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ABSTRACT:

We prove that almost all Boolean function has a high k-party communication com-

plexity. The 2-party case was settled by Papadimitriou and Sipser [PS]. Proving the
k—party case needs a deeper investigation of the underlying structure of the k—cylinder—
intersections; (the 2—cylinder-intersections are the rectangles).
First we examine the basic properties of k—cylinder-intersections, then an upper estimation
is given for their number, which facilitates to prove the lower-bound theorem for the k—
party communication complexity of random Boolean functions. In the last section we
extend our results to communication protocols, which are correct only on most of the
inputs.
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1



1. INTRODUCTION

1.1 Multi-Party Games

The multi-party communication game, defined by Chandra, Furst and Lipton [CFL],is
an interesting generalization of the 2-party communication game. In this game, k players:
P,,P,..., P, intend to compute a Boolean function f(z;,z3z,...,25): {0,1}® — {0,1}. On
set S = {z1,%32,...,Zn} of variables there is a fixed partition A of k classes A, 4, ..., Ak,
and player P; knows every variable, ezcept those in A;, for 7 = 1,2,...,k. The players have
unlimited computational power, and they communicate with the help of a blackboard,
viewed by all players. Only one player may write on the blackboard at a time. The goal is to
compute f(z1,%2,...,Zn), and write it down to the blackboard. The cost of the computation
is the number of bits written on the blackboard for the given z = (z1,22,...,2,) and
A = (A1,Az,...,Ar). The cost of a multi-party protocol is the maximum number of
bits communicated for any z from {0,1}" and the given A. The k-party communication
complexity, C’f:)( f), of a function f, with respect to partition 4, is the minimum of
costs of those k-party protocols which compute f. The k-party symmetric communication
complexity of f is defined as

c®(f) = max (),

where the maximum is taken over all k—partitions of set {z;,z2,...,zn}.

The theory of the k-party communication games for £ = 2 is well developed (see
[BFS] or [L] for a survey), but much less is known about the k > 2 case. As a general
upper bound both for two and more players, let us suppose that A; is one of the smallest
classes of A;,A32,..., Ax. Then P, can compute any Boolean function of S with |4;|+1
bits of communication: P, writes down the |A4;| bits of A; on the blackboard, P; reads it,
and computes and announces the value g(z;,z2,...,2,) € {0,1}. So

c®(f) < 2] +1-

In this paper we consider only the “hard” case, when all the classes are of the same size,
in other words:
n=mk, |Ai|=|4z]=...=|4Ar]=m.

Then
cB(fy<m+1.

For k = 2, Papadimitriou and Sipser [PS| proved that for almost all Boolean functions f
CA(f) =m+1.
For k > 2 analogous results were not known. Our main result is the following theorem:

Theorem 1 . Let f be a uniformly chosen random member of set

{1f : {0,1}™* — {0,1}}.
Then the probability, that for some A k—equipartition of X = {z1,Z2,...,Zmk} there
exists a k—party protocol, which computes f with communication of at most m — (log m +
2logk + 1) bits is less than

gm(k=1)
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1.2 Correct Computation on Most of the Inputs

Babai, Nisan and Szegedy [BNS] investigated the k—party communication complexity
of computing a specific function correctly on most of the possible inputs. Our next the-
orem shows that for almost all Boolean functions, this task also needs almost m bits to

communicate:
Theorem 2 . Let f be a uniformly chosen random member of set

{71f : {0,1}™* — {0, 1}}.
Then the probability, that for some A k—equipartition of X = {z;,22,...,2.}, there exists
a k—party protocol, which correctly computes f on a fraction of at least % + ¢ of inputs,
with communication of at most m — (logm + 2log k + 3log % + 2) bits, is less than

2_2m(k—1)

2. PRELIMINARIES

2.1 Protocols and Cylinder-Intersections
The notion of cylinder-intersections plays an important role in the theory of multi-party
communication games.

Let X = {z1,22,...,2p} be a set of symbols, and let 4 = {4,,4,,...,A;} be a k-
partition on X, ie., for1 <: <k A4; C X, and

k
J4:i=x.

=1
For a set S let {0,1}° denote the set of all functions of form h : § — {0,1}. Clearly,
{0,1}" is isomorphic with {0,1}4:1Y4a%---U4x  Ip this paper we do not make any distinction
between them.

