−1 x = fM−2 y ⇒D …

⇒D (ff)N−k x = fM−2k y ⇒D …

The solutions of (2) are simply

x = fM−2N y and y = f2N−M x

The following lemma describes the properties of inference system I1.

14 Lemma If E ⇒ E', then Sol(E') ⊆ Sol(E).

Proof. It is obviously sufficient to prove the assertion for E' ≠ ⊥ and E' ≠

⊥

. If E
⇒ E' by application of the Merge rule, then the assertion holds trivially, too. Now
let E ⇒ E' by an application of Decompose to some equation s = t with Head(s) =
Head(t) = f, and let σ ∈ Sol(E'). Then, according to lemma 11

sσ = f(s↓1,…,s↓n)σ = f(s↓1σ,…,s↓nσ) = f(t↓1σ,…,t↓nσ) = f(t↓1,…,t↓n)σ = tσ

holds, which implies σ ∈ Sol(E). Finally, let E ⇒ E' by an application of Elimina-
te to some equation Cα u = t yielding α = 0 ∧ u = t. Let σ ∈ Sol(E'), that is, ασ =
0 and uσ = tσ. Then

(Cα u)σ = (Cσ)ασ uσ = (Cσ)0 uσ = uσ = tσ

which implies σ ∈ Sol(E).

15 Lemma The system I1 is correct, that is, if E is the set of immediate successors of
E w.r.t. ⇒, then Sol(E) = E'∈E

∪ Sol(E').

Proof. We show that the assertion of the lemma holds, if E is the set of
immediate successors of E w.r.t. application of a rule to one equation s = t in E.
We can obviously assume that s ≠ t.

12

Case 1: One of s, t, say s, is a variable, say s = x. If x ∈ Var(t), then only the
Occur-Check rule applies and Sol(E) = Sol(⊥) = ∅. If x ∉ Var(t), then only Merge
applies and Sol(E) = Sol(E'), where E = {E'}.

Case 2: None of s and t is a variable. If none of s and t is an N-term, then
either decomposition or Clash applies, both of which is correct. So suppose at
least one of s, t, is an N-term, say s = Cα u. If Head(s) ≠ Head(t), then Clash and
Eliminate apply, and E = {⊥, E'}, where E' = E – {s = t} ∪ {α = 0 ∧ u = t}. Let σ ∈
Sol(E), and suppose ασ ≠ 0. Then

tσ = (Cα u)σ = (Cσ)ασ uσ = Cσ(Cσ)ασ−1 uσ

But this is impossible, since Head(C) = Head(s) ≠ Head(t) by assumption. Hence
ασ = 0 must hold. This implies uσ = tσ and σ is a unifier of {α = 0 ∧ u = t}, that
is, σ ∈ Sol(E').

Finally, let Head(s) = Head(t). Then Decompose and Eliminate apply, and E =
{E1, E2}, where E1= E – {s = t} ∪ {s↓1 = t↓1 ∧ … ∧ s↓n = t↓n}, and E2 = E – {s = t} ∪
{α = 0 ∧ u = t}. Let σ ∈ Sol(E). If ασ = 0, then tσ = (Cα u)σ = (Cσ)ασ uσ = uσ and σ
thus solves E2. So let ασ ≠ 0. Then (α−1)σ ≥ 0 and, according to lemma 11, σ
solves E1.

Having solved equations between terms, it remains to solve the parameter
part. Since we are interested only in solutions having nonnegative exponents, we
have to add to the parameter part of a solved system E a set of inequations of
the form {α ≥ 0 | α occurs as exponent in E}. We assume given an inference
system D for solving linear diophantine equations and inequations. By ⇒1, we
denote the inference relation given by the system I1 ∪ D. Now, since irreducible
systems w.r.t. ⇒1 are obviously in solved form, we have the following

16 Corollary If E ⇒1
∗ E*, such that E* is irreducible by I1, then E* is a solution of

E.

It can even be shown that whenever E* is a solution of E, then there is a
derivation E ⇒1

∗ E*.

