
Unification in Sort Theories
and its

Applications

Christoph Weidenbach

MPI–I–94–211 March 1994

Author’s Address

Max-Planck-Institut für Informatik, Im Stadtwald,
W-6600 Saarbrücken 11, Germany.
Email: weidenb@mpi-sb.mpg.de

Publication Notes

Submitted to the Journal “Annals of Mathematics and Artificial Intelligence”.

Acknowledgements

This work was supported by the ESPRIT project 6471 MEDLAR of the European Com-
munity.

I would like to thank my colleages at the Max-Planck-Institut for many helpful com-
ments on this paper.

Abstract

In this article I investigate the properties of unification in sort theories.
The usual notion of a sort consisting of a sort symbol is extended to a
set of sort symbols. In this language sorted unification in elementary sort
theories is of unification type finitary. The rules of standard unification
with the addition of four sorted rules form the new sorted unification al-
gorithm. The algorithm is proved sound and complete. The rule based
form of the algorithm is not suitable for an implementation because there
is no control and the used data structures are weak. Therefore we trans-
form the algorithm into a deterministic sorted unification procedure. For
the procedure sorted unification in pseudo-linear sort theories is proved
decidable.

The notions of a sort and a sort theory are developed in a way such
that a standard calculus can be turned into a sorted calculus by replacing
standard unification with sorted unification. To this end sorts may denote
the empty set. Sort theories may contain clauses with more than one
declaration and may change dynamically during the deduction process.
The applicability of the approach is exemplified for the resolution and the
tableau calculus.

Keywords

Sorts, Sorted Unification, Sorted Resolution, Sorted Tableau

1 Introduction

The advantages of sorts in automated reasoning are well known [15, 21, 18, 4, 27,
10, 14, 22, 31, 1, 5, 12, 29]. The difference between standard first-order calculi and
their sorted counterparts amounts to an extended language and special reasoning
mechanisms for sorts, monadic predicates. The language is extended by attaching
sorts to variables, i.e. the domain of variables can be restricted to subsets (the
interpretation of sorts) of the domain (the interpretation of the top sort). This
additional information is exploited in the sorted unification algorithm which replaces
standard unification. Sorted unification is performed with respect to a sort theory
(a set of formulae containing sorts).

In the standard setting [27, 10, 22, 1] a sort theory L consists of a set of unit
clauses each containing a declaration (atoms with monadic predicate as top symbol).
An example for such a sort theory is

L = {S(a), S(f(xS)), T (a), T (f(yT))}

Now to solve the unification problem [23]

Γ = {xS = yT}

the unification problem must be standard solved and variables have to be weakened
(instantiated by appropriate terms) until the components of the corresponding uni-
fier are well-sorted. A component xS 7→ t is well-sorted if in every model of L we
have S(t). As L has a special structure there exists always a free model for L, the
free term algebra T of well-sorted terms. Computations in this algebra are efficient.
Following the above example, well-sorted terms of sort S and T are

TS = {x1, x2, . . . , a, f(a), f(f(a)), . . .}
TT = {y1, y2, . . . , a, f(a), f(f(a)), . . .}

where all xj have sort S (this is written S(xj) = S), S(yj) = T , and there are
infinitely many variables in each set. As neither xS ∈ TT nor yT ∈ TS the unification
problem Γ is not sorted solved. At least one of the variables must be weakened.
The sort theory allows weakening using the declarations S(a), T (a), and S(f(xS)),
T (f(yT)), respectively. Using the first two declarations we get the well-sorted unifier

σ1 = {xS 7→ a, yT 7→ a}

The second two declarations lead to the still unsolved unification problem

Γ′ = {xS = f(x′
S), yT = f(y′T), x

′
S = y′T}

Again the four declarations selected before must be applied to x′
S = y′T resulting in

infinitely many well-sorted mgu’s

1

σ2 = {xS 7→ f(a), yT 7→ f(a)}
σ3 = {xS 7→ f(f(a)), yT 7→ f(f(a))}

...

The first extension I make to this standard setting allows the domain of variables
to be restricted to a set of sorts, interpreted as the intersection of the sorts. For the
example the free algebra then is

TS = {x1, x2, . . . , z1, z2, . . . , a, f(a), f(f(a)), . . .}
TT = {y1, y2, . . . , z1, z2, . . . , a, f(a), f(f(a)), . . .}

T{S,T} = {z1, z2, . . . , a, f(a), f(f(a)), . . .}

where S(xj) = S, S(yj) = T , and S(zj) = {S, T}. Instead of the set {S} we simply
write the sort symbol S. Having the extended sort language the solution to Γ is one
single most general well-sorted unifier

σ = {xS 7→ z{S,T}, yT 7→ z{S,T}}

The new notion allows a finite set of unifiers in cases where previous approaches
[27, 22, 1, 5] lead to infinite sets.

The second extension investigated in this article needs further motivation. The idea
of sorted unification is to provide a sorted unification algorithm and a notion of a sort
theory such that a standard calculus using unification can be turned into a sorted
calculus by replacing standard unification with sorted unification. In addition, I
don’t want to impose any restrictions on the sort theory, i.e. any monadic predicate
can be used as a sort. In my previous work [28, 30] the problem is solved for the
resolution calculus. It turned out not sufficient to consider unit clauses consisting
of one single declaration as sort theories. All clauses consisting of declarations form
the sort theory. From every clause in the sort theory exactly one declaration is
selected for the construction of well-sorted terms, hence for sorted unification. The
other declarations are attached to the selected declaration as a condition. Using
this notion of a sort theory standard resolution can be extended to sorted resolution
by replacing standard unification with sorted unification. The new notion of a sort
theory makes it necessary to extend the notion of well-sortedness to a notion of
conditional well-sortedness. For example having the unsatisfiable clause database ∆

∆:

(1) S(a) ∨R(a)

(2) S(f(x1))

(3) Q(y1, y1)

(4) ¬Q(a, y2)

(5) P (x2, f(a))

(6) ¬P (a, x3)

2

where S(xi) = S, S(yi) = R. If the first clause S(a)∨R(a) is not included in the sort
theory no sorted resolution step is possible. Thus one of the following sort theories
must be chosen

L1 = {(S(a), {R(a)}), S(f(x1))}
L2 = {(S(a), {R(a)}), S(f(x1))}

In L1 the declaration S(a) is selected for the generation of well-sorted terms and
R(a) is attached as a condition. The sets of conditional well-sorted terms for L1 are:

TS = {xi, zi, (a, {R(a)}), (f(a), {R(a)}), (f(f(a)), {R(a)}), . . .}
TR = {yi, zi}

T{S,R} = {zi}

where S(zi) = {S,R}. Now solving the unification problem

Γ = {x3 = f(a), x2 = a}

the result is the conditional well-sorted mgu

σ = ({x3 7→ f(a), x2 7→ a}, {R(a)})

Thus choosing L1 sorted resolution between the clauses (5) and (6) is possible with
resolvent R(a). If we choose L2 sorted resolution between the clauses (3) and (4) is
possible with resolvent S(a). Sorted resolution is described in full detail in Section 6.

An outline of the article is this. We start with a small section on foundations
(Section 2), where the syntax, semantics of the logic and some technical notions
needed later on are explained. The section on standard unification (Section 3)
introduces the general notions for standard unification and a rule based version of
the Robinson [20] unification algorithm. These notions are then extended in the
section on sorted unification (Section 4) to their sorted counterparts. The notion of
conditional expressions and conditional well-sortedness are introduced. The sorted
unification algorithm, an algorithm for deciding conditional well-sortedness and an
algorithm for the computation of empty sorts are given. Upper bounds for the time
complexity of these algorithms are established.

As a result of the extended sort language it is shown that unification in ele-
mentary sort theories is decidable and of unification type finitary. In Section 5 the
sorted unification algorithm given by a set of non-deterministic rules in Section 4
is transformed into a deterministic sorted unification procedure. To this end the
notion of a unification problem is extended. This makes it possible to prove sorted
unification decidable for pseudo-linear sort theories, the most general result known
to date for a decidable class. The section on applications (Section 6) demonstrates
that the previously developed notions and algorithms make sense. Sorted unifica-
tion is applied to the standard resolution calculus and the standard tableau calculus.
The article is finished with a discussion on the achieved results and related work,
Section 7.

3

2 Foundations

Preliminaries: A reflexive and transitive relation ≤ on a set A is called a quasi-
ordering. A quasi-ordering ≤ naturally generates an equivalence relation ≡, such
that a ≡ b iff a ≤ b and b ≤ a. The equivalence class in A with respect to ≡ is
denoted as [a]≡. We use a < b to denote that a ≤ b but not a ≡ b.

An element a is minimal in A iff for all b ∈ A: b ≤ a implies a ≤ b. A quasi-
ordering is linear, iff a ≤ b or b ≤ a for all elements. It is well-founded, iff every
chain has a minimal element. A quasi-ordering satisfying a ≤ b and b ≤ a implies
a = b (antisymetrie) is called a partial ordering.

A multiset over a set A is a function M from A to the natural numbers. Intu-
itively, M(a) specifies the number of occurrences of a in M . We say that a is an
element of M if M(a) > 0. The union, intersection, and difference of multisets are
defined by the identities M1∪M2 = M1(x)+M2(x), M1∩M2 = min(M1(x),M2(x)),
and M1 \ M2 = max(0,M1(x) − M2(x)). We often use a set-like notation to de-
scribe multisets. If we have a well-founded partial ordering on the elements of a
multiset M , then we can construct recursively a well-founded multiset-ordering on
multisets as follows: M > N if for some a ∈ M and bi ∈ N i = 1, . . . , n: a > bi and
M \ {a} > N \ {b1, . . . , bn} (e.g. see Dershowitz [8]).

Syntax: The standard first-order signature Σ = (VΣ, FΣ, PΣ) where VΣ, FΣ are
infinite sets of variable and function symbols, respectively and PΣ is a finite set of
predicate symbols is generalized in the following way. Monadic predicates are also
called base sorts. SΣ is the set of all base sorts (SΣ ⊆ PΣ). A sorts is an element of
2SΣ . For ∅ ∈ 2SΣ we write ⊤ the usual sort attached to standard variables, ⊤ /∈ Σ
and mean the top sort. As SΣ is finite, 2SΣ is finite too. The function S, S:VΣ → 2SΣ

maps variables to sorts such that for each sort S ∈ 2SΣ there are infinitely many
variables x with S(x) = S. In examples it is indicated that a variable x has sort S
by writing xS. If S is the singleton set S = {T} we often write xT instead of x{T}.
If not stated otherwise variables not annotated with a sort have sort ⊤, the top sort.

