MAX-PLANCK-INSTITUT FÜR INFORMATIK

On Multi-Party Communication Complexity
of Random Functions

Technical Report No. MPII-1993-162

Vince Grolmusz

Max Planck Institute for Computer Science
and Eötvös University

December 1, 1993

Im Stadtwald 66123 Saarbrücken Germany

On Multi-Party Communication Complexity of Random Functions Technical Report No. MPII-1993-162

Vince Grolmusz

Max Planck Institute for Computer Science
and Eötvös University

December 1, 1993

On Multi-Party Communication Complexity of Random Functions

Technical Report No. MPII-1993-162

Vince Grolmusz Max Planck Institute and Eötvös University

Keywords: communication complexity, random functions, communication protocols

ABSTRACT:

We prove that almost all Boolean function has a high k-party communication complexity. The 2-party case was settled by Papadimitriou and Sipser [PS]. Proving the k-party case needs a deeper investigation of the underlying structure of the k-cylinder-intersections; (the 2-cylinder-intersections are the rectangles).

First we examine the basic properties of k-cylinder-intersections, then an upper estimation is given for their number, which facilitates to prove the lower-bound theorem for the k-party communication complexity of random Boolean functions. In the last section we extend our results to communication protocols, which are correct only on *most* of the inputs.

Address: Max Planck Institute for Computer Science, Im Stadtwald, D-66123 Saarbruecken, GERMANY; email: grolmusz@mpi-sb.mpg.de

1. INTRODUCTION

1.1 Multi-Party Games

The multi-party communication game, defined by Chandra, Furst and Lipton [CFL], is an interesting generalization of the 2-party communication game. In this game, k players: $P_1, P_2..., P_k$ intend to compute a Boolean function $f(x_1, x_2, ..., x_n) : \{0, 1\}^n \to \{0, 1\}$. On set $S = \{x_1, x_2, ..., x_n\}$ of variables there is a fixed partition A of k classes $A_1, A_2, ..., A_k$, and player P_i knows every variable, except those in A_i , for i = 1, 2, ..., k. The players have unlimited computational power, and they communicate with the help of a blackboard, viewed by all players. Only one player may write on the blackboard at a time. The goal is to compute $f(x_1, x_2, ..., x_n)$, and write it down to the blackboard. The cost of the computation is the number of bits written on the blackboard for the given $x = (x_1, x_2, ..., x_n)$ and $A = (A_1, A_2, ..., A_k)$. The cost of a multi-party protocol is the maximum number of bits communicated for any x from $\{0,1\}^n$ and the given A. The k-party communication complexity, $C_A^{(k)}(f)$, of a function f, with respect to partition A, is the minimum of costs of those k-party protocols which compute f. The k-party symmetric communication complexity of f is defined as

$$C^{(k)}(f) = \max_{\mathcal{A}} C_{\mathcal{A}}^{(k)}(f),$$

where the maximum is taken over all k-partitions of set $\{x_1, x_2, ..., x_n\}$.

The theory of the k-party communication games for k=2 is well developed (see [BFS] or [L] for a survey), but much less is known about the k>2 case. As a general upper bound both for two and more players, let us suppose that A_1 is one of the smallest classes of $A_1, A_2, ..., A_k$. Then P_1 can compute any Boolean function of S with $|A_1|+1$ bits of communication: P_2 writes down the $|A_1|$ bits of A_1 on the blackboard, P_1 reads it, and computes and announces the value $g(x_1, x_2, ..., x_n) \in \{0, 1\}$. So

$$C^{(k)}(f) \leq \left\lfloor \frac{n}{k} \right\rfloor + 1.$$

In this paper we consider only the "hard" case, when all the classes are of the same size, in other words:

$$n = mk$$
, $|A_1| = |A_2| = ... = |A_k| = m$.