Obviously, decomposition is the only rule causing nontermination of the infer-
ence system I1. Moreover, each nonterminating derivation contains a cyclic sub-
derivation of the form

P ∧ Cα u = Dβ v ⇒ … ⇒ P' ∧ Cα−n u = Dβ−m v

consisting only of Decompose steps and such that |C| ⋅ n = |D| ⋅ m = lcm(|C|,|D|)
and Cn ~ Dm . Such a decomposition issuing an infinite derivation can be
restricted to the length lcm(|C|,|D|).

In the following, whenever C, D ∈ C, we use [C,D] to denote the number n
such that |C|n = lcm(|C|,|D|).

13

17 Definition (Inference System I2 for Unification) The system I2 consists of
Trivial, Clash, Merge, Occur-Check, Eliminate plus the rules shown in fig. 3. In the
Induce rule, B is the prefix of D of length |B| = gcd(|C|,|D|). In the first three rules α' ∈
L, α" ∈ Q| , 0 ≤ α" < 1.

Before proving termination and correctness of the inference system I2, we give
some examples to show how the system works.

18 Examples a) Consider the unification problem

(ff)N x = (fff)M y

 As (ff)3 ~ (fff)2, the Induce rule applies. The problem thus has the solutions

{x = f3M−2N y}, {y = f2N−3M x}

b) Consider the problem f(∗,∗)N x = f(∗,y)M a. Then f(∗,∗) /~ f(∗,y) and 1 ∈ char(C) ∩
char(D). Eliminate and Eliminate2 thus yield the derivations

N = 0 ∧ x = f(∗,y)M a

N = 1 ∧ f(x,x) = f(∗,y)M a ⇒ N = 1 ∧ x = y = f(∗,y)M−1 a

N = 2 ∧ f(f(x,x),f(x,x)) = f(∗,y)M z ⇒ x = f(∗,y)M−2 z ∧ x = y ∧ f(x,x) = y ⇒ ⊥

The set {{N = 0 ∧ x = f(∗,y)M a},{N = 1 ∧ x = y = f(∗,y)M−1 a}} is a general solution for
the problem.

19 Lemma If there exist n,m ≥ 1, such that Cn ~ Dm, then n' := [C,D] and m' :=
[D,C] are the smallest such numbers.

20 Lemma The system I2 is terminating.

Proof. We define a complexity measure for a given equational system E. For any
equational system E, let

u(E) = {s = t ∈ E | s,t ∈ T – V}

that is, u(E) is the unsolved pure part of E. We define v(E) := |Var(u(E))|

For each term t, χ(t) is the total number of exponents occurring in t, that is:

χ(x) = 0 if x is a variable

χ(Cα u) = 1 + χ(C) + χ(u)

χ(ft1…tn) =

χ (ti)
i=1

n
∑

Let χ(s = t) := χ(s) + χ(t). The size of a term t is defined to be the number of its
positions, that is, size(t) = |Pos(t)|, and size(s = t) := size(s) + size(t).

The following relations obviously hold for any context C and any term t:

14

Eliminate1 Cαu=Dβv
α'=i∧Ci+α"u=Dβv

if α = α' + α", ∃n,m ≥ 1: Cn ~ Dm and 0 < i < n

Eliminate2 Cαu=Dβv
α'=i∧Ci+α"u=Dβv

if α = α' + α", ∃n,m ≥ 1: Cn /~ Dm, char(Cn) ∩ char(Dm) ≠ ∅ and 0 < i ≤ 2n

Induce Cαu=Dβv
Cn=Dm∧Cα"u=Bnβ−mα'v

if α = α' + α", ∃n,m ≥ 1: Cn ~ Dm and nβ − mα is not a negative number

Decompose1 s=t
s↓1=t↓1∧…∧s↓n=t↓n

if Head(s) = Head(t), and Eliminate1 or Induce does not apply

Figure 3

χ(Ct) = χ(C) + χ(t)

χ(t) ≥ χ(t↓j), whenever t↓j is defined.

