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Abstract 

We present a tutorial survey of quantifier-elimination and deci­
sion procedures in p-adic :fieIds. The p-adic :fieIds are studied in the 
(so-called) P,,-formalism of Angus Macintyre, for whieh motivation 
is provided through a rieh body of analogies with real-closed :fields. 
Quantifier-elimination and decision procedures are described proceed­
ing via a Cylindrical Algebraic Decomposition of affine p-adic space. 
EfFective eomplexi.ty analyses are also provided. 

1 Introd uction 

The fieId of p-adic numbers is obtained from the rationals by a completion 
process completeIy analogous to that by which the rea1.s are constructed from 
the rationals. The p-adic numbers occupy a central position in Algebraic 
Number Theory, [7, 6, 20]. From a computational standpoint however, the 
p-adics have been much less studied when compared to the extensive work 
on the reals. In this artic1e, we present a survey of the p-adics, focuss~ 
especially on algorithms for quantifier elimination over the p-adics. 

This survey is organised as follows: in § 2, we outline theconstruction 
and basic properties of the fieId of p-adic numbers. In § 3, we give a thumb­
nail sketch of the history of work in quantifier elimination over the p-adics. 
§ 4 gives a introductory guided tour of the so-called Pn-formalism oi Mac­
intyre. It is in this formalism that the correspondences between the reals 
and the p-adics stand out most c1early, and we offer a sampier oi these in 
§ 4.4. In § 5, we describe effective and quantitative quantifier elimination 
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and decision procedures for the p-adics. We also give complexity analyses 
and matching lower bounds. 

2 The p-adic Numbers 

2.1 Valuations and Completions 

A central concept in Field Theory [25] and in Algebraic Number Theory, [20] 
is that of a lIaluation of a field. A standard reference for valuation theory is 
[16]. 

Definition.1 [Valuation] A valuation of a field Te is a map, 11 : Te -+ 

Ru {oo} such that 

1. lI{Z) = 00 i1f Z = O. 

2. 1I{ Z + 11) ~ min{ 1I{ z), 1I{1I» (UltraIDetric Inequality). 

o 

The field of rational numbers, Q admits the so-called "p-adic valuation", 
IIp : 

Definition .2 [p-adic Valuation on Q] Let O::J Z E Q. The p-adic valua­
tion of z, IIp { z) is the unique ' integer n such that 

Z := pn . :. 
s 

where p does not divide r, s. (Set IIp {O) := 00.) 0 

From the p-adic valuation IIp , we obtain the p-adic metric on Q, 1·lp : 

Definition .3 [p-adic Metric on Q] For z,1I E Q, set: 

Iz - 1IIp := p-1I,.(:e-II). 

(By convention, p-oo := 0.) 0 

The p-adic norm of z E Q is thus Izlp := p-1I,.(:e). Intuitively, the p­
adic norm measures how divisible z is by p - the higher the divisibility, the 
smaller the norm. 
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The p-adic norm has many properties quite different from the usual Eu­
clidean norm. They all stem from the fact that the p-adic metric satisfies not 
merely the triangle inequality but also the curious ultrametrie inequality 
(compare with Definition .1): 

The p-adic metric is therefore distinguished from the usual absolute value 
by referring to it as a non-archimedean metric. By a famous theorem of 
Ostrowski, [16], the absolute value together with the p-adic metrics 1·lp for 
each. prime p, constitute all the possible metrics on Q (upto equivalence of 
metrics). 

Given a metric space, one can pass to the completion via the standard 
Cauchy construction. For instance, the field of real numbers, R is obtained 
from the rationals by forming the completion with respect to the (usual) 
absolute value metric. When we perform the exa.ctly analogous process 
with the p-adic metric 1·lp, we obtain the field of p-adic numbers, Qp. The 
metric I ·Ip on Q extends to a metric on the completion, Qp, and we will also 
use the notation I . Ip for the extended metric. By the theorem of Ostrowski, 
R and the fields Qp for each prime p, together comprise all the completions 
ofQ. 

