IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Measuring and engineering entropy and spin squeezing in weakly linked Bose-Einstein

condensates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2013 New J. Phys. 15 063035
(http://iopscience.iop.org/1367-2630/15/6/063035)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.183.90.175
The article was downloaded on 20/08/2013 at 15:23

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/6
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

New Journal of Physics

The open access journal for physics

Measuring and engineering entropy and spin
squeezing in weakly linked Bose—Einstein
condensates

F Cattani', C Gross?, M K Oberthaler’ and J Ruostekoski'

!'School of Mathematics, University of Southampton, Southampton SO17 1BJ,
UK

2 Max-Planck-Institut fiir Quantenoptik, D-85748 Garching, Germany

3 Kirchoff-Institut fiir Physik, Universitit Heidelberg, Im Neunheimer Feld 227,
D-69120 Heidelberg, Germany

E-mail: f.cattani @soton.ac.uk, christian.gross @mpq.mpg.de,

markas.oberthaler @kip.uni-heidelberg.de and janne @soton.ac.uk

New Journal of Physics 15 (2013) 063035 (14pp)
Received 13 February 2013

Published 26 June 2013

Online at http://www.njp.org/
doi:10.1088/1367-2630/15/6/063035

Abstract. We propose a method to infer the single-particle entropy of bosonic
atoms in an optical lattice and to study the local evolution of entropy, spin
squeezing and entropic inequalities for entanglement detection in such systems.
This method is based on experimentally feasible measurements of non-nearest-
neighbour coherences. We study a specific example of dynamically controlling
atom tunnelling between selected sites and show that this could potentially also
improve the metrologically relevant spin squeezing.
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The quest for novel cooling schemes to control the entropy of ultracold atoms in optical
lattices is attracting considerable interest because thermal and quantum fluctuations limit
the use of these systems for quantum simulation or quantum metrology. For example, the
experimental observation of magnetic ordering, a milestone for the quantum simulation of
spin systems, is hindered by finite entropy in the system [1-4]. In metrology, finite entropy
limits the amount of achievable spin squeezing, a useful resource for quantum-enhanced high
precision measurements [5-9]. Not only controlling the entropy is challenging; it is also
difficult to measure on a microscopic level. Only in the low atomic filling regime of the Mott-
insulating phase a mapping of observable on-site atom number fluctuations to single-particle
entropy has been achieved [10], stimulating interest in entanglement detection by entropy
measurements [11, 12]. Recent experiments show that individual atoms can now be manipulated
on a single-spin level at individual lattice sites [13] and, in principle, the entropy can be locally
engineered in order to effectively cool the system [14].

We propose techniques for accurate local detection and control of a single-particle entropy
of a bosonic atomic gas in an optical lattice in the large filling regime, opening up novel avenues
for estimating entropy-based quantities and engineering entropy. In the case of non-negligible
tunnelling of atoms between adjacent sites, access to the inter-site coherence is crucial for the
determination of the entropy. An essential ingredient of our proposed entropy measurement is
a technique for a spatially resolved measurement of long-range coherence of the lattice system
based on a matter-wave homodyne measurement with respect to a reference condensate. Using
this method we theoretically show how the entropy and entropic inequalities of entanglement
detection can be accurately estimated in experimentally realistic cases [9, 15] by the atom
number in individual sites and the relative phase coherence between the atoms in different sites.
The proposed coherence measurement may also lead to improved detection of spin squeezing
of atoms between different sites, with potential applications to high-precision measurements.
It also allows the detection of spin squeezing between non-nearest-neighbour sites and other
spatially separated regions. Moreover, we study a specific example of controlling entropy by
locally tailoring the trapping potential. We show how the coupling between the high-entropy
regions and the rest of the system is adjusted by suddenly applying laser barriers between the
central and outermost sites, altering the entropy distribution and affecting spin squeezing in the
system. An illustration of the proposed scheme is shown in figure 1 together with the variation
of the entropy and the on-site atom number fluctuations in the initial state: the barriers suppress
the interactions between the atoms in the central sites and the outer-well atoms that exhibit
stronger thermal and quantum fluctuations. We present example simulations in which injecting
the laser barriers leads to reduced spin fluctuations and improved spin squeezing. We also find
spin squeezing between atoms occupying spatially distant sites.