χ(t) > χ(t↓j), if t = Cα u and j ∉ char1(C)

If C = c1…cn and D = d1…dm are contexts, then the length of the maximal
similar prefix, msp(C,D), is defined to be the maximal number r such that c1…cr
~ d1…dr, and π(s = t) is defined to be r(C[C,D],D[D,C]), if s = Cα u and t = Dβ v both
are N-terms and π(s = t) = 0 otherwise.

For any equational system E, we define the multiset

X(E) = {(χ(e), size(e), π(e)) | e ∈ u(E)}

We define >3 to be the threefold lexicographic combination of the ordering > on
natural numbers. Finally, we define an ordering >e on equational systems by E
>e E', iff (v(E),X(E)) >2 (v(E'),X(E')), where >2 is the lexicographic combination of >
with the multiset extension of >3. By construction, it is clear that the ordering >e
is well-founded. We show that E ⇒2 E' implies E' = ⊥ or E >e E', which in turn
will prove the assertion of the lemma.

First of all, we remark that application of a rule of I2 to E cannot increase
v(E), that is, E ⇒2 E' implies v(E) ≥ v(E'). Therefore, it is sufficient to show that
E ⇒2 E' implies v(E) > v(E') or X(E) (>3)mul X(E'). If E ⇒2 E' by an application of
Merge, then obviously v(E) > v(E'). In all other cases, we show that X(E) (>3)mul
X(E') holds. First, if E ⇒2 E' by an application of Trivial, then u(E') ⊂ u(E), which
implies X(E) (>3)mul X(E').

15

χ size lcp

1 Eliminate/Eliminate1 <

2 Induce <

3 Decompose1 (s,t) ≤ <

4a Decompose1 (Cα u, t) ≤ <

4b Decompose1 (Cα u, t) <

5a Decompose1 (Cα u, Dβ v) <

5b Decompose1 (Cα u, Dβ v) ≤ ≤ <
Table 1

The remaining results are summarized in table 1. An entry ≤ (<) at column i,
row j, means that the measure i is not increased (is decreased) by rule j. The
different cases for application of Decompose1 (row 3 to 5b) are explained below.

To justify the entries in the table, we first note that obviously no application
of an inference rule of I2 to a system E can increase χ(E).

Case 1: E ⇒2 E' by an application of Eliminate, Eliminate1, or Eliminate2 to
an equation Cα u = t, yielding α = 0 ∧ u = t. Then

χ(Cα u) = 1 + χ(C) + χ(u) > χ(u)

Case 2: E ⇒2 E' by an application of Induce. Similar to case 2.

Case 3: E ⇒2 E' by an application of Decompose1 to some equation s = t,
where none of s and t is an N-term. This implies size(s↓i) < size(s) and size(t↓i) <
size(t) for i=1,…,n.

Case 4: s = Cα u is an N-term and t is not an N-term. a) For i ∈ char1(C), we
have size(s) = size(s↓i) = 0 and

size(s↓j = t↓j) = size(t↓j) < size(t) = size(s = t)

b) If i ∉ char1(C), then χ(s↓i) < χ(s), which implies

χ(s↓i = t↓i) < χ(s = t)

Case 5: Both s = Cα u and t = Dβ v are N-terms. Since Eliminate1 or Induce
do not apply, we can assume that Cn /~ Dm for all m,n ≥ 1. Let Cn = c1…ck, Dm =
d1…dk with c1,…,ck, d1,…,dk ∈ C1.

a) i ∉ char(c1) or i ∉ char(d1). We obtain

χ(s↓i) < χ(s), hence χ(s↓i = t↓i) < χ(s = t) for i ∉ char(c1)

16

χ(t↓i) < χ(t), hence χ(s↓i = t↓i) < χ(s = t) for i ∉ char(d1)

b) i ∈ char(c1) ∩ char(d1). Then c1 ~ d1 and s↓i = (Cρ)α−1/c u and t↓i = (Dρ)β−1/d

v, where c = |C| and d = |D|.