Henceforth we will fix a particular prime p, and omit the subscrlpt on 
valuations andmetrics. 

2.2 Some properties of Qp 

A useful alternative description of the p-adic numbers is obtained via an 
inverse limit construction from finite residue rings. The subring z" ~ 
Qpdefined by 

z" := {a E Q" : v(a) ~ O} 

is called the ring of p-adic integers. 

Proposition .4 (p-adics via Inverse Limits) 

~. Th.ereare canonical projection homomorphisms, re,,1c : z" -+ Z/p1cZ, k ~ 
1. 

3. Qp is the field 0/ fractions 0/ z". 
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As a consequence, we get a nice representation of p-adics which resem­
bles the usual declma1 representation of reals and is the source of formal 
similarities to Laurent series : 

Proposition .5 (p-adic Expansions) E'/Jery non-zero p-adic a E Qp, can 
be ezpressed uniquely in the form 

L an .pn 
n~N 

where 0:$ an < p are integers and aN 1: O. The integer N is determined by 
the condition '/Jp(a) = -N. (So e'lJery a E Zp can be ezpressed uniquely in 
the form En~o an . pn .) 

A curious consequence of the ultrametrie inequality that is crucially re­
sponsible for many properties of the p-adics is the following 

Proposition .6 (Ultrametric Equallty) 
y) = '/J(z). 

1. If'/J(z) < '/J(y), then'/J(z+ 

2. More generally, if '/J(ZIc) < '/J(Zi) for some k and all i, 1 :$ i, k :$ n, 
then '/J(El$i$n Zi) = '/J(ZIc)' 

The key technical tool for handling the p-adics is the following algebraic­
topological criterion for roots of polynomials in Zp[ z]. It relates roots in the 
finite residue rings to roots in the inverse limit. 

Lemma.7 (Hensel's Lemma) 1. Let f E Z[z] and Let Go be a root of 
f in ZjpZ. If !'(Go) 1: 0 in ZjpZ, then Go can be lifted to a unique 
root ~ E Zp of f such that resl(~) = Go. 

2. More generally, if 01. is a root of f in a finite ring Zj pn Z and if n > 2r 
where r = '/J(f' ( 01. ) ), then 01. can be lifted to a unique root ~ E Zp of f 
such that reSn_,.(~) = resn_,.( 01.). 

3 History of Quantißer Elimination over the p­
adics 

In an award winning series of papers, James h and Simon Kochen, [1, 
2], and independently, Ju.L. Ersöv, [17] showed that the first-order theory 
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of p-adie fields was decidable. Their proofs employed the model theoretic 
technique ofultra-products, and henee, via Gödel's Completeness Theorem, 
yielded only the ezistence of general-reeursive procedures. Using ingenious, 
but elementaryarguments, Paul J. Cohen1 gave the first effective decision 
proeedure for the p-adies, [9]. His proof eonsisted of a proeedure to e1iminate 
field quantifiers in favour of quantifiers ranging over a finite family of finite 
residue rings. Many of the key ideas in subsequent work can be traeed back 
to this paper2 • Subsequently, Volker Weispfenning refi.ned and extended 
Cohen's work in a series of papers, [33, 34]. 

All the previous work took plaee in the setting of valued fields. The p­
adies were studied in a two-sorted language, one for field elements and one for 
elements of the t1alue group 3. This was a somewhat unnatural formulation 
requiring, to yield the quantifier-eHm;nation property, the presenee of an 
awkward "cross-section" predicate to navigate between the two sorts. 

In an insightful paper [23], Angus Macintyre introdueed the so-called 
Pn-formalism. This made it possible tostudy the p-adics in a smooth way 
employing a one-sorted language. Furthermore, the new fonnaHsm brought 
to light some very deep parallels between the p-adies and the reals (see § 4.4 
below). Macintyre went on to demonstrate model-theoretically, the ens­
tenee of quantifier-elimination in the Pn-formalism. An explicit quantifier­
eHmination proeedure in this formalism was given by [34]. Subsequently, 
Denef [12, 13] obtained an explicit algebraie cell deeomposition ofp-adie 
affine space, and gave another proof of quantifier elimination ". An algo­
rithmie version of Denef's eell deeomposition and a eomplenty-theoretie 
analysis appears in the author's Ph.D. dissertation, [15]. In § 5, we will 
outline the main ideas behind these results. 