Then

$$C^{(k)}(f) \le m+1.$$

For k = 2, Papadimitriou and Sipser [PS] proved that for almost all Boolean functions f $C^{(2)}(f) = m + 1.$

For k > 2 analogous results were not known. Our main result is the following theorem:

Theorem 1. Let f be a uniformly chosen random member of set

$$\{f|f:\{0,1\}^{mk}\to\{0,1\}\}.$$

Then the probability, that for some A k-equipartition of $X = \{x_1, x_2, ..., x_{mk}\}$ there exists a k-party protocol, which computes f with communication of at most $m - (\log m + 2\log k + 1)$ bits is less than

$$2^{-2^{m(k-1)}}$$
.

1.2 Correct Computation on Most of the Inputs

Babai, Nisan and Szegedy [BNS] investigated the k-party communication complexity of computing a specific function correctly on most of the possible inputs. Our next theorem shows that for almost all Boolean functions, this task also needs almost m bits to communicate:

Theorem 2. Let f be a uniformly chosen random member of set

$$\{f|f:\{0,1\}^{mk}\to\{0,1\}\}.$$

Then the probability, that for some A k-equipartition of $X = \{x_1, x_2, ..., x_n\}$, there exists a k-party protocol, which correctly computes f on a fraction of at least $\frac{1}{2} + \varepsilon$ of inputs, with communication of at most $m - (\log m + 2 \log k + 3 \log \frac{1}{\varepsilon} + 2)$ bits, is less than

$$2^{-2^{m(k-1)}}$$
.

2. PRELIMINARIES

2.1 Protocols and Cylinder-Intersections

The notion of cylinder-intersections plays an important role in the theory of multi-party communication games.

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of symbols, and let $A = \{A_1, A_2, ..., A_k\}$ be a k-partition on X, i.e., for $1 \le i \le k$ $A_i \subset X$, and

$$\bigcup_{i=1}^k A_i = X.$$

For a set S let $\{0,1\}^S$ denote the set of all functions of form $h: S \to \{0,1\}$. Clearly, $\{0,1\}^n$ is isomorphic with $\{0,1\}^{A_1 \cup A_2 \cup ... \cup A_k}$. In this paper we do not make any distinction between them.

Let

$$p_i: \{0,1\}^n \to \{0,1\}^{A_1 \cup A_2 \cup ... \cup A_{i-1} \cup A_{i+1} \cup ... \cup A_k}$$

be a projection for i = 1, 2, ..., k. In other words, p_i simply cuts out those coordinates of an *n*-bit sequence, which corresponds to the elements of A_i .

Definition 3. Let $1 \le i \le k$ and let

$$Q_i \subset p_i(\{0,1\}^n).$$

Then

$$p_i^{-1}(Q_i) \subset \{0,1\}^n$$

is called an (i, A)-cylinder on Q_i . Set $Q \in \{0, 1\}^n$ is called a (k, A) cylinder-intersection (or, k-cylinder-intersection, if A is fixed), if there exist $Q_1, Q_2, ..., Q_k$ such that $Q_i \subset p_i(\{0, 1\}^n)$, i = 1, 2, ..., k, and

$$Q = \bigcap_{i=1}^k p_i^{-1}(Q_i).$$

Babai, Nisan and Szegedy [BNS] proved the following lemma:

Lemma 4. Let s be a string, written by the k players to the blackboard, in case of a fixed input. Then the set of all inputs, which imply that the string s is written onto the blackboard, is a k-cylinder-intersection.

2.2 Basic properties

By Definition 3, if $q \in \{0,1\}^n$, and the projection of q to $Y^{(i)}$ is in Q_i , for i = 1, 2, ..., k, then q itself is also in Q. This observation is formalized in Theorem 5:

Theorem 5.

 $Q \subset \{0,1\}^n$ is a (k,\mathcal{A}) cylinder-intersection if and only if

$$(q_1',q_2,q_3,...,q_k) \in Q$$
 $(q_1,q_2',q_3,...,q_k) \in Q$
 $(q_1,q_2,q_3',...,q_k) \in Q$
 $(q_1,q_2,q_3,...,q_k') \in Q$
implies
 $(q_1,q_2,q_3,...,q_k) \in Q,$

where $q_i, q_i' \in \{0, 1\}^{A_i}$, and $q_i \neq q_i'$, for i = 1, 2, ..., k.