We consider Bose-condensed atoms confined in an elongated trap in which we neglect
density fluctuations in the radial direction. In the axial direction the atoms experience a
combined harmonic and optical lattice potential of a few sites, forming an array of weakly
linked Bose—FEinstein condensates (BECs). As the lattice height is increased the atom number
fluctuations in each site are reduced and the system can exhibit metrologically relevant spin
squeezing between the atoms in adjacent sites [9]. Each lattice site occupies a multi-mode BEC
and the atom number statistics in such a system is influenced by interactions between several
modes in each site [15] (in the simulations we calculate the fluctuations by including nine
vibrational modes in each site). By numerically solving for the amplitudes of the wavefunctions
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Figure 1. (a) A schematic illustration of the relative phase measurement scheme.
(b) Entropy engineering in the optical lattice where the tunnelling of the atoms
from the outermost sites to the rest of the system is suppressed, e.g. by applying
symmetrically positioned, tightly focused, blue-detuned laser beams. We show
the combined lattice potential and the optical barriers (black solid and dashed
lines), the initial atom density before the sites are decoupled (solid grey line), the
single-particle entropy S, /(n,) per atom in site & (green dashed line with stars),
and the normalized on-site atom number fluctuations (Ang)* /{ng) (red solid line
with circles) in the initial state for each lattice site. The initial temperature in the
numerics is 4 nK.

lpsj), determined by the lattice sites o and vibrational levels j, we can construct the atom
number fluctuations, phase coherence and the entire density matrix of the system,

P= Pajpilai) sl (1)
wjpl
This can then be used to evaluate the single-particle von Neumann entropy
S = —Tr(plogp). )

The density matrix elements p,; g are determined by the mode populations and their relative
phase coherence (see appendix A).

Experimentally, it is challenging to measure populations of the individual vibrational levels
or the relative phase coherence between them. In order to circumvent the need to gather such
detailed information, we will show that in experimentally realistic situations the single-particle
entropy may be estimated by the atom number and the relative phase coherence between the
atoms in different sites that are obtained by averaging over the vibrational level structure in
each site.

In the experiments [9, 15] a high-precision optical absorption imaging provided site-
resolved detection by integration of the imaged atom density. Moreover, local interference
measurements were performed after a short condensate expansion time allowing only the
atoms from adjacent sites to overlap. The relative phase coherence of the atoms between
the adjacent sites was then inferred from the phase variance of the interference pattern. In
order to detect the long-range phase coherence in the lattice and extract sufficiently accurate
information of the entropy, we propose a matter-wave homodyne measurement scheme for
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the atoms: we consider a system where the bosonic atoms in the lattice are surrounded by
a BEC in a different internal state, e.g. a different hyperfine level for alkali-metal atoms or
a metastable triplet state for alkaline-earth or rare-earth metal atoms (figure 1). The atoms
in this second internal state are assumed to experience a much weaker lattice potential or
weaker interactions, so that their phase coherence is well preserved over the entire lattice
length. Experimentally, inter-species interaction might be controlled by a Feshbach resonance
or by adjusting the spatial overlap between the two species, e.g. with superlattices [16, 17].
The surrounding BEC serves as a common phase reference in analogy to local oscillators in
quantum optical homodyne measurements. The phase coherence of the atoms in each lattice
site can be locally determined by interfering the atoms with the reference condensate, e.g. by
Raman transitions between the hyperfine levels [18]. Due to negligible phase fluctuations in the
reference condensate, local interference measurements of the lattice atoms with the reference
condensate provide information about the relative phase fluctuations between the atoms in
distant sites. The proposed scheme has the advantage of precise coherence readout by particle
counting as experimentally problematic shot-to-shot fluctuations of the magnetic field (which
lead to excess phase fluctuations) do not disturb such measurements as long as they are spatially
homogeneous. The measurement method could also be suitable for two-dimensional lattice
systems when combined with recently developed high-resolution imaging techniques [10, 19].