First, we remark that size(s↓ i = t↓ i) = 0 = size(s = t). Let r = π(s = t) =
msp(Cn,Dm). From c1 ~ d1 and Cn /~ Dm follows 1 ≤ r < k. Then

π(s↓i = t↓i) = msp((Cρ)n,(Dρ)m) = msp(Cnρ,(Dρ)m)

 = msp(c2…ckc1, d2…dkd1) = r−1< r = π(s = t)

21 Lemma Let C and D be simple contexts, such that Cn = Dm holds for some n,m
≥ 1. Then there exists a common prefix B of C and D, such that

C = Bm and D = Bn

and |B| = gcd(|C|,|D|).

Proof. Since contexts can be regarded as words, the assertion of the lemma
follows from a well known lemma on semigroups (see, e.g., [9])

22 Lemma Let C and D be nontrivial contexts. If C /~ D and char(C) ∩ char(D) ≠
∅, then C2 u ≠ D2 u for all terms u.

Proof. Assume to the contrary that C2 u = D2 u, and let p ∈ char(C) ∩ char(D).
This implies C2|p = C and D2|p = D. Moreover, we can assume without loss of
generality that there exists some q ∈ char(C) \ char(D). Then (see fig. 4)

u = C|q = C2|pq = D2|pq = D|q

Cu = C2|q = D2|q = D|q

which is a contradiction, because C ≠ ∗ by assumption.

p q

pq

C

C u2

p q

pq

D

D u2

qq

C

u u

u

u

C D

Figure 4

23 Lemma If E ⇒ 2 E', then
Sol(E') ⊆ Sol(E).

Proof. According to lemma 14, it
is sufficient to prove the assertion
for the Eliminate1, Eliminate2
and the Induce rule.

In view of the relation Cα u =
C α '+ α " u ≅ C α ' C α " u , we can
assume without loss of generality
in the following that α ∈ L, hence
α = α' and α" = 0 holds.

Case 1: E ⇒ E' by application of Eliminate1 or Eliminate2. Let σ ∈ Sol(α = i
∧ Ci u = Dβ v). Then ασ = i and

17

(Cα u)σ = (Cσ)ασ uσ = (Cσ)i uσ = (Dσ)βσ vσ = (Dβ v)σ

which implies σ ∈ Sol(Cα u = Dβ v).

Case 2: E ⇒ E' by application of Induce. Let σ ∈ Sol(Cn = Dm ∧ u = Bnβ−mα),
that is

(Cσ)n = (Dσ)m and (1)

uσ = (Bσ)nβσ−mασ vσ (2)

From (2) and lemma 8 follows

(Bσ)mασ uσ = (Bσ)nβσ vσ (3)

By lemma 8, we can infer

((Bσ)m)ασ uσ ≅ ((Bσ)n)βσ vσ (4)

Since Bσ is a prefix of Dσ of length gcd(|C|,|D|), we can conclude by (1) and
lemma 21, that Cσ ≅ (Bσ)m and Dσ ≅ (Bσ)n, hence

(Cσ)ασ uσ ≅ ((Bσ)m)ασ uσ ≅ ((Bσ)n)βσ vσ ≅ (Dσ)βσ vσ

which finally yields σ ∈ Sol(Cα u = Dβ v).

24 Theorem The system I2 is correct, that is, if E is the set of immediate successors
of E w.r.t. ⇒, then Sol(E) = E'∈E

∪ Sol(E').

Proof. We show that the assertion of the lemma holds, if E is the set of
immediate successors of E w.r.t. application of a rule to one nontrivial equation s
= t in E.

The cases where not both s and t are N-terms, are already dealt with in the
proof of lemma 15. So let s = Cα u, t = Dβ v and let σ ∈ Sol(E), which in particular
implies sσ = tσ. Moreover, let n := [C,D] and let m := [D,C].

Again, we can assume without loss of generality that α ∈ L, α = α' and α" = 0
hold.

