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Abstract

We show that strict superposition, a restricted form of paramodulation, can be
combined with specifically designed simplification rules such that it becomes
a decision procedure for the monadic class with equality. The completeness
of the method follows from a general notion of redundancy for clauses and
superposition inferences.
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1 Introduction

The monadic class is a fragment of first-order logic the decidability of which, not
only for the case with equality but also for quantification over predicates, is known
since (Löwenheim 1915). A simpler proof has later been given by Ackermann (1954),
among others. His syntactic method of transforming the given formula into some
kind of solved form is surprisingly modern in style and may be usable in practice.
Joyner Jr. (1976) has shown that ordered resolution, which is known to be refutation-
ally complete for arbitrary first-order theories, can be specialized to yield a decision
method for the monadic class without equality and without second-order quantifiers.
(For an overview of more recent results along this line see Fermüller et al. 1992.)
Resolution can be combined with an inference rule, called paramodulation, to yield
a refutationally complete inference system for first-order clauses with equality. The
purpose of this paper is to show that superposition, a restricted form of paramodu-
lation, can be equipped with specific simplification techniques such that it becomes
a decision procedure for the monadic class with equality. It should be emphasized
that this generalization of inference system and logic is not at all a trivial exercise.
In fact it turned out to be technically more involved than we expected.

From a theoretical point of view our result is of interest as it provides evidence of
the usefulness of the superposition calculus as a general method of refutational theo-
rem proving for first-order logic with equality. Based on earlier work (e.g., Bachmair
and Ganzinger 1990) the superposition calculus as we use it here has been proposed
and proven refutationally complete (for arbitrary first-order clauses) by Bachmair
and Ganzinger (1991). It represents an improvement over the results obtained by
Rusinowitch (1989) (also see Rusinowitch 1991) in two directions. The ordering re-
strictions are sharpened and the inference rules are additionally parameterized by
selection functions so that a larger class of search strategies can be modelled. More
importantly, the calculus provides a general notion of redundancy by which, at any
state of the theorem proving process, inferences can be further restricted in terms of
global properties of the current database of formulas. Simplification inferences which
replace formulas by simpler ones do not affect refutational completeness whenever
the simplified formula renders the original formula redundant. In this paper we
demonstrate that with an appropriate setting of its three main parameters (order-
ing, selection function, simplification inferences), the superposition calculus can be
tailored to the specifics of the problem at hand.

On the practical side this means that we can implement our decision method
simply by taking an implementation of the superposition calculus such as the one
described in (Nivela and Nieuwenhuis 1993) and add only what is needed to specify
the parameter setting. Our main practical motivation for the work described here,
however, stems from the observation that set constraints with subterm equality and
the monadic class with equality are essentially the same logic (Bachmair, Ganzinger,
and Waldmann 1992). Set constraints have attained quite some interest as a means
of specifying type inference and flow analysis for programming languages (Heintze
and Jaffar 1991, Aiken and Wimmers 1992). Applications of the monadic class to
knowledge representation languages have been described by Fermüller et al. (1992).

Although there is quite some body of work on using resolution as a decision proce-
dure only little is known at present about paramodulation in the case of equality. One
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exception are the shallow equational theories as dealt with by Comon, Haberstrau,
and Jouannaud (1992). In a certain sense, the present paper extends the results of
these authors to the first-order case. It is, however, not possible to extend their result
in full generality. First-order clauses over shallow equations, if no restrictions about
variable occurrences apply, form a reduction class; any non-shallow equation can
then be flattened with the help of auxiliary variables. While writing this paper we
have seen the announcement of another related result by Fermüller and Salzer (1993)
about deciding the Ackermann class with equality by ordered paramodulation.

2 The Monadic Class with Equality

First-order formulas are built from quantifiers, logical symbols, predicate symbols,
function symbols, and variables. Constants are function symbols of arity zero. We
shall consider only languages containing at least one constant.

The monadic class with equality is the class of first-order formulas that contain
only unary (monadic) predicate symbols, with the exception of one binary predicate
symbol denoting equality, and no function symbols.