Terms, literals, clauses, formulae, and substitutions are defined in the usual
(standard) way. With ∀(F) the universal closure of a formula F is denoted. Lit-
erals built from base sorts are called sort literals. Positive sort literals are called
declarations. A clause only consisting of declarations is called a declaration clause.
A declaration S(t) is called a subsort declaration if t is a variable. Otherwise it
is called a term declaration. If t has the form f(x1, . . ., xn) then S(t) is called a
function declaration.

With DOM(σ): = {x | xσ ̸= x} we denote the finite domain of a substitution σ
and COD(σ): = {xσ | x ∈ DOM(σ)}. Specific substitutions are described by their
variable-term pairs, e.g. {x 7→ a} denotes the substitution x maps to a.

The function V maps terms, formulae and sets of such expressions to their vari-
ables. In order to select subterms of a given term t we use occurrences [16]. An
occurrence is a word over IN. Let Λ denote the empty word. Then we define the set
of occurrences Occ(t) of a term t as follows: (i) the empty word Λ is in Occ(t) (ii)

4

i.π is in Occ(t) iff t = f(t1, . . ., tn) and π ∈ Occ(ti). The depth of a term t denoted
by Depth(t) is defined as the maximal length of an occurrence in Occ(t). The size
of a term is the number of symbols in it, or equivalently the number of occurrences
in Occ(t), Size(t): = |Occ(t)|.

A term t is called pseudo-linear if every occurrence of a variable x in t has the
same length. A term t is called semi-linear [26] if for every two occurrences i1...ik,
j1...jk of a variable x in t the top symbols of the terms t\i1...il and t\j1...jl are the
same for 1 ≤ l ≤ k.

Semantics: As the only extension of standard syntax are sorted variables it is
sufficient to present the semantics for these variables. The semantics of sorted
variables is given by the two relativization rules

∀xF → ∀y ((S1(y) ∧ . . . ∧ Sn(y)) ⇒ F{x 7→ y})
∃xF → ∃y (S1(y) ∧ . . . ∧ Sn(y) ∧ F{x 7→ y})

where S(x) ̸= ⊤, S(x) = {S1, . . . , Sn}, S(y) = ⊤ and y does not occur in the
formula F . Variables of sort ⊤ (the top sort) have the same semantics than standard
variables.

An alternative semantics would be to extend standard interpretations ℑ to sorted
interpretations ℑS by modifying the rules for the quantifiers. A sorted interpretation
ℑS is like a standard interpretation ℑ except that:

ℑS |= ∀xF iff for all a ∈ ∩
T∈S(x)

ℑS(T) we have ℑS [x/a] |= F

ℑS |= ∃xF iff there is an a ∈ ∩
T∈S(x)

ℑS(T) with ℑS [x/a] |= F

where ℑS [x/a] is like ℑS except that it maps x to a. It should be clear that the
sorted semantics and the semantics given by the relativization rules are equivalent
with respect to sentences.

3 Standard Unification

For the standard case a lot of efficient unification procedures are known, e.g. [19,
17, 2]. For reasons of simplicity we will present a rule based version of the Robinson
[20] unification procedure following [17]. We use the standard notions for unification
[23].

Definition 3.1 (Notions for Unification) A substitution σ is called a matcher
from s to t if sσ = t, where s and t are two expressions (terms, atoms, literals). t
and s are called unifiable, iff there exists a substitution σ such that tσ = sσ. In this
case the substitution σ is called a unifier of t and s. A unifier σ of two expressions
t and s is called an mgu (most general unifier), iff for every unifier λ of t and s
there exists a substitution τ , such that στ = λ. If t and s are two expressions, then
Γ = {t = s} is called the unification problem for t and s. A substitution σ solves

5

Tautology
x = x ∪ Γ

Γ

Decomposition
{f(t1, . . . , tn) = f(s1, . . . , sn)} ∪ Γ

{t1 = s1, . . . , tn = sn} ∪ Γ

Application
{x = t} ∪ Γ

{x = t} ∪ Γ{x 7→ t}
if x is a variable, x /∈ V(t), and x ∈ V(Γ)

Orientation
{t = x} ∪ Γ
{x = t} ∪ Γ

if x is a variable and t a non-variable term

Clash
{f(t1, . . . , tn) = g(s1, . . . , sm)} ∪ Γ

STOP.FAIL

if f ̸= g

Cycle
{x = t} ∪ Γ
STOP.FAIL

if x ∈ V(t)

Table 1: The Rules of Standard Unification

a unification problem Γ = {t1 = s1, . . . , tn = sn}, iff t1σ = s1σ, . . . , tnσ = snσ. A
unification problem Γ is called solved, iff Γ = {x1 = t1, . . . , xn = tn} where the xi

are variables, xi /∈ V(tj) and xi ̸= xj for every i and j.

Algorithm 3.2 (A Standard Unification Algorithm) The input of the algo-
rithm is a unification problem Γ, which is changed by the following six rules until it
is solved or the problem is found to be unsolvable:

If Γ = {t1 = s1, . . . , tn = sn} is a unification problem, then the above unification
algorithm always terminates on Γ. If the algorithm stops with failure there is no
substitution σ solving Γ. Otherwise Γ is solved and the corresponding substitution
σ is an idempotent mgu of the term pairs (t1, s1), . . . , (tn, sn).

Lemma 3.3 Let t, s be two unifiable, pseudo-linear terms. If s and t share variables,
we assume that occurrences of common variables also have the same length. If σ is
the mgu of s and t, then Depth(tσ) = max(Depth(s),Depth(t)).

Proof: By induction on the number n of different variables occurring in s or t.

6

The base cases n = 0, n = 1 and n = 2 can be easily proved.

Now assume n + 1 different variables. We apply exhaustively the rules Tautology,
Decomposition, and Orientation to the unification problem Γ = {s = t} resulting
in Γ′ = {x1 = t1, . . . , xn = tn}. Let λ = {x1 7→ t1}, t′ = tλ, and s′ = sλ.
Then max(Depth(s),Depth(t)) = max(Depth(s′),Depth(t′)) because s and t are
pseudo-linear. In addition s′ and t′ are also pseudo-linear and contain n different
variables. By induction hypothesis for the mgu τ of s′ and t′ we have Depth(t′τ) =
max(Depth(s′),Depth(t′)). Thus from λτ = σ and the above we have Depth(tσ) =
max(Depth(s), Depth(t)). 2

4 Unification in Sort Theories

4.1 Conditional Well-Sorted Expressions

Definition 4.1 (Conditional Expressions) A pair (S(t), C) is called a condi-
tional declaration (conditional term, conditional substitution) if C is a finite set of
literals and S(t) a declaration (term, substitution). A conditional expression (t, C)
is called ground if t is ground.

We always assume that the set L of conditional declarations is finite and all
conditional declarations are variable disjoint. The set L is called a sort theory. All
following notions and definitions refer to a fixed sort theory L.

Definition 4.2 (Conditional Well-Sorted Terms) The set of conditional well-
sorted terms (abbreviated by cws. terms) TS of sort S is recursively defined by:

(i) For every variable x ∈ VΣ and every sort S ⊆ S(x), (x, ∅) ∈ TS.

(ii) For every conditional declaration (S(t), C) ∈ L, (t, C) ∈ TS. Note that there
are only declarations for base sorts.

(iii) For every cws. term (t, C) ∈ TS (S ̸= ⊤), substitution σ: = {x1 7→ t1, . . . , xn 7→
tn}, with (ti, Ci) ∈ TS(xi) for all i, (

∪
iCi) ⊆ D for some finite set of literals D,

(tσ, Cσ ∪D) ∈ TS.

(iv) For cws. terms (t, Ci) ∈ TSi
(1 ≤ i ≤ n), finite set of literals D, (

∪
iCi) ⊆ D,

(t,D) ∈ T{S1,...,Sn}.

(v) For every term t and finite set of literals D we have (t,D) ∈ T⊤.

We define T ∅
S : = {(t, ∅) | (t, ∅) ∈ TS}. TS,gr is the restriction of TS to ground

terms. A sort S is called empty if there is no cws. ground term (t, C) ∈ TS, or
equivalently if TS,gr = ∅. We always have T ∅

S ⊆ TS and TS,gr ⊂ TS.
For the unification algorithm it is useful to define a binary relation ⊑ which

denotes the subsort relationship. If S and T are sorts, then we define S ⊑ T iff

7

there exists a variable x with S(x) = S and x ∈ TT . Note that if there exists one
variable x ∈ TT there are infinitely many variables of sort S in TT . The relation
S ⊑ T implies TS ⊆ TT . In addition, we have t ∈ T{S,T} iff t ∈ TS and t ∈ TT for
two arbitrary sorts S, T .

Sometimes we are not interested in the condition part of a conditional expression.
We say that t ∈ TS if there is a set of literals C such that (t, C) ∈ TS. Similarly we
say that a declaration S(t) ∈ L if there is a set of literals C such that (S(t), C) ∈ L.
If not necessary or if the conditional part is the empty set we do not mention the
conditional part of a conditional expression.

