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Abstract

We describe an implementation of the Hopcroft and Tarjan planarity test and em�
bedding algorithm� The program tests the planarity of the input graph and either
constructs a combinatorial embedding �if the graph is planar� or exhibits a Kuratowski
subgraph �if the graph is non�planar��
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�� Introduction�

We descibe two procedures to test the planarity of a graph G�

bool planar �graph 
G�bool embed � false �

and

bool planar �graph 
G� listhedgei 
P�bool embed � false ��

Both take a directed graph G and test it for planarity� If the graph is planar and bidirected�
i�e�� for every edge of G its reversal is also in G� and the argument embed is true� then they
also compute a combinatorial embedding of G �by suitably reordering its adjacency lists��
If the graph G is non�planar then the �rst version of planar only records that fact� The
second version in addition returns a subgraph of G homeomorphic to K��� or K� �as a list
P of edges�� For a planar graph G the running time of both versions is linear �cf� section ��
for more detailed information�� For non�planar graphs G the �rst version runs in linear time
but the second version runs in quadratic time� We are aware of the linear time algorithm of
Williamson �Wil��� to �nd Kuratowski subgraphs but have not implemented it�

The implementation of planar is based on the LEDA platform of combinatorial and geo�
metric computing �Nae��� MN���� It is part of the LEDA�distribution �available through
anonymous ftp at cs�uni�sb�de�� In this document we describe the implementation of both
versions of planar and a demo� and report on our experimental experience�

Procedure planar is based on the Hopcroft and Tarjan linear time planarity testing algorithm
as described in �Meh��� section IV��
�� For the sequel we assume knowledge of section IV��

of �Meh���� A revised version of that section is included in this document �see section ���
for the convenience of the reader� Our procedure planar di�ers from �Meh��� section IV��
�
in two respects� Firstly� it works for arbitrary directed graphs and not only for biconnected
undirected graphs� To this end we augment the input graph by additional edges to make
it biconnected and bidirected� The augmentation does not destroy planarity� Secondly�
the embedding phase follows the presentation in �MM���� We want to remark that the
description of the embedding phase given in �Meh��� section IV��
� is false� The essential
part of �MM��� is reprinted in section ���

This document de�nes the �les planar �h� planar �c� and demo �c� planar �c contains the code
for procedure planar � demo �c contains the code for a demo� and planar �h consists of the
declarations of procedure planar � The third �le is de�ned in section ��� the structure of the
�rst two �les is as follows�

h planar�h � i �
bool planar �graph 
G�bool embed � false ��
bool planar �graph 
G� listhedgei 
P�bool embed � false ��
void Make biconnected graph �graph 
G��

��h planar�c � i �
h includes � i�
h typedefs� global variables and class declarations �� i�
h auxiliary functions � i�
h �rst version of planar 	 i�
h second version of planar � i�
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�� We include parts of LEDA �who would want to work without it� �Nae��� MN���� We
need stacks� graphs� and graph algorithms�

h includes � i �
�include �LEDA�stack�h�

�include �LEDA�graph�h�

�include �LEDA�graph�alg�h�

�include �planar�h�

See also section ���

This code is used in sections � and �	�

�� The second version of planar is easy to describe� We �rst test the planarity of G using
the �rst version� If G is planar then we are done� If G is non�planar then we cycle through
the edges of G� For every edge e of G we test the planarity of G�e� If G�e is planar we add
e back in� In this way we determine a minimal �with respect to set inclusion� non�planar
subgraph of G� i�e�� either a K� or a K����

h second version of planar � i �
bool planar �graph 
G� listhedgei 
P�bool embed � false �
f
if �planar �G� embed �� return true �
�� We work on a copy H of G since the procedure alters G� we link every vertex and
edge of H with its original� For the vertices we also have the reverse links� ��

GRAPHhnode� edgei H�
node arrayhnodei link �G��
node v�

forall nodes �v�G� link �v� � H�new node �v��
�� This requires some explanation� H�new node �v� adds a new node to H� returns the
new node� and makes v the information associated with the new node� So the statement
creates a copy of v and bidirectionally links it with v ��

edge e�

forall edges �e�G� H�new edge �link �source�e��� link �target �e��� e��
�� link �source�e�� and link �target �e�� are the copies of source �e� and target �e� in H�
The operation H�new edge creates a new edge with these endpoints� returns it� and
makes e the information of that edge� So the e�ect of the loop is to make the edge set
of H a copy of the edge set of G and to let every edge of H know its original� We can
now determine a minimal non�planar subgraph of H ��

listhedgei L � H�all edges � ��
edge eh �

forall �eh � L� f
e � H�eh �� �� the edge in G corresponding to eh

node x � source �eh ��
node y � target �eh ��

H�del edge �eh ��
if �planar �H�� H�new edge �x� y� e��

�� put a new version of eh back in and establish the correspondence
g
�� H is now a homeomorph of either K� or K���� We still need to translate back to G�
��
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P �clear � ��
forall edges �eh �H� P �append �H�eh ���
return false �

g

This code is used in section ��

�� The �rst version of planar is also quite simple to describe� Graphs with at most three
vertices are always planar� So assume that G has more than three vertices� We �rst add
edges to G to make it bidirected and then add some more edges to make it biconnected �of
course� without destroying planarity�� Then we test the planarity of the extended graph
and construct an embedding� Since planar alters the input graph� it works on a copy of it�

h �rst version of planar 	 i �
bool planar �graph 
Gin �bool embed � false�
�� Gin is a directed graph� planar decides whether Gin is planar� If it is and embed �
true then it also computes a combinatorial embedding of Gin by suitably reordering its
adjacency lists� Gin must be bidirected in that case� ��
f
int n � Gin �number of nodes � ��

if �n � �� return true �
if �Gin �number of edges � � � � � n� ��� return false �
�� An undirected planar graph has at most �n � � edges� a directed graph may have
twice as many ��
hmake G a copy of Gin and add edges to make G bidirected � i�
hmake G biconnected � i�
h test planarity �� i�
if �embed � h construct embedding �� i�
return true �

g

This code is used in section ��

�� We make G a copy of Gin and bidirectionally link all vertices and edges� Then we add
edges to G to make it bidirected� In Gin is bidirected we record whether we needed to add
edges�

hmake G a copy of Gin and add edges to make G bidirected � i �
GRAPHhnode� edgei G�
edge arrayhedgei companion in G �Gin ��
node arrayhnodei link �Gin ��
bool Gin is bidirected � true �

f
node v�

forall nodes �v�Gin � link �v� � G�new node �v�� �� bidirectional links

edge e�

forall edges �e�Gin �
companion in G �e� � G�new edge �link �source�e��� link �target �e��� e��

g
h bidirect G � i�

This code is used in section 	�
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	� We bidirect G� We �rst assign numbers to nodes and edges� We make sure that the two
versions of the same undirected edge get the same number but versions of distinct undirected
edges get di�erent numbers� Then we sort the edges according to numbers� Finally we step
through the sorted list of edges and add missing edges�

h bidirect G � i �
f
node arrayhinti nr �G��
edge arrayhinti cost �G��
int cur nr � 
�
int n � G�number of nodes � ��
node v�
edge e�

forall nodes �v�G� nr �v� � cur nr ���
forall edges �e�G�
cost �e� � ��nr �source �e�� � nr �target �e��� � n � nr �source �e�� � nr �target �e�� �

n � nr �target �e�� � nr �source�e����
G�sort edges �cost ��

listhedgei L � G�all edges � ��

while ��L�empty � �� f
e � L�pop � ��
�� check whether the �rst edge on L is equal to the reversal of e� If so� delete it from
L� if not� add the reversal to G ��
if ��L�empty � � � �source �e� � target �L�head � ��� � �source �L�head � �� � target �e���
L�pop� ��

else f
G�new edge �target �e�� source �e���
Gin is bidirected � false �

g
g

g

This code is used in section ��
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� Making the Graph Biconnected�

We make G biconnected� We �rst make it connected by linking all roots of a DFS�forest�
Assume now that G is conected� Let a be any articulation point and let u and v be neighbors
of a belonging to di�erent biconnected components� Then there are embeddings of the two
components with the edges fu� ag and fv� ag on the boundary of the unbounded face� Hence
we may add the edge fu� vg without destroying planarity� Proceeding in this way we make
G biconnected�

In Make biconnected graph we change the graph while working on it� But we modify only
those adjacency lists that will not be touched later�

We need the biconnected version of G �G will be further modi�ed during the planarity test�
in order to construct the planar embedding� So we store it as a graph H� For every edge of
Gin and G we store a link to its copy in H� In addition every edge of H is made to know
its reversal�

hmake G biconnected � i �
Make biconnected graph �G��
hmake H a copy of G �� i�

This code is used in section 	�

�� We give the details of the procedure Make biconnected graph � We �rst make G con�
nected by linking all roots of the DFS�forest� In a second step we make G biconnected�

h auxiliary functions � i �
void Make biconnected graph �graph 
G�
f
node v�
node arrayhbooli reached �G� false��
node u � G��rst node � ��

forall nodes �v�G� f
if ��reached �v�� f
�� explore the connected component with root v ��
DFS�G� v� reached ��
if �u �� v� f
�� link v�s component to the �rst component ��
G�new edge �u� v��
G�new edge �v� u��

g �� end if
g �� end not reached

g �� end forall
�� G is now connected� We next make it biconnected� ��
forall nodes �v�G� reached �v� � false �

node arrayhinti dfsnum �G��
node arrayhnodei parent �G� nil ��
int dfs count � 
�
node arrayhinti lowpt �G��

dfs in make biconnected graph �G�G��rst node � �� dfs count � reached � dfsnum � lowpt �
parent ��

g �� end Make biconnected graph

�



See also sections �
� �	� ��� ��� and ���

This code is used in section ��

��� We still have to give the procedure dfs in make biconnected graph � It determines ar�
ticulation points and adds appropriate edges whenever it discovers one� For a proof of
correctness we refer the reader to �Meh��� section IV����

h auxiliary functions � i ��
void dfs in make biconnected graph �graph 
G�node v� int 
dfs count �

node arrayhbooli 
reached �
node arrayhinti 
dfsnum �node arrayhinti 
lowpt �node arrayhnodei

parent �

f
node w�
edge e�

dfsnum �v� � dfs count ���
lowpt �v� � dfsnum �v��
reached �v� � true �
if ��G��rst adj edge �v�� return� �� no children

node u � target �G��rst adj edge �v��� �� �rst child

forall adj edges �e� v� f
w � target �e��
if ��reached �w�� f
�� e is a tree edge ��
parent �w� � v�
dfs in make biconnected graph �G�w� dfs count � reached � dfsnum � lowpt � parent ��
if �lowpt �w� � dfsnum �v�� f
�� v is an articulation point� We now add an edge� If w is the �rst child and v
has a parent then we connect w and parent �v�� if w is a �rst child and v has no
parent then we do nothing� If w is not the �rst child then we connect w to the
�rst child� The net e�ect of all of this is to link all children of an articulation
point to the �rst child and the �rst child to the parent �if it exists� ��
if �w � u � parent �v�� f
G�new edge �w� parent �v���
G�new edge �parent �v�� w��

g
if �w �� u� f
G�new edge �u�w��
G�new edge �w� u��

g
g �� end if lowpt � dfsnum
lowpt �v� � Min �lowpt �v�� lowpt �w���

g �� end tree edge
else lowpt �v� � Min �lowpt �v�� dfsnum �w��� �� non tree edge

g �� end forall
g �� end dfs

��� Because we use the function dfs in make biconnected graph before its declaration� let�s
add it to the global declarations�
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h typedefs� global variables and class declarations �� i �
void dfs in make biconnected graph �graph 
G�node v� int 
dfs count �

node arrayhbooli 
reached �node arrayhinti 
dfsnum �node arrayhinti

lowpt �node arrayhnodei 
parent ��

See also sections ��� ��� and �
�

This code is used in section ��

��� We make H a copy of G and create bidirectional links between the vertices and edges
of G and H� Also� each edge in Gin gets a link to its copy in H and every edge of H gets
to know its reversal� More precisely� H�G�v�� � v for every node v of G and H�G�e�� � e for
every edge e ofG� and companion in H �ein � is the edge inH corresponding to the edge ein of
Gin for every edge ein of Gin � Finally� if e � �u� v� is an edge of H then reversal �e� � �v� u��

hmake H a copy of G �� i �
GRAPHhnode� edgei H�
edge arrayhedgei companion in H �Gin ��

f
node v�

forall nodes �v�G� G�assign �v�H�new node �v���

edge e�

forall edges �e�G� G�assign �e�H�new edge �G�source�e��� G�target �e��� e���

edge ein �

forall edges �ein �Gin � companion in H �ein � � G�companion in G �ein ���
g

edge arrayhedgei reversal �H��

compute correspondence �H� reversal ��

This code is used in section ��
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��� The Planarity Test�

We are now ready for the planarity test proper� We follow �Meh��� page ���� We �rst
compute dfsnumber s and parent s� we delete all forward edges and all reversals of tree edges�
and we reorder the adjaceny lists as described in �Meh��� page �
��� We then test the strong
planarity� The array alpha is needed for the embedding process� It records the placement
of the subsegments�

h test planarity �� i �
node arrayhinti dfsnum �G��
node arrayhnodei parent �G� nil ��

reorder �G� dfsnum � parent ��

edge arrayhinti alpha �G� 
��

f
listhinti Att �

alpha �G��rst adj edge �G��rst node � ��� � left �
if ��strongly planar �G��rst adj edge �G��rst node � ��� G�Att � alpha � dfsnum � parent ��
return false �

g

This code is used in section 	�

��� We need two global constants left and right �

h typedefs� global variables and class declarations �� i ��
const int left � ��
const int right � ��

��� We give the details of the procedure reorder � It �rst performs DFS to compute dfsnum �
parent � lowpt� and lowpt� � and the list Del of all forward edges and all reversals of tree
edges� It then deletes the edges in Del and �nally it reorders the edges�

h auxiliary functions � i ��
void reorder �graph 
G�node arrayhinti 
dfsnum �node arrayhnodei 
parent �
f
node v�
node arrayhbooli reached �G� false��
int dfs count � 
�
listhedgei Del �
node arrayhinti lowpt� �G�� lowpt� �G��

dfs in reorder �Del � G��rst node � �� dfs count � reached � dfsnum � lowpt� � lowpt� � parent ��
�� remove forward and reversals of tree edges ��

edge e�

forall �e�Del � G�del edge �e��
�� we now reorder adjacency lists as described in �Meh��� page �
�� ��

node w�
edge arrayhinti cost �G��
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forall edges �e�G� f
v � source �e��
w � target �e��
cost �e� � ��dfsnum �w� � dfsnum �v�� � � � dfsnum �w� � ��lowpt� �w� 	 dfsnum �v�� �

� � lowpt� �w� � � � lowpt� �w� � ����
g
G�sort edges �cost ��

g

��� We still have to give the procedure dfs in reorder � It�s a bit long but standard�

h auxiliary functions � i ��
void dfs in reorder �listhedgei 
Del �node v� int 
dfs count �node arrayhbooli


reached �
node arrayhinti 
dfsnum �node arrayhinti 
lowpt� �node arrayhinti

lowpt� �
node arrayhnodei 
parent �

f
node w�
edge e�

dfsnum �v� � dfs count ���
lowpt� �v� � lowpt� �v� � dfsnum �v��
reached �v� � true �
forall adj edges �e� v� f
w � target �e��
if ��reached �w�� f
�� e is a tree edge ��
parent �w� � v�
dfs in reorder �Del � w� dfs count � reached � dfsnum � lowpt� � lowpt� � parent ��
lowpt� �v� � Min �lowpt� �v�� lowpt� �w���

g �� end tree edge
else f
lowpt� �v� � Min �lowpt� �v�� dfsnum �w��� �� no e�ect for forward edges
if ��dfsnum �w� 	 dfsnum �v�� 
w � parent �v��
�� forward edge or reversal of tree edge ��
Del �append �e��

g �� end non�tree edge
g �� end forall
�� we know lowpt� �v� at this point and now make a second pass over all adjacent edges
of v to compute lowpt� ��
forall adj edges �e� v� f
w � target �e��
if �parent �w� � v� f
�� tree edge ��
if �lowpt� �w� �� lowpt� �v�� lowpt� �v� � Min �lowpt� �v�� lowpt� �w���
lowpt� �v� � Min �lowpt� �v�� lowpt� �w���

g �� end tree edge
else �� all other edges
if �lowpt� �v� �� dfsnum �w�� lowpt� �v� � Min �lowpt� �v�� dfsnum �w���

g �� end forall
g �� end dfs
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�	� Because we use the function dfs in reorder before its declaration� let�s add it to the
global declarations�

h typedefs� global variables and class declarations �� i ��
void dfs in reorder �listhedgei 
Del �node v� int 
dfs count �node arrayhbooli


reached �
node arrayhinti 
dfsnum �node arrayhinti 
lowpt� �node arrayhinti 
lowpt� �
node arrayhnodei 
parent ��

�
� We now come to the heart of the planarity test� procedure strongly planar � It takes a
tree edge e
 � �x� y� and tests whether the segment S�e
� is strongly planar� If successful it
returns �in Att � the ordered list of attachments of S�e
� �excluding x�� high DFS�numbers
are at the front of the list� In alpha it records the placement of the subsegments�

strongly planar operates in three phases� It �rst constructs the cycle C�e
� underlying the
segment S�e
�� It then constructs the interlacing graph for the segments emanating from
the spine of the cycle� If this graph is non�bipartite then the segment S�e
� is non�planar�
If it is bipartite then the segment is planar� In this case the third phase checks whether the
segment is strongly planar and� if so� computes its list of attachments�

h auxiliary functions � i ��
bool strongly planar �edge e� �graph 
G� listhinti 
Att � edge arrayhinti 
alpha �

node arrayhinti 
dfsnum �node arrayhnodei 
parent �
f
h determine the cycle C�e
� �� i�
h process all edges leaving the spine �� i�
h test strong planarity and compute Att �	 i�
return true �

g

��� We determine the cycle C�e
� by following �rst edges until a back edge is encountered�
wk will be the last node on the tree path and w� is the destination of the back edge� This
agrees with the notation of �Meh����

h determine the cycle C�e
� �� i �
node x � source �e� ��
node y � target �e� ��
edge e � G��rst adj edge �y��
node wk � y�

while �dfsnum �target �e�� � dfsnum �wk �� �� e is a tree edge
f
wk � target �e��
e � G��rst adj edge �wk ��

g

node w� � target �e��

This code is used in section ���
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��� The second phase of strongly planar constructs the connected components of the in�
terlacing graph of the segments emananating from the the spine of the cycle C�e
�� We
call a connected component a block� For each block we store the segments comprising its
left and right side �lists Lseg and Rseg contain the edges de�ning these segments� and the
ordered list of attachments of the segments in the block� lists Latt and Ratt contain the
DFS�numbers of the attachments� high DFS�numbers are at the front of the list� Blocks are
so important that we make them a class�

