
MAX—PLANCK—INSTITUT
FUR

INFO BMATIK

Eficient algorithms for generalized

intersection searching on

non—iso-oriented objects

Prosenjit Gupta. Ravi Janardan Michiel Smid

MPI—I—93—166 December 1993

mai
INFORMATIK

Im Stadtwald

66 123 Saarbrücken

Germany

PROF. DR. HARALD GANZINGER
Max-Planck-Institut für Informatik;

Im Stadtwald
D-66123 Saarbrfislsm

Efl‘icient algorithms for generalized

intersection searching on

non-iso-oriented objects

Prosenjit Gupta Ravi Janardan Michiel Smid

MPI—I—93—166 December 1993

Efficient Algorithms for Generalized Intersection
Searching on Non-Iso—Oriented Objects

Prosenjit Gupta’" Ravi Janardan“ Michiel Smidl

December 2, 1993

Abstract

In a generalized intersection searching problem, a set .S’ of colored geometric ob-
jects is to be preprocessed so that, given a query object q, the distinct colors of the
objects of .5' that are intersected by q can be reported or counted efliciently. These
problems generalize the well-studied standard intersection searching problems and are
rich in applications. Unfortunately, the solutions known for the standard problems
do not yield eificient solutions to the generalized problems. Recently, efiicient solu-
tions have been given for generalized problems where the input and query objects are
iso-oriented (i.e., eures-parallel) or where the color classes satisfy additional properties
(e.g., connectedness). In this paper, efficient algorithms are given for several general-
ized problems involving non-iso—oriented objects. These problems include: generalized
halfspace range searching in Rd, for any fixed d Z 2, and segment intersection search-
ing, triangle stabbing, and triangle range searching in 722. The techniques used include:
computing suitable sparse representations of the input, persistent data structures, and
filtering search.

Keywords: Computational geometry, data structures, filtering search, geometric du-
ality, intersection searching, persistence.

"'Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, USA. Email:
{pgupta‚ janardan}0cs.umn.edu. The research of these authors was supported in part by NSF grant
CCR—92—00270. Portions of this work were done while RJ was visiting MS at the Max-Planck—Institut für
Informatik, in Saarbrücken, Germany, in July 1993. RJ would like to thank the MPI for its generous support.

iMax-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany. Email: michielOmpi-sb.mpg.de.
This author was supported by the ESPRIT Basic Raearch Actions Program, under contract No. 7141
(project ALCOM II).

1 Introduction

Consider the following generic searching problem: Assume that we are given a set S of
n geometric objects in 72". Moreover, assume that the objects come aggregated in disjoint
groups, where the grouping is dictated by the underlying application. (The number of groups
can range from 1 to ®(n).) Our goal is to preprocess S' into a data structure so that given
any query object q, we can report or count efficiently the groups that are intersected by q.
(We say that q intersects a group iff q intersects some object in the group.) Notice that we
are not interested in reporting or counting the individual objects intersected by q as is the
case in a standard intersection searching problem. Indeed the standard problem is a special
case of the above formulation, where each group has cardinality 1. For this reason, we call
our version a generalized intersection searching problem.

For our purposes, it will be convenient to associate with each group a difierent color and
imagine that all the objects in the group have that color. Suppose that q intersects i groups.
Then, we can restate our problem as: “Preprocess a set S of n colored geometric objects so
that for any query object q, the 5 distinct colors of the objects that are intersected by q can
be reported or counted efficiently.” This is the version that we Will consider throughout the
paper.

Before going further, let us illustrate the usefulness of our generalized formulation with
some applications: (1) In designing a VLSI chip, the wires (line segments) can be grouped
naturally according to the circuits they belong to. A problem of interest to the designer
is determining which circuits (rather than Wires) become connected when a new wire is to
be added. This is an instance of the generalized segment intersection searching problem.
(2) Consider a collection of supply points (e.g., warehouses) of different types in R2. We
would like to preprocess these points so that given a demand point q and a radius r , we can
determine the types of supply points that are within distance r from q. By using a well-
known “lifting” transformation, this problem can be transformed to an instance of generalized
halfspace range searching in R3.

One approach to solving a generalized problem is to take advantage of known solutions for
the corresponding standard problem. For example, to solve a generalized reporting problem,
we can determine all the objects intersected by q (a standard problem) and then read ofi
the distinct colors among these. (To avoid reporting a color more than once, we can use an
array of colors to track already-reported colors. After the query, we can reset this in time
proportional to i—the output size.) However, with this approach the query time can be very
high since q could intersect Q(n) objects but only 0(1) distinct colors. Thus, the challenge

in the generalized reporting problem is to attain a query time that is. sensitive to the output
size. Typically we seek query times of the form O(f(n) + z') or O(f(n) + z" - polylog(n)),
where f (n) is “small” (e.g., polylog(n) or n”, where 0 < p < 1). For a generalized counting
problem, it is not even clear how one can use the solution for the corresponding standard

problem (a mere count) to determine how many distinct colors are intersected. Nevertheless,
we seek here query times of the form 0(f (n)) Of course, for both the counting and the
reporting problems, we seek solutions that are also as space-efficient as possible.

1.1 Previous work

While the standard problems have been investigated extensively (see, for example, [Cha86,
CJ90, CJ92, CW89, AvK093, Mat91a, Mat91b, Mat92a]), their generalized counterparts
have been less studied. The generalized problems were first considered in [J L93] , where
efficient solutions were given for several problems defined on iso-oriented objects (i.e., the
input and the query objects are axes-parallel). These include cases where the colored objects

in S are, respectively, intervals, points in R2, orthogonal line segments in R2, and iso—oriented

rectangles in R“, d 2 1, and the query is, respectively, an interval, an iso-oriented rectangle,
an orthogonal line segment, and a point in Rd. A solution was also given for searching
on arbitrary (non—intersecting) colored line segments with an arbitrary line segment. In
[GJSQ3a], eflicient solutions were given for the counting, reporting, and dynamic versions
of some of the iso-oriented problems mentioned above. In [GJ393b] , solutions were given
for generalized problems involving circular and circle-like objects (among other results). In
[AvK93], Agarwal and van Kreveld consider the problem of reporting the intersections of a
query line segment with color classes consisting of line segments and satisfying the property
that each color class is a simple polygon or a connected component.

1.2 Summary of results

In this paper, we present efficient solutions to several generalized intersection searching
problems that are defined on non-iso-oriented objects. Specifically, we consider the following
problems: generalized halfspace range searching in R“, for any fixed d 2 2, and generalized
segment intersection searching, triangle stabbing, and triangle range searching in R2. Our
main results are summarized in Table 1. No results were known previously for any of these
problems, with the exception of generalized segment intersection searching: For this problem,
the following results were known: (a) O(n1+‘) space and 0(n1/2+c + i) query time when each
color dass is a simple polygon or a connected component [AvK93]; (b) O((n+x)2 log n) (resp.

Input objects Query object |
i H

Points Haspace
1 in 12" in Rd

Halfplane
2 Line segs.

in 722 Vertical ray

3 Lines Vertical line
in R2 segment

Line segs. of
length 2 a. Line

4 constant in
unit square

Vertical line
5 Line segs. segment

in R2 Arbitrary line
segment

6 Triangles Point
Fat-Wedges

7 Points Fat-Triangle

n input size
1. output size (number of distinct colors intersected)
e . arbitrarily small constant > 0
p : tunable parameter, 0.5 < p < 1
x ' number of pairwise-intersecting segments, 0 S x 5 (g)

Space
17. log n

n log2 n
n2+e

n log n
nid/2] +€

n log n

na(n) log n

17.25"“ log n
n2 log n

nlog n

(n + x) logn

133/2 log n
n log n
n 10? n

l QuerLfin

log2 1?+ 5
",1/2

n1 /2+¢ + i

log2 n + i
n2/3+e

log n + ilog2 n
log2 n + 2'

n1/2

log2 n + i
(na(n))1/ 2

n“ + i
log n + z'

log2 n +z'

l ogn+ i

log2 n + ilog n
log2 n + i
log2 n + 2'

log4 n + ilog2 n

Table 1: Summary of main results for generalized intersection searching problems; additional
results can be found in the text. Wherever the output size, i , is missing in a query time
bound, it is a counting problem. A fat-wedge or fat-triangle is one where each interior angle
is greater than or equal to a fixed constant. The meanings of the different symbols are as

slow-growing inverse of Ackermann’s function

0((n + x)2)) space with a query time of 0(log n + i) (resp. 0(log2 n + i)) for general color
classes, which follows from a. result in [JL93]; and (c) 0(n1+‘) space and O((i+1)\/r_zlogo(1) n)
query time for general classes, which is mentioned in [AVK93].1

Our results are based on a combination of several techniques: (1) Computing for each
color class a. sparse representation which captures essential information about the color class
and allows us to reduce the generalized problem at hand to a standard problem. (2) The
persistence-addition technique of Driscoll et al. [DSST89], which allows us to reduce a
generalized query problem to a. generalized query problem one dimension lower. (3) A version
of filtering search which, in combination with persistence, yields a. space-query time tradeofl’.
Moreover, when the input objects or query objects satisfy certain reasonable conditions (e. g.,
fatness), then we use further ideas to obtain very efficient solutions.

The rest of the paper is organized as follows: We consider Problems 1 and 2 of Table 1
in Section 2, Problems 3—5 in Section 3, Problem 6 in Section 4, and Problem 7 in Section 5.
We conclude in Section 6 with some open problems.

2 Generalized halfspace range searching in Rd

Let S be a set of n colored points in 72“, for any fixed d _>__ 2. We show how to preprocess 5 so
that for any query hyperplane Q, the z' distinct colors of the points lying in the halfspace Q "
(i.e., below Q) can be reported or counted efi'iciently.2 For now assume that Q is non-vertical;
we consider the case where Q is vertical in Section 2.3.