Example 4.3 (Conditional Well-Sorted Terms) Consider the sort theory

L = {(S(a), {P (a)}), (S(y), {Q(y)}), T (a), T (f(x))}

If a conditional declaration (term) has an empty conditional part only the term is
written. It is assumed throughout this example that S(xi) = S and S(yi) = T . Now
Definition 4.2 is applied. The case (i) gives

TS ⊃ {x1, x2, . . . , z1, z2, . . .}
TT ⊃ {y1, y2, . . . , z1, z2, . . .}

T{S,T} ⊃ {z1, z2, . . .}

with S(zi) = {S, T}. Case (ii) of Definition 4.2 extends the sets by terms occurring
in the declarations:

TS ⊃ {(a, {P (a)}), (y, {Q(y)})}
TT ⊃ {a, f(x)}

Now case (iii) can be applied. We have (y, {Q(y)}) ∈ TS. For both substitutions
σ = {y 7→ a} and τ = {y 7→ f(x)} the components are well-sorted, i.e. a ∈ TT and
f(x) ∈ TT . TS is extended by the new terms (yσ, {Q(y)σ}) and (yτ, {Q(y)τ}) :

TS ⊃ {(a, {Q(a)}), (f(x), {Q(f(x))})}

Now all terms in TS can be substituted for x in f(x) ∈ TT :

TT ⊃ {(f(a), {P (a)}), (f(a), {Q(a)}), (f(y), {Q(y)})}

This process can be continued infinitely many times. Applying case (iv) using the
occurrences of f(a) in TS and TT we get:

T{S,T} ⊃ {(f(a), {P (a), Q(a), Q(f(a))}), (f(a), {Q(a), Q(f(a))})}

Case (v) means that an arbitrary conditional term is included in T⊤. The sorts S,
T and {S, T} are not empty and

T ∅
S = {xi, zi}

T ∅
T = {yi, zi, a, f(xi)}

8

Depending on the declarations occurring in L the following theories are distin-
guished. L is called elementary if every term declaration is a function declaration.
L is called semi-linear if every term occurring in a term declaration is semi-linear
and there are no cycles with respect to ⊑. L is called pseudo-linear if every term
occurring in a term declaration is pseudo-linear. L is called regular if all subsort
declarations have an empty condition part, ⊑ is a partial ordering and every term t
has a unique least sort with respect to ⊑. Note that this notion is called preregular
by Goguen and Meseguer [14].

Lemma 4.4 (Soundness of Cws. Terms) Let L = {(S1(t1), {K1,1, . . ., K1,n1}),
. . ., (Sm(tm), {Km,1, . . ., Km,nm})} be a sort theory. For every interpretation ℑS
with ℑS |= ∀(S1(t1) ∨ K1,1 ∨ . . . ∨ K1,n1) ∧ . . . ∧ ∀(Sm(tm) ∨ Km,1 ∨ . . . ∨ Km,nm)
and every cws. term (t, {L1, . . . , Lk}) ∈ TS, S ̸= ⊤, S = {S1, . . . , Sn}, we have
ℑS |= ∀((S1(t) ∧ . . . ∧ Sn(t)) ∨ L1 . . . ∨ Lk).

Proof: By structural induction according to Definition 4.2. 2

Lemma 4.5 (Completeness of Cws. Terms) Let L be a sort theory where all
declarations have an empty condition part, whence TS = T ∅

S for every sort S. Then
ℑgr

S given by ℑgr
S (S) = TS,gr for all base sorts S is the initial model in the family of

all L models and ℑfr
S given by ℑfr

S(S) = TS is the free model in the family of all L
models.

Proof: Straightforward extension of the proof given by Schmidt-Schauß [22]. 2

Definition 4.6 (Conditional Well-Sorted Substitutions) A conditional substi-
tution σc = (σ,C) is called conditional well-sorted if for every xi ∈ DOM(σ), there
is a cws. term (xiσ,Ci) ∈ TS(xi) and (

∪
iCi) ⊆ C.

A cws. renaming σc = (σ, ∅) is a cws. substitution such that COD(σ) consists of
variables only, σ is injective on DOM(σ) and S(x) = S(xσ) for all x ∈ DOM(σ).

The composition of two well-sorted substitutions can be computed by τcσc: =
(τσ,Kσ∪C), where σc = (σ,C), τc = (τ,K). The result of the composition is again
a cws. substitution. Thus the set of all cws. substitutions builds a monoid. The set
of all conditional well-sorted substitutions is denoted by SUB. A cws. substitution
σc ∈ SUB is called empty iff there exists no λc ∈ SUB such that σcλc is a ground
substitution.

Example 4.7 (Conditional Well-Sorted Substitutions) Again we consider the
sort theory of Example 4.3, S(xi) = S, S(yi) = T :

L = {(S(a), {P (a)}), (S(y), {Q(y)}), T (a), T (f(x))}

The two substitutions σ and τ are cws. substitutions:

σc = {y1 7→ a}
τc = ({y 7→ f(y1)}, {Q(y1)})

9

Note that these substitutions would be also cws. if the conditional part is extended
by additional literals. The composition τσ is

τcσc = ({y 7→ f(a), y1 7→ a}, {Q(a)})

Definition 4.8 Let sc = (s, C), tc = (t,K) be two cws. terms. Then

(i) sc ≥L tc iff there exists (σ,D) ∈ SUB such that s = tσ and (Kσ ∪ D) ⊆ C.
In this case we call (σ,D) an instantiating substitution of tc to sc and we call
sc an L-instance of tc.

(ii) sc ≡L tc iff sc ≥L tc and tc ≥L sc.

As≥L is a quasi-ordering on cws. terms the relation≡L is an equivalence relation.

Lemma 4.9 For every sort S ∈ 2SΣ , S ̸= ⊤, S = {S1, . . . , Sn}, and every non-
variable term sc ∈ TS there exist term declarations (S ′

i(ti), Ci) ∈ L with S ′
i ⊑ Si

and a cws. substitution (σ,D) ∈ SUB such that (tiσ, (
∪
Ci)σ ∪D ∪ Eσ) ≤L sc for

all i, where E is the set of conditions coming from the subsort declarations which
establish S ′

i ⊑ Si.

Proof: By structural induction using Definition 4.2 and the fact that SUB is a
monoid. 2

Lemma 4.10 Let t be a term and let S ̸= ⊤ be a sort.

(i) There exists a finite set of cws. terms Cond(t, S) = {(t, C1), . . . , (t, Cn)} with
(t, Ci) ∈ TS for all i and for each cws. term (t, C) ∈ TS there is a term
(t, Ci) ∈ Cond(t, S) with (t, C) ≥L (t, Ci).

(ii) There exists a finite set of cws. ground terms Cond(S) = {(t1, C1), . . . , (tn, Cn)}
with (ti, Ci) ∈ TS for all i and for each cws. ground term (t, C) ∈ TS there
is a ground term (ti, Ci) ∈ Cond(S) and a cws. renaming σc = (σ, ∅) with
Ciσ ⊆ C.

Proof:

(i) By induction on the structure of terms. If t is a constant and (t, C) ∈ TS, for
an arbitrary set of literals C, then by Lemma 4.9 there are term declarations in L
which can be used to build a more general term than (t, C). As L is finite there
are only finitely many different terms. If t is a variable, then S(t) ⊑ S. As there
are only finitely many subsort declarations in L the set Cond(t, S) is finite. If t is
a compound term, Lemma 4.9 and fact that L is finite can be used again and the
induction hypothesis is applied to the components of σ (see Lemma 4.9).

(ii) The set exists because L is finite, the sets of ground terms are recursively enu-
merable and the subset ordering modulo renaming is well founded on finite sets of
literals. 2

10

There exists no effective algorithm for the computation of common ground terms
for two base sorts. The question whether two base sorts share a common ground
term is undecidable in general [22]. The set Cond(S) is effectively computable for
base sorts if the sorts of all variables occurring in {x | x ∈ V(t), (S(t), C) ∈ L}
are base sorts. In this case the time complexity of computing Cond(S) for all base
sorts is at most O(m3 ∗ k) where m = |L| and k = max({|C| | (S(t), C) ∈ L}).
The idea is to start with all ground declarations and collect the conditions and
ground terms for the respective sorts. These sorts are non-empty with respect to
the conditions. Then this result is propagated recursively to all declarations where
all sorts attached to the variables in the declaration are already known non-empty.
The corresponding conditions are collected, ground terms built, and using the subset
relationship redundant sets of conditions can be removed. The cardinality of the
maximal non-redundant set of conditions is bound by m ∗ k and for the search and
propagation we need at most m2 steps.

As every term has top sort ⊤, Cond(t,⊤) = {t} and Cond(⊤) = {a} for an
arbitrary constant a. In addition, sort computation is trivial for sort ⊤.

Example 4.11 Again we consider the sort theory of Example 4.3,

L = {(S(a), {P (a)}), (S(y), {Q(y)}), T (a), T (f(x))}

Then examples for Cond(t, S) are

Cond(f(a), T) = {(f(a), {Q(a)}), (f(a), {P (a)})}
Cond(f(x), T) = {f(x)}
Cond(f(x), S) = {(f(x), {Q(f(x))})}

and the sets Cond(S) and Cond(T) are

Cond(T) = {a}
Cond(S) = {(a, {P (a)}), (a, {Q(a)})}

Algorithm 4.12 (Sort Computation) Let t be a term and S ̸= ⊤ a sort. Then
t ∈ TS with S = {S1, . . . , Sn} iff there exist sorts Ti ∈ Sorts(t) with Ti ⊑ Si for all
i. The function Sorts can be computed as follows:

(i) if t is a variable, then Sorts(t) = {S(t)}

(ii) if t is a constant, then Sorts(t) = {S | S(t) ∈ L}

(iii) if t is a compound term f(t1, . . ., tn), then Sorts(t) = {S | S(f(s1, . . .,
sn)) ∈ L, there exists a standard matcher σ with f(s1, . . ., sn)σ = f(t1, . . .,
tn) and for each component xi 7→ t′i of σ, S(xi) = {S1, . . . , Sn} there are sorts
Ti ∈ Sorts(t′i) with Ti ⊑ Si}

11

The above algorithm can also be used to answer queries of the form t ∈ T ∅
S by

only considering declarations with empty condition part.
The time complexity of the algorithm for a query t ∈ TS is at most O(n2 ∗ m)

where n = Size(t) and m = |L|. The idea is to start with the computation of the
sorts of subterms of depth 0 and then successively continue for subterms with depth
greater 0. Schmidt-Schauß [22] proved that sort computation is quasi-linear. His
result doesn’t subsume our result because Schmidt-Schauß considered constant time
for all operations concerning the sort theory. This was reasonable because his sort
theory is a static part of the signature. In the approach presented here the theory
typically changes during deduction, if sorted unification is applied to a calculus (see
Section 6).

Example 4.13 (Sort Computation) The query f(f(x1)) ∈ TS is answered with
respect to the sort theory of Example 4.3 (S(xi) = S, S(yi) = T):

L = {(S(a), {P (a)}), (S(y), {Q(y)}), T (a), T (f(x))}

Depth(x1) = 0 thus the sort computation is started with x1. As we have S(x1) = S
the result for x1 is

Sorts(x1) = {S}

Following case (i) of Definition 4.12 the term f(x1) is the only term of depth 1. The
only applicable declaration (case (iii)) is T (f(x)) with standard matcher σ = {x 7→
x1}. Of course we have S ∈ Sorts(x), whence

Sorts(f(x1)) = {T}

For f(f(x1)) again declaration T (f(x)) with standard matcher σ = {x 7→ f(x1)}
can be used. We have T ∈ Sorts(f(x1)) and T ⊑ S, because (S(y), {Q(y)}) ∈ L.