We need the following operations on blocks�

The constructor takes an edge and a list of attachments and creates a block having the edge
as the only segment in its left side�

�ip interchanges the two sides of a block�

head of Latt and head of Ratt return the �rst elements on Latt and Ratt respectively and
Latt empty and Ratt empty check these lists for emptyness�

left interlace checks whether the block interlaces with the left side of the topmost block of
stack S� right interlace does the same for the right side�

combine combines the block with another block Bprime by simply concatenating all lists�

clean removes the attachment w from the block B �it is guaranteed to be the �rst attachment
of B�� If the block becomes empty then it records the placement of all segments in the block
in the array alpha and returns true� Otherwise it returns false�

add to Att �rst makes sure that the right side has no attachment above w� �by �ipping��
when add to Att is called at least one side has no attachment above w� � add to Att then
adds the lists Ratt and Latt to the output list Att and records the placement of all segments
in the block in alpha � We advise the reader to only skim the rest of the section at this point
and to come back to it when the procedures are �rst used�

h typedefs� global variables and class declarations �� i ��
class block f
private� listhinti Latt � Ratt � �� list of attachments
listhedgei Lseg � Rseg � �� list of segments represented by their de�ning edges

public� block�edge e� listhinti 
A�
f
Lseg �append �e��
Latt �conc�A�� �� the other two lists are empty

g

�block� � f g

void �ip � �
f
listhinti ha �
listhedgei he �
�� we �rst interchange Latt and Ratt and then Lseg and Rseg ��

ha �conc�Ratt �� Ratt �conc�Latt �� Latt �conc �ha ��
he �conc �Rseg �� Rseg �conc�Lseg �� Lseg �conc�he ��

g

int head of Latt � � f return Latt �head � �� g

bool empty Latt � � f return Latt �empty � �� g

int head of Ratt � � f return Ratt �head � �� g

bool empty Ratt � � f return Ratt �empty � �� g

��



bool left interlace �stackhblock �i 
S�
f �� check for interlacing with the left side of the topmost block of S ��
if �Latt �empty � �� error handler ��� �Latt�is�never�empty���
if ��S�empty � �����S�top � ���empty Latt � ���Latt �tail � � � �S�top� ���head of Latt � ��
return true �

else return false �
g

bool right interlace �stackhblock �i 
S�
f �� check for interlacing with the right side of the topmost block of S ��
if �Latt �empty � �� error handler ��� �Latt�is�never�empty���
if ��S�empty � �����S�top� ���empty Ratt � ���Latt �tail � � � �S�top� ���head of Ratt � ��
return true �

else return false �
g

void combine �block �
Bprime �
f �� add block Bprime to the rear of this block ��
Latt �conc�Bprime�Latt ��
Ratt �conc�Bprime�Ratt ��
Lseg �conc�Bprime�Lseg ��
Rseg �conc �Bprime�Rseg ��
delete �Bprime ��

g

bool clean �int dfsnum w � edge arrayhinti 
alpha �node arrayhinti 
dfsnum �
f �� remove all attachments to w� there may be several ��
while ��Latt �empty � � � Latt �head � � � dfsnum w � Latt �pop � ��
while ��Ratt �empty � � �Ratt �head � � � dfsnum w � Ratt �pop � ��
if ��Latt �empty � � 
 �Ratt �empty � �� return false �
��Latt and Ratt are empty� we record the placement of the subsegments in alpha �
��

edge e�

forall �e�Lseg � alpha �e� � left �
forall �e�Rseg � alpha �e� � right �
return true �

g

void add to Att �listhinti 
Att � int dfsnum w� � edge arrayhinti 
alpha �
node arrayhinti 
dfsnum �

f �� add the block to the rear of Att � Flip if necessary ��
if ��Ratt �empty � � � head of Ratt � � � dfsnum w� � �ip � ��
Att �conc �Latt ��
Att �conc �Ratt ��
�� This needs some explanation� Note that Ratt is either empty or fw
g� Also if
Ratt is non�empty then all subsequent sets are contained in fw
g� So we indeed
compute an ordered set of attachments� ��

edge e�

forall �e�Lseg � alpha �e� � left �
forall �e�Rseg � alpha �e� � right �

g
g�

��



��� We process the edges leaving the spine of S�e
� starting at node wk and working
backwards� The interlacing graph of the segments emanating from the cycle is represented
as a stack S of blocks�

h process all edges leaving the spine �� i �
node w � wk �
stackhblock �i S�

while �w �� x� f
int count � 
�

forall adj edges �e� w� f
count ���
if �count �� �� �� no action for �rst edge
f
h test recursively �� i�
h update stack S of attachments �� i�

g �� end if
g �� end forall
h prepare for next iteration �� i�
w � parent �w��

g �� end while

This code is used in section ���

��� Let e be any edge leaving the spine� We need to test whether S�e� is strongly planar
and if so compute its list A of attachments� If e is a tree edge we call our procedure
recursively and if e is a back edge then S�e� is certainly strongly planar and target �e� is the
only attachment� If we detect non�planarity we return �ase and free the storage allocated
for the blocks of stack S�

h test recursively �� i �
listhinti A�

if �dfsnum �w� � dfsnum �target �e��� f
�� tree edge ��
if ��strongly planar �e�G�A� alpha � dfsnum � parent �� f
while ��S�empty � �� delete �S�pop � ���
return false �

g
g
else A�append �dfsnum �target �e���� �� a back edge

This code is used in section ���

��� The list A contains the ordered list of attachments of segment S�e�� We create an new
block consisting only of segment S�e� �in its L�part� and then combine this block with the
topmost block of stack S as long as there is interlacing� We check for interlacing with the
L�part� If there is interlacing then we �ip the two sides of the topmost block� If there is still
interlacing with the left side then the interlacing graph is non�bipartite and we declare the
graph non�planar �and also free the storage allocated for the blocks�� Otherwise we check
for interlacing with the R�part� If there is interlacing then we combine B with the topmost
block and repeat the process with the new topmost block� If there is no interlacing then we
push block B onto S�
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h update stack S of attachments �� i �
block �B � new block �e� A��

while �true � f
if �B� left interlace�S�� �S�top � ����ip � ��
if �B� left interlace�S�� f
delete �B��
while ��S�empty � �� delete �S�pop � ���
return false �

g
�
if �B�right interlace�S�� B�combine �S�pop � ���
else break�

g �� end while
S�push �B��

This code is used in section ���

��� We have now processed all edges emanating from vertex w� Before starting to process
edges emanating from vertex parent �w� we remove parent �w� from the list of attachments of
the topmost block of stack S� If this block becomes empty then we pop it from the stack
and record the placement for all segments in the block in array alpha �

h prepare for next iteration �� i �
while ��S�empty � � � �S�top� ���clean �dfsnum �parent �w��� alpha � dfsnum ��
delete �S�pop � ���

This code is used in section ���

��� We test the strong planarity of the segment S�e
��

We know at this point that the interlacing graph is bipartite� Also for each of its connected
components the corresponding block on stack S contains the list of attachments below x�
Let B be the topmost block of S� If both sides of B have an attachment above w� then
S�e
� is not strongly planar� We free the storage allocated for the blocks and return false�
Otherwise �cf� procedure add to Att � we �rst make sure that the right side of B attaches
only to w� �if at all� and then add the two sides of B to the output list Att � We also record
the placements of the subsegments in alpha �

h test strong planarity and compute Att �	 i �
Att �clear � ��
while ��S�empty � �� f
block �B � S�pop � ��

if ���B�empty Latt � �� � ��B�empty Ratt � �� � �B�head of Latt � � �
dfsnum �w� �� � �B�head of Ratt � � � dfsnum �w� ��� f

delete �B��
while ��S�empty � �� delete �S�pop � ���
return false �

g
B�add to Att �Att � dfsnum �w� �� alpha � dfsnum ��
delete �B��
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g �� end while
�� Let�s not forget �as the book does� that w
 is an attachment of S�e
� except if w
 � x�
��
if �w� �� x� Att �append �dfsnum �w� ���

This code is used in section ���
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��� Constructing the Embedding�

We now discuss how the planarity testing algorithm can be extended so that it also computes
a planar map� Consider a segment S�e�� � C�S�e��� � � ��S�em� consisting of cycle C and
emanating segments S�e��� � � � � S�em� and recall that the proofs of Lemmas � and � describe
how the embeddings of the S�ei��s have to be combined to yield a canonical embedding of
S�e��� Our goal is to turn these proofs into an e	cient algorithm�

The proofs of Lemmas � and � demonstrate two things�

� How to test whether IG�C� is bipartite and how to construct a partition fL�Rg of its
vertex set� and

� how to construct an embedding of S�e�� from the embeddings of the S�ei��s� This
involves �ipping of embeddings as we incrementally construct the embedding of S�e���

Suppose now that some benign agent told us that IG�C� were bipartite and gave us an
appropriate partition fL�Rg of its vertex set� i�e�� a partition fL�Rg such that no two
segments in L and no two segments in R interlace and such that A�ei�
fw�� � � � � wr��g � �
for any segment S�ei� � R� Here� as before� w�� � � � � wr denotes the stem of C� Then no
�ipping would ever be necessary� we can simply combine the embeddings of the S�ei��s as
prescribed by the partition fL�Rg� More precisely� to construct a canonical embedding of
S�e�� draw the path w�� � � � � wk �consisting of stem w�� � � � � wr� edge e� � �wr � wr��� and
spine wr��� � � � � wk� as a vertical upwards directed path� add edge �wk� w��� and then for i�
� � i � m� and S�ei� � L extend the embedding of C � S�e�� � � � �S�ei��� by glueing a
canonical embedding of S�ei� onto the left side of the vertical path� and for i� � � i � m�
and S�ei� � R extend the embedding of C � S�e�� � � � �� S�ei��� by glueing a reversed
canonical embedding of S�ei� onto the right side of the vertical path� Similarly� if the goal is
to construct a reversed canonical embedding of S�e�� then� if S�ei� � L� a reversed canonical
embedding of S�ei� is glued onto the right side of the vertical path� and if S�ei� � R� then
a canonical embedding of S�ei� is glued onto the left side of the vertical path�

Who is the benign agent which tells us that IG�C� is bipartite and gives us the appropriate
partition fL�Rg of the segments emanating from C � C�e��� It�s the call stronglyplanar�e���
After all� it tests whether IG�C� is bipartite and computes a bipartition of its vertex set�
Let S�e� be a segment emanating from C and let B be the connected component of IG�C�
containing S�e�� The call stronglyplanar�e�� computes B iteratively� The construction of B
is certainly completed when B is popped from stack S� Put S�e� into R when S�e� � RB at
that moment and put S�e� into L otherwise� With this extension� algorithm stronglyplanar
computes the partition fL�Rg of the segments emanating from C in linear time� We assume
for notational convenience that the partition �more precisely� the union of all partitions for
all cycles C�e�� encountered in the algorithm� is given as a function � � S � fL�Rg where
S is the set of edges for which stronglyplanar is called�

We next give the algorithmic details of the embedding process� We �rst use procedure
stronglyplanar to compute the mapping �� We then use a procedure embedding to actu�
ally compute an embedding� The procedure embedding takes two parameters� an edge e�
and a �ag t � fL�Rg� A call embedding�e�� L� computes a canonical embedding of S�e��
and a call embedding�e�� R� computes a reversed canonical embedding of S�e��� The call
embedding���� ��� L� embeds the entire graph�

The embedding of S�e�� computed by embedding�e�� t� is represented in the following non�
standard way�
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�� For the vertices v � V �e�� we use the standard representation� i�e�� the cyclic list of the
incident edges corresponding to the clockwise ordering of the edges in the embedding�

�� For the vertices in the stem we use a non�standard representation� For each vertex
wi � fw�� � � � � wrg let the lists AL�wi� and AR�wi� be such that the catenation of
�wi� wi���� AR�wi�� �wi� wi���� and AL�wi� corresponds to the clockwise ordering of
the edges incident to wi in the embedding� Here� w�� � wk� Note that AR�wi� � �
for � � i � r if t � L� and AL�wi� � � for � � i � r� if t � R� The lists AL�wi��
AR�wi�� 
 � i � r� are returned in an implicit way� AL�wr� and AR�wr� are returned
as the list T � AL�wr�� �wr� wr���� AR�wr� and the other lists are returned as the list
A � AR�wr���� � � � � AR�w��� �w�� wk�� AL�w��� � � � � AL�wr���� cf� Figure ��

The procedure embedding has the same structure as the procedure stronglyplanar and is
given in Program � on page ��� It �rst constructs the stem and the spine �line ���� of cycle
C�e��� then walks down the spine �lines ��� to ������ and �nally computes the lists T and A
it wants to return �lines ���� and ������

We �rst discuss the walk down the spine� Suppose that the walk has reached vertex wj � We
�rst recursively process the edges emanating from wj �lines ��� to ��
��� and then compute
the cyclic adjacency list of vertex wj and prepare for the next iteration �lines ���� to ������

We discuss lines ��� to ��
� �rst� In general� some number of edges emanating from wj and
all edges incident to vertices wl with l � j will have been processed already� In agreement
with our previous notation call the processed edges e�� � � � � ei��� We claim that the following
statement is an invariant of the loop ��� to ��
�� T concatenated with �wj � wj��� is the cyclic
adjacency list of vertex wj in the embedding of C�S�e���� � ��S�ei���� and AL and AR are
the catenation of lists AL�w��� � � � � AL�wj��� and AR�wj���� � � � � AR�w�� respectively where
�wl� wl���� AR�wl�� �wl� wl���� AL�wl� is the cyclic adjacency list of vertex wl� 
 � l � j���
in the embedding of C�S�e���� � ��S�ei���� The lists T �AL� andAR are certainly initialized
correctly in line ���� Assume now that we process edge e� � ei emanating from wj� The �ag
��e�� indicates what kind of embedding of S�ei� is needed to build a canonical embedding
of S�e��� the opposite kind of embedding of S�ei� is needed to build a reversed canonical
embedding of S�e��� So the required kind is given by t � ��e��� where L � L � R � R � L
and L � R � R � L � R� The call embedding�e�� t � ��e��� computes the cyclic adjacency
lists of the vertices in V �e�� and returns lists T � and A� as de�ned above� If S�ei� has to be
glued to the left side of the vertical path w�� � � � � wk� i�e�� if t � ��e�� then we append T � to
the front of T and A� to the end of AL� cf� Figure �� Analogously� if S�ei� has to be glued
to the right side of the path w�� � � � � wk� i�e�� if t �� ��e��� then we append T � to the end of
T and A� to the front of AR� This clearly maintains the invariant�

Suppose now that we have processed all edges emanating from wj� Then �wj� wj��� con�
catenated with T is the cyclic adjacency list of vertex wj �line ������

We next prepare for the treatment of vertex wj��� Let T � and T �� be the list of darts incident
to wj�� from the left and from the right respectively and having their other endpoint in an
already embedded segment� List T � is a su	x of AL and list T �� is a pre�x of AR� The
catenation of T �� �wj��� wj�� T

��� and �wj��� wj��� is the current clockwise adjacency list
of vertex wj��� Thus lines ���� and ���� correctly initialize AL� AR� and T for the next
iteration�

Suppose now that all edges emanating from the spine of C�e�� have been processed� i�e��
control reaches line ����� At this point� list T is the ordered list of darts incident to wr

�except �wr� wr���� and the two lists AL and AR are the ordered list of darts incident to
the two sides of the stem of C�e��� Thus T and the catenation of AR� �w�� wk�� and AL are
the two components of the output of embedding�e�� t�� We summarize in
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�
� procedure embedding�e�� edge� t� fL�Rg�
�� computes an embedding of S�e��� e� � �x� y�� as described in the text�

it returns the lists T and A de�ned in the text ��
��� �nd the spine of segment S�e�� by starting in node y and always

take the �rst edge of every adjacency list until a back edge is
encountered� This back edge leads to node w� � lowpt�y��
Let w�� � � � � wr be the tree path from w� to x � wr and
let wr�� � y� � � � � wk be the spine constructed above�

��� AL� AR� empty list of darts�
T � �wk� w��� �� a list of darts ��

��� for j from k downto r � �
��� do for all edges e� �except the �rst� emanating from wj

��� do �T �� A��� embedding�e�� t� ��e���
��� if t � ��e��
��� then T � T � conc T � AL� AL conc A�

��� else T � T conc T �� AR� A� conc AR
��� 


��
� od
���� output �wj� wj��� conc T � �� the cyclic adjacency list of vertex wj ��
���� let AL � AL� conc T � and AR � T �� conc AR�

where T � and T �� contain all darts incident to wj���
���� AL� AL�� AR� AR�� T � T � conc �wj��� wj� conc T ��

���� od
���� A� AR conc �w�� wk� conc AL�
���� return T and A
���� end

Program �

Theorem � Let G � �V�E� be a planar graph� Then G can be turned into a planar map
�G� �� in linear time�

In our implementation we follow the book except in three minor points� G has only one
directed version of each edge but H has both� In the embedding phase we need both
directions and therefore construct the embedding of H and later translate it back to Gin �
Secondly� we do not construct the embedding of H vertex by vertex but in one shot� To
that e�ect we compute a labelling sort num of the edges of H and later sort the edges�
Thirdly� the book makes reference to edges �wi��� wi� and their reversals� To make these
edges available we compute an array tree edge into that contains for each node the incoming
tree edge�

We �nally want to remark on our convention for drawing lists� In Figures � and � the arrows
indicate the end ����� of the lists�
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h construct embedding �� i �
f
listhedgei T � A� �� lists of edges of H
int cur nr � 
�
edge arrayhinti sort num �H��
node arrayhedgei tree edge into �G��

embedding �G��rst adj edge �G��rst node � ��� left � G� alpha � dfsnum � T � A� cur nr �
sort num � tree edge into � parent � reversal ��

�� T contains all edges incident to the �rst node except the cycle edge into it� That
edge comprises A ��
T �conc �A��

edge e�

forall �e� T � sort num �e� � cur nr ���

edge arrayhinti sort Gin �Gin ��

f
edge ein �

forall edges �ein �Gin � sort Gin �ein � � sort num �companion in H �ein ���
g
Gin �sort edges �sort Gin ��

g

This code is used in section 	�

�	� It remains to describe procedure embedding �

h auxiliary functions � i ��
void embedding �edge e� � int t�GRAPHhnode� edgei 
G� edge arrayhinti 
alpha �

node arrayhinti 
dfsnum � listhedgei 
T � listhedgei 
A� int 
cur nr �
edge arrayhinti 
sort num �node arrayhedgei 
tree edge into �
node arrayhnodei 
parent � edge arrayhedgei 
reversal �

f
h embed� determine the cycle C�e
� �� i�
h process the subsegments �� i�
h prepare the output �� i�

g

�
� We start by determining the spine cycle� This is precisley as in strongly planar �
We also record for the vertices wr��� � � �� wk� and w� the incoming cycle edge either in
tree edge into or in the local variable back edge into w� � This is line ��� of Program��

h embed� determine the cycle C�e
� �� i �
node x � source �e� ��
node y � target �e� ��

tree edge into �y� � e� �

edge e � G��rst adj edge �y��
node wk � y�

��



while �dfsnum �target �e�� � dfsnum �wk �� �� e is a tree edge
f
wk � target �e��
tree edge into �wk � � e�
e � G��rst adj edge �wk ��

g

node w� � target �e��
edge back edge into w� � e�

This code is used in section ���

��� Lines ��� to �����

h process the subsegments �� i �
node w � wk �
listhedgei Al � Ar �
listhedgei Tprime � Aprime �

T �clear � ��
T �append �G�e��� �� e � �wk �w� � at this point� line ���
while �w �� x� f
int count � 
�

forall adj edges �e� w� f
count ���
if �count �� �� �� no action for �rst edge
f
h embed recursively �
 i�
h update lists T � Al � and Ar �� i�

g �� end if
g �� end forall
h compute w�s adjacency list and prepare for next iteration �� i�
w � parent �w��

g �� end while

This code is used in section ���

��� Line ���� The book does not distinguish between tree and back edges but we do here�

h embed recursively �
 i �
if �dfsnum �w� � dfsnum �target �e��� f
�� tree edge ��
int tprime � ��t � alpha �e�� � left � right ��

embedding �e� tprime � G� alpha � dfsnum �Tprime �Aprime � cur nr � sort num �
tree edge into � parent � reversal ��

g
else f
�� back edge ��
Tprime �append �G�e��� �� e
Aprime �append �reversal �G�e���� �� reversal of e

g

This code is used in section ���
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��� Lines ��� to ����

h update lists T � Al � and Ar �� i �
if �t � alpha �e�� f
Tprime �conc�T ��
T �conc �Tprime�� �� T � Tprime conc T
Al �conc �Aprime�� ��Al � Al conc Aprime

g
else f
T �conc �Tprime�� �� T � T conc Tprime
Aprime �conc�Ar ��
Ar �conc �Aprime �� �� Ar � Aprime conc Ar

g

This code is used in section ���

��� Lines ���� to �����

h compute w�s adjacency list and prepare for next iteration �� i �
T �append �reversal �G�tree edge into �w����� �� �wj��� wj�
forall �e� T � sort num �e� � cur nr ���
�� w�s adjacency list is now computed� we clear T and prepare for the next iteration by
moving all darts incident to parent �w� from Al and Ar to T � These darts are at the rear
end of Al and at the front end of Ar ��
T �clear � ��
while ��Al �empty � � � source �Al �tail � �� � G�parent �w���

�� parent �w� is in G� Al �tail in H
f
T �push �Al �Pop � ��� ��Pop removes from the rear

g
T �append �G�tree edge into �w���� �� push would be equivalent
while ��Ar �empty � � � source �Ar �head � �� � G�parent �w��� ��
f
T �append �Ar �pop � ��� �� pop removes from the front

g

This code is used in section ���

��� Line ����� Concatenate Ar � �w�� wr�� and Al �

h prepare the output �� i �
A�clear � ��
A�conc �Ar ��
A�append �reversal �G�back edge into w� ����
A�conc �Al ��

This code is used in section ���

��



��� E�ciency�

Under LEDA ��
 the space requirement of the �rst version of planar is approximately
��
�n�m���

�m Bytes� where n andm denote the number of nodes and edges respectively
and � is the fraction of edges in the input graph that do not have their reversal in the input
graph� For the pseudo�random planar graphs generated in the demo we have � � 
 and
m � �n and hence the space requirement is about �

n Bytes� The second version needs an
additional ��n� ��m Bytes�

The running time of planar is about �
 times the running time of STRONG�COMPONENTS� On
a �
 MIPS SPARC�
 workstation the planarity of a planar graph with ��


 nodes and
�



 edges �� � 
� is tested in about �
 seconds� It takes ��� seconds to make the graph
bidirected and biconnected� about ��� seconds to test its planarity� and another ��� seconds
to construct an embedding� The space requirement is about �� MByte�

��



��� A Demo�

The demo allows the user to either interactively construct a graph using LEDA�s graph
editor or to construct a random graph� or to construct a �pseudo�random planar graph
�the graph de�ned by an arrangement of random line segments�� The graph is then tested
for planarity� If the graph is planar a straight�line embedding is output� If the graph is
non�planar a Kuratowski subgraph is highlighted�

The demo proceeds in cycles� In each cycle we �rst clear the graphics window W and the
graph G and then give the user the choice of a new input graph�

h demo�c �	 i �
h includes � i�
h procedure to draw graphs �� i�

main � �
f
h initiation and declarations �� i�
while �true � f
h select graph �� i�
h test graph for planarity and show output �
 i�
h reset window �� i�

g
return 
�

g

��� We need to include planar �h and various parts of LEDA�

h includes � i ��
�include �planar�h�

�include �LEDA�graph�h�

�include �LEDA�graph�alg�h�

�include �LEDA�window�h�

�include �LEDA�graph�edit�h�

�	� We need a simple procedure to draw a graph in a graphics window� The numbering
of the nodes is optional�

h procedure to draw graphs �� i �
void draw graph �const GRAPHhpoint� inti 
G�window 
W�bool

numbering � false �
f
node v�
edge e�
int i � 
�

forall edges �e�G� W�draw edge �G�source �e��� G�target �e��� blue��
if �numbering �
forall nodes �v�G� W�draw int node �G�v�� i��� red ��

else
forall nodes �v�G� W�draw �lled node �G�v�� red ��

g

This code is used in section �	�

��



�
� We give the user a short explanation of the demo and declare some variables�

h initiation and declarations �� i �
panel P �

P�text item ��This�demo�illustrates�planarity�testing�and�planar�straight	

line���

P�text item ��embedding��You�have�two�ways�to�construct�a�graph��either�i	
nteractively���

P�text item ��using�the�LEDA�graph�editor�or�by�calling�one�of�two�graph�	
generators����

P�text item ��The�first�generator�constructs�a�random�graph�with�a�certain���
P�text item ��number�of�nodes�and�edges��you�will�be�asked�how�many
�and�	

the����
P�text item ��second�generator�constructs�a�planar�graph��by�intersecting	

�a�certain���
P�text item ��number�of�random�line�segments�in�the�unit�square��you�will	

�be�asked�how�many
����
P�text item ������
P�text item ��The�graph�is�displayed�and�then�tested�for�planarity����
P�text item ��If�the�graph�is�non
planar�a�Kuratowski�subgraph�is�highlig	

hted����
P�text item ��If�the�graph�is�planar��a�straight
line�drawing�is�produced����
P�button ��continue���
P�open � ��

window W �
GRAPHhpoint� inti G�
node v� w�
edge e�
int n � ��
�
int m � ��
�
const double pi � �����
panel P���PLANARITY�TEST���

P��int item ���V������ n� 
� �

��
P��int item ���E������m� 
� �

��
P��button ��edit���
P��button ��random���
P��button ��planar���
P��button ��quit���
P��text item ������
P��text item ��The�first�slider�asks�for�the�number�n�of�nodes�and���
P��text item ��the�second�slider�asks�for�the�number�m�of�edges����
P��text item ��If�you�select�the�random�input�button�then�a�graph�with���
P��text item ��that�number�of�nodes�and�edges�is�constructed��if�you���
P��text item ��select�the�planar�input�button�then�����times�square
root�o	

f�n���
P��text item ��random�line�segments�are�chosen�and�intersected�to�yield���
P��text item ��a�planar�graph�with�about�n�nodes��and�if�you�select�the���
P��text item ��edit�button�then�the�graph�editor�is�called����
P��text item ������

This code is used in section �	�
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��� We display the panel P� until the user makes his choice� Then we construct the
appropriate graph�

h select graph �� i �
int inp � P��open �W �� �� P� is displayed until a button is pressed

if �inp � �� break� �� quit button pressed
W�init �
� �


� 
��
W�set node width ����
switch �inp � f
case 
�
f �� graph editor
W�set node width ��
��
G�clear � ��
graph edit �W�G� false��
break�

g
case ��
f �� random graph
G�clear � ��
random graph �G�n�m��
�� eliminate parallel edges and self�loops ��
eliminate parallel edges �G��

listhedgei Del � G�all edges � ��

forall �e�Del �
if �G�source�e� � G�target �e�� G�del edge �e��
�� draw the graph with its nodes on a circle ��

�oat ang � 
�

forall nodes �v�G� f
G�v� � point��

 � �

 � sin �ang �� �

 � �

 � cos �ang ���
ang �� � � pi �n�

g
draw graph �G�W ��
break�

g
case ��
f �� pseudo�random planar graph
node arrayhdoublei xcoord �G��
node arrayhdoublei ycoord �G��

G�clear � ��
random planar graph �G� xcoord � ycoord � n��
forall nodes �v�G� G�v� � point��


 � xcoord �v�� �

 � ycoord �v���
draw graph �G�W ��
break�

g
g

This code is used in section �	�

��� We test the planarity of our graph G using our procedure planar �

��



h test graph for planarity and show output �
 i �
if �PLANAR�G� false �� f
if �G�number of nodes � � � ��
W�message ��That�s�an�insult��Every�graph�with��V�������is�planar���

else f
W�message ��G�is�planar��I�compute�a�straight
line�embedding�������
�� we �rst make G bidirected� We remember the edges added in n edges ��

node arrayhinti nr �G��
edge arrayhinti cost �G��
int cur nr � 
�
int n � G�number of nodes � ��
node v�
edge e�

forall nodes �v�G� nr �v� � cur nr ���
forall edges �e�G�
cost �e� � ��nr �source �e�� � nr �target�e��� � n � nr �source�e�� � nr �target �e�� �

n � nr �target �e�� � nr �source �e����
G�sort edges �cost ��

listhedgei L � G�all edges � ��
listhedgei n edges �

while ��L�empty � �� f
e � L�pop � ��
if ��L�empty � � � source �e� � target �L�head � �� � target �e� � source �L�head � ���
L�pop � ��

else f
n edges �append �G�new edge �target �e�� source�e����

g
g
Make biconnected graph �G��
PLANAR�G� true ��

node arrayhinti xcoord �G�� ycoord �G��

STRAIGHT�LINE�EMBEDDING�G� xcoord � ycoord ��

�oat f � �

�
��� �G�number of nodes � ���

forall nodes �v�G� G�v� � point�f � xcoord �v� � �
� � � f � ycoord �v� � �
��
forall �e� n edges � G�del edge �e��
W�clear � ��
if �inp � 
� draw graph �G�W� true�� �� with node numbering
else draw graph �G�W ��

g
g
else f
W�message ��Graph�is�not�planar��I�compute�the�Kuratowski�subgraph�������

listhedgei L�

PLANAR�G�L� false��

node arrayhinti deg �G� 
��
int lw � W�set line width ����
edge e�

forall �e� L� f

��



node v � source �e��
node w � target �e��

deg �v����
deg �w����
W�draw edge �G�v�� G�w���

g

int i � ��
�� We highlight the Kuratowski subgraph� Nodes with degree are drawn black� The
nodes with larger degree are shown green and numbered from � to � ��

forall nodes �v�G� f
if �deg �v� � �� W�draw �lled node �G�v�� black ��
if �deg �v� � �� f
int nw �W�set node width ��
��

W�draw int node �G�v�� i��� green��
W�set node width �nw ��

g
g
W�set line width �lw ��

g

This code is used in section �	�

��� We reset the graphics window�

h reset window �� i �
W�set show coordinates �false ��
W�set frame label ��click�any�button�to�continue���
W�read mouse � �� �� wait for a click
W�reset frame label � ��
W�set show coordinates �true ��

This code is used in section �	�

��



��� Some Theory�

We give the theory underlying the planarity test as described in �Meh��� section IV��
��

Our next topic is a linear time planarity testing algorithm� Since a graph is planar i� its
biconnected components are �cf� �Meh��� section IV��� for a linear time algorithm to compute
the biconnected components of a graph� we can restrict our attention to biconnected graphs�
Also we can con�ne ourselves to graphs with m � �n� �� The planarity testing algorithm
is an extension of depth��rst�search� In the sequel we will always identify nodes with their
DFS�number� A DFS on the directed version of G � �V�E� partitions the darts of G into
the sets T � F and B� For the planarity testing algorithm we consider the directed graph
�V� T � F��� and call the edges in T tree edges and the edges in F�� back edges� Also� we
write B instead of F��� Note that this notation di�ers slightly from the one used in �Meh���
section IV���� There� reversals of tree edges were also called back edges�

We will now describe the idea underlying the planarity Algorithm� Let C be any cycle
starting in the root of the dfs�tree and consisting of tree edges followed by one back edge�
Such a cycle exists since G is assumed to be biconnected� For every edge e � �x� y� emanating
from the cycle� i�e�� x lies on C but e is not an edge of the cycle we consider the segment S�e�
de�ned as follows� If e is a back edge then S�e� is the cycle formed by the tree path from y
to x together with the edge e� If e is a tree edge then S�e� consists of the subgraph spanned

by the set V �e� � fw� y
�
�
T
wg of nodes reachable from y by tree edges� all back edges

starting in a node in V �e� and ending in a node on cycle C �which is then an ancestor of x��
and the tree path from the lowest attachment of S�e� to cycle C to node y�

Example� In Figure � the cycle C consists of the tree path from node � to node � and the
back edge ��� ��� The four edges ��� �
�� ��� ��� ��� ��� and ��� �� emanate from the cycle� The
segment S���� �
�� consists of the subgraph spanned by f�
� ��� ��g� the back edges ���� ���
���� �� and ���� ��� and the tree path from � to �
� The segment S���� �
�� is attached to
the cycle in the nodes �� �� � and ��

We test the planarity of G in a two step process� In the �rst step we test whether C �S�e��
the graph consisting of cycle C and segment S�e�� is planar for every edge e emanating
from cycle C� This is equivalent to testing whether the segment S�e� has a strongly planar
embedding� i�e�� an embedding where all attachments of S�e� to the cycle C lie on the
boundary of the outer face� In order to test the strong planarity of S�e� we will use the
algorithm recursively� Suppose now that the segments S�e� are all strongly planar� We then
try in a second step to merge the embeddings found in step one� The merging process has
to decide for each segment S�e� whether it should be placed inside or outside the cycle C�
For this purpose� it only needs to take into account the set of attachments of the di�erent
segments emanating from C and their interaction� In our example� the segments S���� ���
and S���� ��� have to be embedded on di�erent sides ofC because these segments �interlace �

We will next describe the theory behind both steps in detail� With an edge e � �x� y�
we associate a cycle C�e� and a segment S�e� as follows� If e is a back edge then C�e�
and S�e� consist of the tree path from y to x and the edge e� If e is a tree edge then let

V �e� � fw� y
�
�
T
wg be the set of tree successors of y and let lowpt�y� � minfz� �w� z� is a

back edge and w � V �e�g be the lowest endpoint of a back edge starting in V �e�� The cycle
C�e� consists of a tree path from lowpt�y� to w� where w � V �e� and �w� lowpt�y�� � B is
such a back edge� The segment S�e� consists of C�e�� the subgraph spanned by V �e� and all
back edges starting in a node in V �e�� Note that the segment S�e� is uniquely de�ned but
that there may be several choices for the cycle C�e�� We divide the tree path underlying the

�




Figure �� A dfs�tree of a planar graph

cycle C�e� into two parts� its stem and its spine� The stem consists of the part ending in x�
The spine is empty if e is a back edge and it is the part starting in y if e is a tree edge�

In our example� the cycle C���� �
�� consists of the tree path from � to �� followed by the
back edge ���� ��� The stem is the tree path from � to � and the spine is the tree path from �

to ��� The cycle C���� ��� consists of the tree path from � to � and the back edge ��� ��� Its
stem is the node ��

A segment S�e� is called strongly planar if there is an embedding of S�e� such that the
stem of the cycle C�e� borders the outer face� An embedding with this property is called
a strongly planar embedding of S�e�� Let w�� w�� � � � � wr with e � �wr� y� be the stem
of C�e�� A strongly planar embedding of S�e� is called canonical �reversed canonical� if
for all i� 
 � i � r� the edge fwi� wi��g immediately follows �precedes� the edge fwi� wi��g
in the counterclockwise ordering of edges incident to wi� Note that every strongly planar
embedding is either canonical or reversed canonical�

In Figure � the embeddings of segments S���� �
�� and S���� ���� are both strongly pla�
nar� the embedding of S���� ���� is canonical and the embedding of S���� �
�� is reversed
canonical�

Lemma � Let G be a biconnected graph and let e be the unique tree edge starting in the
root of the dfs�tree� Then S�e� � G and G is planar i	 S�e� is strongly planar�

��



Proof� Let e � ��� �� be the unique tree edge incident to node �� Then V �e� � f�� � � � � ng
and hence S�e� � G� Also� the stem of C�e� consists only of vertex � and hence S�e� is
strongly planar i� it is planar�

Lemma � shows that we can con�ne ourselves to a test of strong planarity� Now let e�
be an edge and C � C�e�� be the cycle associated with e�� An edge e � �x� y� is said
to emanate from C if x lies on the spine of C but e does not belong to C� Clearly� if e
emanates from C�e�� then the stem of C�e� is part of the tree path underlying C�e�� and
S�e� is a subgraph of S�e��� Also� S�e�� is the union of C�e�� and the segments S�e�� where
e emanates from C�e��� The basis of step � of the planarity algorithm is the following

Lemma � Let C � C�e�� be a cycle and let e emanate from C� Then C � S�e� is planar
i	 S�e� is strongly planar�

Proof� �� � Consider any embedding of C � S�e�� The cycle C divides the plane into a
bounded and an unbounded region� We may assume w�l�o�g� that the edge e � �x� y� lies
in the bounded region� Hence all nodes in V �e� must lie in the bounded region since every
node in V �e� is reachable from y without passing through a node of C� If we remove the
part of cycle C between x and lowpt�y� then we have the desired strongly planar embedding
of S�e��

�� � Given a strongly planar embedding of S�e� we can clearly add the missing part of C
to obtain an embedding of C � S�e��

For step � of the algorithm we need the concepts of attachments and interlacing� Let
C � C�e�� and let e � �x� y� emanate from C� The set A�e� of attachments of segment S�e�
to cycle C is de�ned to be the set fx� yg if e is a back edge and the set fxg� fz� �w� z� is a
back edge� w � V �e� and z �� V �e�g if e is a tree edge� Two segments S�e� and S�e�� where
e and e� emanate from C are said to interlace if either there are nodes x � y � z � u
on cycle C such that x� z � A�e� and y� u � A�e�� or A�e� and A�e�� have three points in
common �cf� Fig� �� note that the segments shown may have further attachments�� Clearly�

Figure �� Interlacing segments

interlacing segments cannot be embedded on the same side of C� The interlacing graph
IG�C� with respect to cycle C is de�ned as follows� The nodes of IG�C� are the segments

��



S�e� where e emanates from C� Also� S�e� and S�e�� are connected by an edge i� S�e� and
S�e�� interlace� The interlacing graph for the cycle C���� ��� of Figure � is shown in Figure ��
This graph is bipartite with segments S� and S� forming one of the sides of the bipartite
graph� Note also that the planar embedding of the graph of Figure � has S� and S� on one
side of C and S� and S� on the other side of C�

Figure �� Interlacing graph

Lemma � Let e� be a tree edge
 let C � C�e�� � w��
T
w��

T
� � ��

T
wk�

B
w� and let e� �

�wr� wr���� Let e�� � � � � em be the edges leaving the spine of C
 i�e�
 they leave the cycle in
nodes wj
 r � j � k� Then S�e�� is planar i	 S�ei� is strongly planar for every i
 � � i � m

and IG�C� is bipartite
 i�e�
 there is a partition L�R of fS�e��� � � � � S�em�g such that no two
segments in L resp� R interlace� Moreover
 segment S�e�� is strongly planar i	 in addition
for every connected component B of IG�C�� either fw�� � � � � wr��g


S
S�e	�B�LA�e� � � or

fw�� � � � � wr��g 

S
S�e	�B�R A�e� � ��

Proof� �� � Note �rst that S�e�� � C � S�e�� � � � �� S�em�� Hence� if S�e�� is planar
then C � S�ei�� � � i � m� is planar and hence S�ei� is strongly planar by Lemma ��
Consider any planar embedding of S�e��� Let L � fS�ei�� S�ei� is embedded inside cycle
C� � � i � mg and let R be the remaining segments� Then no two segments in L resp� R
interlace because interlacing segments have to be embedded on di�erent sides of C� Hence
IG�C� is bipartite� Finally� assume that S�e�� is strongly planar� Consider any strongly
planar embedding of S�e��� i�e�� tree path w��w��w��� � ��wr borders the outer face�
Then no segment S�ei�� � � i � m� which is embedded outside C can have an attachment
in fw�� � � � � wr��g and hence fw�� � � � � wr��g 


S
S�e	�RA�e� � ��

�� � The proof of this direction is postponed� It will be given in Lemma ��

Lemma � suggests an algorithm for testing strong planarity� In order to test strong planarity
of a segment S�e��� test strong planarity of the segments S�ei�� � � i � m� construct the
interlacing graph and test for the conditions stated in Lemma �� Unfortunately� the size
of the interlacing graph might be quadratic and therefore we cannot a�ord to construct
the interlacing graph explicitly� Rather� we compute the connected components �and their
partition into left and right side� of IG�C� and an embedding of S�e�� � C � S�e�� � � � ��
S�em� by considering segment by segment� We start with cycle C and then try to add
segment by segment� We will consider the segments S�e��� � � � � S�em� in an order such that
adding a canonical embedding of S�ei��� to an embedding of C � S�e�� � � � �� S�ei� can
always be achieved �if at all� in a particularly simple way� namely by moving some of the
S�el�� l � i� to the other side of C and then adding S�ei��� inside C and close to the tree path
underlying C� cf� Figure �
� In that �gure the segment S�ei��� emanates from wj� ei�� �
�wj � y� and z � minA�ei��� is the lowest attachment of S�ei���� Also� there is a face F
inside C such that the tree path from z to wj is on the boundary of F � Clearly� a canonical

��



embedding of S�ei��� can be added inside F to the embedding of C � S�e��� � � �� S�ei� in
this case�

In order to follow this embedding strategy we should �rst consider all segments emanating
from wk� then all segments emanating from wk��� � � � � For any node wj we consider the
segments emanating from wj in the order of lowest attachment� considering the segments
with lower attachment �rst� Among the segments emanating from wj and having the same
lowest attachment� say wi with i � j� we �rst consider the segments having only wi and wj

as attachments and then all the others �there can be at most two segments of the latter kind
because any two such segments interlace�� We will now show how to compute this ordering
on the edges emanating from C� We do so by showing how to reorder the adjacency list of
each node such that the order of the adjacency list corresponds to the order de�ned above�
For every node v let

lowpt �v� � min�fvg � fz� v
�
�
T
w�

B
z for some w � V g�� and

lowpt� �v� � min�fvg � fz� v
�
�
T
w�

B
z for some w � V and z �� lowpt�v�g��

lowpt �v� is the lowest node reachable from v by a sequence of tree edges followed by one back
edge� Since G is assumed to be biconnected we have lowpt �v� � v for all v �� �� lowpt� �v� is
the second lowest node reachable from v in this way� if there is one� The default value for
both functions is v� The functions lowpt and lowpt� are easily computed during dfs since

lowpt�v� � min�fvg � fz� �v� z� � Bg � flowpt�w�� �v� w� � Tg�

and
lowpt� �v� � min�fvg � fz� �v� z� � B and z �� lowpt�v�g

� flowpt�w�� �v� w� � T� lowpt�w� �� lowpt�v�g

� flowpt� �w�� �v� w� � Tg��

These equations suggest to compute lowpt and lowpt� by two separate applications of dfs� In
the �rst application of dfs one computes lowpt and in the second application one computes
lowpt� using lowpt� We leave it to the reader to show that one dfs su	ces to compute both
functions� For an edge e � �wj� y� let

lowpt�e� � if e � B then y else lowpt�y� fi�

Then lowpt �e� � minA�e� and jA�e�j 	 � i� e � T and lowpt� �y� � wj for any edge e �
�wj � y� emanating from the cycle C� We want to reorder the adjacency list of wj such
that an edge e � �wj � y� is before an edge e� � �wj� y

�� if either lowpt �e� � lowpt�e�� or
lowpt �e� � lowpt �e�� and jA�e�j � � and jA�e��j 	 �� Let c � E � IN be de�ned by

c��v� w�� �

��
�

� �w if �v� w� � B�
� � lowpt �w� if �v� w� � T and lowpt� �w� 	 v�
� � lowpt �w� � � if �v� w� � T and lowpt� �w� � v�

Then reordering an adjacency list according to non�decreasing values of c yields the desired
ordering of outgoing edges� We can do the reordering in linear time by bucket sort� Have
�n initially empty buckets� Step through the edges of G one by one and throw edge �v� w�
into bucket c��v� w��� After having done so we go through the buckets in decreasing order�
When edge �v� w� is encountered we add �v� w� to the front of v�s adjacency list�

��



In our example� the edges out of node � are ordered ��� ��� ��� ���� ��� �� and the edges out
of node �� are ordered ���� ���� ���� ��� �������

From now on� we assume that adjacency lists are reordered in the way described above� The
reordering has the additional property that a cycle C�e�� for a tree edge e� � �x� y� is very
easy to �nd� We start at node y and construct a path by always taking the �rst edge out
of each node until a back edge is encountered� This path is a spine of C�e��� as is easily
veri�ed�

We now resume the discussion of how to deal with the interlacing graph� As in Lemma ��
C � C�e���

C � w��
T
w��

T
� � ��

T
wk�

B
w�

and e� � �wr� wr��� for some r� Let e�� � � � � em be the edges leaving the spine of C in
order � i�e�� the edges leaving wk are considered �rst and for each wj the edges are ordered
as described above� Let IG i�C� be the subgraph of IG�C� spanned by S�e��� � � � � S�ei�� If
IG i�C� is non�bipartite then so is IG�C� and hence S�e�� is not strongly planar� If IG i�C� is
bipartite then every connected component �� block� of IG i�C� is� If B is a block of IG i�C�
then we use LB � RB to denote the partition of B induced by the bipartite graph�

Our next goal is to describe how the blocks of IGi���C� can be obtained from the blocks of
IG i�C�� Let ei�� � �wj� y�� For every block B of IGi�C� let

ALB � fwh� 
 � h � j and wh � A�e� for some S�e� � LBg

be the set of attachments �below wj� of segments in LB � ARB is de�ned similarly�

Lemma � If IGi�C� is bipartite
 then�

a� There is some ordering of the blocks of IG i�C�
 say B�� B�� � � � � Bh� Bh��� � � � such that

max�ALBl �ARBl� � min�ALBl�� �ARBl���

for � � l � h and ALBl � ARBl � � for l � h�

b� IG i���C� is bipartite i	 for all l
 � � l � h
 either maxALBl � minA�ei��� or
maxARBl � minA�ei����

c� c� If IGi���C� is bipartite then the blocks of IG i���C� can be obtained as follows�
Assume w�l�o�g� that maxALBl � minA�ei��� for all l� �This can always be achieved
by interchanging LB and RB for some blocks B�
 Let d � min�fl� maxARBl �
minA�ei���g�fh��g�� Then the blocks of IGi���C� are B�� � � � � Bd��� Bd�� � ��Bh�
fS�ei���g� Bh��� � � � �

d� If IG i���C� is bipartite and S�el�
 � � l � i � �
 are strongly planar then there is a
planar embedding of C � S�e�� � � � �� S�ei��� such that all segments in