We denote the coordinate directions by :01, :32, . . . , 34. (For convenience, when discussing
the solution .in R2 specifically, we identify 3:1 and mg with a: and y; similarly, in R3, we
use a:, 3}, and 3.) Let .'F' denote the well—known point—hyperplane duality transform: If
p = (p1, . . . ,pd) is a point in Rd, then .7:(p) is the hyperplane x,; = 19131 + ---+pd_1:1:d_1 —pd.
If H : 334 = 01:51 + . - — + ad_.1:cd_1 + G,; is a (non-vertical) hyperplane in ”R", then ‚7:(H) is
the point (a1, . . . , (14-1, —a4). It is easily verified that p is above (resp. on, below) H, in the
2:4 direction, ifi' }"(p) is below (resp. on, above) .? (H) Note also that .7:(.7"(p)) = p and
J: (.7 (H)) = H.

Using .? we map 3 to a set 5" of hyperplanes and map Q to the point q = ‚7:(Q), both
1In Table 1, whenever c appears in a query time or space bound, the corresponding space or query time

bound contains a multiplicative factor which goes to oo as 6 —-> 0. Also, the constants implied in the definition
of “long” segments (Problem 4) and “fat” wedges and triangles (Problems 6 and 7) are present in the space
and query time bounds for these problems.

2In general, if h is a non—vertical hyperplane, then 13"" (resp. h“) is the halfspace above (resp. below) h;
unless specified otherwise, these halfspaces are closed.

4

in 12". Our problem is now equivalent to: “Report or count the 2' distinct colors of the
hyperplanes lying on or above q, i.e., the hyperplanes that are intersected by the vertical ray
r emanating upwards from q.”

Let Sc be the set of hyperplanes of color c. For each color c, we compute the upper
envelope Ec of the hyperplanes in Sc. EC is the locus of the points of Sc of maximum rd-
coordinate for each point on the plane 34 = 0. EG is a d—dimensional convex polytope which
is unbounded in the positive md direction. Formally, Ec’s boundary is composed of j -faces,
0 5 j S d -— 1, where each j -face is a j -dimensional convex polytope. Of particular interest
to us are the (d — 1)-fa.ces of EC; we call each such face a facet. For instance, in R2, Ec is an
unbounded convex chain and its facets are line segments; in R3, Ec is an unbounded convex
polytope whose facets are convex polygons.

For now, let us assume that. r is well-behaved in the sense that for no color 6 does r
intersect two or more facets of Ec at a common boundary—for instance, a vertex in R2 and
an edge or a vertex in R3. (In Section 2.3 we show how to remove this assumption.) Then,
by definition of the upper envelope, it follows that (i) r intersects a c—colored hyperplane ifl'
r intersects E., and, moreover, (ii) if r intersects EC, then r intersects a unique facet of EC (in
the interior of the facet). Let 8 be the collection of the envelopes of the different colors. By
the above discussion, our problem is equivalent to: “Report or count the facets of € that are
intersected by r ,” which is a standard intersection searching problem! In Sections 2.1 and 2.2,
we show how to solve efficiently this ray—envelope intersection problem in 72.2 and in R3. This
approach does not give an efficient solution to the generalized ha.]fspace searching problem
in 12."! for d > 3; for this case, we give a different solution in Section 2.4.

2.1 Solving the ray—envelope intersection problem in 722

We project the endpoints of the line segments of 8 onto the :c-axis, thus partitioning it into
2n +1 elementary intervals (some of which may be empty). We build a segment tree T which
stores these elementary intervals at the leaves. Let U be any node of T. Associated with v
is an x-interval I (0), which is the union of the elementary intervals stored at the leaves in
v’s subtree. Let Strip(v) be the vertical strip defined by I (v) We say that a segment 3 € 8
is allocated to a node v E T iff I (v) 72 (0 and 3 crosses Strip(v) but not Strip(parent(v)). Let
8(v) be the set of segments allocated to v. Within Strip(v), the segments of 8 (v) can be
viewed as lines since they cross Strip(v) completely. Let 8’(v) be the set of points dual to
these lines. We store 8’(v) in an instance H (v) of the standard halfplane reporting (resp.
counting) structure for R2 given in [CGL85] (resp. [Mat92b]). This structure uses O(m)
space and has a query time of O(logm + k”) (resp. 0(m1/2)), where m = |£(v)| and It., is

5

the output size at v.
To answer a. query, we search in T using q’s :::-coordinate. At each node v visited, we need

to report or count the lines intersected by r . But, by duality, this is equivalent to answering,

in R”, a. halfplane query at 0 using the query .7(q)' = Q“, which we do using H (v) For the

reporting problem, we simply output what is returned by the query at each visited node; for

the counting problem, we return the sum of the counts obtained at the visited nodes.

Theorem 2.1 A set S of n colored points in R2 can be stored in a. data structure of size

0(nlog n.) so that the z' distinct colors of the points lying in any query halfplanc can be
reported (resp. counted) in time 000a + i) (resp. 0(n1/2)).

Proof Correctness follows from the preceding discussion. As noted earlier, there are 0(I56 I)
line segments (facets) in EC; thus IE] = 0636 [56]) = 0(n) and so IT| = 0(n). Hence each
segment of € can get allocated to O(log n) nodes of T. Since the structure H (v) has size

linear in m = |£(v)|, the total space used is 0(n log n). For the reporting problem, the query

time at a node v is O(logm + k„) = O(logn + k”). When summed over the 0(log n) nodes

visited, this gives 0(log2 n + i). To see this, recall that the ray r can intersect at most one

envelope segment of any color; thus the terms k”, taken over all nodes v visited, sum to 5.

For the counting problem, the query time at 0 is 0(m1/2). It can be shown that if v has
depth j in T, then m = ' | £ (v) | = O(n/25) (See, for instance, [CJ92, page 675].) Thus, the
overall query time is O(Z?=(lä8")(11/25)1/2) , Which is 0(n1/2). EI

2.2 Solving the ray—envelope intersection problem in R3

For each color c, we triangulate the facets of EC. Let Tc denote the set of resulting triangles

and let T = U‘: Tc. For any triangle t € T, let h(t) be the supporting plane of t and let t' be
the projection of t (also a triangle) onto the zy-plane. Let T’ be the set of such projected

triangles. Let q’ be the projection of q (the origin of the vertical query ray r) on the xy—
plane. Clearly, t is intersected by r iff (a) t’ ’s interior contains q’ and (b) h(t) is on or above
q.

Let us now consider how to find the triangles satisfying condition (a). We first divide
each triangle t’ € 7’ that does not have a vertical side into at most two such triangles by

drawing a vertical line through its vertex of median :c-coordinate. We store the resulting set

of triangles (which we continue to call T ') in a segment tree T according to their w-spans. Let

v be any node of T and let A(v) be the set of triangles of T’ allocated‘to v. Let m = |A(v)|.
Note that if t' € A(v) then both its non-vertical sides, call the upper one t; and the lower

6

one ti, cross Strip(v). If q’ € Strip(v), then q’ is in t’ ’s interior ifi' q' is above ti and below tz.
Since t} and t; behave like lines within Strip(v), by duality we have that q’ E t' ifi' in R2 the
line f(q’) intersects the segment f(tf)f(t;), i.e., iff one endpoint of f(tf).7-'(t;) lies in the
open halfplane f(q’)’ and the other lies in the open halfplane f(q’)"'. Let us denote these
halfplane queries by J1 and J2, respectively.

Next, consider condition (b). By duality, h(t) is on or above q ifi' in R3 the point .7:(h(t))
is in the halfspace ‚7:(q)". Denote this halfspace query by J3.

So, our problem at v is to report or count the triangles of A(v) that satisfy J1, J2,
and J3. We can do this by augmenting v with a 3-level data structure based on partition
trees [Mat92a], as follows: Let E be the set of endpoints {J’(tf),.7:(t;) | t’ € T' } in R2.
We build a partition tree D1 on E. Using the space-reduction strategy of Dobkin and
Edelsbrunner [DE87] (see also [AvK093, vK92]), we consider a constant number of levels of
D1 and augment each node w at these levels with a partition tree D2 (w), which is built on
the subset of E associated with w. Finally for each such w, again using the above-mentioned

space-reduction strategy, we consider a constant number of levels of D2 (w) and augment
each node u at these levels with an instance D3(u) of a data structure for halfspace range
reporting or counting, which is built on the subset of E associated with u. Let us denote
this 3-1evel structure at 0 by D(v).

To report or count the triangles of A(v) satisfying the queries J1, Ja, and J3, we perform
J1 on DI , then perform J2 on D2(w), for each canonical node w of D1 identified by J1, and

finally perform J3 on D3(u) for each canonical node u of D2(w) identified by J2.
Let us analyse the space and query time of the structure D(v). We discuss the reporting

version first. Let 1‘}; (p) be the space used by an instance of the reporting version of D3 built
on p points and let g3(p) + k be its query time, where k is the output size. (Throughout, we
will use the generic symbol k to denote the output size of a query on some data structure.)
If f3(p) / p is non-decreasing and 93(p) / p is non-increasing, then it can be shown (see [vK92,
Theorem 5.8(ii), page 69]) that D(v) uses 0(m + f3(m)) space and has a query time of
0(m‘(m1/2 + g3(m)) + k), where e > 0 is an arbitrarily small constant. (Recall that m =
|A(v)|.) We can use for D3 the structure given in [AHL90] for which f3(p) = 0(p log p) and
g3(p) = 0(log p + k). Then D(‘v) has size 0(m log m) and query time 0(m1/2+‘ + k).

Instead of partition trees, we can also use 2—dimensional cutting trees [Mat91a] for the
two outer levels of D('v). Then ’D('v) uses space O(m‘(m2 + f3(m)) and has query time
0(logm + 93(m) + k) (see [vK92, Theorem 5.8(i), page 69]). For D3, we use the above—
mentioned structure of [AHLQO]. Then D(v) has size O(m2+‘) and query time 0(log m + Is).

Now consider the counting problem. Let f3(p) be the space and g3(p) be the query time

for the counting version of D3 built on p points. If we use partition trees and use for D3
the structure given in [Mat92a], for which f3(p) = 0(1)) and g3(p) = 0(p2/3), then D(v) uses
0(m) space and has query time 0(m2/3+‘).

So, the overall data structure for the ray-envelope problem in R3 consists of the segment
tree T where each node v is augmented with the above structure 19(0), which is built on
A(v). To answer a query, we search down T and query D(v) at each node v visited.