Proof. The proof of the "only if" part appears just before the statement of the theorem. The proof of the "if" part:

Let $Q_i = p_i(Q)$, for i = 1, 2, ..., k. Let

$$Q' = \bigcap_{i=1}^k p_i^{-1}(Q_i).$$

Obviously, $Q \subset Q'$. Suppose that $q \in Q'$. Since $q \in p_i^{-1}(Q_i)$, there exists a q_i' such that

$$(q_1,q_2,...,q_{i-1},q_i',q_{i+1},...,q_k)\in Q,$$

for i = 1, 2, ..., k. But this implies $q \in Q$, consequently, $Q' \subset Q$.

Definition 6. Let $q, q^{(j)} \in \{0,1\}^n$ for j = 1, 2, ..., k. Set $\{q^{(1)}, q^{(2)}, ..., q^{(k)}, q\}$ is called a (k, \mathcal{A}) -pyramid, if there exist $q_i, q_i' \in \{0,1\}^{A_i}$ for i = 1, 2, ..., k, such that

$$(q'_1, q_2, q_3, ..., q_k) = q^{(1)}$$

$$(q_1, q'_2, q_3, ..., q_k) = q^{(2)}$$

$$(q_1, q_2, q'_3, ..., q_k) = q^{(3)}$$

$$(q_1, q_2, q_3, ..., q'_k) = q^{(k)}$$

$$(q_1, q_2, q_3, ..., q_k) = q$$

q is the top of the pyramid, while $\{q^{(1)}, q^{(2)}, ..., q^{(k)}\}$ is the fundament of the pyramid.

Using the definition of the pyramids, Theorem 2 can also be stated as follows: Q is a k-cylinder-intersection \iff If Q contains the fundament of a pyramid then it also contains its top.

Definition 7. $I \subset \{0,1\}^n$ is called a c-independent set (where "c" stays for "cylinder") if I does not contain any k-pyramids. Let Q be a k-cylinder-intersection. Set $G \subset Q$ is called c-generator for Q if every $q \in Q$ can be written as the top of a pyramid, with all the fundamental points in G.

Definition 8. Let Q be a k-cylinder-intersection. $B \subset Q$ is called a c-basis of Q, if B is a c-independent c-generator for Q.

Theorem 9. Every k-cylinder-intersection contains a c-basis.

Proof. Let G be a minimal c-generator for k-cylinder-intersection Q. We show that G is c-independent. Suppose that G contains a pyramid:

$$(q'_1, q_2, q_3, ..., q_k) = q^{(1)}$$

$$(q_1, q'_2, q_3, ..., q_k) = q^{(2)}$$

$$(q_1, q_2, q'_3, ..., q_k) = q^{(3)}$$

$$(q_1, q_2, q_3, ..., q'_k) = q^{(k)}$$

$$(q_1, q_2, q_3, ..., q_k) = q$$

Then $G - \{q\}$ is also a c-generator for Q: suppose that q is the i^{th} element in a pyramid which generates element \bar{q} . Then q can be substituted in the same pyramid by $q^{(i)}$. Consequently, G cannot contain a pyramid.

2.3 Theorems for the equipartition

Let n = mk, and let \mathcal{A} be an equipartition of X: $|A_1| = |A_2| = ... = |A_k| = m$. In this section partition \mathcal{A} remains fixed.

The following theorem gives an upper bound to the size of any c-independent set in $\{0,1\}^{mk}$:

Theorem 10. Let $I \subset \{0,1\}^{mk}$ be a c-independent set. Then

$$|I| \le k2^{(k-1)m}.$$

The next structural lemma is needed in the proof of Theorem 10:

Lemma 11. Let $I \subset \{0,1\}^{A_1 \cup A_2 \cup ... \cup A_k}$ be a c-independent set, and let $q \in I$. Then there exists an $i: 1 \leq i \leq k$:

$$p_i^{-1}(r^{(i)}) \cap I = \{q\},\,$$

where $r^{(i)} = p_i(q) \in Y^{(i)}$.