If we skolemize a monadic formula in prenex form (and thereby introduce function
symbols), the resulting quantifier-free formula can be characterized by the following
syntactic properties: (i) all atoms are of the form p(t) or s ≈ t and (ii) there exists
a sequence x1, . . . , xm of distinct variables such that any term t is either a variable
xn, or of the form f(x1, . . . , xn), for some n ≤ m.

For example, the monadic formula with equality

∃a∀x∃f∀y∃g (p(x) ∧ q(y) → a ≈ g ∨ f ≈ y)

skolemizes into the formula

p(x) ∧ q(y) → a ≈ g(x, y) ∨ f(x) ≈ y.

Skolemization preserves the satisfiability of formulas. The resulting quantifier-free
formulas can be further transformed to conjunctive normal form. We will represent
them as sets of clauses.

Formally, a clause is a multiset of literals; a literal being either an atomic formula
A or the negation thereof, ¬A. Clauses are usually written as disjunctions, e.g.,
A ∨A ∨ ¬B and A ∨ ¬B are two (different) clauses.

The class of clauses we shall consider is actually slightly larger than the one
obtained from the monadic class. A clause C is said to be flat if (i) all its atoms are
of the form p(t) or s ≈ t and (ii) there exists a list of distinct variables V = v1, . . . , vk
and a subset W of {v1, . . . , vk}, such that each term in C which is not a variable
is of the form f(v1, . . . , vm)σ, where 0 ≤ m ≤ k and σ is a substitution that maps
every variable in W to a constant and every other variable to itself. We say that x
is an extra variable in a flat clause C, if x occurs in C, but not as an argument of a
function symbol.

For example,

¬p(x) ∧ q(y) ∨ a ≈ g(a, y) ∨ f(b) ≈ h(a, y, z)
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is a flat clause (with V = x′, y, z and W = {x′}) and x is its only extra variable.
In a flat clause C, a variable that occurs as the i-th argument of a function symbol,

will be the i-th argument of any other occurrence of a function symbol in C, the arity
of which is at least i. The same variable can not occur in any other argument position
of a function symbol in C, but may occur as argument of a predicate symbol. Thus,
p(f(b, y))∨ q(g(x)) is not a flat clause, since x occurs as first argument of g, but not
of f .

Our decision procedure for flat clauses is based on the superposition calculus,
which we describe next.

3 The Superposition Calculus

3.1 The Inference System

The superposition calculus is a refutationally complete inference system for arbitrary
first-order clauses with equality. That is, it provides a semi-decision procedure for
the unsatisfiability of sets of clauses.

Its inference rules are restricted versions of paramodulation, resolution, and fac-
toring; parameterized by a total reduction ordering ≻ on ground expressions (that is,
ground atoms and ground terms) and a selection function S, which assigns to each
clause a (possibly empty) multiset of (occurrences of) negative literals. The literals in
S(C) are called selected. Selected literals, besides being negative, can be arbitrarily
chosen. The calculus is described in full detail in Bachmair and Ganzinger (1991)
and will not be repeated here.1 The following example, of paramodulation into a
negative literal, illustrates the main features of the inference rules.

Γ ∨ s ≈ t ¬A[s′] ∨ Λ

¬A[t]σ ∨ Γσ ∨ Λσ

where σ is the most general unifier of s and s′, and there exists a ground substitution
τ such that for θ = στ (i) sθ ≈ tθ is the strictly maximal literal in Γθ ∨ sθ ≈ tθ, (ii)
sθ ≻ tθ and sθ does not occur in a negative literal of Γθ, (iii) uθ ≻ vθ, if A[s′] is an
equation u[s′] ≈ v, (iv) either ¬Aθ is a maximal (occurrence of a) literal in ¬Aθ∨Λθ,
or else ¬A is a selected literal in ¬A ∨ Λ, (v) Γ ∨ s ≈ t has no selected literals, and
(vi) s′ is not a variable.

This inference rule combines the unification of s and the subterm s′ of A (the
“superposition” of s on A at s′) with subsequent replacement of sσ by tσ. We call
the first premise the active and the second premise the passive premise, respectively,
of the inference. When we speak of a superposition inference we mean an arbitrary
rule of the calculus.2

The various restrictions imposed by the ordering and the selection function are
crucial in the design of a decision procedure for flat clauses. In particular, note

1Strictly speaking, we use the calculus ES of (Bachmair and Ganzinger 1991), which contains
the equality factoring rule instead of the ordered factoring and merging paramodulation rules of the
system PS . It assumes an extension of ≻ to ground literals such that, in particular, L ≻ L′ whenever
the maximal expression in L is greater than the maximal expression in L′.