In order to demonstrate how the long-range coherence and atom number detection can be
used to infer locally a single-particle entropy and spin squeezing in an experimentally realistic
system we study a specific example of dynamically adjusting the atom tunnelling between
central and outermost sites (see figure 1). We assume that the atoms are initially confined in
a thermal equilibrium state in a shallow lattice. We then simulate the resulting dynamics when
the coupling of the outermost sites to the rest of the system is suppressed by a rapid injection
of laser barriers, followed by a slow ramp up of the lattice potential. The increase in the lattice
depth results in reduced atom number fluctuations and stronger spin squeezing between atoms
in adjacent sites. The laser barriers alter the entropy distribution in the system, as the initial
thermal fluctuations in the trap are not uniform (figure 1). Our numerical simulations are based
on the truncated Wigner approximation (TWA) [20-27], using an approach similar to the one
introduced in [15]. Here thermal and quantum fluctuations of the atoms in the stochastic initial
state are calculated by self-consistently solving the ground-state and excited-state populations
within the Hartree—Fock—Bogoliubov approximation [28, 29]. During the time dynamics the
field amplitudes in the wavefunction basis |¢,;) are obtained by projecting from the numerically
calculated stochastic Wigner field (see appendix A).

We take the experimental parameters that were used to observe spin squeezing between the
atoms in adjacent sites [9] in which case N = 5300 atoms were confined in a combined one-
dimensional (1D) lattice potential, with the spacing d >~ 5.7 um, and an elongated harmonic
trap with the frequencies w >~ 2w x 21 Hz and w, >~ 27 x427Hz (0 < w,), so that about
95% of the atoms occupied the six central sites. In [15] the 1D TWA model provided a good
qualitative agreement with the experimental findings of the on-site and the relative atom number
fluctuations. Here we use the same approach with the potential

_m 52 2 (TTX
V(x)_za)x +sEg cos ) 3)

The initial lattice height of 24 Ex (with the recoil energy Er = h’7?/2md?) is slowly turned
up to 72Eg. We study two different ramping speeds 15.6 and 17.2 Hzms~!. The strength of
the nonlinear atom—atom interaction is given by g;pN = 487hwl, where gp = 2hw, a, a is the
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Figure 2. Estimates (dashed lines) derived from (5) and exact results (solid
lines) for the total entropy per atom St (lines with crosses) and internal entropy
per atom S; (lines with circles) for different strengths of the scissors. Top row:
initial temperature 7 = 4 nK for the ramping speeds (from left to right) 15.6 and
17.2Hzms™!. Bottom row: the same for T = 0. The curve for the total entropy
per atom is shown together with the sampling error calculated numerically over
800 individual stochastic realizations (see appendix A.l). The insets show the
ratio Sy/St (exact results) for each case.

s-wave scattering length and [ = (ii/mw)'/?>. We consider the selection of the four central sites
by injecting narrow, blue-detuned laser beams, or a scissors potential, before the ramping
up of the lattice. The laser potential can be modelled by two symmetric Gaussian intensity
distributions centered at +xy,

_ (x — xp)° (x +x1)°
Vo = s ER |:exp <_Td§> +eXp(_Ta’§>] 4)

with the waist 2d;, = 600 nm (1/e? intensity radius) that can be achieved by diffraction-limited
focusing of a laser with wavelength in the visible light region. We vary the barrier height s, and
the cutting is fast compared to any other time scale so that the system has no time to relax during
the process.