Theorem 2.2 The reporting version of the generalized halfispace range searching problem
for a set of n colored points in R3 can be solved in 0(n log2 n) (resp. 0(n2+‘)) space and
0(n1/2'l" + i) (resp. 0(log2n + i)) query time, where i is the output size and 6 > 0 is an
arbitrarily small constant. The counting version is solvable in 0(n log n) space and 0(n2/3+‘)
query time.

Pro of Correctness follows from the preceding discussion. Consider the space and query time
for the reporting problem. It is well-known (see [Mu193, page 271] for instance) that E, has
0(IScl) facets. This implies that Tc contains 0(ISCI) triangles. Thus IT| = 0(2c ISCI) = 0(n)
and so the segment tree T has size 0(n).

A triangle t' € T’ can get allocated to 0(log n) nodes of T. Since the auxiliary structure
D(v) at a node v € T has size 0(m log m) (resp. 0(m2+‘)), where m = |A(v)|, it follows
that the overall space is 0(n log2 n) (resp. 0(n2"’")), for some e' > 0. The query time at v
is 0(m1/2+‘ + k9) (resp. 0(log m“ + k„)), where k„ is the output size at '0. As in the proof of
Theorem 2.1, taken over all nodes v visited, this sums to 0(n1/2"'€ + i) (resp. 0(log2 n + i)).

The analysis for the counting problem is similar and hence omitted. Ü

An application: Consider the generalized disk range searching problem mentioned in the
Introduction: “Given a set .5' of n colored points in R2, count or report the i distinct colors
of the points lying inside a variable—radius query disk q.” Using the well—known lifting
transformation [Ede87], this problem can be transformed to the generalized halfspace range
searching problem in R3 and hence can be solved within the bounds of Theorem 2.2. In
[GJSQ3b], the reporting (resp. counting) version of this generalized disk range searching
problem is solved in 0(n4) (resp. 0(n4 log n)) space and 0(logn + i) (resp. 0(log n)) query
time using a different approach.

Remark 2.1 In addition to the bounds given in Theorem 2.2, other bounds are also possible.
For instance, the reporting problem is solvable using partition trees and a version of D3 from
[Mat92b]; the bounds are 0(n log n) space and 0(n2/3"'e + i) query time. Also, by using a
combination of partition trees and cutting trees [vK92, Theorem 5.8(iii), page 69]), we can

8

obtain a space-query time tradeoff. We have omitted a detailed discussion of these results
since they can be derived in the same way as the bounds in Theorem 2.2.

We also note that for the counting problem, there is a solution, based on cutting trees,
which uses 0(n3+‘) space and has 0(log2 n) query time. However, this can be improved as
we will see in Section 2.4.

2.3 Handling special cases in R2 and R3
Vertical queries

So far we have assumed that the query halfspace Q is non-vertical, i.e., not parallel to the (cd
direction, which allowed us to apply the transformation .77. If Q is vertical, then we proceed
as follows:

In R2, Q is a vertical line, say Q : a: = 30. We simply project all the points on the :c-axis
and solve an instance of the generalized I—dimensz'onal range searching problem with the
query interval [a:o, oo), i.e., report or count the distinct colors lying in the interval [wo, 00).
As shown in [GJS93a], for a semi-infinite query interval, the problem is solvable in 0(n)
space and ®(i) (resp. 0(log n)) query time for the reporting (resp. counting) case. Thus
the bounds of Theorem 2.1 are unaifected.

Similarly, in R3, if Q is the vertical hyperplane Q : an: + agy + a3 = 0, then we project
the points onto the plane z = 0 and solve an instance of the generalized halfplane range
searching problem in 72.2, using as query the projection of Q onto the plane z = 0. Thus the
bounds in Theorem 2.2 are unaffected.

Query rays that are not well-behaved

So far we have assumed that the vertical ray r is well—behaved in the sense that it does not
meet two or more facets of E6 at a common boundary, for any color c. Let us consider what
happens if this is not true in R2. Thus, r meets Ec at a vertex p. Let a and b be the line
segments of Ec having p as endpoint. At first sight it would appear that the solution returned
to the standard counting problem is not valid for the generalized counting problem since the
count would include c twice—and we would not be aware of this. (Of course, this is not
an issue for the reporting problem.) Fortunately, however, the solution given in Section 2.1
carries over unchanged even if r is not well-behaved. The argument is as follows:

Let v be the node of T, with left child u and right child w, such that p lies on the

common boundary of Strip(u) and Strip(w). Thus, during the search down T with q (r’s
origin), when q falls on this common boundary, we are faced with the question of which child

of v to visit. (Clearly, this situation will not arise at any other node.) The answer is that we
can arbitrarily pick either u or w to visit without afl’ecting the correctness of the query. To

see why, notice that since E„ is an unbounded convex chain, in both Strip (u) and in Strip(w)
there will be exactly one c-colored line segment on or above q (namely, a and b, respectively,

assuming that a is to the left of 19 and 6 is to the right). Thus, regardless of whether u or
w is visited, color c will be reported or counted when the auxiliary structure of the visited
node is queried.

In R3 the situation is more subtle. Here r can intersect an edge shared by triangles 5 and
t of Tc or the common vertex of several triangles s , t , . . . of Tc. (The latter case is bad even
for the reporting problem since the query time will be high if the common vertex has many
triangles incident with it.) Consider the first case. It follows that q’ lies on the common
edge of triangles 3’ and t’ of T’. This implies that one endpoint of m touches }—(q')
while the other is (say) below f(q') and a symmetric situation exists w.r.t. W). If
we use open halfplanes in doing the queries J1 and J2 (as we do in Section 2.2), then c Will be

missed. If we use closed halfplanes then c Will be found twice, which is unacceptable for the
oounting problem. The solution is to use an open halfplane in doing (say) J1 and a closed
halfplane in doing J2; with this approach c Will be found exactly once.

Suppose instead that r meets the common vertex of several c—colored triangles s , t ,
From the properties of f , it follows that the line segments f(s$)f(s{,), f(tf).7-'(t{,), . . . are
all contained in f(q'). Thus, With the modified queries J1 and J2, c will be missed. The
solution is to identify such colors c separately, as follows: In preprocessing, we project all
envelope vertices onto the plane z = 0. Let p’ be the pro j ection of vertex p. We check if q’
coincides with any p’ and, if it does, then we report or count its color if p is on or above q.
(If several differently-colored vertices pl, p2, . . . all project to the same point p’, then we store
them with p’ in sorted z-order and do a binary search on them to determine the ones that are
on or above q.) Clearly, all this can be done in 0(n) space and O(log n + z') (resp. O(log n))
query time for the reporting (resp. counting) case and so the bounds of Theorem 2.2 are
unafl'ected.

2.4 Generalized halfspace range searching in d > 3 dimensions

The approach of Section 2.2 can be extended, With some modifications, to any fixed d > 3
also. However, the space requirements are high—the scheme uses O(ndld/21+'7) space and
has query time 0(logn + i) (resp. O(log n)) for reporting (resp. counting), where 7 > 0
is an arbitrarily small constant. This approach uses cutting trees. By using a combination
of cutting trees and partition trees the space can be lowered slightly at the expense of a

10

higher query time. If one tries to use partition trees alone to obtain a close-to-linear-space
solution, the query time becomes superlinear! (Intuitively, this is because the input to the
ray-envelope problem is large—it is a collection of 0(nLd/2J) (d — 1)-dimensional simplices.)
We leave open the problem of obtaining a near—linear—space solution with a query time of
the form O(n? + i - polylog(n)), 0 < p < 1.

In the remainder of this section, we describe two diiferent approaches whose space re-
quirements are much lower than the bound given above (but still nowhere close to linear).
The first solution works for the reporting problem only, while the second works for both
reporting and counting. (In fact, these methods work for d = 2, 3 also.)

The first solution is as follows: In preprocessing, we store the distinct colors in the input
point-set S at the leaves of a Balanced binary tree CT (in no particular order). For any
node 1) of CT, let C(v) be the colors stored in the leaves of v’s subtree and let .5'(v) be the
points of S colored with the colors in C(v). At v, we store a data structure HSE(v) to solve
the halfspace emptiness problem on S (v), i.e., “Does a query halfspace contain any points
of S(v)?” HSE (v) returns “true” if the query halfspace is empty and “false” otherwise.
If |S„| = n”, then HSE(v) uses 0(nLd/2H") space and has query time O(log n”) [Mu193,
page 290], for some arbitrarily small constant e > 0.

We answer a generalized halfspace reporting query for a halfspace Q“ as follows: We do
a depth—first search in CT and query HSE(v) at each node v visited. If 10 is a non-leaf then
we continue searching below :) ifl' the query returns “false”; if :) is a leaf, then we output the
color stored there ifl' the query returns “false” .

Theorem 2 .3 For any fixed d Z 2, a set S of n colored points in R“ can be stored in a data
structure of size OWN/21"") such that the i distinct colors of the points contained in a query
halfspace Q“ can be reported in time 0(logn + 51032 n). Here 6 > 0 is an arbitrarily small
constant.

Proof We argue that a color c is reported ifl’ there is a c-colored point in Q“ . Suppose
that e is reported. This implies that a leaf v is reached in the search such that v stores c
and the query on HSE(v) returns “false”. Thus, some point in S('v) is in Q“. Since 0 is a
leaf, all points in S(v) have the same color c and the claim follows.

For the converse, suppose that Q" contains a c—colored point p. Let 2) be the leaf storing
c. Thus, p E S (v') for every node v’ on the root-to—v path in CT. Thus, for each v’, the query
on HSE('v') will return “false”, which implies that v will be visited and c will be output.