2If an inference has only one premise, we consider this to be active in the case of a factoring
inference, and passive, otherwise.
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that clauses with selected literals cannot serve as active premises in superposition
inferences, and that maximal terms are superposed either on maximal or selected
literals of a passive premise, and a smaller term is never replaced by a larger one.
Moreover, only the maximal sides of equations are replaced. The pattern of interplay
between ordering restrictions and the selection function is the same for all inference
rules of the calculus.

One difficulty that arises in applying superposition to flat clauses is that non-flat
conclusions can be derived from flat premises. This problem can be addressed in
part by the choice of ordering. Henceforth, we assume ≻ to be a lexicographic path
ordering3 based on a precedence relation that respects the arity of function symbols
(greater arity implying higher precedence) and in which function symbols have higher
precedence than predicate symbols. Apart from satisfying these restrictions, the
precedence can be arbitrary (but has to be total). Some more subtle aspects of
inferences, such as extra variables, that may also result in non-flat clauses, cannot
be captured with orderings, though.

A clause C is called (uniformly) reductive (with respect to e) if e is an expression
(that is, a term or a non-equational atom) in C such that for any ground substitution
σ, eσ is the maximal expression in Cσ. For instance, flat clauses with no extra
variables are reductive, as are flat clauses that contain only one variable and no
function symbols. An example of the latter case is the clause p(x)∨ q(x). In general,
we have:

Lemma 1. If C is flat and reductive with respect to e, then (i) e contains all variables
which occur in C, (ii) if e is of the form p(x), with predicate p and variable x, C
does not contain any non-constant function symbols, and (iii) if C contains a non-
constant function symbol, then e contains a function symbol with maximal arity in
C.

If a clause C is non-reductive, then it can either be partitioned, that is, written as
C ′(X) ∨ C ′′(Y ) where the two subclauses C ′ and C ′′ share no variables; or contains
an equation x ≈ x; or contains a connecting variable, that is, an extra variable x
and an equation (also called a variable connection) x ≈ t with t not containing x.
For example, in p(x)∨ x ≈ y ∨ q(y), the variable x connects the two variable-disjoint
subclauses p(x) and q(y).

We call a superposition inference from flat clauses flatness preserving if its active
premise is reductive and if its passive premise is either reductive and has no selected
literal, or else contains one selected negative equation with a connecting variable.
This terminology is justified by the following lemma:

Lemma 2. The conclusion of any flatness preserving inference from flat clauses is
again a flat clause.

Proof. The proof makes essential use of the assumptions about ≻. We will consider
the cases of paramodulation into a negative literal and of ordered resolution, the
proofs for the other inference rules being similar. Suppose that the active premise
C ∨ s ≈ t of a paramodulation inference is flat and reductive with respect to s. Then

3Details about the lexicographic path ordering can be found in survey papers on rewriting such
as (Dershowitz and Jouannaud 1990).
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s contains all variables occurring in C ∨ s ≈ t and is not a variable itself, in other
words, s is a term f(v1, . . . , vm)σ where σ maps the variables in W ⊆ {v1, . . . , vm} to
constants symbols and all other variables to themselves. The substitution ρ unifies
s with a term s′ in the passive premise ¬A[s′] ∨ Λ. Every term in ¬A[s′] ∨ Λ that is
not a variable is of the form g(v′1, . . . , v

′
j)σ

′, 0 ≤ j ≤ k, where σ′ maps the variables
in W ′ ⊆ {v′1, . . . , v′k} to constants symbols and all other variables to themselves. As
s′ is not a variable, we have s′ = f(v′1, . . . , v

′
m)σ′. Without loss of generality, we

may assume that ρ maps every variable vi or v
′
i either to a constant or to the (new)

variable v′′i . Let W ′′ be the set { v′′i | vi ∈ W ∨ v′i ∈ W ′ }. Then every term of the
conclusion that is not a variable is of the form g(v′′1 , . . . , v

′′
j )θ where θ maps every

variable in W ′′ to a constant and every other variable to itself.
In the case of an ordered resolution inference of the assumed kind the passive

premise cannot have a selected literal. Hence the passive premise is a reductive
clause. For both the active and the passive premise, we have to consider two cases:
either the clause contains only one variable x and consists entirely of literals p(x), or
the maximal literal has the form p(f(v1, . . . , vm)σ), and f is a function symbol with
maximal arity in the clause. In any of these cases the proof proceeds in a similar way
as above.