If char(Cn) ∩ char(Dm) = ∅, the Decomposition and the Eliminate rule apply,
which is already dealt with in the proof of lemma 15. So let us assume that
char(Cn) ∩ char(Dm) ≠ ∅.

If Cn /~ Dm, then only rule Eliminate1 applies. We show that 0 ≤ ασ < 2n or 0
≤ βσ < 2m. Suppose to the contrary that ασ = 2n + a, a > 0 and βσ = 2m + b, b >
0 holds. From sσ = tσ follows

(Cσ)2n (Cσ)a uσ = (Cσ)2n+a uσ = (Cσ)ασ uσ =

(Dσ)βσ vσ = (Dσ)2m+b vσ = (Dσ)2m (Dσ)b vσ

Since |C2n| = |D2m|, this implies

u' := (Cσ)a uσ = (Dσ)b vσ

18

((Cσ)n)2 u' = (Cσ)2n u' = (Dσ)2m u' = ((Dσ)m)2 u',

thus contradicting lemma 22. This shows that 0 ≤ ασ < 2n or 0 ≤ βσ < 2m holds.
Without loss of generality, we assume i := ασ < 2n. Then σ ∈ Sol(α = i ∧ u = Dβ

v).

Now suppose Cn ~ Dm. Then the rules Eliminate, Eliminate1, and Induce
apply. We distinguish three cases:

Case 1: ασ = i < n. In this case σ ∈ Sol(α = i ∧ Ci u = Dβ v).

Case 2: βσ = j < m. In this case σ ∈ Sol(β = j ∧ Cα u = Dj v).

Case 3: ασ ≥ n and βσ ≥ m. We assume without loss of generality that nβσ −
mασ ≥ 0. From (Cσ)ασ uσ = (Dσ)βσ vσ now follows

(Cσ)n = (Dσ)m (1)

Let B be the prefix of D of length gcd(|C|,|D|). From (1) follows by lemma 21 that

Cσ = (Bσ)m and Dσ = (Bσ)n

Hence we obtain

 ((Bσ)m)ασ uσ = (Cσ)ασ uσ = (Dσ)βσ vσ = ((Bσ)n)βσ vσ

and finally

 uσ = (Bσ)nβσ−mασ vσ

which implies σ ∈ Sol(u = Bnβ−mα v).

4 Extensions and Limitations of the Approach
It is clear that the notion of terms with exponents can subsume only a small
part of the nontermination and divergence phenomena that occur in applications
like logic programming or equational logic. In logic programming, for instance, the
limits are set by undecidability results for fairly simple classes of Horn-clauses.
Schmidt-Schauß [12], for instance, showed that satisfiability is an undecidable
property for the class of Horn clauses consisting of two clauses with two atoms
and an arbitrary number of ground unit clauses. Recently, Hanschke and Würtz
[6] showed undecidability for the class of Horn clauses consisting of one clause
with two atoms and an arbitrary number of unit clauses. Consequently, there
can be no algorithm that transforms any given recursive clause with two atoms
into a nonrecursive clause using terms with exponents, since this would yield a
decision procedure for unsatisfiability.

Yet, there are possibilities to extend the syntax of terms with exponents in
order to cope with particular divergence phenomena. As an example, consider the
equational specification consisting of the axioms of associativity and idempotence

19

(xy)z = x(yz)

xx = x

Completing this specification yields two infinite sets of equations

x1(x2(x1x2)) = x1x2, x1(x2(x3(x1(x2x3)))) = x1(x2x3), … (1)

and

x1(x1x2) = x1x2, x1(x2(x1(x2x3))) = x1(x2x3), … (2)

Our notion of terms with exponents is too weak to cope with such sequences of
terms with an increasing number of variables. However, the syntax can be
extended by introducing an additional sort of variables, called flexible variables.
Roughly spoken, the flexible variables are renamed with each unfolding, an idea
that originates with [3]. To be more precise, we need to extend the signature by
a set

FV =
n≥0
∪ Vn

of flexible variables, such that Vi ∩ Vj = ∅ for i ≠ j, and |Vi| = |Vj| for all i, j.
Moreover, let π : FV → FV be a bijective mapping with π(Vi) = Vi+1 for all i ≥ 0.
Now the relation = on T is defined by

C0 = ∗
Cn = C((Cn')π) where n ∈ IN, n' = n−1

Additionally, we have to change the definition of the mapping ρ, which now reads
as follows: ∗ρ = ∗, (c1…cn)ρ = c2…cn(c1π).