Sorts(f(f(x1))) = {T}

Now we know that f(f(x1)) ∈ TS because T ⊑ S.

Definition 4.14 Let W ⊆ VΣ and σc = (σ,C), τc = (τ,K), σc, τc ∈ SUB

(i) σc ≥L τc[W] iff there exists a λc = (λ,D) ∈ SUB with xσ = xτλ for all
x ∈ W and (Kλ ∪D) ⊆ C
In this case we call λc an instantiating substitution of τc to σc and we call σc

an L-instance of τc modulo W .

(ii) σc ≡L τc iff σc ≥L τc and τc ≥L σc.

12

4.2 Unification Theory

We shortly recall the basic notions of unification theory [23] for the case of sort
theories. Let Γ be a unification problem. A cws. substitution σc = (σ,C) solves Γ
iff for every equation (s = t) ∈ Γ we have sσ = tσ. σc is called a cws. unifier of Γ.
The set of all unifiers of Γ is written UL(Γ), which is a left ideal in the substitution
monoid SUB, since UL(Γ) = SUB ◦ UL(Γ).

We define the complete set of unifiers called cUL(Γ) of a unification problem Γ
as a set of cws. unifiers satisfying

(i) cUL(Γ) ⊆ UL(Γ) (correctness)

(ii) ∀δc ∈ UL(Γ) ∃σc ∈ cUL(Γ) : δ
c ≥ σc[V(Γ)] (completeness)

The base set µUL(Γ), called the set of most general unifiers, is defined as a complete
set of unifiers satisfying in addition

(iii) ∀σc, τc ∈ cUL(Γ) : if σ
c ≥ τc[V(Γ)] then σc = τc (minimality)

Based on the cardinality of µU , we can classify sort theories according to the fol-
lowing unification hierarchy. A sort theory L is of type:

unitary if µUL(Γ) exists and has at most one element for
all unification problems Γ

finitary if µUL(Γ) exists and is finite for all unification
problems Γ

infinitary if µUL(Γ) exists and is infinite for some unification
problem Γ

nullary if µUL(Γ) does not exist for some unification prob-
lem Γ

4.3 The Sorted Unification Algorithm

Definition 4.15 (Notions for Sorted Unification) In order to define sorted uni-
fication, we have to extend Definition 3.1. A unification problem Γ = {x1 =
t1, . . . , xn = tn} is called sorted solved if Γ is solved and for every variable xi we
have ti ∈ TS(xi).

Lemma 4.16 The ordering ≥L [W] is well founded on SUB for a finite set of
variables W .

Proof: We have to show that there are no infinite chains of cws. substitutions
(σ1, C1) >L (σ2, C2) >L . . . Choose a weight function w: Σ → IN such that w(S) >
w(T) if S < T or S <∅ T for sorts S, T ∈ 2SΣ , w(x): = w(S(x)) for all variables
x ∈ VΣ, w(f): = max{w(S) | S ∈ 2SΣ} + 1 for all f ∈ FΣ. The relation <∅ is
the restriction of < to subsort declarations with an empty condition part. Note
that S <∅ T implies S < T or S ≡ T . As L and 2SΣ are finite the relation <

13

is well founded, therefore the function w always exists. w may assign arbitrary
natural numbers to predicate symbols. w can be extended to terms, literals, and
sets of such expressions by w(f(t1, . . ., tn)): = w(f) +

∑
i w(ti) and w({E1, . . .,

En}): =
∑

iw(Ei). The weight of a cws. substitution is defined as w((σ,C)): =
w(DOM(σ)) + w(COD(σ)) + w(C).

Now we show (σ,C) >L (τ,D) implies w((σ,C)) > w((τ,D)). Wlog. we assume
DOM(σ) ⊆ W , DOM(τ) ⊆ W and thus DOM(σ) = DOM(τ). If (σ,C) >L (τ,D)
either |C| > |D| or some subterms in C or COD(σ) are replaced by variables in D
or COD(τ), respectively, or some variables in C or COD(σ) are replaced by more
general variables in D or COD(τ), respectively. All these cases imply w((σ,C)) >
w((τ,D)). As the sets COD(σ), COD(τ), C, D, W are all finite, we conclude
≥L [W] is well founded. 2

As a consequence of Lemma 4.16 we have that for every finite set Γ of equations,
there exists a minimal, complete set of unifiers µUL(Γ).

Algorithm 4.17 (The Sorted Unification Algorithm) The input of the algo-
rithm is a unification problem Γ, which is changed by four sorted rules (see Table
2) and the six standard rules of Algorithm 3.2 (see Table 1) until it is sorted solved
or no rule is applicable or the problem is found to be unsolvable.

In order to compute a cws. substitution from a sorted solved unification problem,
we have to do the following. Let Γ = {x1 = t1, . . . , xn = tn} be the sorted solved
unification problem, then σ: = {x1 7→ t1, . . . , xn 7→ tn} is the corresponding unifier.
σc: = (σ,C) is a cws. mgu if we have (ti, Ci) ∈ TS(xi) for all i and C =

∪
iCi. Thus

from a sorted solved unification problem we may compute several (but only finitely
many, see Lemma 4.10) cws. mgu’s.

As the sorted unification algorithm is an extension of the standard unification
algorithm with the sorted rules, every sorted unifier is a standard instance of the
standard unifier. This was pointed out by Schmidt-Schauß [22] already. Frisch and
Cohn used this insight for a more abstract presentation of sorted unification [12].

Note that the unification algorithm unifies terms with respect to all cws. substi-
tutions, including empty substitutions. Thus the problem of empty sorts is separated
from the unification problem.

Lemma 4.18 (Soundness of the Unification Algorithm) If the unification al-
gorithm computes a cws. mgu σc for a unification problem Γ, then σc solves Γ.

Proof: Can be easily proved for the rules. The proof is done by showing that
every cws. substitution solving the problem after the application of a rule solves the
original problem. 2

Lemma 4.19 (Completeness of the Unification Algorithm) If λc is a cws.
substitution which solves Γ, then the unification algorithm computes a cws. mgu
σc which solves Γ and λc ≥L σc[V(Γ)].

14

Sorted Fail
{x = f(t1, . . . , tn)} ∪ Γ

STOP.FAIL
if x /∈ V(f(t1, . . ., tn)), f(t1, . . ., tn) /∈ TS(x), S(x) =
{S1, . . . , Sn} and there are no conditional declarations
S ′
i(f(si,1, . . . , si,n)) ∈ L, S ′

i ⊑ Si

Subsort
{x = y} ∪ Γ
{y = x} ∪ Γ

if x ∈ TS(y) and y /∈ T ∅
S(x)

Common
Subsort

{x = y} ∪ Γ
{x = z} ∪ {y = z} ∪ Γ

if x /∈ T ∅
S(y), y /∈ T ∅

S(x), and S(z) = S(x) ∪ S(y)

Weakening
{x = f(t1, . . . , tn)} ∪ Γ

{x = f(s1,1, . . . , s1,n)} ∪ {t1 = si,1, . . . , tn = si,n} ∪ Γ

if x /∈ V(f(t1, . . ., tn)), f(t1, . . ., tn) /∈ T ∅
S(x), S(x) =

{S1, . . . , Sn} and for each Si there is a conditional declara-
tion S ′

i(f(si,1, . . . , si,n)) ∈ L, S ′
i ⊑ Si

Table 2: The Sorted Rules of Sorted Unification

15

Proof: Let σc = (σ,C) be an idempotent most general unifier, i.e. σc ∈ µUL(Γ)
with DOM(σ) = V(Γ). For the proof we will split Γ into two disjoint parts: ΓU and
ΓWO . ΓU contains the unsolved equations and is initialized with Γ. ΓWO contains the
worked off equations, i.e. equations already processed by the rules of the unification
algorithm. ΓWO is initialized with the empty set.

As well-founded complexity measure µ(σ,Γ) we use the multiset of all term
depths in ΓUσ. The idea of the proof is to show that there exists a pair (σ′,Γ′), such
that Γ can be transformed into Γ′ by one step of the unification algorithm and σ′

is a mgu of Γ′ that is equal to σ on old variables and extends σ to new variables,
furthermore µ(σ′,Γ′) < µ(σ,Γ).

If µ(σ′,Γ′) is minimal, i.e. ΓU = ∅, then the set of equations is sorted solved and
we are ready. It should be clear that in this case ΓWO is sorted solved and by using
Lemma 4.10 we can compute the desired mgu by restricting the domain of σ′ to
V(Γ).

Now we show that there is always a step of the unification algorithm that reduces
the measure µ(σ,Γ). First we argue that the rule Application (see Algorithm 3.2)
does not increase the measure. The rule does not change the depths of terms is Γσ,
since from xσ = tσ we obtain σ{x 7→ t} = σ, since σ is idempotent.

We go through the cases for equations s = t in ΓWO :

(i) Case s = t, where neither s nor t is a variable. Then by step Decomposition
we reduce µ(σ,Γ) without changing the set of solutions.

(ii) Case x = f(t1, . . ., tn). Then x /∈ V(f(t1, . . ., tn) because xσ = f(t1, . . .,
tn)σ. If xσ = f(t1, . . ., tn), then we have f(t1, . . ., tn) ∈ TS(x), move the
equation to ΓWO and are done. If xσ ̸= f(t1, . . ., tn) then f(t1, . . ., tn) /∈ T ∅

S(x)
as σ is an idempotent mgu of Γ. Let S(x) = {S1, . . . , Sn}. By Lemma 4.9
there exist declarations S ′

i(f(si,1, . . . , si,n)) with S ′
i ⊑ Si and substitution τc =

(τ, E) with f(si,1, . . . , si,n)τ = f(t1, . . ., tn)σ. We use the rules Weakening,
Decomposition, Orientation and Application to obtain a new equation system
Γ′. Since the equation x = f(s1,1, . . . , s1,n) is sorted solved, we have µ(σ ∪
τ,Γ′) < µ(σ,Γ), since the depth of f(t1, . . ., tn)σ is larger than all term depths
of tjσ and si,jτ . Furthermore σ ∪ τ is a solution of Γ′ with σ ∪ τ = σ[V(Γ)].