The flatness preserving inferences will form the core of our decision procedure. Su-
perposition inferences that do not preserve flatness can be shown to be unnecessary
or redundant, in a sense made precise next.

3.2 Redundancy

The superposition calculus does not directly yield a decision procedure, but it is com-
patible with a rather general notion of redundancy (Bachmair and Ganzinger 1991),
which we shall exploit in developing a decision procedure.

Redundancy is based on an ordering ≻i of pairs (C, σ) of clauses C and ground
substitutions σ such that (C, σ) ≻i (D, τ) if and only if either (i) Cσ ≻ Dτ or else
(ii) Cσ = Dτ , C and D are flat clauses, and D is an instance of C, but not vice
versa. In other words, if the two instances are the same, the pair in which the clause
is more (!) instantiated is considered smaller. As this (partial) ordering is applied
only to flat clauses, which are of bounded depth, it is well-founded.

If N is a set of clauses and C is a clause, then C is called redundant in N if for all
ground substitutions σ there exist n ≥ 0 clauses Cj in N and ground substitutions
σj such that (i) C1σ1, . . . , Cnσn |= Cσ, and (ii) (C, σ) ≻i (Cj , σj), for 1 ≤ j ≤ n.
A set N of clauses is called saturated (up to redundancy) if all clauses that can be
derived (by an inference of the superposition calculus) from non-redundant premises
in N are either contained in N or else are redundant in N .

The following theorem from (Bachmair and Ganzinger 1991), which holds for
arbitrary reduction orderings and selection functions, plays a central role for the
correctness of our decision procedure:4

4Actually in that paper we use a slightly less powerful ordering ≻i. But the paper also discusses
why this does not make a difference. Also see (Bachmair and Ganzinger 1990) for an ordering ≻i in
which the subsumption ordering is employed in the usual way. The extension of ≻ to ground clauses
is given by the multiset extension of the ordering on literals.
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Theorem 3. Let N be saturated up to redundancy. Then N is satisfiable if and only
if it does not contain the empty clause.

This notion of redundancy leaves us a sufficient amount of freedom to design
simplification and deletion rules which will guarantee that finite sets of flat clauses
can always be finitely saturated. In the following section we shall first describe the
general scheme by which saturation proceeds, the fair theorem proving derivations.

3.3 Theorem Proving Derivations

A (clausal) theorem proving derivation from a set of clauses N is a finitely branching
(possibly infinite) tree δ, the nodes of which are sets of clauses, such that N is the
root of δ and for each non-leaf node N0 in δ with children N1, . . . , Nk, either (i) k = 1
and N1 = N0 \{C}, where C is a clause in N0 which is redundant in N1, or (ii) k ≥ 1
and Ni = N0 ∪Mi, 1 ≤ i ≤ k, with nonempty sets Mi of clauses such that if N0 is
satisfiable then at least one of the N0 ∪Mi is satisfiable, too. In case (i) a redundant
formula is deleted, while in case (ii) some formula is added and a case analysis is
possibly done.

A theorem proving derivation from N is called fair if for any path N = N0, N1, . . .
in the tree, with limit N∞ =

∪
j

∩
k≥j Nk, it is the case that each clause C that

can be deduced by a superposition inference from non-redundant premises in N∞ is
contained in some set Nj .

Lemma 4. Let δ be a fair theorem proving derivation from N . If N,N1, N2, . . . is a
path in δ with limit N∞ then N∞ is saturated. Furthermore, N is satisfiable if and
only if there exists a path in δ the limit N∞ of which is satisfiable.