Let
Pi . {0, l}n N {0’ 1}A1UA3U...UA,‘_.1UA,'+1U...UA§

be a projection for ¢ = 1,2,...,k. In other words, p; simply cuts out those coordinates of
an n-bit sequence, which corresponds to the elements of A4;.
Definition 8 . Let 1 <i <k and let

Q: C pi({0,1}").
Then

Pi_l(Qi) c {o,1}"
is called an (i,.A)-cylinder on Q;. Set Q € {0,1}" is called a (k,.A) cylinder-intersection
(or, k-cylinder-intersection, if A is fixed), if there exist Q;,Q2,...,Qr such that Q; C
»i({0,1}"), 1 =1,2,...,k, and

k
(1) Q=[)r(Qs)

i=1

Babai, Nisan and Szegedy [BNS] proved the following lemmas:
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Lemma 4 . Let s be a string, written by the k players to the blackboard, in case of a
fixed input. Then the set of all inputs, which imply that the string s is written onto the
blackboard, is a k—cylinder—intersection.

2.2 Basic properties
By Definition 3, if ¢ € {0,1}™, and the projection of ¢ to Y9 is in Q;, fori = 1,2, ..., k,
then ¢ itself is also in Q. This observation is formalized in Theorem 5 :

Theorem 5 .
Q c {0,1}" is a (k, A) cylinder—intersection
if and only if

(q;)qZ,QS,"-,Qk) E Q
(ql’q;’qsa s qk) € Q
(91,92,955 -2 qk) € Q
(1,92, 935 -1q%) € Q
implies
(91,92,93,--,9k) € Q,
where g;,q! € {0,1}4¢, and ¢; # ¢}, fori = 1,2,..., k.

Proof. The proof of the “only if” part appears just before the statement of the theorem.
The proof of the “if” part:
Let Q;: = pi(Q), for : =1,2,...,k. Let

k
Q' =[2(Q).
i=1
Obviously, Q C Q'. Suppose that ¢ € Q'. Since ¢ € p;}(Q;), there exists a ¢} such that
(91,925 -y i1, 9> Git15 -+, G) € @,
for i =1,2,...,k. But this implies ¢ € @, consequently, @' C Q. [}

Definition 6 . Let ¢,¢(9) € {0,1}" for j = 1,2,...,k. Set {¢1),¢?),...,¢®), g} is called a
(k, A)-pyramid, if there exist ¢;,q} € {0,1}4¢ fori =1,2,...,k, such that

1)

(2)

(3)

(k)

(41,942,938, --1qx) = ¢
(91,9293, -, q%) = ¢
(quq21q;""1qk) =4q

(91,942,985 9%) = ¢
(91,92, 93,1 qk) = ¢



q is the top of the pyramid, while {¢(V), ¢(?, ..., ¢(¥)} is the fundament of the pyramid.

Using the definition of the pyramids, Theorem 2 can also be stated as follows: Q is a k-
cylinder-intersection <= If Q contains the fundament of a pyramid then it also contains
its top.

Definition 7. I C {0,1}" is called a c-independent set (where “c” stays for “cylinder”)
if I does not contain any k—pyramids. Let Q be a k-cylinder-intersection. Set G C Q is
called c—generator for Q if every ¢ € Q can be written as the top of a pyramid, with all
the fundamental points in G.

Definition 8. Let Q be a k—cylinder—intersection. B C Q is called a c-basis of Q, if B is
a c-independent c-generator for Q.

Theorem 9 . Every k—cylinder-intersection contains a c—basis.

Proof. Let G be a minimal c-generator for k—cylinder—intersection Q. We show that G
is c-independent. Suppose that G contains a pyramid:

(1)

(2)

(3).

(k)

(9:'1’92’ g3y ey qk) =q
(91,9259, 9k) = ¢
(91:qz) q;’""Qk) =q

(QI,QZ,QS,---,Q;c) =4q
(91,92:98,-19%) = ¢

Then G — {q} is also a c—generator for Q: suppose that ¢ is the i** element in a pyra-
mid which generates element §. Then g can be substituted in the same pyramid by ¢(¥.
Consequently, G cannot contain a pyramid. [



2.3 Theorems for the equipartition
Let n = mk, and let A be an equipartition of X: [4;] = 42| = ... = |4 =m. In
this section partition .A remains fixed.

The following theorem gives an upper bound to the size of any c-independent set in
{0,1}m*:

Theorem 10. Let I C {0,1}™* be a c-independent set. Then
[I| < k2(k—1m,

The next structural lemma is needed in the proof of Theorem 10 :

Lemma 11 . Let I C {0,1}41Y43Y-Y4: be a c—independent set, and let ¢ € I. Then
there exists an1: 1 <: < k: .
P (P)NI={g},

where () = p;(¢q) e Y,

Proof. Suppose that all intersection has at least two elements: for : = 1,2,..,,k, 3q_(‘) €
{0,1}* : p; ()N I = {q,¢M}, where ¢*) # q. Let us observe that ¢() # ¢(9) for
1<i<j<k. Then

¢@, @ B

4 q
form a pyramid, entirely in I, which is a contradiction. [

Proof of Theorem 10 . From Lemma 11 :

k
1<) |pe(T))-

i=1

On the other hand, ' .
pi(I) cY®, [y®)] = 2tk-Dm

80
|I| < k2% 'm.