(iii) Case x = y. If xσ = y or yσ = x we can shift the equation to ΓWO after
applying rule Subsort if necessary. If this is not possible we apply rule Common
Subsort and move the sorted solved equations x = z and y = z to ΓWO . With
τ = {z 7→ xσ} we have µ(σ ∪ τ,Γ′) < µ(σ,Γ) and σ ∪ τ = σ[V(Γ)]

2

Example 4.20 (Infinitely Many mgu’s) Consider the following sort theory L
and unification problem Γ, where S(xi) = S:

L = {S(g(g(x))), S(g(a)), S(a)}
Γ = {x1 = g(x2)}

16

We have TS = {g(g(x)), g(a), a, gi(a), g2i(x), xi} with i ≥ 2. Now we apply the rules
of sorted unification. Γ is standard solved but not sorted solved because g(x2) /∈ TS.
The only applicable rule is Weakening using the declarations S(g(g(x3))) and S(g(a))
resulting in the two unification problems

Γ1 = {x1 = g(g(x3)), x2 = g(x3)}
Γ2 = {x1 = g(a), x2 = a}

respectively. Γ2 is sorted solved because {g(a), a} ⊆ TS. Γ1 is not sorted solved
because g(x3) /∈ TS. Again only rule Weakening using the declarations S(g(g(x4)))
and S(g(a)) is applicable. The two new unification problems after the application
of standard unification (see Algorithm 3.2) are

Γ3 = {x1 = g(g(g(x4))), x2 = g(g(x4)), x3 = g(x4)}
Γ4 = {x1 = g(g(a)), x2 = g(a), x3 = a}

respectively. Γ4 is sorted solved because {g(g(a)), g(a), a} ⊆ TS. Γ3 is not sorted
solved because g(x4) /∈ TS. The algorithm stucks in a cycle. Rule Weakening can be
further applied always leading to a solved problem using S(g(a)) and an unsolved
problem containing an equation of the form xi = g(xi+1) using S(g(g(x))) renamed.
The example demonstrates that unification in sort theories may lead to infinitely
many mgu’s.

Lemma 4.21 (Properties of L-Unification)

(i) L-Unification is of unification type infinitary.

(ii) If L is elementary then L-Unification is decidable and of unification type fini-
tary. In addition L-Unification is NP-complete and the number of unifiers may
grow exponentially with the size of terms to be unified.

Proof: (i) The set µUL(Γ) exists for every finite set Γ of equations and finite set
L of conditional declarations (Lemma 4.16). Example 4.20 shows a sort theory and
a unification problem such that µUL(Γ) is infinite. Note that the above sort theory
L is not elementary (because S(g(g(x))) ∈ L) but linear (therefore pseudo-linear).

(ii) The only crucial rule of sorted unification concerning termination and decidabil-
ity is the rule Weakening. Assume that the rule is applied to an equation x = t
occurring in the standard solved unification problem Γ. After the application of
Weakening again standard unification is performed. Let ti be the terms resulting
from the application of Weakening and standard unification to x = t. As L is elemen-
tary and because of Lemma 3.3 we have Depth(t) > Depth(ti) or a variable occurring
non-pseudo-linear in t is removed. As t contains only finitely many variables the
number of terms generated by the Weakening rule is finite. Thus L-unification is
decidable and of unification type finitary for elementary sort theories.

17

NP-completeness can be shown in the same way than for the sorted unification
algorithm of Schmidt-Schauß [22]. The idea is to reduce the satisfiability problem
of propositional logic to L-unification. This gives also examples where the number
of unifiers may grow exponentially in the size of terms to be unified. 2

The result on elementary theories is not new. Schmidt-Schauß [22] showed uni-
fication in elementary sort theories to be decidable but infinitary due to his weaker
sort language. Uribe [26] gave an algorithm which computes at most finitely many
solved forms for a given unification problem in a semi-linear sort theory. However,
there is an important difference between our and Uribe’s approach. Our unification
algorithm works in all cases whereas Uribe’s algorithm only works for semi-linear
theories. Thus the result means we have an algorithm which works in any case and
has the desired properties for the sub case of elementary sort theories.

Now a semi-decision algorithm for the computation of empty sorts is presented.
The algorithm consists of two phases: a fast preprocessing phase there sorts are
marked which can be easily detected to be non-empty and a processing phase there
it is checked whether a specific sort is empty or not.

Algorithm 4.22 (Computation of Empty Sorts) The input of the algorithm
Empty is a sort S = {S1, . . . , Sn}. The algorithm returns True if S is empty and
False otherwise.
Preprocessing:

(i) For each ground declaration S(t) ∈ L, mark S to be non-empty.

(ii) For each declaration S ′(t′) ∈ L where all sorts attached to variables in t′ are
marked non-empty, mark S ′ to be non-empty. Step (ii) is repeated until all
declarations have been checked and no new sort is detected to be non-empty.

Processing:

(i) If S is marked to be non-empty then Empty(S) = False. If S is marked to be
empty then Empty(S) = True.

(ii) If S = {S1, . . . , Sn} and if there are conditional declarations S ′
i(f(ti,1, . . . , ti,n)) ∈

L, S ′
i ⊑ Si such that the f(ti,1, . . . , ti,n) are sorted unifiable with unifier σ and

for all sorts T ∈ {S(x) | x ∈ V(COD(σ))} we have Empty(T) = False then
Empty(S): = False and S is marked non-empty else Empty(S): = true and S
is marked empty.

The algorithm is correct and complete which can be easily seen using Lemma 4.19,
Lemma 4.18 and Lemma 4.10. If the marking is done by attaching the appropriate
sets of conditions, the algorithm can also be used to compute the set of conditions
which guarantees a sort to be non-empty. These conditions are needed if sorted
unification is applied to a calculus (see Section 6). The time complexity of the

18

preprocessing phase is at most O(n2) where n = |L|. This phase has only to be
computed once for a sort theory L. It decides the non-emptiness for all base sorts
which only depend on declarations where only base sorts are attached to the vari-
ables occurring in the declarations.

Note that the second phase is recursive and is only a semi-decision algorithm
if non-base sorts occur. There are several possibilities to show that the empty
sort problem is undecidable. One possibility is to reduce it to Schmidt-Schauß’s
empty sort problem which is known to be undecidable. Instead of checking whether
{S1, . . . , Sn} is empty we apply Schmidt-Schauß sorted unification to the unification
problem Γ = {x1 = x2, x2 = x3, . . ., xn−1 = xn} with S(xi) = Si. It is sufficient for
the undecidability result to consider sort theories where only base sorts are attached
to variables.

In addition Comon [6] pointed out that sort theories correspond to finite bottom-
up tree automaton. Using this relationship it can be shown that the empty sort
problem is undecidable for pseudo-linear signatures [7, 3]. In order to show this
result it is sufficient to consider non-linearities on the second level of a term. For
semi-linear signatures Uribe [26] showed that the empty sort problem is decidable.

Example 4.23 (Computation of Empty Sorts) We apply Algorithm 4.22 to
the the non-base sort {S, T} with respect to the sort theory

L = {(S(b), {P (a)}), (S(f(f(y2))), {Q(y2)}), T (a), T (f(y1))}

where S(yi) = T . We compute Empty({S, T}). The preprocessing phase detects S
and T to be non-empty using the declarations T (a) and S(b). Note that this does not
imply {S, T} to be non-empty because the two terms a and b are different. Following
case (ii) the only applicable declarations are S(f(f(y2))) and T (f(y1)). The terms
f(f(y2)) and f(y1) have to be unified. The only cws. unifier is σ = {y1 7→ f(y2)}. As
we have Empty(T) = False, following case (i) we conclude Empty({S, T}) = False.

4.4 Examples for Sorted Unification

In the following we present more examples illustrating the different phenomena
coming up with the sorted unification algorithm. First, we give an example with
respect to a sort theory where all declarations have an empty condition part. Second,
we target on the question of what happens if the condition part of declarations is
not empty.

We start with the following elementary sort theory and unification problem Γ
(S(xi) = S, S(yi) = T):

L = {S(a), T (a), S(f(x)), T (f(y))}
Γ = {x1 = y1}

We have

19

TS ⊃ {a, f i(a), f i(xj), xi, zi}
TT ⊃ {a, f i(a), f i(yj), yj, zi}

where i, j ≥ 1 and S(zi) = {S, T} . Applying the rule Common Subsort to Γ results
in the following unification problem:

Γ1 = {x1 = z, y1 = z}

Problem Γ1 is sorted solved. Especially T{S,T} contains infinitely many ground terms
f i(a). The example shows that we get one unifier where sorted approaches only
considering base sorts compute infinitely many unifiers [22, 10].

The above sort theory doesn’t contain any conditional declarations, therefore TS =
T ∅
S for every sort S. The next sort theory contains a conditional declaration:

L = {S(a), S(g(a)), (S(g(x)), {P (x)}), S(f(g(x)))}
Γ = {x1 = f(x2)}

Examples for cws. terms of sort S are:

TS ⊃ {a, g(a), (g(x), {P (x)}), f(g(x)), f(gi(xj)), f(gi(a)),
(f(g(g(x))), {P (x)}), (f(g3(x)), {P (x), P (g(x))}), xj}

T ∅
S ⊃ {a, g(a), f(g(a)), f(g(g(a))), f(g(xj)), xj}

where i > 1. The only applicable rule of sorted unification is Weakening

Γ1 = {x1 = f(g(x3)), x2 = g(x3)}

Γ1 is sorted solved yielding the cws. unifier

σ1 = ({x1 7→ f(g(x3)), x2 7→ g(x3)}, {P (x3)})

Nevertheless Weakening is still applicable to x2 = g(x3) using the declaration S(g(a))

Γ2 = {x1 = f(g(x3)), x2 = g(a), x3 = a}

Γ1 is also sorted solved yielding the cws. unifier

σ2 = ({x1 7→ f(g(a)), x2 7→ g(a)}, ∅)

In fact µUL(Γ) = {σ1, σ2} for the above sort theory L and unification problem Γ.
The example shows that the rules of sorted unification are also applied to sorted
solved unification problems until the problem is sorted solved with respect to T ∅.

20

4.5 Sorted Matching

A cws. substitution (σ,C) is called a cws. matcher from (t,D) to (s, E) if tσ = s and
Dσ ∪ C = E. Sorted matching is decidable. Every cws. matcher is also a standard
matcher. Therefore standard matching can be applied and then Lemma 4.10 can be
used to check whether an appropriate set of conditions for the components of the
matcher exists.