4 The Pn-formalism 

4.1 Motivation 

What is the analogue in the p-adie case to the order structure on the reals? 
This is the key question to be answered if we wished to keep the develop-

10{ Üle Commuum HWOthe,i& fame! 
2However, düs is rather bald reading, due partly to idiosyncratic notations. For in­

siance Mac:intyre, [24] says ..... it is not clear what Cohen is trying to prOTe ..• "! 
3Given the valuation 11 over a field k, 1I(k) := {1I(z) : Z E k} is the value-group. 
t Also [12] contains a beautiful application oE the decomposition to a problem in semi­

algebraic leometry over the p-adic:s, namely to count p-adic point. on a rational curve. 
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ment of the p-adic theory similar to that of the reals. Initial attempts were 
directed to rnaldng the valuation structure the p-adic counterpart to order: 
the relation Z ~ 0 in the reals was sought to be paralleled by v( z) ~ 0 in 
the p-adics. For various reasons, this is not entirely satisfactory, see [24]. 

A more natural replacement for the order relation comes from Artin's 
theory of real-closed fields developed in order to solve Hilbert's 17th Prob­
lem, [21]. This asks whether a polynomial fE R[Zl'···, zn] which is positive 
definite6 can be represented as the sum of squares of rational functions over 
the reals, that is, as the sum of squares of elements in R( Zl, ... ,zn). In 
his celebrated affirmative solution, [22], Artin brought to the forefront, the 
crucial role of the subgroup, R*(2) of the multiplicative group, R*, consist­
ing of those elements that are squares. Seen in this way, the signs. of real 
numbers have the following interpretation independent of the order struc­
ture: [R* : R*(2)] = 2, we have coset representatives +1, -1 and the natural 
homomorphism sgn : R* -+ R* /R*(2) giving the coset representative is the 
familiar and all-important sign homomorphism. 

One can now hope to carry out precisely the same programme in the 
p-adic case. For certain technical reasons though, see [24], we are forced to 
consider all n-th powers in the p-adic case, not merely the squares. 

4.2 Structure of n-th powers in Qp 

Let Q;(n) denote the subgroup of the multiplicative group Q; consisting of 
n-th powers. A weil known structure theorem [29, 10] then yields: 

Proposition .8 (Structure of n-th powers in Qp) 
Zp. 

Q*(n) Z F*(n) Z ~. p ~ n X p X n p. 

3. Q;/Q;(n) ~ Z/nZ X F;/F;(n) X 1 + pZ/p1J(n)z. 

1. Q; ~ Zx F; X 

Thus Q;(n) has finite index in Q; (which can in fact be explicitly com­
puted, see [15]). We will denote the canonical projection homomorphism 

by Pn : Q; -+ Q;/Q;(n). For each Z E Q;, Pn(;Z:) gives the canonical coset 
representative for Z just as, in the real case, sgn( z), for z E R*, gives the 
canonical co set representative (with respect to the subgroup ofsqaures). 

~That is, l(a1,··· ,an) ~ 0 for all (al'··· ,an) E R" 
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4.3 Valuation and n-th powers 

Macintyre, [23], first suggested that the p-adics be studied in the "Pn -

formalism" to pursue the analogy to the reals, with the coset representa­
tives taldng the place of sign conditions. In this formalism, there are unary 
predicates, Pn for each n ~ 2 standing for the n-th powers, so 

Pn(Z) +-+ 3y(yn = z) 

(Here Z and y refer to field elements.) 
How does this new formalism relate to the underlying valuation struc­

ture? An outstanding merit ofthe Pn-formalismis that the valuation struc­
ture is definable in it: 