CT uses 0(nl“/ 21'”) space per level and there are 0(log n) levels. Thus, the overall
space is OWN/21+"), for an arbitrarily-small constant e’ > 0. The query time can be upper-
bounded as follows: If i = 0, then the query on HSE (root) returns “true” and we abandon

11

the search at the root itself; in this case, the query time is just 0(log n). Suppose that z' 76 0.
Call a visited node v fruitful if the query on HSE(v) returns “false” and fruitless otherwise.
Each fruitful node can be charged to some color in its subtree that gets reported. Since the

' number of times any reported color can be charged is O(log n) (the height of CT) and since
z' colors are reported, the number of fruitful nodes is 0(2' log 17.). Since each fruitless node has
a fruitful parent and CT is a binary tree, it follows that there are only O(z' log n) fruitless
nodes. Hence the number of nodes visited by the search is 0(z' log n), which implies that the
total time spent at these nodes is O(i log2 n). The claimed query time follows. D

The second solution is based on cutting trees. Since the idea is similar to that for the
standard problem (see, for instance, [VK92]), we will just Sketch the idea. We dualize S to
a set 5’ of hyperplanes and Q to a point q all in Rd. Then we compute a cutting tree T for
S", based on a ;lrcutting, where r = n‘ for some arbitrarily small cOnstant e > 0. T will have
constant depth. For any node 1} € T, let H„ be the hyperplanes of 5" that are above the
simplex of the cutting associated with 22. We store with v a list of the distinct colors of the
hyperplanes in H.,. To answer a query we search along a path in T and at each visited node
we output the colors stored there. The space and query time can be shown to be O(nd+‘)
and 0(log n + i) , respectively (note that any color is reported only a constant number of

times).
This approach will not work for the counting problem since a. color can be reported more

than once. With a small modification, we can solve the counting problem in 0(nd) space
and 0(log n) query time. We compute for S" a cutting tree T’ based on a ä—cutting for some
constant r . Thus T’ has depth O(log n). For any leaf !, we consider the union of the sets
H„ for all nodes v on the root-to-l path in T’, determine the distinct colors in this union,
and store a count of these at 1 . To answer a counting query, we search down T to a leaf and
output its count. It is easy to see that the method is correct.

Theorem 2.4 For any fixed d 2 2, the generalized halfspace range reporting (resp. counting)

problem for n colored points in R4 can be solved in O(nd+‘) (resp. O(nd)) space and 0003 12+

i) (resp. 0(log n)) query time. Here e > 0 is an arbitrarily small constant. Ü

2.5 Extensions

We show briefly how to extend the approach of Section 2.1 to solve two other problems in
R”. In the first problem, we wish to preprocess a set .5' = {81,32‚. . . , s „} of colored line
segments in R2 so that for any query halfspace Q“ , the 2' distinct colors of the line segments
that lie completely in Q" can be reported or counted efficiently.

12

We dualize each 3,- to a doublewedge w.- = .7:(3,-). Our problem is now equivalent to:
“Count or report the distinct colors of the w,- that lie above the point f (Q).” Let A.- be the
lower envelope of w;; A.- consists of two rays emanating from a common point. Let r be the
upward—directed vertical ray emanating from .7:(Q) Clearly, w,- is above „7:(Q) iff r intersects
A,“. Let EC be the upper envelope of the Ag’s that have color c. EC consists of line segments
(some of which are rays) and it is well-known that [Eel = 0(nc), where nc is the number of
c-colored Ag’s (see [Ede87, page 377, Problem 15.6]). Moreover, for any color c, we have: (i)
r intersects a c-colored A; ifl" r intersects E., and (ii) if r intersects E.„ then it intersects a
unique line segment of EC. (Again, assume that r is well—behaved; otherwise, the discussion
of Section 2.3 for d = 2 will apply.) Let 8 be the set of upper envelopes of all colors. Our
problem now is: “Count or report the segments of € that are intersected by r,” which we
can solve as in Section 2.1 by storing 8 in a segment tree. We conclude directly:

Theorem 2.5 A set 3 of n colored line segments in R2 can be stored in a data structure of

size 0(n log n) so that the i distinct colors of the segments that are contained completely in

a query halfplane can be reported (resp. counted) in 0(log2n + i) (resp. O(n1/2)) time. El

In the second problem, we wish to preprocess a set S = {31,32, . . . , su} of n colored line
segments in R2 so that the distinct colors of the ones that are intersected by an upward-
directed vertical query ray 1‘ can be reported efficiently.

We stay in the primal space. Let .5'‘: be the set of c-colored segments of 3. We compute
the upper envelope E„ of Sc. If |Sc| = mc, then IECI = O(Ä3(mc)) = 0(mca(mc)), where
‚\3 (mc) is the maximum length of a Davenport—Schinzel sequence of order k = 3 on mc
symbols and a(—) is the slow-growing functional inverse of Ackermann’s function [Sha88].

As before, we have the proPerties that for any c (i) r intersects a. c-colored segment iff
it intersects Ec and (ii) if r intersects E„ then it intersects a unique segment of EC. We can
now solve the problem using a. segment tree as before.

Theorem 2.6 A set .5' of 12. colored line segments in R2 can be stored in a data struc-

ture of size 0(na(n) log n) so that the i distinct colors of the line segments that are inter—
sected by a vertical query ray can be reported (resp. counted) in time 0(log2n + i) (resp.
0((na(n))1’2))« Ü
Proof Since IECI = O(mca(mc)) and 26 m‘: = n, the total size of the envelopes of all
colors is 0(na(n)). From this the 0(na(n) log n) space bound follows. The query time for

13

the reporting problem is clear. For the counting problem, the query time at a node v is
0(IS(v)|1/2). Since |S(v)| = O(|T|/25) = 0(na(n)/2j) for a level j node v, the query time
when summed over all nodes v visited is 0((na(n))1/2). U

3 Generalized intersection searching on lines and line
segments

We consider several versions of the generalized intersection searching problem for a. set S of
n colored lines or line segments; the query is either _a line or a line segment. Specifically,
in Section 3.1 , we consider the case where S consists of colored lines and q is a vertical
line segment. Even this restricted problem turns out to be quite nontrivial and leads to an
interesting solution which exhibits a space-query time tradeofi'. Note that, by definition of
.? for ”R2, this problem is equivalent to searching on a set of colored points with a query
strip (i.e., the region of the plane that is enclosed by two parallel lines). In Section 3.2,
we consider the case where S consists of colored line segments and q is a line. Finally, in
Section 3.3, we consider the case where 5' consists of colored line segments and q is also a
line segment.

3.1 Querying colored lines with a vertical line segment

For simplicity, assume that the lines of S' are in general position, i.e., no three lines intersect
at a common point. This assumption can be removed easily. The following simple approach
is the starting point for our solution.

We construct the arrangement A of the lines in S and draw a vertical line through each of
the t = 001’) intersection points, thereby dividing the plane into t+ 1 strips VI, Vg, . . . , Vt.” ,
ordered from left to right. Within any strip VL, the lines are non-intersecting and so can
be totally ordered, say, from top to bottom, as [1,82, . . . , In. Denote this total order by Ek.
We store E„ in a balanced binary search tree Tk. We also store the sequence 1, 2, . . . , n of
colored integers, Where integer 3' gets the color of €„ in an instance D;: of the data structure
given in [GJSQSa] for generalized l-dimensional range reporting. Given a query interval [a, b] ,
D1c reports in O(log n + 5) time the z' distinct colors of the integers contained in [a, b]. The
structure uses O(n) space and, moreover, supports updates in 0(log n) time with 0(log 17.)
memory modifications per update. Finally, we store the :c-coordinates of the strip boundaries
in sorted order in an array A.

14

Let the endpoints of the query segment be (E:, yl) and (:E, yg), where y1 2 yz. We deter-
mine the strip V}c containing 5: by binary search on A. We then search in Th and find lines
B., and €;, such that Ea (resp. £5)'is the highest (resp. lowest) line in Ek that is on or below
(resp. on or above) (5,311) (resp. (ä,y2)). We then query Dk with the interval [a, b] and
output the colors reported. To see the correctness of the method note that the lines in E,;
are totally ordered and, moreover, they all cross Vk; thus the ones intersected by q have their
indices in [a, b]. Clearly, the total space is 0(n3) and the query time is 0(log n + 2).

We can reduce the space to 0(n2 log n), using persistence [DSST89], as follows: We
sweep over the strips from left to right. If V1, is the current strip, then we update Dk_1 in
a partially—persistent way to get Dh. This update involves interchanging in Dk_1 the colors

of the two integers corresponding to the two lines 1’ and [” that intersect on the boundary
between 14-1 and Vk. This can be done via two insertions and two deletions. Similarly, we

also update Tk_1 by interchanging l’ and I”; this gives Tk. The space used per update is
0(log n) for a D-structure and 0(1) for a T-structure [DSST89], which implies the claimed
space bound. Let D and T denote the D- and T-structures, respectively. Given q, we locate

Vk, then query the kth version of T to find [a, b], and then query the kth version of D with
this.

Lemma 3.1 A set S of n colored lines in R2 can be stored in a data structure of size

0(n2 log n) such that the z' distinct colors of the lines that are intersected by a vertical query

segment q can be reported in 0(logn + i) time. Ü

3.1.1 A space-query time tradeoff

Let „ be a tunable parameter in the range 0.5 < p < 1. We give a solution which uses
O(n2'5‘“ log n) space and has a query time of O(n“ + i). Our approach builds upon a
technique based on filtering search which was given in [AvK093] for a different (standard)
problem. (However, due to the generalized nature of the problem we consider, our approach
differs from the one in [AvK093] in some key respects—see Remark 3.2 later.) In a. nutshell,
our approach is as follows: We extract from the sequence 8 = (El, . . . , Et+1) a subsequence
8' = (E;‚..‚E‚'„) such that (i) E;- and E35“ differ by a swap and (ii) for each E,- € €
there is an E; € 8’ which approximates E.- in a sense that we will formalize later. Here
m = 0(n2'5‘"). We store E’ (rather than 8) in a partially-persistent structure and perform
queries on this.

15

Constructing 8’

We begin by defining a sequence of distinguished list positions (integers) called borders. The
borders are b; = (i — 1)[n“ +1_| + 1 for 1 5 i 5 B, where B = [n/ Ln” + 1]] = 902““) is
the number of borders. As we construct 8’ , for each E;- We will record in a variable 5,- the
index of the first list of 8 that E; approximates. Thus, for 1_ $ j 5 m, E;- approximates the
lists E; such that 5,- 5 i 5 (?,—+1 — 1.