Sorted matching is the needed operation to decide subsumption, the most impor-
tant reduction rule for resolution based calculi (see Section 6). As a cws. matcher
may introduce new literals, for subsumption sorted matching is tested with respect
to T ∅. In this case sorted matching is polynomially decidable, because first the
standard matcher has to be computed and then each component is checked for con-
ditional well-sortedness. Note that even if subsumption is checked with respect to
T ∅ it is more powerful than standard subsumption. Consider the following database
of clauses ∆ where S(xi) = S and S(yi) = T .

∆:

(1) T (a)

(2) S(y)

(3) Q(x1, y1)

(4) Q(y2, a)

The sort theory L corresponding to these clauses consists of L = {T (a), S(y)} (for
more details see Section 6). With respect to L, the clause (3) subsumes clause (4)
with cws. matcher

σ = {x1 7→ y2, y1 7→ a}

The standard formalization of ∆ (see the relativization rules in Section 2) is ∆′

∆′:

(1) T (a)

(2) ¬T (z) ∨ S(z)

(3) ¬S(z1) ∨ ¬T (z2) ∨Q(z1, z2)

(4) ¬T (z3) ∨Q(z3, a)

where S(zi) = ⊤, i.e. all variables are standard variables. In the standard formal-
ization subsumption is not applicable.

5 Implementation of Sorted Unification

The sorted unification algorithm (Algorithm 4.17) is presented by a set of non-
deterministic rules. This form is suitable to proof correctness and completeness of

21

the algorithm but not for an implementation and further refinements. The rules have
to be carefully investigated in order to solve the non-determinism and to obtain an
efficient algorithm. The following observations have to be taken into account:

(i) The rules of standard unification are a subset of the rules.

(ii) The rule Subsort may be applicable infinitely many times to an equation.

(iii) The rules Subsort and Common Subsort may be both applicable to an equa-
tion.

(iv) Application of the rule Weakening may produce several new unification prob-
lems.

(v) An equation x = t may be solved, i.e. t ∈ TS(x) but the sorted rules are still
applicable to x = t.

(vi) If for an equation x = t we have t ∈ T ∅
S(x), then none of the sorted rules is

applicable.

(vii) Sorted unification is of unification type infinitary.

(i) means that we can split the sorted unification task into two subtasks. Standard
unification which can be efficiently performed and application of the sorted rules. It
is sufficient to apply rule Subsort at most once to an equation. Thus the application
of rule Subsort may lead to at most two unification problems (ii). The rules Subsort
and Common Subsort have to be checked independently if applied (iii). The algo-
rithm needs to keep track of a set of unification problems (iv) and (ii). Whether an
equation (a unification problem) is sorted solved has to be checked independently
from the application of the sorted rules (v). well-sortedness with respect to T ∅ is a
sufficient condition for an equation not to be further processed (vi). The algorithm
may not terminate (vii). Therefore we need some kind of resource bounding and the
possibility to store and continue intermediate states of sorted unification.

The key to an efficient implementation is a good representation of a unification
problem. In the theory this is just a set of equations. However, the above considera-
tions show that this is not sufficient. The proof of Lemma 4.19 suggests an extended
representation. A unification problem consists of a set ΓWO of worked off equations
and a set of ΓU of unsolved equations. This representation allows for an additional
mechanism, cycle checking. If an equation already worked off occurs again (modulo
renaming) in ΓU (for example after the application of Weakening), the unification
algorithm loops. This means that either the actual unification problem can not be
sorted solved or it produces infinitely many mgu’s. Checking for cycles allows to de-
cide sorted unification in pseudo-linear sort theories (Lemma 5.4). In addition, the
algorithm on empty sorts (Algorithm 4.22) can also be extended with cycle checking.

All theses considerations are implemented by the following algorithms. A unifi-
cation problem is a pair (ΓWO ,ΓU). This representation allows to store and continue

22

intermediate states. If a cycle is detected, the unification problem is suspended. If
the corresponding equation could be solved by a different rule the unification prob-
lem is resumed (Algorithm 5.1 and line 6 of Algorithm 5.2). Resuming a suspended
problem amounts to check whether the cycle still occurs even if the solved equations
are disregarded. This is done by marking solved equations in ΓWO and then checking
for cycles with respect to unmarked equations. If such a cycle occurs the unification
problem remains suspended. Otherwise is is resumed. The number of applications
of the sorted rules is limited by the value of the input parameter Resource. The task
of sorted unification is split into standard unification and sorted rule application.
Sorted rule application is split into the processing of exactly one equation (Algo-
rithm 5.2) and the general administration of all problems (Algorithm 5.3). These are
divided into solved problems (PS), suspended problems (PP) and unsolved problems
(PU).

We assume a unification algorithm for standard unification (see Definition 3.2).
There are a lot of efficient unification algorithms known, e.g. see [2, 19, 17]. The
standard unification algorithm is called “Standard Unification” and gets a unifica-
tion problem Γ as input. The output is a pair (∆,Value) where Value is either Solved
or Fail and if Value is Solved, then ∆ is the solved form of Γ (see Definition 3.1).

The algorithms are presented in an informal programming language. The bodies
of If , While , and For statements are indicated by indentation. For example the
body of the While loop in algorithm Sorted Unification consists of the lines three
to sixteen. The Return statement immediately exits the function. The value of the
function is the argument of the Return statement.

Algorithm 5.1 (Resume Suspended Problems(PP,Γ)) The input of the algo-
rithm (see Table 3) is a set PP of suspended unification problems and a sorted solved
set of equations Γ. The output is the set of problems which can be resumed because
the equation which was the reason for the suspension is solved in Γ.

Algorithm 5.2 (Sorted Rule Application(ΓWO,ΓU)) The input of the algorithm
(see Table 4) is a set ΓWO of worked off equations and a set ΓU of unsolved equations.

Algorithm 5.3 (Sorted Unification(PU ,PP,Resource)) The input of the algo-
rithm (see Table 5) is a set PU of unsolved unification problems and a set PP
of suspended unification problems. The third parameter Resource is an integer
which limits the maximal number of applications of Sorted Rule Application before
Sorted Unification terminates.

It can be easily seen that algorithm Sorted Unification is sound and complete.
In its processing of unification problems it basically follows the ideas given in the
proof of Lemma 4.19.

23

Resume Suspended Problems(PP,Γ)

1. Result: = ∅

2. For each pair (ΓWO ,ΓU) in PP Do

3. Mark all equations in ΓWO which are renamed versions of equations
in Γ.

4. If ΓU does not contain an equation which occurs unmarked in ΓWO
modulo renaming Then Result: = Result ∪ {(ΓWO ,ΓU)}

5. Return(Result)

Table 3: Algorithm Resume Suspended Problems

Lemma 5.4 (Properties of L-Unification)
If L is pseudo-linear then L-Unification is decidable and of unification type infinitary.

Proof: Example 4.20 shows a pseudo-linear theory with a unification problem
that leads to infinitely many cws. mgu’s. The only crucial rule of sorted unifica-
tion concerning termination and decidability is the rule Weakening. Assume that
the rule is applied to an equation x = t occurring in standard solved unification
problem Γ. After the application of Weakening using declarations Si(ti) standard
unification is performed again. Let t′i be the terms resulting from the application
of Weakening and standard unification to x = t. As L is pseudo-linear we have
max(Depth(t),Depth(ti)) ≥ Depth(t′i) using Lemma 3.3 or a variable which occurs
non-pseudo-linear in t is removed. If a variable occurring non-pseudo-linear is re-
moved the number of non-pseudo-linear variable occurrences decreases for the t′i.
Whence the number of different terms modulo renaming that may be generated by
the Weakening rule is finite, because there are only finitely many sort and func-
tion symbols in L and the maximal depth of generated terms is bound. Thus after
a certain number of steps the unification problem is either solved or suspended.
Therefore L-Unification is decidable for pseudo-linear sort theories. 2

The following example shows that the algorithm Sorted Unification does not
decide non-pseudo-linear sort theories. I conjecture sorted unification to be unde-
cidable in general. This is not easy to prove because all techniques used so far rely
on the empty sort problem. In this article the empty sort problem is separated from
the unification problem.

Example 5.5 Consider the following sort theory and unification problem (S(xi) =
S):

24

Sorted Rule Application(ΓWO ,ΓU)

1. Result: = ∅

2. If ΓU = ∅ Then Result: = {(ΓWO ,ΓU , Solved)}, Return(Result)

3. Select an equation x = t from ΓU

4. If rule Sorted Fail is applicable to x = t Then Result: =
{(ΓWO ,ΓU ,Fail)}, Return(Result)

5. If t ∈ T ∅
S(x) Then Result: = {(ΓWO ∪ {x = t},ΓU \ {x = t},Unsolved)},

Return(Result)

6. If t is not a variable and t /∈ TS(x) and x = t occurs in ΓWO modulo
renaming Then Result: = {(ΓWO ,ΓU , Suspended)}, Return(Result)

7. If t ∈ TS(x) then if t is not a variable or t is a variable and x /∈ T ∅
S(t)

Then Result: = {(ΓWO ∪ {x = t},ΓU \ {x = t},Unsolved)}

8. If rule Subsort is applicable to x = t Then Result: = Result ∪ {(ΓWO ∪
{t = x},ΓU \ {x = t},Unsolved)}

9. If rule Common Subsort is applicable to x = t Then Result: = Result ∪
{(ΓWO∪{x = z, t = z},ΓU\{x = t},Unsolved)} where S(z) = S(x)∪S(t)

10. If rule Weakening is applicable to x = t where t = f(t1, . . ., tn) Then
Result: = Result ∪ {(ΓWO ∪ {x = t},ΓU \ {x = t} ∪ {t1 = si,1, . . . , tn =
si,n},Unsolved)}

11. Return(Result)

Table 4: Algorithm Sorted Rule Application

25

Sorted Unification(PU ,PP,Resource)

1. PS: = ∅

2. While PU ̸= ∅ and Resource > 0 Do

3. Select a pair (ΓWO ,ΓU) from PU

4. PU : = PU \ {(ΓWO ,ΓU)}

5. (ΓU ,Value): = Standard Unification(ΓU)

6. If Value = Solved Then

7. Resource: = Resource − 1

8. Result: =Sorted Rule Application(ΓWO , ΓU)

9. For each triple (Γ′
WO ,Γ′

U ,Value) in Result Do

10. If Value = Solved Then PS: = PS ∪ {Γ′
WO}

11. If Value = Unsolved Then PU : = PU ∪ {(Γ′
WO , Γ′

U)}

12. If Value = Suspended Then PP: = PP ∪ {(Γ′
WO ,Γ′

U)}

13. For each problem Γ in PS Do

14. Result: = Resume Suspended Problems(PP,Γ)

15. PU : = PU ∪ Result

16. PP: = PP \ Result

17. For each unification problem Γ in PS Do

18. (Γ′,Value): =Standard Unification(Γ)

19. If Value = Solved Then replace Γ in PS by Γ′

20. Return(PS,PU ,PP)

Table 5: Algorithm Sorted Unification

26

L = {S(f(x1, f(g(x1), x2))), S(g(x1))}
Γ = {x3 = f(g(x4), x5)}

Applying Sorted Unification({(∅, {x3 = f(g(x4), x5)})},∅,n) results in the following
values of the variables ΓWO and ΓU after the call of Standard Unification at line 5.