Proposition .9 (Deflnability of 'Valuation) 
a, bE k, 

~. 1J p = 2, th.en Jor any a, bE k, 

1. 1Jp:l: 2, th.enJor any 

lI(a) ~ lI(b) +-+ Ps(a3 + p. b3 ) 

Conversely, to see what kind of sets the Pn predicates define in the 
valuation topology, we need a key lemma apparently due to Robinson, [28] 
which asserts that two elements which are sufficiently · dose together in the 
(p-adic) metric topology are in the same coset of n-th powers: 

Lemma .10 1JlI(Y - z) > 2(1I(z) + v(n» Jor z,y E k, ihm Pn(z) = Pn(Y). 

Corollary.11 There is a (integer) function A(n), such that iJlI(z) > A(n), 
ihm Pn(l + z). 

This corollary actua1ly enables one to weaken somewhat the assumptions 
of the original lemma and should be compared with the IDtrametric equality, 
Proposition .6. 

Proposition .12 We halle 

1. 1J lI(Y - z) > lI(Z) + A(n), ihm Pn(z) = Pn(Y). 

~. 1JlI(z1c) + A(n) < lI(Zi) Jor some k and all i:l: k, 1 ~ i,k ~ m, ihen 

Pn( L Zi) = P(Z1c) 
l:5i:5m 
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Finally, we can say how sets defined by the Pn predicates cohere with 
the valuation topology. 

Proposition .13 For each n ~ 2, the sets 

{z E k* : Pn(z)} 

are closed and open in the valuation topology. 

4.4 The R-Qp Analogy 

A deep and attractive parallel exists between the reals and the p-adics when 
the latter are treated in the Pn formalism6• In this subsection, we brie1ly 
sketch some of these simiIarities. See [24] for an extensive comparison. 

Below, we list many assertions in two parts - one labelled R applicable 
to the reals, and the other labelled Qp applicable to the p-adics. In this way, 
the correspondence will be transparent. 

4.4.1 Signs and Cosets 

Evidence that the coset representatives of n-th powers play a role for the 
p-adics analogous to that of signs in the reals is presented in the next two 
propositions from [15]. 

Proposition .14 (Signs and cosets) R Let zER, /( z) :f:. o. Then in 
oll sufficiently small neighborhoods around z, / takes the same sign as 
/(z). 

Qp Let z E Qp, /(z) =I o. Then in all sufficiently smoll neighborhoods 
around z, / takes values in the same coset as /(z). 

What about neighborhoods of a zero? For differentiable /, the values of 
/ in a neighborhood of a zero lie in a coset determined by that of the first 
non-zero derivative and that of the .arbitrarily small increment : 

Proposition .15 (Signs and cosets, cont'd) Let / be differentiable n times 
and suppose r(~) :f:. 0 while f(~) = 0 /or all i < n.( In particular ~ is a 
zero 0/ /.) 

'Note that via the relation z ~ 0 +-+ P2(Z), the re&ls also can be presented in the p .. 
formalism (in fact only P2 suffices). 
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R For all sufficiently small e, we ha'Ve 

sgn(J(e + e» = (sgn(er)· sgn(r(e» 

In particular, il t' (e) i: 0, then 

sgn(J(e + e» = sgn(e)· sgn(J'(e» 

Qp Let m ~ 2. For all e such that lei< p-2(1I(/"«(»+v(ftl», we ha'Ve 

Pftl(J(e + e» = (pftl(e»n. Pftl(r(e» 

In particular il t' (e) i: 0, then 

Pftl(J(e + e» = pftl(e)· Pftl(t'(e» 

4.4.2 Algebra 

A real-closed field is a field elementarily equwalent to R; namely a fie1d 
which satisfies exactly the same sentences of the language of ordered fields 
(or equivalently, the language ofrings augmented with the P2 predicate), as 
R, see for example [14]. Correspondingly, a p-adically-closed fleld is one 
which is elementarily equivalent to Qp in the language of rings augmented 
with all the predicates Pn , for n ~ 2, see [27]. 

There is in fact an intrinsie characterization of real-closed and p-adically 
closed fields given by certain canonical completeness schemas. 