We begin the construction by setting E; = E1 and 51 = 1. Assume that we have scanned
8 upto E.- and have constructed Ei, . . . ‚E;. Suppose that Ei“ is obtained from E,- by
swapping the bkth line a with either the (bk — 1)th line [3 or the (b,: + 1)th line 7 for some
border bk; we call this a border-swap or a big—swap. We then construct E;+1 by swapping, in
E}, the line a With the line ‚8 or the line 7 , as appropriate, set (S,-+1 = i + 1, and move on to
Ei“. (As we will see, this is a crucial change from [AvK093] where only a swap of the bkth
and (b;‘ + 1)th lines in E.- triggers the construction of E_;-+1.) Note that the swapped lines
need not be adj acent in E_;. If the transition from E.- to E‚-+1 does not involve a border-swap,
then we simply move on to Ei“. Once 8 has been scanned, we set 6m+1 = t+ 2 (recall that

t+ 1 = I8 I)
The following lemma establishes some key properties of 8’ .

Lemma 3.2 Suppose that 8’ = (E;‚...‚E‚'„) has been constructed as above from 5 =
(E1 , . . . ,Eg+1) . Then

(a) E;- and E;+1 difi'er by a swap, 1 $ j < m.

(b) For any j such that 1 Sj 5 m and any i,]c such that 6,- 5 i < k 5 6,-4.1 — 1, E.- and
E], agree at all borders. That is, for each border b; the 51th line in E,- and Ek is the

same. Thus, at any :r-coordinate within the super-strip V,- = V5,. U Vsj+1 U - . - U VS,-+14
the blth‚ bath, . . . , bBth lines are the same and hence they can be totally ordered within
V5.

(c) For any j such that 1 S j S m and any i such that 6,- _<_ i 5 (S,-+1 — 1, E;- and E,- agree
at all borders. Thus the border-lines of E; , i.e.‚ the lines at positions bl, . . . , b3 in E; ,
respect the total order of part (b).

(d) For any j such that 1 S j 5 m consider any i such that 63 S i S (i,-+1 — 1. Let b; and b1+1
be any two successive borders. Then E;- approximates E; in the following sense: The

(unordered) set of lines at positions (n+1, . . . , b1+1 in E; is the same as the (unordered)
set of lines in E.— at these same positions.

16

Proof

(a) Immediate from the way in which E;+1 is constructed from E}.

(b) By construction, the transition from E.- to EH1 does not involve swapping a border-line
(which is unlike [AvK093]). Thus E,- and E,.” agree at all borders. Similarly for

E5“, Eg+2 and so on up to Ek..1, Ek. The claim follows.

(c) By part (b), it suffices to show that E53. and E;- agree at all borders. We use induction
on j. The claim is true for j = 1 since we have E; = E1 = E51. For j > 1 assume that

E34 and Eis,-4 agree at all borders. By part (b), this implies that E34 and E5j_1 also

agree at all borders.

Suppose that the transition from E5j-1 to E51. involves the swap of the bkth and (say)

the (b;c —1)th lines of Eis,-1, for some border bk. Let these lines be a and ‚8 , respectively.

Since Esj—1 and Es, difi'er in only the positions bk and b„ — 1, it follows that E;-_1 and

E51.
0:. Now, in constructing E}, we swap a and ‚B in ELI. Thus, ;? ends up in position bk

in E;- and so E;- and E51. agree at all borders. (Note that because of the way we define

borders, successive borders differ by Ln” + 1] 2 2. Thus, bp, -— 1 is not a border. This
is not required, but it shortens the proof a little.)

agree at all border positions except bk—at bk Egj contains ß While E;-_1 contains

We note that properties (b) and (c) above, which are crucial for our solution, are not
guaranteed by [AvK093].

(d) The proof is similar to that ‚ i n [AvK093] and hence omitted. In [AvK093], only swaps

involving lines at positions 6;, and b], + 1 are considered. We need to also consider

swaps of lines at positions b„ and bk — 1, which can be done in the same way.

EI
The following lemma. provides an upper bound on the length of 8' .

Lemma 3.3 The sequence 8’ = (Ei, . . . ‚E:,J has length m . : 0(n2'5'“)‚ where 0.5 < p < 1
is a tunable parameter.

Proof We add a new list to &" whenever a bk-swap occurs for some bk, i.e., whenever

we encounter in the arrangement A a vertex U such that there are bk — 2 or bk — 1 lines

above 1) (depending on whether v is the intersection of the bkth line with the (b;c — 1)th
line or With the (6;: + 1)th line.) Thus, v is either a level-(b„ — 1) or a level-b;= vertex in A

17

[Ede87]. Let N (j , n) be the maximum number of level-j vertices in an arrangement of n lines
in the plane. The total number of bk-swaps that occur during the construction of 8’ is thus
0(N(t‘.uc -— 1, n) + N(b;„n)). Thus, m = IS'I = az)-E:, N(b‚y= — 1,17.) + N(bk,n)).

We have 2:l N(bk,n) = 253 N(b;„n) + Big/„1 N(n — b„ + 1,n), since, by sym-
metry, we have N (6km) = N (n — b„ + 1,n). From [Ede87] (Theorem 3.3 on page 49 and
Corollary 3.18 on page 60), it follows that N (bhn) = COM/E) for 1 _<_ bk 5 71/2. It
is easy to verify that for k 5 B/2, we have b„ S n/2 and for k 2 B/2 + 1, we have
b„ 2 11/2 + 1; the latter implies that n —- b„ + 1 3 72/2. It follows now that fifa N (bk, n) =
0(Zf=/.i um + SLR/2+1 "W)

Now, 2353 m/b_ = 0(n zig/} ,/(k — 1)nu) = own/2 Ems/2 fidz) = O(n2'5""). Like-
wise, Ef=3fl+1 um = 0(n2'5'”). Similarly, we can show that 25:1 N (bk — 1, n) =
0(n2'5'“). The lemma follows. Ü

The data. structure

The overall structure consists of four parts, as follows:

(1) An array A’: For j = 1 , . . . ,m — 1, A'[j] contains the :r—coordinate of the boundary
shared by the strips V5,+,_1 and VS,-+1-

(2) A structure T' : For 3' = 1, . . . , m, let T; be a red-black tree storing the border-lines of
E; according to the total order specified by Lemma 3.2(c). T’ is obtained by making
the Tj’s partially persistent using the technique given in [DSST89].

(3) A structure I”: For 3' = 1, . . . , m, let D;- be an instance of the generalized 1-dimensional
range reporting structure given in [GJ 593a]. D;- is built on a sequence I ,- = (1, 2, . . . , n)
of colored integers, where integer p gets the color of the pth line in E;- . The structure
D' is obtained by making the Dg’s partially persistent.

(4) A structure 1": Let I;- be a red-black tree storing the sequence I j. 1" is obtained by
making the I}’s partially persistent.

Remark 3.1 When constructing T ' , we do not make the red-black color fields of the difi'er-
ent Tj’s persistent since they are not needed for searching. These fields are required only in
the current T; to keep it balanced during updates. Similarly for 1" .

Lemma 3.4 The above 4-part data structure occupies 0(n2°5'“ log n) space.

10

Proof By Lemma. 3.3, m == 0(n2'5'"), Thus, A’ uses 0(n2'5"'“) space. From [DSST89],
each memory modification in an ephemeral structure (T; , D;- , or I ;) causes the corresponding
persistent structure to use an additional 0(1) amortized space.

By Lemma 3.2(a), successive E; differ by a swap. Thus, starting with T1' we need to
perform a total of O(m) updates to create 7’. Since any T; undergoes 0(1) memory mod-
ifications per update (excluding color flips) [CLR90], and since Ti has size 9(3) , the total
space used by T’ is 0(m + B) = 0(n2'5'").

A similar argument shows that l" also uses 0(n2'5““) space.
Finally, consider D’. As shown in [GJSQ3a], each D;- undergoes O(log n) memory mod-

ifications per update. Also, D; _ uses 0(n) space. It follows that the space used by D’ is
O(n + mlog n) = 0(n2'5‘" log n). El

'The query algorithm

Recall that the Vertical query segment has endpoints (53, gl) and (5, ya), where yl 2 yg. We
search with E in A’ and find a j such that (1 is in V,- = Va}. U V5,.“ U - -- U My:-+14. Next we
search in the jth version of T’ and identify the smallest (resp. greatest) border b, (resp. bg)
in E;- such that (E, yl) (resp. (£,y2)) is on or above (resp. on or below) the line at position
b„ (resp. bg). We then do the following:

(i) Query the jth version of D’ with the interval [b, + 1, by].

(ii) Search in the jth version of 1" for b„ scan the sequence of positions b„ b, — 1, . . . , b,..l +1
and report the distinct colors of the lines at these positions that are intersected by q.

(iii) If (£, ya) is below the bgth line of E}, then search in the jth version of 1" for bg“, scan
the sequence of positions 59 + 1, by + 2, . . . , by“ and report the distinct colors of the
lines at these positions that are intersected by q.

Lemma 3.5 The above query algorithm is correct and runs in O(n" + z) time, where i is
the output size.

Proof We first prove the correctness. Let Vk € V,- be the substrip containing q. By
Lemma 3.2(c), the borders 6, and bg returned by the search on E; are correct w.r.t. E„
also in the sense that the bath (resp. bgth) line of E„ is the highest (resp. lowest) line that
is on or below (resp. on or above) (55,3;1) (resp. (:E,y2)). Also, by Lemma 3.2(d), for any
borders to; and b1+1 the unordered set of lines at positions b; + 1, . . . , bz+1 is the same as the
unordered set of lines at these same positions in Eh. It follows now that the unordered set of

19

lines at positions b, + 1, . . . , b„ in E; is the same as the unordered set of lines at these same

positions in Eh. Thus it suffices to consider E; rather than Ek. Since q spans the positions
b, + 1 through by, the lines of E; that are intersected by it have their indices in the interval
[b, + 1, by] and so their distinct colors are reported correctly by the query on the j th version
of D'.