1. ΓWO = ∅
ΓU = {x3 = f(g(x4), x5)}

2. ΓWO = {x3 = f(g(x4), x5)}
ΓU = {x6 = g(x4), x5 = f(g(g(x4)), x7)}

3. ΓWO = {x3 = f(g(x4), x5), x6 = g(x4)}
ΓU = {x5 = f(g(g(x4)), x7)}

4. ΓWO = {x3 = f(g(x4), x5), x6 = g(x4), x5 = f(g(g(x4)), x7)}
ΓU = {x8 = g(g(x4)), x7 = f(g(g(g(x4))), x9)}

5. ΓWO = {x3 = f(g(x4), x5), x6 = g(x4), x5 = f(g(g(x4)), x7), x8 = g(g(x4))}
ΓU = {x7 = f(g(g(g(x4))), x9)}

There is no solution to the initial unification problem. The algorithm never ter-
minates (except by resource bounding) because always new equations of the form
x2j+1 = f(gj(x4), x2j+3) were created by the rule Weakening.

6 Applications of Sorted Unification

Now we will fit the previous results together and apply it in full detail to the standard
resolution calculus [20, 32] and the tableau calculus [24, 9]. As we promised in the
introduction in order to make a calculus a sorted one, replace standard unification
with sorted unification.

6.1 Resolution with Sorts

The starting point for the resolution calculus is a database of clauses ∆. From these
clauses the sort theory L is chosen. L: = {(Si(ti), C

′
i)} such that for each declaration

clause Ci ∈ ∆ we choose exactly one declaration Si(ti) with Ci = {Si(ti)}∪C ′
i. The

database is modified by the resolution and factorization rule extended with sorted
unification. If application of the rules derives new declaration clauses, L must
be updated. On the other hand if a reduction rule (e.g. subsumption) removes a
declaration clause, this clause can also be removed from L. The inference rules are
defined with respect to the dynamic sort theory L.

Definition 6.1 (Inference Rules)
The rules are

Resolution
P (t1, . . ., tn) ∨ C1

¬P (s1, . . ., sn) ∨ C2

C1σ ∨ C2σ ∨D ∨ E

27

where σc = (σ,D) is a cws. mgu of P (t1, . . ., tn) and P (s1, . . ., sn) and E is a set
of literals (conditions) which guarantees the sorts occurring in COD(σ) but not in
C1σ ∨ C2σ ∨ D to be non-empty. The non-emptiness conditions can be computed
by Algorithm 4.22.

Factorization
P (t1, . . ., tn) ∨ P (s1, . . ., sn) ∨ C

P (t1, . . ., tn)σ ∨ Cσ ∨D

where σc = (σ,D) is a cws. mgu of P (t1, . . ., tn) and P (s1, . . ., sn).

The soundness of the rules follows immediately from their form, Lemma 4.4, and
Lemma 4.18. Checking for empty sorts is not necessary for the factorization rule,
because all sorts attached to variables in the codomain of σ occur in the factor.

Theorem 6.2 (Completeness Theorem for Resolution with Sorts) Let ∆ be
a clause database. We choose L: = {(Si(ti), C

′
i)} such that for each declaration clause

Ci ∈ ∆ we choose exactly one declaration Si(ti) with Ci = {Si(ti)} ∪ C ′
i.

If ∆ is unsatisfiable there exists a derivation of the empty clause using resolution
and factorization. The set L must be updated every time a new declaration clause
is derived.

Proof: (Sketch) It can be proved that every standard refutation of ∆ yields a
cws. substitution with respect to all declarations occurring in ∆. Now selecting one
declaration from each clause consisting of declarations only and updating L during
the refutation corresponds to a case analysis. Putting this together with Lemma 4.19
we obtain completeness for resolution. For more details see Weidenbach [28]. 2

Considering the example from the introduction

∆:

(1) S(a) ∨R(a)

(2) S(f(x1))

(3) Q(y1, y1)

(4) ¬Q(a, y2)

(5) P (x2, f(a))

(6) ¬P (a, x3)

where S(xi) = S and S(yi) = R we select the sort theory

L1 = {(S(a), {R(a)}), S(f(x1))}

With respect to L1 the sort R is empty. The only applicable resolution step is (5)1
with (6)1 with cws. mgu

σc1 = ({x2 7→ a, x3 7→ f(a)}, {R(a)})

28

resulting in the resolvent

(7) R(a)

A new declaration clause is derived. Therefore L1 must be updated. As (7) subsumes
(1) the new sort theory is

L2 = {R(a), S(f(x1))}

Now S is empty and the only possible resolution step is (3)1 with (4)1 with cws.
mgu

σc2 = ({y1 7→ a, y2 7→ a}, ∅)

yielding the empty clause

(8) 2

The search space for ∆ is finite. After selecting one of the two possible sort theories
the application of resolution is deterministic. For ∆′, the standard formalization of
∆ this is not the case. Here the search space is infinite and resolution can be applied
to several clauses (S(zi) = ⊤).

∆′:

(1) S(a) ∨R(a)

(2) ¬S(z1) ∨ S(f(z1))

(3) ¬R(z2) ∨Q(z2, z2)

(4) ¬R(z3) ∨ ¬Q(a, z3)

(5) ¬S(z4) ∨ P (z4, f(a))

(6) ¬S(z5) ∨ ¬P (a, z5)

6.2 Tableau with Sorts

The free variable tableau is modified to a free variable sorted tableau. The usual
notions for tableau are used [24, 9]. Thus an α formula is one of the kind (possibly
after moving a negation inwards) F∧G, a β formula has the form F∨G, and the γ and
δ formulae have a universal or an existential quantifier as top symbol respectively.
Formulas of the form ¬¬F can be seen as α formulas where α1 = α2 = F .

Definition 6.3 (Inference Rules)
The inference rules for tableau consist of the expansion rules

29

α
α

α1
α2

β
β

β1 | β2

γ
γ

γ(x)
δ

δ
δ(f(x1, . . ., xn))
S1(f(x1, . . ., xn))

...
Sm(f(x1, . . ., xn))

where x is a new variable in the γ-rule. The function f is a new Skolem function
where x1, . . ., xn are all the used free variables in the δ rule [9]. The sort {S1, . . . , Sm}
is the sort of the existentially quantified variable in δ which is replaced by f(x1, . . .,
xn). Branches are closed atomically applying the atomic closure rule:

Atomic
Closure

Let T be a tableau for a set of sentences ∆. If some branch
in T contains A and ¬B, where A and B are atoms, then Tσ
is also a tableau for ∆, where σ is a most general non-empty
well-sorted unifier of A and B.

The sort theory L selected for unification is the set of all declarations occurring
on the current branch. Then σ must be a non-empty well-sorted unifier with respect
to this sort theory. For these sort theories we always have TS = T ∅

S for every sort S.
Therefore the additional notions for conditional expressions can be skipped.

The δ rule not only generates the Skolemized formula but also the necessary
declarations for the Skolem function. The semantics of existential quantifiers justifies
the extended Skolemization (see the relativization rule in Section 2). We can easily
prove that the Skolemized formula is equivalent to the original formula with respect
to satisfiability.

Theorem 6.4 (Completeness Theorem for Tableau with Sorts) Let F be a
valid sentence and R be any fair tableau construction rule (see Fitting [9]). Then
there exists a closed tableau for ¬F such that:

(i) All tableau expansion rules come first and are according to R.

(ii) A single tableau substitution rule application follows, using a substitution σ
that is a most general non-empty well-sorted atomic closure substitution.

Proof: The proof is a straight forward extension of the proof given by Fitting [9].
As we have Lemma 4.5 for sort theories used in tableau (T = T ∅), the non-empty
well-sorted unifiers have the same properties with respect to semantics than standard
unifiers. Thus together with Lemma 4.19 we obtain completeness of tableau with
sorts. 2

30

In fact, Theorem 6.4 is the sorted generalization of Theorem 7.8.6 given by
Fitting [9, p. 179]. The application of sorted unification to tableau is that simple,
because in tableau a case analysis is explicitly done by the β-rule. Therefore no
conditional declarations are needed in the sort theory, whence Lemma 4.5 holds.
Note that in different branches of a tableau different sort theories are considered in
general.

Eventually, we solve the example from the introduction with the new tableau
method. The tableau T after application of the expansion rules is

r S(a) ∨R(a)

r S(f(x1))

rQ(y1, y1)

r ¬Q(a, y2)

r P (x2, f(a))

r ¬P (a, x3)������rS(a)

HHHHHHr R(a)

where S(xi) = S and S(yi) = R. Applying atomic closure to the first branch, the
corresponding sort theory is

L1 = {S(a), S(f(x1))}

There are only two literals which become complementary: P (x2, f(a)) and ¬P (a, x3)
with cws. unifier

σ1 = {x2 7→ a, x3 7→ f(a)}

The second branch can be closed applying atomic closure to Q(y1, y1) and ¬Q(a, y2)
with respect to the sort theory

L2 = {R(a), S(f(x1))}

and cws. unifier

σ2 = {y1 7→ a, y2 7→ a}

As σ1 and σ2 are variable disjoint, Tσ1σ2 is the closed tableau for the input formula
and σ1σ2 the necessary tableau substitution (see Theorem 6.4).