Proposition .16 (Real-closed flelds ud p-adically-closed flelds) 1. 
A real field is 'real-closed iff (a) e'Very odd degree polynomial O'Ver the 
field has a root in the field and (b) e'Very element or its negatwe is a 
square in the field. 

!. A p-adic field is p-adically closed iff (a) Hensel's lemma holds, (see 
§ !.!) and (b) lor each n ~ 2, there ezist a set 01 integers, bl!' ", b1c(n) 

such that lor each z in the field, Pn(b • . z) lor some i. 

Proposition .17 (Closures) 1. (Ariin-Schreier) Bvery real field has 
a real-closure which is unique upto isomorphism. 

!. (prestel-Rocquette, Robinson, Belair) Bvery p-adic field has a 
p-adic closure which is unique upto isomorphism. 
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4.4.3 Model Theory 

There are striking parallels in the model theory of the reals and the p-adics 
in the Pn-formalism. For definitions and concepts from Model Theory, we 
refer to the classic work ofChang and Kiesler, [8] or to the chapter by Kiesler 
in [3]. 

Proposition .18 (Model-Completeness) 1. R The theory of real-closed 
fields is modeZ.complete; That is, let K ~ L be real-closed. Then a 
first-order sentence in the langaage of ordered fields with parameters 
from K holds in L iff it holds in K. The same is tnre in the langaage 
of fields augmented with the P2 -predicate. 

2. Qp The theory of p-adically closed fields is modeZ.complete. That is, 
let K ~ L be p-adically closed. Then a first-order sentence in the 
langaage of valued fields with parameters from K is true in L iff it is 
true in L. The same holds in the langaage of fields augmented with all 
the predicates Pn , n ;?: 2. 

A consequence of this result are the following transfer principles: 

Proposition .19 (Transfer Principles) 1. (Tarski's transfer prin­
ciple for R) A first-order sentence is true in all real-closed fields iff 
it is true in R. 

2. (Ax-Kochen-Ersov transfer principle for Qp) A first-order sen­
tence is true in all p-adically closed fields iff it is true in Qp. 

This can also be deduced from the following important property of the 
two theories: 

Theorem .20 (Quantißer-Elimination) 1. R (Tarski, [31], also [11, 
5]) The theory of real-closed fields admits elimination of quantifiers 
in the language of ordered . fields, or in the langaage of field theory 
augmented with the predicate P2 • 

2. Qp (Macintyre, [23], also [13]) The theory of p-adically closed fields 
admits elimination of quantifiers in the langaage of fields augmented 
with all the predicates Pn , n ;?: 2. We do not get elimination of quan­
tifiers in the pure langaage of valued fields. 
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The last statement is a notable advantage of the Pn-formalism over the 
traditional valuation formalism. We will describe effective and quantitative 
versions of this theorem in § 5. 

A nice converse to the above was obtained by Macintyre, McKenna and 
van den Dries, [26]. 

Proposition .21 In the Pn-/ormalism: 

1. R An ordered field that admits elimination 0/ quantifiers is real-closed. 

!. Qp A "Belair-Robinson" p-adie field ([!-IJJ that admits elimination 0/ 
quantifiers is p-adically elosed. 

4.4.4 Semi-algebraic Geometry 

A semi-algebraic set in Rn is one that is specified by a set of polynomial 
equations and inequalities. Thus a semi-algebraic set in Rn has the form: 

{x ERn: I(x) = O,gl(X) f"V 0,·· ·,g1c(X) f"V O} 

where I, gl,···, g1c E R[z] and f"V is one of the two order relations, <, >. 
Real semi-algebraic geometry comprises. the study of these semi-algebraic 
sets and their morphisms. 