Proof. If C is a clause in (
∪

j Nj) \N∞ then it is redundant with respect to some set
Nj and hence, redundant with respect to

∪
j Nj . From this we may moreover infer

that all clauses in (
∪

j Nj)\N∞ are redundant with respect to N∞. Therefore, if C is
the conclusion of an inference from non-redundant clauses in N∞ and is not in N∞,
it must be redundant with respect to N∞, by virtue of the fact that fairness implies
that C is a clause in

∪
j Nj .

N is satisfiable if and only there exists a path N = N0, N1, . . . in δ such that each
of the Ni is satisfiable. By compactness of first-order logic this is equivalent to the
satisfiability of N∞.

Corollary 5. Let δ be a fair saturation proving derivation from N . Then N is
satisfiable if and only there exists a path in δ the limit of which does not contain the
empty clause.

4 The Decision Procedure

We now describe how to construct a fair and finite derivation from any given finite set
of flat clauses N0 over some some finite vocabulary Σ. We assume that Σ contains
some sufficiently large subset C of additional constant symbols which do not occur in
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N0. The relevance of these constants and what we mean by “sufficiently large” will
become clear below. We design a calculus of expansion rules of the form

N

N1 | · · · | Nk

with each representing a finite derivation with root N and leaves N1, . . . , Nk. The
expansion rules indicate how derivations may be expanded at leaves (by adding new
subtrees).

For instance, flatness preserving superposition inferences are described by the
following expansion rule:

Deduce
N

N ∪ {C}

if C is the conclusion of a flatness preserving superposition inference from
clauses in N .

A simple instance of deletion of redundant formulas is given by:

Delete
N ∪ {C}

N

if (i) C is a tautology or (ii) N contains a clause C ′, where C ′ can be obtained
from C by renaming variables. In the following, clauses that can be deleted in
this way will be called trivial in N .

The third possibility, case split, allows us to partition clauses:

Partition
N ∪ {C ∨ C ′}

N ∪ {C} | N ∪ {C ′}

if C and C ′ do not share any variables.

The above expansion rules are clearly insufficient for constructing fair derivations.
Fairness requires that all superposition inferences be applied to non-redundant
clauses, yet “Deduce” covers only flatness-preserving inferences. We will therefore
design further expansion rules, called simplification rules, that can be used to elimi-
nate problematic formulas. These expansion rules represent derivations consisting of
an addition—a node N ∪{C} with a child N ∪{C,D}—followed by a corresponding
deletion—a node N ∪ {D} inserted below N ∪ {C,D}). In other words, the key is
to find a suitable formula D in the presence of which an undesirable formula C is
rendered redundant. In some cases, more than one formula needs to be added before
a problematic formula becomes redundant.

Factor 1
N ∪ {L ∨ L ∨ C}
N ∪ {L ∨ C}
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Factor 2
N ∪ {¬x ≈ y ∨ C}

N ∪ {C[y/x]}

where x is an extra variable in C.

Factor 3
N ∪ {¬x ≈ t ∨ ¬y ≈ t ∨ C}
N ∪ {¬y ≈ t ∨ C[y/x]}

where x is an extra variable in C.5

Before stating the remaining rules we introduce some constraint notation to describe
certain sets of instances of a clause. By c1, . . . , ck :: C, where the ci are constraints
of the form ti ≺ ai or ti ≼ ai, with terms ti and constants ai, and where C is a flat
clause, we denote the family Cσ of clauses where σ ranges over the solutions of the
constraints. By that we mean ground substitutions for the variables in ti for which
the constraints are satisfied with respect to the given reduction ordering.

A second kind of constrained formulas which we will use is of the form x ≻ a ::
C, where x is a variable, a a constant and C a flat clause containing no function
symbols other than constants. The latter expression will be a shorthand for the
family of clauses C[f(x1, . . . , xn)/x], where f ranges over constants and function
symbols greater than a, and where the xi are distinct variables not occurring in
C. Note that since constants are smaller than any non-constant term, and since
we consider finite vocabularies only, the set of clauses represented by a constrained
clause is always finite and consists of flat clauses only. Hence, the constraint notation
does not introduce any new concept.

Instantiate

N ∪ {C ∨ x ≈ a1 ∨ . . . ∨ x ≈ an}
N ∪ {x ≻ a1 :: C ∨ x ≈ a1 ∨ . . . ∨ x ≈ an, x ≺ a1 :: C ∨ x ≈ a1 ∨ . . . ∨ x ≈ an}

if x is a variable, the ai are constants, with a1 the maximal one, and C contains
only non-equational atoms of the form p(x).