Theorem 12 . The number of k—cylinder-intersections in {0,1}41Y42Y--V4k is at most

2mk
(kzm(k—l)) .

Proof. By Theorem 9, every k—cylinder-intersection has a c-basis. Every k-cylinder—
intersection can be corresponded to one of its c-basises. Since the c-basis generates
the cylinder-intersection, different cylinder-intersections are corresponded to different c—
basises. Every c-basis is c-independent, so, from Theorem 10 , its size is less than or equal
to k2(k~1)m_ The statement follows. W



3. THE PROOF OF THEOREM 1

Now we are ready to prove Theorem 1 . Let A be fixed. Suppose that function f :
{0,1}™* — {0,1} is computed by a k—party protocol, where player P; knows the value
of every variable, except those in A;. We also suppose, that the players use at most
m — a bits for the communication. Every possible communication-sequence corresponds
to a cylinder-intersection by Lemma 4 , on which f is constant: either 0 or 1.

Since there are at most 2™ ™% possible communication-sequence, there exists a cylinder—
intersection @ such that

k
0] 2™ _ gm(k—1)+a
= om—a )

and f(Q) = {1} or f(Q) = {0}.

Obviously, there are

mk
22

different functions f : {0,1}™* — {0,1}. By the uniform distribution, let us choose
randomly an f among these functions.
The probability, that f is constant on @ is at most

21 —gm (k- 1)+a

By Theorem 12 , there are at most

2m.k o
(kzm(k—l)) < ka"'z ¢

cylinder-intersections in {0,1}41Y42V--UAx
So, the probability, that a random f is constant on at least one cylinder-intersection of size
at least 2™(k—1)+<) is at most

kzzm(k—l) 1_2m(k—1)+a _ 2m(k—1) k3 —2%)41
g 2 =2 fom )+

for a fixed A. There are at most

equipartitions of X = {z;,%2,...,Zmi} into k classes Ay, 4,,..., As.
We have got that the probability, that for some equipartition A there exists a k—party
protocol which computes f with communication m — « is at most

22m(k—1)(2mk2_2a)

Consequently, for a = logm + 2log k 4+ 1, the probability that a randomly chosen f

can be computed by a k-party protocol with m — & communication is double-exponentially
small. W



4. PROOF OF THEOREM 2

Let A= {A,,A,,...,AL} be a fixed equipartition of X. Suppose that there exists a k—party
protocol which correctly computes function f on a fraction of at least

1 ‘e
2

of all inputs, communicating m — a bits.

First, we need a combinatorial lemma:

Lemma 13 . Let u = -;—2"‘“"”'*‘"‘. Then there exists a cylinder-intersection Q of size at
least u, such that the protocol correctly computes f on a fraction of at least % + 5 of Q.

Proof. Suppose that the statement does not hold. Then the fraction of the inputs, for
which f is correctly computed is less than

N =

+

N m

in all cylinder-intersections, which have size at least . Then the missing

€
2
fraction of all inputs:
Ezmk
2
should be computed correctly in cylinder intersections of size less than wu.
However, there are at most 2™ ™% cylinder-intersections, so if even all of them has size
u — 1, and f is correctly computed on them, then less than

om=a, _ Ezmk

inputs are computed correctly on these small cylinder—intersections, contradiction. [
So, there exists a @ of size at least © on which at least

€

*3

DN =

fraction are computed correctly. This means, that on a

[ SR

+

N ™

part of @ f is constant 0 or constant 1.
By the Chernoff-bound [ES], the probability that a random f is constant on at least a

-+

[ R
Nl ™



fraction of @ is at most
—e3g(k=1)mta
2¢ % .

By Theorem 12 , there are at most

mk
(k212n(k—1)) < gk

cylinder-intersections in {0,1}41942Y--L4i,
So, the probability, that a random f is constant on the

DN =

-~

N ™

fraction of at least one cylinder—intersection of size at least v is at most

E2om(k—1) 3 o(k=1)mta gm(k—1) mk3—c39a
o 2e~ <2 ( T2

for a fixed A.

There are at most (mk)!
me). mk
W < (ke)
equipartitions of X = {z;,%2,...,Zmk} into k classes A;, A, ..., Ai.
We have got that the probability, that for some equipartition .4 there exists a k—party
protocol which computes f with communication m — a, correctly on the fraction of

1,
2

of all inputs, is at most
g2™*=1(2mk?— 2 2%)

Consequently, for a = logm + 2log k + 3log %+2, the probability, that a randomly
chosen f can be computed by a k-party protocol with m — @ communication, is double-
exponentially small. [
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