The p-adic counterpart to this is a p-adic semi-algebraic set, which 
is one of the form 

{x E Q; : Pn(!1(x» /\ ... /\ Pn(.h(x»} 

In Real semi-algebraic geometry, one has a strengthened form of the 
quantifier-eHm;nation theorem called the ''finiteness theorem", [32]: a defin­
able open subset of Rn can be defined using onlypositil1e boolean operations 7 

and stMet polynomialinequalities. Introduce thenotation, as in [28], Rn(z) +-+ 

z:/: O/\Pn(z). One can. of course express the condition l(zl'·· .,zn) > 0 by 
R2(!( ZI, ••• , zn» in the reals. In [28], an exact p-adic analogue is obtained: 

Theorem .22 ("Finiteness" Theorem.) (k := R or Qp) Any definable 
open subset 0/ kn ean be defined using only V, /\ and the Rn, n ~ 2. 

One also obtains a sensible notion of dimension which has the following 
properties, [30] 

Ti.e. DO negations. 
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Proposition .23 (Dimension) (k:= R or Qp) 

1. dim(km
) = m. 

2. 11 X, Y are definable subsets 01 km, then 

dim(X U Y) = max( dim(X), dim.(Y» 

and dim(X) :5 dim(Y) il X ~ Y. 

3. 11 X is definable, then dim(X) is equal to the algebro-geometric di­
mension 01 the Zariski closure 01 X. 

5 Quantifier Elimination and Decision Procedures via AI­
gebraic Cell Decomposition 

The basic intent behind a Cell Decomposition is to partition affine space 
into "cells" in each of which a given set of polynomials "behaves well". 
In the well-known Cylindrica1 Algebraic Decomposition algoritbm over the 
reals, for instance [11], real affine space is partitioned into cells de1ineated 
by polynomial inequalities such that in each cell a given set of polynomials 
maintains constant sign. The natural analogue over the p-adics would be 
to partition p-adic affine space into cells in each of which a given set of 
polynomials maintains fixed coset representatives of certain nth powers. In 
this section, we describe and refine a Cell Decomposition lemma due to 
Denef, [12, 13], that meets these requirements. In order to obtain this 
decomposition, an auxiliary decomposition is needed that partitions p-adic 
affine space into cells in each of which given polynomials are weIl behaved 
with respect to their valuations, in a sense which is made precise below. 

First we need some preJim;nary definitions. Recal1 the following defini­
tion motivated in § 4.4.4. 

Definition .24 A subset of km, m ~ 1 is semi-algebmic if it is a boolean 
combination of subsets of the form 

{x E km : Pn(f(x»} 

where fE k[:l:1' •.• ' :l:m ] and n ~ 2. 0 

We extend this notion to functions as follows, [13]: 
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Definition .25 A function 1 : km -+ k, m ~ 1 is semi-algebraic if for every 
semi-algebraic subset S ~ k X kf', r ~ 1, the set 

{(z, y) E km+f' : (f(z), y) E S} 

is semi-algebraic. ° 
Remarks: 

1. The graph of a semi-algebraic function is semi-algebraic. 

2. A polynomial is a semi-algebraic function. 

3. The dass of semi-algebraic functions is cl.osed under composition, ad­
dition and multiplication. 

Sets defined by polynomial equalities and inequalities between valuations 
of polynomials are semi-algebraic. In [13], it is proved that sets defined by 
congruences are also semi-algebraic. 

Now we can define the p-adic analog of a cell: 

Definition .26 [p-adic cell] A cell in km X k is a set of the form 

where C ~ km is semi-algebraic, al, <12 and c are semi-algebraic functions 
and 0h 02 denotes either $, < or no condition. The c:ell is said to have 
center c(x). 0 

5.1 Valuation Decomposition 

The next proposition gives a dec:omposition of p-adic: affine spac:e into c:ells 
such that in eac:h c:ell, the valuation of a given polynomial is bounded near 
the valuation of an individual term. The idea of this-dec:omposition goes 
back to Cohen, [9] and the key tools used are the IDtrametric: Equality and 
Hensel's Lemma. We use the c:onstruction as in Denef, [13], but supplement 
it with quantitative information which bounds its size. 