We evaluate the entropy per atom S; in the central four wells and compare this to the
entropy per atom St in the full system. The effect of different strengths of the scissors potential
is shown in figure 2 by displaying the entropy in different cases at the end of the lattice
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ramping. The simulation results of the barrier injection provide an example that demonstrates
how a single-particle entropy can be engineered in a non-equilibrium process by laser barriers.
Without scissors S; < St, since in a combined optical lattice and harmonic trap thermal phonon
excitations and entropy are mostly concentrated on the outermost sites. Decoupling those sites
from the rest of the system therefore reduces the effect of higher excitation modes. For weak
scissors (s, S 60), the entropy does not notably increase and S; remains lower than the value of
St without the potential barriers. In the insets in figure 2 we display the ratio S;/St. We find an
increasing total entropy (but decreasing S;/St) for strong scissor potentials owing to excitations
induced by injected barriers. A detailed investigation of these excitations and resulting entropy
waves, which is beyond the scope of the present work, could in itself provide an interesting
further study of entropy phenomena in a coupled multi-mode BEC system.

As it is not practical to measure the entropy by detecting all the vibrational mode
amplitudes, we propose an entropy estimate based on the lattice site occupation numbers and
the long-range coherence values. In figure 2 we compare the entropy calculated from the 6 x 6
density matrix estimate pey (e, B) that is built by measuring separately only the average well
populations and the relative phases between the atoms in the six different sites

() () (expli(de — Pp)])
(Nt)

pest(a» IB) = s (5)
where 71, and (,?Sa denote the atom number and phase operators in the site «, respectively,
and Ny represents the total atom number in the six sites (for calculating these quantities in
the numerics, see appendix A). The good agreement between the estimated entropy and the
one based on the full basis state representation can be explained by negligible atom number
pair correlations between different lattice sites (71,715) = (ii,)(i15) and correlations between
the phases and atom numbers (/474 exp[i(&ba — @)]) ~ (‘/ﬁaﬁﬂ)(exp[i(&ba — &)ﬁ)]). Similar
correlations between the atoms in vibrational states within the same site only weakly affect
the entropy. In addition, the loss of phase coherence between the vibrational levels &, [ within
the same site is small <exp[i($ak — (,?Sal)]) 2 0.99. The entropy approximation (5) is better at
low temperatures owing to the weaker effect of thermal fluctuations on intra-site correlations
between the atoms in different vibrational states. Analogously, stronger quantum fluctuations at
stronger nonlinearities can lead to larger deviations from the exact result. Well-known estimates
of von Neumann entropy are based on combinations of Rényi entropies [30] (see appendix B).
It is therefore interesting to compare our estimate to the Rényi entropy estimates. We show in
figure 3 how our entropy estimate based on experimental observables provides for this system a
more accurate approximation of the entropy than the estimate Sg based on the Rényi entropies.
Injecting laser barriers affects the achievable spin squeezing between the central sites after
turning up of the lattice. We define the relative atom number squeezing between the atoms in
sites o and 8 by
A oy )+ ()
sN,(a,ﬂ) [ ( @ ﬂ)] 4<ﬁ0{)<ﬁ,3>
where A (ﬁa —n ,3) denotes the relative atom number fluctuations. The spin squeezing of the
atoms

: (6)

é51%/,(01,/3)
(cos(p — Pa))>

537 (o, B) = (7)
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Figure 3. Exact results for the total entropy St (solid lines) and its estimates
(dashed lines) for different strengths of the barrier. The dashed black lines
with crosses show the estimate derived from our approximate expression of the
density matrix based on direct experimental observables (5); the red lines with
circles show the estimate Sg from equation (B.4) based on the Rényi entropies.
Initial temperature 7" = 4 nK for the ramping speeds (from left to right) 15.6 and
17.2Hzms™!.

not only depends on 51%,,(“’ 5, but also on the relative phase coherence (COS(Q,S‘B — qAba)) between the
atoms. The proposed long-range phase coherence measurement scheme allows the detection of
spin squeezing also between non-nearest-neighbour sites and other spatially separated regions.
In quantum-enhanced metrology a high-precision quantum interferometer can overcome the
standard quantum limit of classical interferometers, provided that &g , ) < 1 [5-9]. The same
condition also implies quantum many-body entanglement in the system [31].