Again by Lemma 3.2(d), the unordered set of lines at positions b,-1 + 1, . . . , b, of E;- is
the same as the unordered set of lines at these same positions in E,. Thus the scan of these
lines in E; reports correctly the distinct colors of the lines intersected by the portion of q
which lies on or above the b,th line of E.;. Symmetrically for the portion of q which is below
the bgth line of E}. This establishes the correctness.

The query on A’ takes 0(log m) = 0(log n) time. The time to access and query the jth
version of T’ is 0(1) + 0(log B) = 0(log n). Similarly, the time to access and query the jth
version of D’ is 0(1) + 0(logn + i) . The time to access and query the jth version of 1" is
0(1) + 0(n“) since the gap between successive borders is 0(n"). Thus the total query time
is 0(n" + i). U '

From Lemmas 3.1, 3.4, and 3.5 we get our main result:

Theorem 3.1 A set S of n colored lines in R2 can be stored in a data structure of size

0(n2'5'“ log n) such that the i distinct colors of the lines that are intersected by a vertical

query line segment can be reported in O(n“ + i) time. Here ;; is a tunable parameter in the

range 0.5 < p < 1. The problem is also solvable in 0(n2 log n) space and O(logn + i) query

time. Ü

Remark 3.2 Our choice of borders is different from [AvK093]. In [AvK093], borders
are not spaced equally; instead, each border is between two and three times larger than
the preceding one and thus there are only 0(log n) borders. These borders have the nice
property that for any E,- the first n' elements of E,- are Within the first 3n’ elements of

the corresponding E}. This choice of borders works well in [AVK093] because the problem
considered there is a. standard intersection searching problem (on curves) which essentially
boils down to listing the elements intersected by a downward-directed ray. Thus, because
of the above-mentioned property, the time taken to scan between the b,th and the b,-lth

elements is of the same order as the number of elements below the b_,th element—all of which

are intersected since the query is a ray. Thus, in true filtering search fashion, the time for
the scanning can be charged to the output size.

20

Unfortunately, this does not work in our case because (i) the query is a. finite line segment
and (ii) we are solving a generalized problem. Choosing borders as in [AvK093] would result
in a linear query time in the worst case.

3.2 Querying colored line segments with a line

Using }" we map the colored line segments of S to a set S’ of colored doublewedges and map
the query line q to a point q’. Thus, our problem reduces to reporting the z' distinct colors
of the doublewedges that are stabbed by q’. As we will see in Section 4, this problem can be
solved in 0(n3/2 log n) space With a query time of 0(log2 n + z').

In the remainder of this section, we consider the special case where the segments of 3 all
lie in the unit square u and each segment has length at least A, where A > 0 is a constant.
These assumptions are reasonable for practical applications and they allow a very efficient
solution.

We first give a solution for the case where all the segments intersect the y-axis Y. (For
this problem, 5' need not satisfy the above-mentioned assumptions.) For now assume that
each segment 5 € 5 truly intersects Y rather than merely touching it or being contained in
it. (We discuss these special cases later.) Thus, one endpoint of 3 has negative :c-coordinate
and the other has positive m-coordinate. By the definition of }" in R2, this implies that in
the corresponding dual doublewedge one of the bounding lines has positive slope and the
other has negative slope.

We split each doublewedge into a left-facing wedge (or left-wedge for short) and a right—
facing wedge (or right-wedge) in the obvious way. Note that each wedge is y-monotone. Let
us consider how to store the right-wedges. (The left-wedges can be handled symmetrically.)
Because of y-monotonicity, the query point q’ is contained in a right-wedge w iff the horizon-
tal, leftward-directed ray r emanating from q’ intersects the boundary of w. This suggests
the following approach: For each color c, we compute the left-envelope of the boundaries of
all c-colored right wedges, i.e., the portions of the boundaries visible from (--00, 0). This left-
envelope is a y—monotone chain of line segments; we give each segment the color c. If there
are nc c—colored right wedges, then the c—colored left-envelope has size 0(nc) (see [Ede87,
page 357, Problem 15.6]).

In this way, we obtain a collection S” of colored line segments in the plane. Note that (i)
r intersects the boundary of a c-colored right—wedge ifl' r intersects a c—colored left-envelope
and (ii) if r intersects a c—colored left-envelope then it intersects a unique line segment of this
envelope. Thus we have transformed our generalized problem into a standard one and we
can solve the latter by storing S" in a segment tree as in Section 2.1. We conclude directly:

21

Lemma 3.6 A set S of n colored line segments in the plane, where all the segments intersect

the y-azis Y, can be stored in a data structure of size 0(n log n) such that the i distinct colors

of the segments that are intersected by a query line can be reported in time O(log2 n + i) . Ü

We now discuss the two special cases mentioned before. If a segment 5 € S merely

touches Y, then in the dual doublewedge one of the bounding lines is parallel to the z-axis.
Consider the right-wedge w of this doublewedge. The claim that q’ is in w iff r intersects
the boundary of to is still true. Moreover, when we compute the left-envelope, properties (i)
and (ii) above still hold. Thus the given algorithm applies unchanged.

We can handle segments that are completely contained in Y as follows. Let 5' be the set
of such segments (intervals on Y) and let p be the point where the query line q intersects
Y. Clearly, q intersects a segment of $" ifl' p is contained in the corresponding interval on Y.
Thus our problem reduces to a generalized 1-dimensional point enclosure searching problem.
This problem has been solved in [JL93] in O(n) space and 0(log n + i) query time. Thus the
bounds of Lemma 3.6 are unaffected.

What if the segments of S do not all intersect Y? Suppose that there is a constant K
such that each segment intersects one of K fixed lines Y1, . . . , YK. We extend the above
approach as follows:

Let S.— _C_ 5 be the set of segments intersecting Yg, 1 _<_ i S K. If a segment intersects
more than one Y}, we put it in any one of the Sg’s; thus the 533 partition S . For 1 _<_ i S K,

we create a coordinate system Cg, where Y.- is the y-axis and any line perpendicular to Y;-
is taken as the w-axis. We give the segments of S,- coordinates in C.- and store them in an

instance of the data structure of Lemma 3.6. To answer a query, we query each of the K
structures separately. Since K is a constant, each intersected color is reported only 0 (1)
times and so the query time remains 0(log2 n + i) . Similarly, the space remains 0(n log n).

We are now ready to solve the problem where .S' consists of colored line segments each of
length at least A and all lying in Ll. Wlog assume that the origin is at the bottom-left corner
of bl (otherwise re-position the origin). Consider the K = 2 + 2|'\/2/X| lines x = i - A/\/2
and y = i - /\/\/2‚ where 0 S i _<_ [Vi/XI. Since each segment has length at least /\, either
its :c-span or its y-span is at least A/x/2. Thus each segment intersects one of the K lines.
We now use the structure discussed earlier. We conclude:

Theorem 3.2 Let A > 0 be a constant and let u be the unit square. A set S of n colored

line segments in R2, where each segment has length at least A and all segments lie in U , can

be stored in a structure of size 0(n log n) such that the i distinct colors of the segments that

22

are intersected by a query line q can be reported in time 0(log2 n + i) . C1

3.3 Querying colored line segments with a line segment

3.3.1 Vertical query line segments

Our approach is similar to the one described at the beginning of Section 3.1. However, there
is a subtle problem that must be overcome now since we are dealing with line segments

rather than lines.
We draw vertical lines through the endpoints and the intersection points of the segments

of S and obtain 0(n + x) vertical strips, where x, 0 S x S (’2'), is the number of pairwise

intersections. Within any strip, the segments that cross it can be totally ordered. We sweep

over the strips starting at the leftmost non-empty strip. Let .51, 52, . . . , sm be the segments

that cross this strip, sorted from bottom to top. Note that not all segments of S are present

in .91 , .92, . . . , sm, which is unlike the case for lines—this is where the problem alluded to above

arises. For 1 S i S m, we give .9,- a label l(s‚-) = z' and give this label the color of sg. We store

the segments 31, . . . , sm in this order in a partially persistent red-black tree T3. (Again as in

Remark 3.1, we do not make the red—black color information persistent.) With each segment,
we store its label. We also store the colored labels I(s,-), 1 S i $ m, in a partially persistent

version T, of the data structure of [GJSQSa] for the generalized l-dimensional range reporting

problem.
Suppose we sweep from the ith to the (z + 1)th strip. There are three possible cases:

Case 1: We encounter the left endpoint of segment 3. In the current version of Ts, we locate

the segment s . Let t and u be the segments that are immediately below and above s in the
(i + 1)th strip, respectively. Then we insert .9 into the current version of TS and store with

it the label I(s) = (l(t) + l(u))/2. (I f t does not exist, then l(s) = 1(a) — 1. If u does not
exist, then 1(3) = l(t) + 1.) Moreover, we give the label 1(3) the same color as 3 and insert
this colored number into the current version of the structure T,.

Case 2 : We encounter the right endpoint of segment 5. We delete s from the current version
of Ts and delete the colored label l(s) from the current version of T1.
Case 3: We encounter the intersection point of the segments 3 and t . In the current version

of T3, we interchange the order of 3 and t and also interchange their labels. In the current
version of T; we interchange the colors of s and t . (Each interchange operation can be
simulated by two deletions and two insertions.)

It follows from the given algorithm that the labels of the segments that cross any strip

increase if we visit these segments from bottom to top Within the strip.

23

Now let (1 be a vertical query segment. We locate the strip containing q and then search
in the version of Ts corresponding to this strip for the lowest and highest segments 3 and
t that intersect q. Finally, we search in the version of T; corresponding to this strip for the
distinct colors of all labels that are contained in the interval [1(3), l(t)].

It is easy to see that the query algorithm is correct. The ephemeral versions of T5 (resp.
T:) have size O(n), a query time of 0(log n) (resp. 0(logn + i)) and undergo 0(1) (resp.
0(log n)) memory modifications per update. Moreover, both structures are of bounded in-
degree. Therefore, since we perform 0(n + x) updates to build our data structure, the final
structure has size 0((n + x) log n). A query takes O(log n + i) time.