Proposition .27 (Cohen, Denef, [9, 13], Aigebraic Cell Decomposition for valuatiou 
Let I(x, t) be a polynomial in t with coefficients which are semi-algebraic 
functions 01 x E km. Then, there ezists a finite partition 01 km X k into 
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cells A such that each cell has associated with it a center, c( z) (where c( z ) 
is semi-algebraic) and a bound e E N such that if we write 

f(x, t) := L ~(x)(t - c(x))i 
i>O 

then 
v(f(x,t)) =:; mJ.nv(~(x)(t - c(x))i + e 

• 
In particular, let f E Z[Zh ... , zn] and suppose the degrees of f in Zl ... Zn 
are bounded by d1 , ••• , ein and that the coefficients are bounded in size by L. 
(Denate E.. ~ by D.) Then there ezisu a partition of size O(2c.

2D+L+") and 
the constant e = O(2D+L+n) for each such cello 

5.2 Decomposition for n-th powers 

The next proposition is a p-adic analogue of Cylindrical Algebraic Decom­
position for the reals 8. The key idea is to use Proposition .12 to convert 
the valuation decomposition into a decomposition for nth powers. 

Proposition .28 (Denef, [13], Algebraic Cell Decomposition Lemma for nth powers 
Let fi(X, t), 1 =:; i =:; r be polynomials in t with coefficients which are semi-
algebraic functions of x E km, and let n > 1 be fiud. Then there ezists a 
finite partition of km X k into cells A, such that each cell has a center c(x) 
(which is semi-algebraic), such that for all (x, t) E A, we have, 

fi(X, t) = Ui(x, t)n. ~(x)· (t - c(x))''', 1 =:; i =:; r 

with v(Ui(X, t)) = 0, ~(x) a semi-algebraic function of x and Vi E N for 
each 1 =:; i=:; r. 

In particular, if applied to r polynomials in Z[Zl,·· ., Zm] with degrees 
bounded by d1 ,· •• , cl,.,. (with D := d1 + ... + cl,.,.) and coefficient size bounded 
by L, it yields adecomposition into at most O(2c.,..L.2

D +,,) such cells for 
some constant c. 

5.3 ADecision Procedure 

In this subsection, we use the quantitative version of the Cell Decomposition 
lemma, Proposition .28 to give adecision procedure for the full theory, 

8 As .~ted, it is not a cylindrical decomposition as u.sually underst.ood, but can be 
made such, [30] 
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Th(Qp, +, x, 0, 1, {Pn}n~2) in the form of an alternating Turing machine 
algorithm running in exponential time. This also yields a deterministic 
decision procedure running in exponential space or in double exponential 
time. 

We describe an alternating Turing machine algorithm to decide sentences 
of the theory of p-adically-closed fields. At any point in the computation, a 
processor is attempting to verify a statement of the form 

Qp F (QZ 1)" .(QZIe) 
CP(h(Zl, .. " ZIe), .. " 1",(zl" . " ZIe» 

where cp is a boolean combinationofsentences ofthe formPn(fi(zl"", ZIe»' 
(Assume, without loss of generality, that the last quantifier is 3.) By com­
puting the Cell Decomposition (Nth powers version) for the polynomials 
involved, this amounts to verifying several condition of the form 

Qp F 
(QZ1)" ·(3Zk) 

cp' (91(Zl"", ZIe-1),"', 9.(Zl,···' ZIe-1» 

A v(a1(zl,"',ZIe-1»D1 

v(t - C(Zl"'" ZIe-1»D2 

v(a2(zl,"" ZIe-1» 

A P,,(p' (t - C(Zl," " ZIe-1») 

The processor activates several child processors, one for each cell, each at­
tempting to verify such a condition. H the quantifier is 3, these are generated 
using V-branching, if it is 'V, A-branching is used. As in [13], or otherwise, 
one can e1iminate the Zle variable at this stage and so each child processor 
is reduced to verifying a condition of the form 