Results for the spin squeezing between the atoms in the two adjacent central wells (sites
3 and 4 of figure 1) at the end of the ramping for two different ramping speeds are shown
in figures 4(a) and (b) at the experimentally relevant initial temperature 7 = 4nK [15]°. At
intermediate scissor strengths s,, when the non-adiabatic injection does not significantly perturb
the system (cf figure 2(a)), we find slightly stronger spin (as well as the relative atom number)
squeezing than in the system where no laser potential was applied. The spin squeezing between
the atoms in non-nearest-neighbour sites (sites 2 and 5 of figure 1) is shown in figures 4(c)
and (d). The system exhibits spin squeezing and quantum many-body entanglement between
spatially separated regions specified by the distant sites. Weak excitations of the system due to
lattice and barrier ramping affect the squeezing as can be seen from the differences between the
two ramping speed cases. At stronger scissor strengths the barriers perturb the system, resulting
in notably stronger dynamics of the squeezing. We also find that in the region of improved spin
squeezing the relative phase coherence is not notably affected. Our analysis provides a proof-of-
principle demonstration that adjusting the coupling between the inner and outermost sites could
potentially lead to technologies for improving atomic spin squeezing.

Spin squeezing flags the presence of entanglement in the system. As an alternative
signature of entanglement one can use entropic inequalities in a bipartitite system [32-34].

> Note that the actual experimental temperature in three-dimensional trap may be higher than the one
corresponding to experimental findings in 1D simulations.
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Figure 4. Top row: spin squeezing &2 between the atoms in the two central lattice
sites (sites 3 and 4 in figure 1) for different strengths of the scissors potential,
with the ramping speeds (from left to right) 15.6 and 17.2 Hzms™!. Bottom row:
spin squeezing between the atoms in non-nearest-neighbour sites (sites 2 and 5
in figure 1), with the ramping speeds (from left to right) 15.6 and 17.2 Hzms ™.
The dashed line shows the value obtained with no laser beam potential and the
grey shaded area represents its uncertainty. The lattice is slowly ramped up to
72 Ey after the barriers are rapidly introduced in thermal equilibrium at the lattice
height 24 Eg and T = 4 nK.

The purity Tr(,olz(r)) of the reduced density matrices of the left (right) part of the system,
compared to the purity of the combined system Tr[(o; ® p:)?], signals entanglement if Tr( ,olz(r)) <
Tr[(o ® p;)?]. Even though we find spin squeezing in our system, the purity based entanglement
inequality is not violated (see appendix C). Remarkably, however, the purity estimates derived
from (5) agree well (figure C.1) with the exact results (within 1% for s, < 20 and within 6%
for all values of sy), thus potentially providing a direct experimental detection method for the
presence of entanglement.

In conclusion, we have shown how the single-particle entropy can be measured and
engineered in an optical lattice in the large filling limit. The measurement can be achieved by
matter-wave homodyne detection of long-range phase coherence using a reference condensate.
The proposed scheme provides a good approximation of the density matrix such that it
might be used to detect entanglement via entropic inequalities. We provided a proof-of-
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principle demonstration that controlling tunnelling in selected locations of the lattice may find
quantum technological applications in manipulating metrologically important spin squeezing.
Improvement in spin squeezing has practical implications since in the experiments it is typically
limited by thermal fluctuations [9]. We may also envisage a procedure where the atomic spin
squeezing is improved during every injection cycle of the laser barriers that is followed by an
adiabatic adjustment of the trapping potential. Iterating the process could then potentially lead
to progressively stronger spin squeezing.
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Appendix A. Stochastic phase-space method