Unfortunately, this method has a major drawback. Because of the way we label the
segments we may end up getting labels consisting of @(n) bits. To overcome this, we use
a labeling scheme due to Dietz and Sleator [DSS7]. Using their approach we take integer
labels in the range [0..O(n2)], i.e., labels consisting of only O(log n) bits. Consider Case 1
again. We need to give segment s a label that lies in between ! (t) and l(u). Using the scheme
of [DS87], this may result in the relabeling of other segments. Dietz and Sleator show how
to choose the labels such that only 0(1) amortized relabelings are necessary per update. (In
fact, they even give an 0(1) worst—case scheme. For our application, an amortized number
of relabelings is good enough.)

If we relabel segment 3 from l(s) to l’(s), then we just delete the colored number [(s)
from T; and insert the number l’(s), having the same color as l(s), into it. '

It follows that the total number of updates in TS and T; to build the complete data
structure is still O(n + x). As a result, the structure still has size 0((n + x) log n) and a
query time of O(log n + i).

Theorem 3.3 A set S of n colored line segments in the plane can be preprocessed into a data
structure of size 0((n + x) log n) such that the i distinct colors of the segments intersected
by a vertical query line segment q can be reported in 0 (logn+i) time. Here x , 0 S x S (’2’) ,
is the number of pairwise intersections among the segments in. 5'.

3.3.2 Arbitrary query line segments

If q is non-vertical, then we use a different approach which yields the same space bound
as Theorem 3.3 but has a slightly higher query time. In preprocessing, we break up the
segments at their x intersection points to obtain a. set of 0(n + x) segments that are non-
intersecting (but possibly touching). For convenience, we continue to call the resulting set
S .

24

We store the :c—projections of the segments of S in a segment tree T. For any v € T ,
define I (v) and Strip(v) as in Section 2.1. Let S (v) be the segments of S' allocated to 22.
Since the segments of 5(2)) are non-intersecting, within Strip(v) they can be totally ordered,
say, from bottom to top, as 51,32, . . . ‚sm, where m = |S(v)| = 0(n + x). We store S(v)
according to this total order in a balanced search tree B (v)

Let us first consider how to answer queries with a segment l = 55 such that a is below b
and a , b € Strip(v) for some node v. Let s., (resp. sw) be the lowest (resp. highest) segment
of S (v) that is above (resp. below) a (resp. b). Then, since the segments of S (0) all cross
Strip(v), the ones that are intersected by l are precisely s„, s...”, . . . , sw. Thus to report the
distinct colors of the segments of 5(1)) that are intersected by l , we merely need to solve
the generalized l—dimensional range reporting problem for a sequence 1, 2, . . . , m of colored
integers, where integer p gets the color of sp, using the query interval [u, w]. Thus we can
answer the query for I in .S'(v) in 0(m) space and 0(logm + i) query time. At 1), we store
an auxiliary structure to answer this query.

Now suppose that we are given any query segment q and Wish to report the i distinct

colors of the segments of S intersected by q. We can determine in 0(log n) time a set V
of 0(log n) nodes in T such that UvEV 5(2)) includes all the segments of S that q intersects
and, moreover, for each v € V one of the following is true: (i) q is contained completely
in Strip(v), (ii) q is contained partially in Strip(v), or (iii) q crosses Strip(v). (The set V
can be found as follows: Let q’ = [I',r'] be the :c-projection of q. We locate the leaf vl
(resp. vg) of T such that l’ € Strip(v1) (resp. r’ € Strip(v2)). We clip from q’ the parts
(if any) that partially overlap Strip(vl) and Strip(v2). Let q” be the part of q' that is left.
We mimic the insertion algorithm for segment trees and determine the set V’ of nodes to
which q” gets allocated. The set V is V’ U {111,02}. Its size is 0(log n) since T has height
0(log(n + x)) = 0(log n).) For any v € V we let I., be the subsegment of q that is contained
in Strip(v). Since the endpoints of l., are contained in Strip('v), l„ behaves like the segment
! above and so we query the auxiliary structure stored at v with I.,.

Theorem 3.4 A set S of 17. colored line segments in R2 can be preprocessed into a data
structure of size 0((n + x) log 72.) so that the i distinct colors of the segments that are inter-
sected by a query segment q can be reported in 0(log2 n +i log n) time. Here x, 0 S x S (3)
is the number of pairwise intersections between segments in S' .

Proof At any v € V, the query time is 0(log |S(v)| + i) = 0(logn + i), since |.S'(v)| =
0(n + x) . This implies the claimed bound for the query time. Each segment of S can get
stored in 0(log n) nodes of T. Since the supporting structures at each node v of T (i.e., B(v)

25

and the structure for generalized l—dimensional range searching) have size linear in |.5'(v)| ,

it follows that the total space is 0((n + x) log n). Cl

4 Generalized triangle stabbing

In this section we consider the following problem: “Preprocess a set S of n colored triangles

in R2, so that the i distinct colors of the triangles stabbed by any query point q can be

reported efiiciently.”
We first divide each triangle t € S that does not have a horizontal side into two such

triangles by drawing a horizontal line through its second highest vertex. We then group the

vertices of the triangles, from left to right, into ®(n1/2) vertical strips each of size 0(n1/2)
(except possibly for the last strip, which may contain fewer vertioes).

Let V- be any strip. The triangles that intersect V- form two disjoint subsets T and Ti’,

where T,- (resp. T,!) consists of triangles having no (resp. at least one) vertex inside V}. We

further subdivide V.- into vertical strips by taking each triangle in T,! and drawing a vertical

line through each of its vertices that lies in V;. Let “f,-‚- be any such substrip within VE and

let Ti,- consist of the triangles of T,’ that cross Wi,-. Note that, by construction, no triangle

of n can have a vertex inside l/n. (This partitioning technique is reminiscent of a method

used in [OY88] for computing the measure of the union of iso-oriented boxes in ’R“.)
Given the query point q, suppose that q € V; and q € “’,-5. Then we need to only report

the distinct colors of the triangles of T,- and of T‚-_,- that are stabbed by q. We discuss how to

do this for V;- and T‚-. (The discussion for M,- and . n is similar.)

Let t € T.- be any triangle. Let h(t) be t’s horizontal side and let s(t) be the slanted side of
t which crosses Vi. Let p(t) be the vertex shared by h(t) and s(t) and let Mt) and .'s'(t) be the

rays that emanate from p(t) and contain h(t) and s(t), respectively. Let w(t) be the wedge

defined by Mt) and §(t). T.- can be partitioned into two sets L,- and R., where L,- (resp. Ri)

consists of triangles t such that p(t) is on or to the left of (resp. on or to the right of) the left
(resp. right) boundary of Vi. Let lq (resp. rq) be the horizontal leftward (resp. rightward)

ray emanating from q. It is easy to see that q stabs t € L.- (resp. t € Ri) iff lg (resp. rq)
intersects w(t). Thus, we need to report the distinct colors of the wedges w(t), t € L', that
are intersected by 19 and symmetrically for R,- and rq. Each of these problems can be solved

by computing left— and right-envelopes and using a segment tree, as in Section 3.2.

Theorem 4.1 A set S of n colored triangles in R2 can be stored in a data structure of size

0(n3/2 log n) such that the i distinct colors of the triangles that are stabbed by a query point

q can be reported in O(log2 n + i) time.

26

Proof The correctness of the method is clear. We now consider the space bound. We have
IT,—| = 0(n) for all i. Thus, [L,—| and lH,-| are each 0(n). It now follows that the segment-
tree-based data structure for L.- and R,- (hence for T,) uses 0(n log 77.) space. Thus the space
for all the T.- is 0(n3/2 log n). Consider the structure for n . We have IT,! | = ®(n1/2), since
each V.- has size 007.1”). Thus, IT,-j] = 0(lT,-'|) = 0(n1/2) and so the structure for |Tij|
uses O(n1/2 log n) space. There are (')(n1/2) strips within each W}, (since IV.-| = Owl/2))
and a total of ®(n) such strips taken over all Vg. Thus the total space for all the TÜ’s is
0(n3/2 log 17).

The query algorithm consists of four ray—envelope intersection queries, each of which
takes O(log2 n + i) time. El

Using Theorem 4.1 we can now solve the following problem, which was mentioned at
the beginning of Section 3.2: “Preprocess a set 5 of n colored line segments in R2 so that
the i distinct colors of the segments that are intersected by a query line q can be reported
efficiently.”

Using .? we dualize each segment 3 E 3 to a doublewedge and then break each dou-
blewedge into two wedges (i.e., infinite triangles) in the obvious way. Our problem is now
equivalent to reporting the distinct colors of the wedges that are stabbed by .? (q)

We enclose the wedges in a sufficiently large box B such that there are no intersections of
wedges outside B. (For example, the box defined by the leftmost, rightmost, topmost, and
bottommost intersections will do.) Inside B we have 2n finite triangles, which we process as
in Theorem 4.1. Also, if we delete the parts of the wedges lying inside B, then B and the
parts of the wedges lying outside B define a planar subdivision 'P. We preprocess 'P for fast
planar point location [ST86]. Note that each face of ? that is outside B is either covered
by no wedge or is covered by exactly one wedge, since there are no intersections outside B.
With each face of the latter type we associate the color of the corresponding wedge.

Given q, we determine if ‚7:(q) is inside or outside B. If inside, then we apply Theorem 4.1;
if outside, then we locate the face of ’P that contains q and read off the color (if any) associated
with it.

Corollary 4.1 A set 5' of n colored line segments in R2 can be stored in a data structure of
size 0(n3/2 log n) such that the i distinctly-colored segments that are intersected by a query
line can be reported in time O(log2 n + i).

Proof Correctness is clear. ’P has size 0(n) and so the point location structure uses 0(n)
space and answers queries in O(log n) time. This, together with Theorem 4.1, implies the
claimed bounds. Ü

27

4.1 Generalized stabbing queries on fat-wedges

Let 7 > 0 be a constant. A wedge is a fat-wedge if the angle between its bounding lines is at
least 7. We show how to preprocess a set S of n colored fat-wedges so that point-stabbing
queries can be answered efl'iciently.

In preprocessing, we select t = [21r /7] coordinate systems C.- = ($5315), where all the C.-
share the same origin and 054.1 is offset from C.- by an angl‘e 7 , 0 5 i S t -— 1 (indices are
taken modulo t) . Each fat-wedge w € S is yg-monotone for at least one i . Specifically, if the
bounding rays r' and r” of w make angles a’ and a" with the positive mo-axis (our frame of
reference is Co), where a” < a’ and a’ - a” 2 7, then w is yi-monotone for i = [d’/7] .