Proof. Suppose that all intersection has at least two elements: for i = 1, 2, ..., k, $\exists q^{(i)} \in \{0,1\}^n$: $p_i^{-1}(r^{(i)}) \cap I = \{q,q^{(i)}\}$, where $q^{(i)} \neq q$. Let us observe that $q^{(i)} \neq q^{(j)}$ for $1 \leq i < j \leq k$. Then

 $q^{(1)}, q^{(2)}, ..., q^{(k)}, q$

form a pyramid, entirely in I, which is a contradiction.

Proof of Theorem 10. From Lemma 11:

$$|I| \leq \sum_{i=1}^{k} |p_i(I)|.$$

On the other hand,

$$p_i(I) \subset Y^{(i)}, \quad |Y^{(i)}| = 2^{(k-1)m}$$

so

$$|I| \le k2^{k-1}m.$$

Theorem 12. The number of k-cylinder-intersections in $\{0,1\}^{A_1\cup A_2\cup ...\cup A_k}$ is at most

$$\binom{2^{mk}}{k2^{m(k-1)}}.$$

Proof. By Theorem 9, every k-cylinder-intersection has a c-basis. Every k-cylinder-intersection can be corresponded to one of its c-basises. Since the c-basis generates the cylinder-intersection, different cylinder-intersections are corresponded to different c-basises. Every c-basis is c-independent, so, from Theorem 10, its size is less than or equal to $k2^{(k-1)m}$. The statement follows.

3. THE PROOF OF THEOREM 1

Now we are ready to prove Theorem 1. Let \mathcal{A} be fixed. Suppose that function $f: \{0,1\}^{mk} \to \{0,1\}$ is computed by a k-party protocol, where player P_i knows the value of every variable, except those in A_i . We also suppose, that the players use at most $m-\alpha$ bits for the communication. Every possible communication-sequence corresponds to a cylinder-intersection by Lemma 4, on which f is constant: either 0 or 1.

Since there are at most $2^{m-\alpha}$ possible communication-sequence, there exists a cylinder-intersection Q such that

$$|Q| \geq \frac{2^{mk}}{2^{m-\alpha}} = 2^{m(k-1)+\alpha},$$

and $f(Q) = \{1\}$ or $f(Q) = \{0\}$. Obviously, there are

different functions $f: \{0,1\}^{mk} \to \{0,1\}$. By the uniform distribution, let us choose randomly an f among these functions.

The probability, that f is constant on Q is at most

$$2^{1-2^{m(k-1)+\alpha}}.$$

By Theorem 12, there are at most

$$\binom{2^{mk}}{k2^{m(k-1)}} \le 2^{mk^2 2^{m(k-1)}}$$

cylinder—intersections in $\{0,1\}^{A_1 \cup A_2 \cup ... \cup A_k}$.

So, the probability, that a random f is constant on at least one cylinder-intersection of size at least $2^{m(k-1)+\alpha}$) is at most

$$2^{mk^22^{m(k-1)}}2^{1-2^{m(k-1)+\alpha}}=2^{2^{m(k-1)}(mk^2-2^{\alpha})+1},$$

for a fixed A. There are at most

$$\frac{(mk)!}{(m!)^k} \le (ke)^{mk}$$

equipartitions of $X = \{x_1, x_2, ..., x_{mk}\}$ into k classes $A_1, A_2, ..., A_k$.

We have got that the probability, that for some equipartition A there exists a k-party protocol which computes f with communication $m - \alpha$ is at most

$$2^{2^{m(k-1)}(2mk^2-2^{\alpha})}$$

Consequently, for $\alpha = \log m + 2\log k + 1$, the probability that a randomly chosen f can be computed by a k-party protocol with $m - \alpha$ communication is double-exponentially small.

4. PROOF OF THEOREM 2

Let $A = \{A_1, A_2, ..., A_k\}$ be a fixed equipartition of X. Suppose that there exists a k-party protocol which correctly computes function f on a fraction of at least

$$\frac{1}{2} + \varepsilon$$

of all inputs, communicating $m - \alpha$ bits. First, we need a combinatorial lemma:

Lemma 13. Let $u = \frac{\varepsilon}{2} 2^{m(k-1)+\alpha}$. Then there exists a cylinder-intersection Q of size at least u, such that the protocol correctly computes f on a fraction of at least $\frac{1}{2} + \frac{\varepsilon}{2}$ of Q.