A.1. Dynamics

In order to simulate the experimental conditions, quantum and thermal fluctuations are included
via a classical stochastic field description based on TWA [20-27]. TWA has provided a useful
methodology for analysing relative atom number correlations between different lattice sites [15]
and, e.g. between different solitons in interferometric applications [35]. The dynamics is
unraveled into stochastic trajectories where the initial state of the quantum operator 1:0 (x,t=0)
is represented by an ensemble of classical fields Yw(x, = 0), sampled according to its Wigner
distribution that is determined bX the temperature, the atom statistics and the multimode nature
of the system. The initial state ¥ (x, t = 0) is expanded in terms of the BEC ground state and
the excited states as

Pt =0) = Yodo+ Y [u;(0d; — v} 0] | (A1)
Jj>0

Here &; represent the quasiparticle annihilation operators and the quasiparticle mode functions
u;j(x), vj(x) are calculated by solving self-consistently the coupled Hartree—Fock—Bogoliubov
equations [28, 29] for the condensate and non-condensate populations. Owing to large depleted
atom number population in the studied system even at zero temperature, the Bogoliubov
approximation alone is inaccurate. In addition, several modes in each well contribute to atom
statistics, as demonstrated in [15], where the relative atom number fluctuations as a function of
the number of initial Hartree—Fock—Bogoliubov modes were calculated.

The quasiparticle operators are than replaced by stochastic complex variables o, o},
obtained by sampling the corresponding Wigner distribution. Each individual stochastic
realization is dynamically evolved according to the Gross—Pitaevskii equation and represents
a possible outcome of an individual experimental run. Ensemble averages calculated from the
TWA numerical results give a statistical description of the dynamics of the system.

A.2. Analysis of correlations

The multi-mode nature of the system and phonon—phonon interactions were shown to be
important for the evaluation of the atom number fluctuations even at 7 = 0 [15]. Multi-mode
effects are included by projecting the full stochastic field vy after the simulations onto a mode
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function basis formed by energy eigenfunctions of the lattice sites for a given number of energy
bands. In the coupled BEC system considered here, we found that the atom number fluctuations
of the stochastic field yw were accurately represented when we included at least nine vibrational
mode functions in each well at both 7 = 0 and 4 nK. This further emphasizes the multi-band
nature of the present lattice system.

The projection technique allows to transform the symmetrically ordered expectation values
of stochastic representations of quantum operators in the Wigner distribution to normally
ordered expectation values [15, 23, 36, 37]. The projected quantities are used in calculation
of the atom number statistics and the phase coherence of the system. This also provides a model
for the single-particle entropy, evaluated from the single-particle density matrix in the same
mode function basis.

We define an eigenmode basis for each site given by the mode functions ¢, ;(x) with
n=1,...,Ny,j=1,..., N,. Here the first index runs over all the sites, with N,, = 6 in our
case, and the second index runs over all the vibrational state mode functions in individual sites.
We denote the stochastic amplitude for the atoms in the jth vibrational mode of site n as a,, ;
which can be numerically obtained from the projection of the stochastic field ¥rw(x, t) as

ay,j (1) = (@, jlYw (1)) = f [@n.; O] Yw(x, 1) dx. (A.2)

nthwell

The macroscopic phase for the atoms in each site may be calculated by averaging over the
vibrational states

Nm

¢, (1) ~ arg / > a, (g, ;(x) | dx. (A.3)
j=1

nhwell
The relative phase coherence between the atoms in the sites n and p can then be obtained from

Ay = (cos(¢y — d))w, (A.4)

where the subscript W denotes the Wigner expectation value over many realizations. The
projected amplitudes may be used to calculate the various normally ordered quantum
expectation values. The site populations read

(i) = Z@,j&m) - Z [{ay jan.j)w —1/2], (A.5)
J J
where the summation is over all the vibrational modes in the site . The contribution —1/2 in

the last term is a result of the symmetrical ordering of Wigner expectation values. The on-site
atom number fluctuations for site n are similarly given by

(Any)* = Z [(lanil*lan il Yw = (laniPYw (lanil ) w — 8ix/4] . (A.0)
ik

whereas the relative atom number fluctuations between two sites n and u are obtained from

AL =[A (=) =) [<(|a,7,i|2 —lauil?) (gl = lauel?)w (A7)
ik

2 2 2 2 ‘Si,k

—(lapi* = lauiywlayl® = |a..] >w——].