As an example, the sequence (2) can now be represented in the form

 (x0∗)N ((x0∗)N y) = (x0∗)N y

where x0 is a flexible variable.

The inference system for unification remains unchanged under this extension.

Other directions for further research include equational computation using
terms with exponents. For instance, it is not clear how to extend the concept of
simplification orderings to this new kind of terms. As an example, consider the
ground terms s = fN(a) and t = a. The term t is both a subterm of s and an
instance of s, and so any naive application of the concept of simplification
ordering fails.

Moreover, it is not clear which notion of subterm replacement should be used
for equational computations. For instance, consider the rewrite system R con-
sisting of the rule f(x) → g(x), and let t = fN(a). Rewriting the term t at the root
position yields an infinite sequence of rewritings

fNa ⇒ gfN−1a ⇒ g2fN−2a ⇒ …

20

Instead, one would like to be able to rewrite t into the term gN(a).

Acknowledgment
I would like to thank Andrea Sattler-Klein and Thomas Deiß for contributing
some valuable suggestions to this paper.

References

1. Avenhaus, J. Proving Equational and Inductive Theorems by Completion
and Embedding Techniques. In: Book, R.V. (Ed.), Proc. of 4 t h
International Conference on Rewriting Techniques and Applications,
Springer LNCS 488, Como, 1991, 361-373.

2. Bachmair, L., Dershowitz, N., and Plaisted, D. Completion without
Failure. In: Coll. On the Resolution of Equations in Algebraic Structures.
Academic Press, 1987.

3. Chen, H., Hsiang, J., and Kong, H.C. On Finite Representations of
Infinite Sequences of Terms. In: Kaplan, S. and Okada, M. (Eds.), Proc.
of 2nd Int. Workshop on Conditional and Typed Rewriting Systems,
Springer LNCS 516, Montreal, 1990, 206-232.

4. Chen, H. and Hsiang, J. Logic Programming with Recurrence Domains.
In: Albert, J.L., Monien, B., and Artalejo, M.R. (Eds.), Proc. of 18th Int.
Coll. on Automata, Languages, and Programming, Springer LNCS 510,
1991, 20-34.

5. Comon, H., “Unification of Terms with Exponents,” 1992, To appear in:
Mathematical Systems Theory.

6. Hanschke, P. and Wuertz, J. Satisfiability of the smallest binary
program. Information Processing Letters 45/5(1993), 237-241.

7. Hermann, M., “Vademecum of divergent term rewriting systems,” CRIN,
Research Report, no. 88-R-082, 1988.

8. Knuth, D.E. and Bendix, P.B. Simple Word Problems in Universal
Algebra. In: Leech, J. (Ed.), Computational Problems in Universal
Algebra. Pergamon Press, 1970.

9. Lothaire, M. Combinatorics and Words, Addison-Wesley (1983).

10. Ohlbach, H.J. Compilation of Recursive Two-Literal Clauses into
Unification Algorithms. In: Jorrand, P. and Sgurev, V. (Eds.), Artficial
Intelligence IV, Methodology, Systems, Applications. North-Holland, 1990.

11. Salzer, G. The Unification of Infinite Sets of Terms and its Applications.
In: A. Voronkov (Ed.): Proc. of 3rd Conference on Logic Programming and
Automated Reasoning. Springer LNCS 624, 1991, 409-420.

12. Schmidt-Schauß, M. Implication of Clauses is Undecidable. Theoretical
Computer Science 59(1988), 287-296.

21

13. Schmidt-Schauß, M. Computational Aspects of an Order-Sorted Logic With
Term Declarations, Springer LNAI 395, New York (1989).