This last rule indicates how certain non-reductive flat clauses may be rendered re-
dundant by adding suitable instances.

The final rule of our calculus, to be described next, covers more complicated flat
clauses with connecting equations to which the previous rule does not apply. It is
designed to remove the connections between the variable-disjoint subclauses C ′ and
C ′′ of C, which is achieved using constants to split connecting equations. The full
details of this process are somewhat technically involved as we have to deal with
disjunctions of connecting equations, and as we have to make sure that the new
clauses are smaller than the clause that is split.

5Note that replacing a clause ¬x ≈ t ∨ C, where x does not occur in t, by C[t/x] is in general
not an admissible simplification. In cases where x is instantiated with a term smaller than t, the
corresponding instance of the second clause can be too large. These negative literals have to be
“eliminated” by selecting them for superposition. Our more specialized “Factor” rules, however, are
simplifications.
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Restrict
N ∪ {C}

N ∪ {C ′} | N ∪ {C ′′} | N ∪M

if C is a non-trivial clause of the form

C ′ ∨ C ′′ ∨ x ≈ t1 ∨ . . . ∨ x ≈ tn

such that (i) the variable x does not occur in C ′′ nor in the ti, (ii) C
′ consists

of pairwise distinct occurrences of non-equational atoms of the form p(x), and
(iii) at least one of the terms ti is not a constant. Then M is the set of clauses
consisting of

x ≻ a1 :: C ′ ∨ x ≈ a1 ∨ . . . ∨ x ≈ ak, (1)

C ′′ ∨ ai ≈ t1 ∨ . . . ∨ ai ≈ tn; 1 ≤ i ≤ k (2)

x ≺ a1 :: C ′ ∨ C ′′ ∨ x ≈ t1 ∨ . . . ∨ x ≈ tn, (3)

t1 ≼ a1, . . . , tn ≼ a1 :: C ′ ∨ C ′′ ∨ x ≈ t1 ∨ . . . ∨ x ≈ tn (4)

The ai are constants with the following properties. If N contains (up to renam-
ing of the variable x) a clause of the form x ≻ b1 :: C ′ ∨ x ≈ b1 ∨ . . . ∨ x ≈ bl,
with constants bi, then k = l and ai = bi. Otherwise, k = n, and the ai are
taken to be constant symbols in C that are new, that is, do not occur on the
path from the root of the derivation tree to N ∪ {C}. We assume that a1 is
maximal among the ai with respect to ≻.

With a finite supply of predicate symbols only finitely many clauses of the form
required for C ′ can be constructed. Also, clauses of the form (1), once added, cannot
be deleted in later expansion steps. Hence, in fact, a finite supply of constants C
will suffice to allow “Restrict” be applied whenever needed. The practical problem,
however, is that we do not know in advance how many constants we have to generate.
Therefore the concept of constrained formulas not only provides a convenient notation
for specifying certain sets of instances of formulas, it also suggests how to treat the
unknown C lazily in an actual implementation of the expansion rules.6 Whenever an
application of “Restrict” produces new constants, any constrained formula that has
been added in previous expansions further up in the derivation tree simply needs to be
inspected again as to whether the enriched signature (with an enriched precedence on
symbols) gives rise to additional solutions of the constraint. The additional instances
can then be added. This handling of constraints is explicitly supported within the
extension of the superposition calculus by ordering constraints (Nieuwenhuis and
Rubio 1992).

These remarks on implementation issues (which are of no theoretical significance)
complete the description of our calculus of expansion rules. In most cases it is fairly
easy to determine which derivation is represented by an expansion rule. The most
complicated rule is “Restrict,” which represents a derivation with root N ∪ {C} and

6There is no point in fixing C in advance by exploiting theoretically known upper bounds for
the cardinality of finite models for monadic formulas. Then nothing would be gained over trivial
methods which simply enumerate all structures up to this size. Although these methods are in some
theoretical sense optimal (Lewis 1980), they appear to be competely useless in practice.

9



three children N ∪ {C,C ′}, N ∪ {C,C ′′}, and N ∪ {C} ∪M , each of which in turn
has one child, obtained by deleting C. The following two lemmas establish that this
is indeed a derivation.