2

New Journal of Physics 15 (2013) 063035 (http://www.njp.org/)


http://www.njp.org/

11 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The single-particle density matrix p can be evaluated from the projected amplitudes and it
is given by the ensemble average of the stochastic realizations p; where

Pe=)_ Py il e ;) (@pl. (A.8)
wojpl
The matrix elements pa 7.p1 are given by
1 60{, d il
Pajp1 = A (a;i,jaﬂ,z - ) : (A.9)
T

Here (NT) denotes the atom number in the studied six central sites. The diagonal elements are
determined by the mode populations and the off-diagonal elements contain information on the
phase coherence.

Appendix B. Entropy

We first calculate the single-particle (generalized von Neumann [38]) entropy S of equation (2)
numerically in the projected single-particle basis and then propose an estimate of the entropy
based only on direct experimental observables [9, 15]. After injecting the barriers the entropy
per atom S can be evaluated in the new reduced lattice system of the four central sites:

2:7 J, piwent S (X) dx
AT
Zn <n T])
where the prime in the sum indicates a summation over the wells that are inside the scissors and
S(x) the entropy density. We compare this with the entropy per atom St of the full system

ST — Zr] fn‘hwell S()C) dx (B 2)
Zn <ﬁ'7>
where the summation is now over all the sites.
For comparison we also calculate an estimate of the von Neumann entropy provided by a
combination of the Rényi entropies. The Rényi entropy of order n is given by [39]

S =

; (B.1)

1

Sn=1 log(Tr(p")), n=2. (B.3)
—n

In the limit n — 1, it coincides with the von Neumann entropy. The Rényi entropy can be used

to approximate the von Neumann entropy [40]. Specifically, an estimate Sg of the von Neumann

entropy in terms of the Rényi entropy can be given as

1, 1 J
Sk = 5 S+ S max [Sa3. S]. (B.4)

where S, Sy23, S{iz are appropriately defined functions of S, and S; (see equation (32) in [30]).
We find that our entropy estimate that is based on experimental observables provides a more
accurate approximation of the entropy than the one based on the Rényi entropies, as shown in
figure 3.
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Figure C.1. Exact results (solid lines) and estimates (dashed lines) for the purity
of system A (Trp?, red lines with crosses) and of the combined bipartite system
C (Tr,?)%, black lines with circles) for different strengths of the barrier for the
ramping speeds (from left to right) 15.6 and 17.2Hzms™!. The dashed lines
show the estimates derived from our approximate expression of the density
matrix based on direct experimental observables (5). Initial temperature 7' =
4nkK. The relative sampling errors for the exact results are smaller than those
shown in figure 2.

Appendix C. Entanglement

Constructing the density matrix has useful applications, e.g. for identifying bipartite
entanglement in the system [32, 34]. A simple test can be done by comparing the purity of
the full system described by pc = ps ® pp to that of a subsystem (described by the reduced
density matrix p,p)). Separability of the two subsystems requires Tr (bi( ) = Tr(pZ). Since
there are only a few experimentally accessible tests for entanglement in many body systems
(see e.g. [41]), it is interesting to compare the purities obtained from the proposed estimate
of the density matrix to the exact results. As an example, we define the left half of the lattice
system as subsystem A, the right half as subsystem B. We calculate the purity of the reduced
density matrix of the left-half subsystem A and compare it to the purity of the combined bipartite
system. As shown in figure C.1 this test does not detect entanglement, but remarkably the results
calculated from our density matrix estimate (5) based on experimental observables provides a
good approximation of the exact result. The purities agree within 1% for low barrier heights
(below s, = 20) and within 6 % for all values of s,.
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