Proof. Suppose that the statement does not hold. Then the fraction of the inputs, for which f is correctly computed is less than

$$\frac{1}{2} + \frac{\varepsilon}{2}$$

in all cylinder-intersections, which have size at least u. Then the missing

 $\frac{\varepsilon}{2}$

fraction of all inputs:

$$\frac{\varepsilon}{2} 2^{mk}$$

should be computed correctly in cylinder intersections of size less than u.

However, there are at most $2^{m-\alpha}$ cylinder-intersections, so if even all of them has size u-1, and f is correctly computed on them, then less than

$$2^{m-\alpha}u=\frac{\varepsilon}{2}2^{mk}$$

inputs are computed correctly on these small cylinder-intersections, contradiction. So, there exists a Q of size at least u on which at least

$$\frac{1}{2} + \frac{\varepsilon}{2}$$

fraction are computed correctly. This means, that on a

$$\frac{1}{2} + \frac{\varepsilon}{2}$$

part of Q f is constant 0 or constant 1.

By the Chernoff-bound [ES], the probability that a random f is constant on at least a

$$\frac{1}{2} + \frac{\varepsilon}{2}$$

fraction of Q is at most

$$2e^{-\frac{\epsilon^3}{4}2^{(k-1)m+\alpha}}$$

By Theorem 12, there are at most

$$\binom{2^{mk}}{k2^{m(k-1)}} \le 2^{mk^2 2^{m(k-1)}}$$

cylinder-intersections in $\{0,1\}^{A_1 \cup A_2 \cup ... \cup A_k}$. So, the probability, that a random f is constant on the

$$\frac{1}{2} + \frac{\varepsilon}{2}$$

fraction of at least one cylinder-intersection of size at least u is at most

$$2^{mk^2 2^{m(k-1)}} 2e^{-\frac{\varepsilon^3}{4} 2^{(k-1)m+\alpha}} \le 2^{2^{m(k-1)}(mk^2 - \frac{\varepsilon^3}{4} 2^{\alpha})},$$

for a fixed A.

There are at most

$$\frac{(mk)!}{(m!)^k} \le (ke)^{mk}$$

equipartitions of $X = \{x_1, x_2, ..., x_{mk}\}$ into k classes $A_1, A_2, ..., A_k$.

We have got that the probability, that for some equipartition A there exists a k-party protocol which computes f with communication $m - \alpha$, correctly on the fraction of

$$\frac{1}{2} + \varepsilon$$

of all inputs, is at most

$$2^{2^{m(k-1)}(2mk^2-\frac{\epsilon^3}{4}2^{\alpha})}$$
.

Consequently, for $\alpha = \log m + 2\log k + 3\log \frac{1}{\epsilon} + 2$, the probability, that a randomly chosen f can be computed by a k-party protocol with $m - \alpha$ communication, is double-exponentially small.

REFERENCES

- [BFS] L. Babai, P. Frankl, J. Simon: Complexity classes in communication complexity theory, Proc. 27th IEEE FOCS, 1986, pp. 337-347.
- [BNS] L. Babai, N. Nisan, M. Szegedy: Multiparty Protocols and Pseudorandom Sequences, Proc. 21st ACM STOC, 1989, pp. 1-11.
- [CFL] A. K. Chandra, M. L. Furst, R. J. Lipton: Multi-party Protocols, Proc. 15th ACM STOC, 1983, pp. 94-99.
 - [ES] P. Erdős, J. Spencer: Probabilistic Methods in Combinatorics, Academic Press, New York and London, 1974.
 - [L] L. Lovász: Communication Complexity: A Survey, Technical Report, CS-TR-204-89, Princeton University, 1989.
 - [PS] C.H. Papadimitriou, M. Sipser: Communication Complexity, Proc. 14th ACM STOC, 1982, pp. 196-200