Lemma 6. The clause C is redundant in, respectively, N ∪ {C ′}, N ∪ {C ′′}, and
N ∪M .

Proof. While the first two cases are obvious, for the third case we have to show that
each ground instance Cσ of C which is not covered by the two constrained clauses
(3) and (4) in M follows from smaller ground instances of N ∪ M . (Note that as
the clauses represented by (3) and (4) are more instantiated than C, their ground
instances are smaller than corresponding instances of C with respect to ≻i.) Let
us, therefore, assume that xσ ≻ a1 and tjσ ≻ a1 for some j. (Instances for which
xσ = a1 are tautologies, hence redundant.) Then

Cσ ≻ (C ′ ∨ x ≈ a1 ∨ . . . ∨ x ≈ ak)σ

and
Cσ ≻ (C ′′ ∨ ai ≈ t1 ∨ . . . ∨ ai ≈ tn)σ,

for 1 ≤ i ≤ k. Moreover, suppose that I is an interpretation in which the clauses
in M are satisfied. We have to show that Cσ is also satisfied in I. If C ′σ and C ′′σ
are false in I, then, from the validity of the instances of the clause (1) we may infer
the existence of an i such that xσ ≈ ai is true in I. Similarly, as the instances of
the clauses (2) are satisfied in I, there exists a ji such that ai ≈ tjiσ is true in I.
Altogether, xσ ≈ tjiσ, and hence Cσ, are true in I.

Lemma 7. If N ∪ {C} is satisfiable, then one of the three sets N ∪ {C,C ′}, N ∪
{C,C ′′}, or N ∪ {C} ∪M is also satisfiable.

Proof. Let I be a model of N ∪{C}. If I is a model of neither C ′ nor C ′′, then there
exist variable assignments σ and τ for the variables in C ′ and C ′′, respectively, such
that both C ′σ and C ′′τ are false in I. Hence C ′∨x ≈ t1τ ∨ . . .∨x ≈ tnτ is valid in I,
for all assignments to x, from which we may infer that there are at most n different
values of x such that C ′ is false in I. If N does not contain a (possibly constrained)
clause of the form C ′ ∨ x ≈ b1 ∨ . . . ∨ x ≈ bl, then the ai are new constants which do
not occur in N ∪ {C}. Let then I ′ be the same as I, except that the interpretation
of the ai is changed into what is obtained by evaluating tiτ in I. As the ai do not
occur in N ∪ {C} and as the domains of I and I ′ are identical, I ′ satisfies N ∪ {C}.
If the ai are “old” constants, let I ′ be the same as I. By construction, I ′ satisfies
C ′∨x ≈ a1∨ . . .∨x ≈ ak. As the set of values for which C ′ is false in I ′ is exactly the
set of values represented by the ai, and as C is true in I ′, C ′′ ∨ ai ≈ t1 ∨ . . .∨ ai ≈ tn
is satisfied in I ′, for any 1 ≤ i ≤ k. Hence we have shown that if I is not a model of
the first two alternatives, I ′ is a model of N ∪ {C} ∪M .

In sum, we have the following result:

Theorem 8. Any tree generated by any sequence of applications of expansion rules
is a theorem proving derivation.
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From now on we shall restrict attention to theorem proving derivations which are
generated by strategies in which “Delete”, “Partition”, “Factor”, “Instantiate”, “Re-
strict”, and “Deduce” are applied in this order of (descending) priorities. Moreover
we assume that no “Deduce” inference is computed twice on the same path in the
tree. Theorem proving derivations of this form will be called expansions.

Lemma 9. Let N be a finite set of flat clauses and consider an arbitrary expansion
δ from N . Then δ is finite.

Proof. Applying Lemma 2, we may infer that “Deduce” does not add any non-flat
clause. The same property holds for the other expansion rules. Note that many of
the restrictions to the expansion rules are meant to preserve the variable property of
flat clauses. What remains to be shown is that formulas cannot become arbitrarily
long. As simplification expansions such as “Partition” and “Factor 1” are applied
eagerly, the only remaining problems are variable connections.