31

7 Discussion

The approach of Schmidt-Schauß [22] extends Walther’s work [27]. This paper
generalizes the work of Schmidt-Schauß along the following dimensions:

(i) A sort is not only a sort symbol but a set of sort symbols.

(ii) Sorts may denote the empty set.

(iii) Declarations occurring in the sort theory may be conditioned by other literals.

(iv) If applied to a calculus the sort theory is a dynamic part of the database.

(i) is an extension of the sort language. It allows for a finite set of mgu’s in elemen-
tary sort theories where Schmidt-Schauß unification algorithm computes infinitely
many mgu’s (Lemma 4.21). Schmidt-Schauß considered all (base) sorts to be a priori
non-empty (ii). For the sorted unification theory this restriction plays no role. The
problem arises if sorted unification is applied to a calculus. The precise problem is
Skolemization. Traditionally, Skolemization in sorted languages is done in the fol-
lowing way [22, 11]. The formula ∃xSF contained in some formula G is replaced by
F{xS 7→ f(. . .)} where f is the new Skolem function in the respective variables and
the declaration S(f(. . .)) is put outside G into the sort theory. This is only a sound
operation if S is not empty. Otherwise local Skolemization [28] must be performed
where ∃xSF is replaced by F{xS 7→ f(. . .)} ∧ S(f(. . .)). Now declarations may oc-
cur together with other literals. Therefore the sort theory must either be a dynamic
part of the database or additional inference rules which form the bridge between
sort literals in the database and sort literals in the sort theory become necessary.
Thus allowing for empty sorts results either in a calculus consisting of more rules
than the standard rules of the calculus (e.g. see Cohn [5] or Beierle et al. [1]) or
the sort theory must be a dynamic part of the database (iv) (see Weidenbach [30]).
Thus approaches with a static sort theory and no additional inference rules must
require sorts to be a priori non-empty (e.g. see Schmidt-Schauß [22] or Frisch [11]).

The same that holds for the introduction of possibly empty sorts applies to the
notion of conditional expressions (iii). The additional notion does not change general
properties of sorted unification (see Lemma 4.10). But then applied to the resolution
calculus the notion allows an extension without the introduction of new inference
rules. Until now this is the most efficient (in terms of search space reduction) method
known [30].

Uribe [26] showed that sorted unification is decidable for semi-linear sort the-
ories. Lemma 5.4 extends the class of sort theories with a decidable unification
problem to pseudo-linear sort theories. However, there are differences between the
two approaches. I separate the problem of sorted unification from the problem
whether a sort is empty. Uribe doesn’t separate these problems. Whence he both
proved unification and the empty sort problem decidable for semi-linear sort theo-
ries. Lemma 5.4 only says that the unification part is decidable for pseudo-linear

32

sort theories. In fact, the empty sort problem is not decidable for pseudo-linear
sort theories. This was shown by Tommasi [25]. Deciding whether a sort is empty
(or whether two base sorts share a common ground term) is a harder problem than
unification in sort theories. Uribe also gives a finite representation for a solution of
a unification problem in semi-linear sort theories. The sorted unification problem
for semi-linear sort theories is of unification type infinitary (see Example 4.20).

For his result, Tommasi used the correspondence between sort theories and finite
tree automaton. This correspondence was first pointed out by Comon [6]. It makes
results in automaton theory available to unification in sort theories. The general
undecidability result given by Schmidt-Schauß could be confirmed. In addition,
it was possible to proof decidability for linear sort theories this way. Until now
other researchers have used the correspondence between tree automata and theories
related to sort theories (e.g. set constraints) [3, 13].

The paper given by Frisch and Cohn [12] reformulates and abstracts results
previously established by Schmidt-Schauß. They only consider base sorts as sorts
but abstract away from a specific concept of a sort theory. An oracle is assumed
which can be asked whether terms are well-sorted and which computes all possible
weakenings σ such that tσ ∈ TS for some sort S. Thus their sorted unification
procedure GSUP has no specific sorted rules but a general, abstract weakening
rule. Weakening and all cases of sorted failure are left to this rule. Compared to
Schmidt-Schauß unification algorithm GSOUP, the six sorted rules are comprised in
this abstract weakening rule. All other rules of the two algorithms are identical.

A property which was very often addressed in the past is regularity of sort theo-
ries [22, 14]. Schmidt-Schauß showed that if a sort theory is regular a more efficient
unification algorithm can be formulated. However, regularity is an undecidable
property for a given sort theory. The sorted unification algorithm presented in this
paper overcomes the problem. It is as efficient as the unification algorithm SOUP
for regular sort theories given by Schmidt-Schauß. This was possible by introducing
sets of sort symbols as sorts. Thus from an efficiency point of view regularity is a
superfluous concept. In addition, Comon [7] pointed out that if equality is included
in the logic regularity is also not a useful concept.

In my previous work [31, 28, 30] I mainly addressed the extension of resolution
with sorted unification. Only base sorts were considered as sorts and no specific
results were given for unification in sort theories. In this paper the notion of sorts
is extended, unification in elementary sort theories is proved to be decidable and
of unification type finitary. Unification in pseudo-linear sort theories is proved de-
cidable and of unification type infinitary. Algorithms for the computation of empty
sorts and well-sortedness are presented and upper bounds for their time complexity
established. A transformation of the rule based sorted unification algorithm into a
sorted unification procedure is given. The new representation of the algorithm in-
troduces more control structure and more data structure. The additional structure
is used to prove unification in pseudo-linear sort theories decidable. Eventually, I
generalized tableau with sorts from tableau with free variables. Future work will

33

concentrate on the combination of sorts and equality.

References

[1] C. Beierle, U. Hedstück, U. Pletat, and J. Siekmann. An order-sorted logic for
knowledge representation systems. Artificial Intelligence, 55:149–191, 1992.

[2] M. Bidoit and J. Corbin. A rehabilitation of robinson’s unification algorithm.
In Proceedings of IFIP 9th World Computer Congress, pages 909–914. North-
Holland, 1983.

[3] B. Bogaert and S. Tison. Equality and disequality constraints on direct sub-
terms in tree automata. In Proc. of 9th Annual Symposium on Theoretical
Aspects of Computer Science, STACS92, pages 161–171. Springer Verlag, 1992.

[4] A.G. Cohn. A more expressive formulation of many sorted logic. Journal of
Automated Reasoning, 3(2):113–200, 1987.

[5] A.G. Cohn. A many sorted logic with possibly empty sorts. In 11th Inter-
national Conference on Automated Deduction, CADE-11, LNCS 607, pages
633–647. Springer Verlag, 1992.

[6] H. Comon. Inductive proofs by specifications transformation. In Proc. of RTA,
pages 76–91. Springer Verlag, 1989.

[7] H. Comon. Equational formulas in order-sorted algebras. In Proc. of ICALP,
pages 674–688. Springer Verlag, 1990.

[8] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3(1):69–115, July 1987.

[9] M. Fitting. First-Order Logic. Texts and Monographs in Computer Science.
Springer, 1990.

[10] A.M. Frisch. A general framework for sorted deduction: Fundamental results
on hybrid reasoning. In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, pages 126–136, May
1989.

[11] A.M. Frisch. The substitutional framework for sorted deduction: fundamental
results on hybrid reasoning. Artificial Intelligence, 49:161–198, 1991.

[12] A.M. Frisch and A.G. Cohn. An abstract view of sorted unification. In 11th In-
ternational Conference on Automated Deduction, CADE-11, LNCS 607, pages
178–192. Springer Verlag, 1992.

34

[13] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints
using tree automata. In P. Enjalbert, K.W. Wagner, and A. Finkel, editors,
Proc. of 10th Annual Symposium on Theoretical Aspects of Computer Science,
STACS93, pages 505–514. Springer Verlag, February 1993.

[14] J.A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Draft,
Programming Research Group, University of Oxford and SRI International,
1989.

[15] J. Herbrand. Investigations in proof theory: The properties of true propo-
sitions. In J. van Heijenoort, editor, From Frege to Gödel: A Source Book in
Mathematical Logic, 1879-1931, pages 525–581. Harvard University Press, 1967.

[16] G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[17] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans.
Programming Languages ans Systems, 4(2):258–282, 1982.

[18] A. Oberschelp. Untersuchungen zur mehrsortigen quantorenlogik. Mathema-
tische Annalen, 145:297–333, 1962.

[19] M. Paterson and M. Wegman. Linear unification. Journal of the Computers
and Systems, 16, 1978.

[20] J.A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

[21] A. Schmidt. Über deduktive theorien mit mehreren sorten von grunddingen.
Mathematische Annalen, 115:485–506, 1938.

[22] M. Schmidt-Schauß. Computational aspects of an order sorted logic with term
declarations, volume 395 of Lecture Notes in Artificial Intelligence. Springer
Verlag, 1989.

[23] J. Siekmann. Unification theory. Journal of Symbolic Computation, Special
Issue on Unification, 7:207–274, 1989.

[24] R.M. Smullyan. First-Order Logic. Springer Verlag, 1968.

[25] M. Tommasi. Automates avec tests d’égalités entre cousins germains. Master’s
thesis, Universié de Lille, France, 1991.

[26] T.E. Uribe. Sorted unification using set constraints. In 11th International
Conference on Automated Deduction, CADE-11, LNCS 607, pages 163–177.
Springer Verlag, 1992.

35

[27] C. Walther. A Many-sorted Calculus based on Resolution and Paramodulation.
Research Notes in Artificial Intelligence. Pitman Ltd., 1987.

[28] C. Weidenbach. A sorted logic using dynamic sorts. MPI-Report MPI-I-91-218,
Max-Planck-Institut für Informatik, Saarbrücken, December 1991.

[29] C. Weidenbach. A new sorted logic. In Proceedings of the 16th German AI-
Conference, GWAI-92, pages 43–54. Springer, LNAI 671, April 1992.

[30] C. Weidenbach. Extending the resolution method with sorts. In Proc. of 13th
International Joint Conference on Artificial Intelligence, IJCAI-93. Morgan
Kaufmann, 1993. To appear.

[31] C. Weidenbach and H.J. Ohlbach. A resolution calculus with dynamic sort
structures and partial functions. In Proceedings of the 9th European Conference
on Artificial Intelligence, pages 688–693. Pitman Publishing, London, August
1990.

[32] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning, Introduction
and Applications. McGraw-Hill, second edition, 1992.

36