(where x := (Zl"", ZIe»' 
Finallya (super-exponential) number of processors, each attempting to 

verify a quantifier-free statement can all use the criterion in Proposition .8. 
To analyze the complexity of the decision procedure, suppose we start 

with the sentence 

Qp F (Q Z1)" ·(Qzm) 
CP(h(Zl,"', zm),"', 1",(zl,"" zm» 
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Applying Proposition .28 to the set of polynomials h, ... , fr, and using 
the notation from there, we see that there are approximately 2c:·r.L.2.P+" cells 
that need to be generated. However, the alternating machine can generate 
them in time O(r·L·2D+n ) by its parallel branching capability. So there will 
be a double exponential number of processes running concurrently to verify 
their respective conditions. At the bottom it is dear that the criterion of 
Proposition .8 can be used to verify the quantifier-free condition in exponen­
tial time. Thus the overall alternating algorithm runs in time 0 (r . L . 2D+n) 
i.e. in double exponential time. Moreover, the machine dearly makes at 
most malternations. 

This analysis combined with results from the last section yield: 

Theorem .29 (The Decision Problem for Qp) The decisionproblemfor 
linear sentences over Qp is complete for the Berman compZezity dass u...,ST A( *, 2'"Yß, n). 
In particular it can be solved in e XP SP ACe and in double ezponential time. 

5.4 A Quantifier-Elimination Procedure 

The decision problem of the last section can actually be converted into a 
deterministic quantifier-elimination algorithm in the straightforward way, 
eliminating one variable at a time by taking a disjunction over all the cells 
produced in the decomposition. To analyze the complexity ofthe algorithm, 
we merely note that the size of the constants involved in the formulas can at 
most increase by a constant, and that the number of polynomials produced 
to replace a given polynomial in a cell is at most four times the original. 
This yields 

Theorem .30 (Quantifler-Elimination for Qp) There is a quantifier elim­
ination procedure for the theory of linear sentences in Qp. Given a formula 
F, this produces a quantifier-free formula F' equivalent to F in double e:t­

ponential time. Moreover, Z(F') ~ 22'Y
1
(P) for some constant,. 

5.5 Lower Bounds 

Berman [4], showed that Uc:ST A( *,2=, n) is polynomial-time reducible to 
the theory of R. It was observed by, inter alia, Weispfenning [35] and Fürer 
[18],that this reduction (and in fact the original one of [19]) makes no essen­
tial use of the order relation. In fact, it holds for any theory in the language 
LGI := (0,1, +) of abe1ian groups, such that all its models are groups, and 
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in one model, an element (for instance, 1) of infinite order exists. More 
precisely, 

Proposition .31 (Fischer-Rahin, Berman) Let G be a torsion-free abelian 
group with distinguished element 0 :f; 1. G may cafTY additional structure 
for a language L eztending LG1. Then, the decision problem for first order 
sentences in the L-theory ofG is hard for ucST A( *,2=, n) under polynomial 
time reduetions. 

Combining this with the result of § 5.3, we obtain 

Corollary .32 The decision problem for the theory of p-adically closed fields 
is complete for ucST A( *,2=, n) under polynomialtime reduetions. 

For the lower bound on explicit quantifier e]jmjnation, we combine two 
ingredients. The first is a construction of Fischer and Rabin ([19], Th.8, 
Cor.9), slightly mended as in [35]: 

Lemma .33 (Fischer-Rahin) There is a positive constant c, and a se­
quence J'n, n ~ 1 of LG1-formulas with one free variable z, such that 

1. If G is an abeli4n group in which 1 is an element of infinite order, 
then 

pe: := {a E G: G F J'n(a)} = {O, 1,·· .,22" -1} 

~. If G is an abelian group with distinguished element 1 :f; 0, then 

G { 2"} ,,:) 01···2 -1 r-n - " , 

The second ingredient is a general technicallemma due to Weispfenning, 
[35], relating the geometry of definable sets to their sizes. Using this, we 
obtain, [15, 35]: 

Proposition .34 Any quantifier-free formula O'n equivalent to J'n over Qp 
has I(O'n) ~ 22" for n ~ 1. Hence any quantifier elimination procedure for 
Qp requires at least double ezponential space. 
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