We have to show that the number of variable connections in clauses is bounded.
We first observe that there cannot be an unbounded number of negative variable
connections x ≈ t in a clause if the factoring rules are applied eagerly. This is due
to the fact that if t is a non-variable term, its variables have to satisfy the variable
restrictions for flat clauses. Therefore the number of different non-variable terms, and
hence the number of different negative variable connections in a clause is bounded.
We may, therefore, infer the same upper bound for the number of different variables in
negative literals of a clause. Now if a (non-trivial) and fully factored clause contains
more positive variable connections x ≈ t than can be expressed by the variables of the
negative literals and the finite number of function symbols, in at least one of them
the variable x does not appear in a negative equation. In this case the “Restrict”
rule can be applied by which this positive variable connection is eliminated.

Lemma 10. Given a finite set of flat clauses N there exists a fair theorem proving
derivation from N .

Proof. We show that there exists an expansion from N which is fair. For that pur-
pose we have to argue that superposition inferences which cannot be computed by
“Deduce” are redundant. “Deduce” makes the restriction that the active clause has
to be reductive and that the passive clause is either reductive and has no selected
literal, or else has a selected negative variable connection. The restrictions about
selection can be obeyed by a strategy such that whenever a clause contains a nega-
tive variable connection, in which case it cannot be reductive, one such equation is
selected. No other literals in clauses are selected. As a further consequence of this
strategy, clauses with negative variable connections cannot not be active. It remains
to be shown that all other non-reductive clauses can be simplified. A non-reductive
clause either has more than one partition, in which case it can be split by “Parti-
tion”, or else it contains an extra variable x and a variable connection x ≈ t. As
negative connections are dealt with by the selection strategy we are left with the
case where all variable connections are positive. If t = x we have a tautology which
can be removed by “Delete”. If t is not a constant, we may apply “Restrict” to split
the connection. If there exists only one partition and if all variable connections have
constants on their right sides, then the clause is dealt with by “Instantiate”.
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Theorem 11. Superposition with simplification is a decision procedure for the
monadic class with equality.

Proof. Applying the superposition and expansion strategy as indicated by the pre-
vious lemmas yields a decision procedure for the monadic class with equality. A
given formula is unsatisfiable if and only if all leaves of the tree constructed from the
skolemized clausal normal form of the given formula contain the empty clause.

5 Conclusion

We have shown that the three parameters of the superposition calculus — ordering,
selection function, and simplification inferences — can be set in a way such that
saturation of a finite set of flat clauses is guaranteed to terminate and hence forms a
decision procedure for the monadic class with equality. Although the technical details
of the above proof have turned out to be more complex than we expected, being able
to describe the full proof in a paper of this size we consider an achievement. It was
made possible only by the fact that the criteria for what admissible settings the three
parameters are allowed to have, can be defined in a self-contained and precise way
without any reference to the (non-trivial) completeness proof for the superposition
calculus itself

From this exercise we have learned several things. Being able to combine order-
ing constraints with unrestricted selection of negative literals is extremely useful in
practice. In particular we do not see any other way of dealing with negative con-
necting equations in flat clauses. We have also seen that our notion of redundancy
is sufficiently general to prove the admissibility of the required simplification infer-
ences. This was made possible in some cases only through the ability to compare
non-ground clauses with respect to a more unusual well-founded ordering, when-
ever certain ground instances are identical. Our previous papers have not explicitly
pointed out the admissibility of such a practice. Finally we have used a constraint
notation for certain instances of clauses. Although not a new concept theoretically,
any practical implementation should be able to handle such constraints specifically.
Nieuwenhuis and Rubio (1992) have shown how to extend or calculus to formulas
with ordering constraints. For the present application an explicit treatment of con-
straints is particularly useful because of the dynamic creation of new constants by
the “Restrict” rule.

What remains open at present is the computational complexity of our decision
procedure. It is known that the problem itself is complete for NEXPTIME. More
precisely, Lewis (1980) has shown that NTIME(cn/ logn) (for different constants c)
is both a lower and an upper bound for the complexity of Monadic-Sat, which is
the case without equality. In the case with equality, the best known upper bound is
slightly higher but again in NEXPTIME (cf. e.g. Dreben and Goldfarb 1979). We
conjecture that our procedure is no more complex than that.
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