Let S.- be the fat-wedges of S that are yg-monotone. If a fat—wedge is yi-monotone for
more than one i , then we put it in only one of the 5;; thus the 55’s partition 5'. Suppose that
w E S,- is a right-wedge. A query point q is contained in w ifi' the ray r which emanates from
q in the negative xg-direction intersects w’s boundary. Symmetrically if w is a left-wedge.
For each ‚SL-, we build two instances of the data structure of Section 3.2 for y-monotone

wedges, with y = y‚-, one for the right-wedges of S.- and the other for the left-wedges of 55.

Given a query point q, we simply query the 2t data structures and output the distinct colors
returned.

Theorem 4.2 Let 7 > 0 be a constant. A set 5 of n colored wedges, where the angle

between the bounding lines of each wedge is at least 7, can be stored in a data structure of

size O(n log n) such that the i distinct colors of the wedges that are stabbed by a query point

can be reported in O(log2n + i) time. El

5 Generalized triangle range searching

We wish to preprocess a set S of n colored points in ”R2 so that given any query triangle
q, the i distinct colors of the points lying inside q can be reported eficiently. With minor
modifications, the reporting structure of Theorem 2.4, for d = 2, can be used to solve our

problem in 0(n2+‘) space and O(log n+ i) query time. We leave open the question of whether
a near-linear—space solution with good output-sensitive query time exists. In the rest of this
section, we show how to solve the problem efficiently for fat-triangles. A fat-triangle is a
triangle in which each internal angle is at least 7 for some positive constant 7.

We begin with a solution for a query fat-wedge q, i.e., a wedge where the angle between
the bounding lines is at least 7. Let 1), be the vertex of q. For now assume that q is

28

y-monotone, i.e., any horizontal line intersects q exactly once. (Later we will remove this
assumption.) We store the points of S at the leaves of a balanced binary search tree T
by non-decreasing y-coordinates from left to right. We augment each node v of T with an
instance HP(v) of the structure of Theorem 2.1 for generalized halfplane range reporting;
HP(v) is built on the points in v’s descendant leaves.

Given q, we divide it into two wedges qa and qb, each with a horizontal side, by drawing a
horizontal line L through vg. This is always possible because q is y—monotone. Here qa (resp.
qb) lies above (resp. below) L. Let ra (resp. rb) be the ray of qa (resp. qb) that also belongs
to q and let la (resp. 15) be the line supporting ra (resp. rb). (See Figure 1.) We search in
T using the y-coordinate of vg and determine sets Va and Vb of nodes, where Va (resp. Vb)
consists of the nodes of T that are right (resp. left) children of nodes on the search path but
are not themselves on the search path. We query HP(v) at each v € V., (resp. v € V5) with
the halfplane I; (resp. If).

‘u
' \

\

Figure 1: Range searching With a fat-wedge

Lemma 5.1 A set S of n colored points in R2 can be stored in a data structure of size
0(n log2 n) such that the i distinct colors of the points that are contained in a query fat-
wedge q that is y-monotone can be reported in time 0(log3 n + ilog n) .

Proof For each v € VL, the points in the descendant leaves of 1) are all above L. Moreover,
each point of S that is above L is stored in a leaf of the subtree of exactly one node v € V.,.

29

Of these points, the ones in q.m (hence in q) are those lying in 1;. By Theorem 2.1, the query
on HP(v) with I; returns the colors of these points. Symmetrically for qb.

Each level of T uses O(n log n) space by Theorem 2.1 and so the total space is 0(n log2 n).
The query time at each node visited is O(log2 n + i), from which the claimed time bound
follows. Ü _

What if q is not y-monotone? In preprocessing, we select t = [271' /fl coordinate systems
C.- ;: (x,-yg), where all the C; share the same origin and (f,—+1 is Offset from C.- by an angle 7 ,
0 _<_ t S t — 1. Within each C; we build an instance of the data structure of Lemma 5.1 for

yg-monotone fat-wedges. Given a. query fat-wedge q, we locate a C; such that q is yg-monotone
and then query the associated structure.

Lemma 5.2 Let 7 > 0 be a constant. A set S of n colored points in R2 can be stored

in a data structure of size O(n log2 n) such that the i distinct colors of the points that are

contained in a query wedge q whose internal angle is at least 7 can be reported in time

0(log3 n + ilog n). El

We are now ready to describe the algorithm for a query fat-triangle. We store the points
by non-decreasing :c-coordinates from left to right in a balanced search tree T’ and augment
each node 0 with an instance F W('v) of the structure of Lemma 5.2 for fat—wedges. FW(v)
is built on the points in v’s descendant leaves.

Given q, we divide it into at most two triangles q; and q„ each with a vertical side 5, With
q; to the left of 3 and q,. to the right. We search in T’ with the :r-coordinate of 3 and identify

sets V; and V,. of nodes that lie to the left and to the right of the search path, respectively.
For each node 1) € V; (resp. v e V,), we query FW(v) with the wedge supporting q; (resp.
q,), which is a fat-wedge. We conclude directly:

Theorem 5.1 Let 7 > 0 be a constant. A set S of 12. colored points in 722 can be stored

in a data structure of size O(n log3 n) such that the i distinct colors of the points that are

contained in a query triangle q each of whose internal angles is at least 7 can be reported in

time 0(log4 n + ilog2 n). U

6 Conclusions and further work

We have presented eficient solutions to several generalized intersection searching problems
involving non-iso-oriented objects. Our methods have included sparse representations, per—

30

sistence, and filtering search.
Besides improving upon our bounds, three problems are of particular interest: (i) ob-

taining dynamic data structures for the generalized problems considered here, (ii) obtaining
linear—space or near—linear space solutions with output-sensitive query times (of the form
0(n” + i) or 0(nP + i - polylog(n)), 0 < p < 1) for the generalized halfspace range searching
problem in d 2 4 dimensions and for the generalized simplex range searching problem in
d Z 2 dimensions, and (iii) solving the counting versions of Problems 3-7 in Table 1.

References

[AHL90]

[AvK93]

A. Aggarwal, M. Hansen, and T . Leighton. Solving query-retrieval problems by
compacting Voronoi diagrams. In Proceedings of the 18th Annual ACM Sympo-
sium on Theory of Computing, pages 331-340, 1990.

P.K. Agarwal and M. van Kreveld. Connected component and simple polygon
intersection searching. In Proceedings of the 1.9.93 Workshop on Algorithms and
Data Structures, pages 36—47, August 1993.

[AvKO93] P.K. Agarwal, M. van Kreveld, and M. Overmars. Intersection queries for curved

[CGL85]

[Cha86]

[c.1901

[CJ92]

[CLR90]

[cwsg]

[DE87]

[DS87]

objects. Journal of Algorithms, 15:229—266, 1993.

B.M. Chazelle, L.J . Guibas, and D.T. Lee. The power of geometric duality. BIT,
25:76—90, 1985.

B.M. Chazelle. Filtering search: a new approach to query—answering. SIAM
Journal on Computing, 15:703-724, 1986.

S.W. Cheng and R. Janardan. Efficient dynamic algorithms for some geometric
intersection problems. Information Processing Letters, 36:251—258, 1990.

S.W. Cheng and R. J anardan. Algorithms for ray-shooting and intersection
searching. Journal of Algorithms, 13:670-692, 1992.

TH. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press and McGraW—Hill, 1990.

B. Chazelle and E. Welzl. Quasi-optimal range searching in Spaces of finite VC—
dimension. Discrete and Computational Geometry, 4:467—489, 1989.

D.P. Dobkin and H. Edelsbrunner. Space searching for intersecting objects. Jour-
nal of Algorithms, 8:348—361, 1987.

RF. Dietz and D.D. Sleator. Two algorithms for maintaining order in a list. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages
365—372, 1987.

31

[DSST89] J .R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data. structures

[Ede87]

[GJS93a]

[GJ393b]

[JL93]

[Mat91a]

[Mat91b]

[Mat92a]

[Mat92b]

[Mu193]

[OY88]

[Sha88]

[ST86]

[vK92]

persistent. Journal of Computer and System Sciences, 38:86—124, 1989.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer—Verlag, 1987.

P. Gupta, R. J anardan, and M. Smid. Further results on generalized intersection
searching problems: counting, reporting, and dynamization. In Proceedings of
the 1993 Workshop on Algorithms and Data Structures, pages 361—372, August
1993.

P. Gupta, R. Janardan, and M. Smid. On intersection searching problems in-
volving curved objects. Technical Report TR—93—42, Dept. of Computer Science,
University of Minnesota, 1993. Submitted.

R. J anardan and M. Lopez. Generalized intersection searching problems. Inter-
national Journal of Computational Geometry @ Applications, 3:39—69, 1993.

J. Matousek. Cutting hyperplane arrangements. Discrete &? Computational Ge-
ometry, 6:385—406, 1991.

J . Matouéek. Reporting points in halfspaces. In Proceedings of the 32nd Annual
IEEE Symposium on Foundations of Computer Science, pages 207-215, 1991.

J . Matouäek. Efficient partition trees. Discrete €! Computational Geometry,
8:315—334, 1992.

J . Matousek. Range searching With efficient hierarchical cuttings. In Proceedings
of the 8th Annual ACM Symposium on Computational Geometry, pages 276-285,
1992.

K, Mulmuley. Computational Geometry: An introduction through randomized
algorithms. Prentice—Hall, 1993.

M.H. Overmars and C.K. Yap. New upper bounds in Klee’s measure problem. In
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, pages 550—556, 1988.

M. Sharir. Davenport-schinzel sequences and their geometric applications. In
R. A. Earnshaw, editor, Theoretical Foundations of Computer Graphics and CAD,
pages 253—278. Springer Verlag, 1988.

N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669—679, 1986.

M. van Kreveld. New results on data structures in computational geometry. PhD
thesis, Department of Computer Science, University of Utrecht, Utrecht, the
Netherlands, 1992.

32