S
l LB l are

embedded inside C and all segments in
S
l RB l are embedded outside C�

Proof� We use induction on i� For i � 
 little remains to be shown� IG��C� is empty and
IG��C� consists of a single node� This shows a�� b� and c�� For part d� we only have to
observe that S�e�� can be embedded inside as well as outside C� if S�e�� is strongly planar�

So let us turn to the case i � 
� We will show parts b�� c�� a� and d� in this order�

��



b� �� � Note �rst that it su	ces to show the following

Claim � If maxALBl � minA�ei��� for some l then there is a segment S�e� � LB l such
that S�e� and S�ei��� interlace�

Suppose that we have shown Claim �� If there were l� � � l � h� such that maxALBl �
minA�ei��� and maxARBl � minA�ei��� then S�ei��� interlaces with a segment S�e� �
LB l and a segment S�e�� � RB l by Claim �� Since S�e� and S�e�� belong to the same block
there is a path from S�e� to S�e�� in IG i�C�� Since IGi�C� is bipartite this path necessarily
has odd length� Together with edges fS�e�� S�ei���g and fS�ei���� S�e

��g we obtain an odd
length cycle in IG i���C�� Hence IG i���C� is non�bipartite� a contradiction� We still have
to show Claim ��

Proof of Claim �� Let z � minA�ei���� Since maxALBl � z there must be a segment

S�e� � LB l such that w � A�e� for some w with z
�
�
T
w

�
�
T
wj� Edge e emanates from node

wp for some p 	 j�

Case � � p � j�

Then z
�
�
T
w

�
�
T
wj

�
�
T
wp� z� wj � A�ei��� and w�wp � A�e�� Hence segments S�e� and

S�ei��� interlace �cf� Figure ���

Figure �� Case �

Case � � p � j�

Let e � �wj � u�� Since e is considered before ei�� and hence minA�e� � z� edge e cannot be
a back edge� �If it were a back edge then minA�e� � u � w � z� a contradiction�� Hence e
is a tree edge and minA�e� � lowpt �u��

Case ��� � lowpt�u� � z�

Then lowpt�u�
�
�
T
z

�
�
T
w

�
�
T
wj� lowpt�u�� w � A�e� and z� wj � A�ei���� Hence segments S�e�

and S�ei��� interlace �cf� Fig� ���
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Figure �� Case ���

Case ��� � lowpt�u� � z�

Since w � A�e� we have lowpt� �u� � wj� Since e is considered before ei�� we must have
jA�ei���j 	 �� and hence edge ei�� cannot be a back edge� Rather� it must be a tree edge

and we must have lowpt� �y� � wj � If lowpt� �y� �� lowpt� �u�� say lowpt� �y�
�
�
T
lowpt� �u�� then

we have z
�
�
T
lowpt� �y�

�
�
T
lowpt� �u�

�
�
T
wj� z� lowpt� �u� � A�e�� and lowpt� �y�� wj � A�ei����

Hence S�ei��� and S�e� interlace �cf� Fig� ��� If lowpt� �y� � lowpt� �u� then A�e� and A�ei���
have three points in common and hence S�ei� and S�ei��� interlace �cf� Figure ���

�� � Assume now that maxALBl � minA�ei��� or maxARBl � minA�ei��� for all l�
� � l � h� By interchanging LB l and RB l� if necessary� we can achieve that maxALBl �
minA�ei��� for all l� � � l � h�

Claim 	 Let S�e� �
S
l LB l be arbitrary� Then S�e� and S�ei��� do not interlace�

Proof� A�ei��� � fw� minA�ei���
�
�
T
w

�
�
T
wjg and A�e� � fw� w

�
�
T
minA�ei��� or

wj
�
�
T
wg� Hence S�e� and S�ei��� do not interlace�

The bipartiteness of IG i���C� now follows from Claim � because it is safe to add S�ei���
to the �left side of the interlacing graph�

c� Assume that IG i���C� is bipartite� Then for all l� � � l � h� maxALBl � minA�ei���
or maxARBl � minA�ei��� by part b�� By interchanging LB l and RB l� if necessary� we
can achieve maxALBl � minA�ei��� for all l� � � l � h� Let d � min�fl� maxARBl �
minA�ei���g � fh� �g��

��



Figure �� Case ���� lowpt� �y� �� lowpt� �u�

Figure �� Case ���� lowpt� �y� � lowpt� �u�

Claim 
 For all l� There is a segment S�e� � RB l such that S�e� and S�ei��� interlace i	
d � l � h�

Proof� �� � Let d � l � h� Then

��



minA�ei��� � maxARBd �by de�nition of d�

� maxARBl �by induction hypothesis� part a� and d � l�

� wj �since l � h�

and hence there is a segment S�e� � RB l such that S�e� and S�ei��� interlace by Claim ��

�� � �Indirect�� Let l � d or l � h and let S�e� � RB l� Then A�e� � fw� wj
�
�
T
wg if

l � h and A�e� � fw� wj
�
�
T
w or w

�
�
T
minA�ei���g if l � d� The former inclusion follows

from the de�nition of h� the latter inclusion follows from the de�nition of d� and part a� of

the induction hypothesis� Also A�ei��� � fw� minA�ei���
�
�
T
w

�
�
T
wjg and hence S�e� and

S�ei��� do not interlace�

We conclude from Claims � and � that S�ei��� is connected to segments in blocks Bd� � � � � Bh�
Hence the blocks of IGi���C� are B�� � � � � Bd��� Bd � � � � � Bh � fS�ei���g� Bh��� � � � � Let
B � Bd � � � � �Bh � fS�ei���g be the new block� Then B can be partitioned into LB and
RB where LB �

S
d�l�h LB l � fS�ei���g and RB �

S
d�l�h RB l� Moreover� if d � h�

maxARBd � minARBd�� � maxARBd�� � � � � � minARBh � maxARBh by part a� and
maxALBd � minALBd�� � maxALBd�� � � � � � minALBh � maxALBh � minA�ei���
by part a� and the assumption that maxALBl � minA�ei��� for all l� � � l � h�

a� Follows immediately from part c�� The ordering of the blocks of IG i���C� given in part c�
satis�es the conditions required in part a�� This follows immediately from the discussion
completing the proof of part c��

d� Assume that IG i���C� is bipartite and that S�el�� � � l � i��� are strongly planar� Let
B�
�� B

�
�� � � � be the blocks of IG i���C�� By part c� we have B�

� � B�� � � � � B
�
d�� � Bd���

B�
d � Bd � � � � � Bh � fS�ei���g� B

�
d�� � Bh��� � � � � where B�� B�� � � � are the blocks of

IG i�C�� Moreover� LB �
l � LB l� RB

�
l � RB l for l � d� LB �

d�l � LBh�l� RB
�
d�l � RBh�l

for l 	 � and LB �
d �

S
d�l�h LB l � fS�ei���g and RB �

d �
S
d�l�h RB l� By induction

hypothesis there is a planar embedding of C � S�e�� � � � �� S�ei� such that all segments
in
S
l LB l are embedded inside C and all segments in

S
l RB l are embedded outside C� By

the proof of Claim � no segment S�e� �
S
l LB l has an attachment w which lies strictly

between minA�ei��� and wj� Thus there is a face F inside C such that the tree path from
minA�ei��� to wj is part of the boundary of F � All attachments of S�ei��� lie between
minA�ei��� and wj inclusively� Moreover� S�ei��� is strongly planar and hence there is a
planar embedding of S�ei��� where the tree path from minA�ei��� to wj borders the outer
face� We can add this embedding to the embedding of C � S�e�� � � � �� S�ei� by putting it
inside face F � In this way we obtain a planar embedding of C � S�e�� � � � �� S�ei��� �cf�
Fig� �
�� This completes the proof of Lemma ��

Lemma � The if�part of Lemma � holds�

Proof� If IG�C� is bipartite and S�ei�� � � i � m� is strongly planar then by Lemma
� d� there is an embedding of C � S�e�� � � � �� S�em� � S�e�� such that all segments inS
i LB i are embedded inside C and all segments in

S
iRB i are embedded outside C� In

particular� S�e�� is planar� Assume now that in addition ALBl 
 fw�� � � � � wr��g � � or
ARBl 
 fw�� � � � � wr��g � � for all l where ALBl and ARBl are de�ned with j � r � ��
i�e�� when all edges e�� � � � � em are embedded� We may assume w�l�o�g� �by interchanging L

��



Figure �
� Addition of S�ei��� inside F

and R for some blocks� that ARBl 
 fw�� � � � � wr��g � � for all l� Thus outside C there are
no attachments to nodes w�� � � � � wr�� and hence there is a face F outside C such that the
stem w�� � � � � wr of S�e�� borders F � We can now turn F into the outer face and in this way
obtain a canonical embedding of S�e���

We illustrate Lemma � on our example� Let C be the cycle which runs from node � to
node � along tree edges and then back to node �� There are four segments emanating
from this cycle� S� � S���� �
��� S� � S���� ����� S� � S���� ��� and S� � S���� ���� All
four segments are strongly planar� When segment S� � S���� ���� is considered� we have�
IG��C� has one block B� consisting of segment S�� Say S� belongs to RB�� Then ALB� � �
and ARB� � f�g� Lemma � b� is satis�ed and hence IG��C� is bipartite� We have d � �
in Lemma � c� and hence IG��C� has only block B�� say LB� � fS�g and RB� � fS�g�
Then ALB� � f�� �g and ARB� � f�g when S� is considered� IG��C� is bipartite and has
two blocks B� and B�� say LB� � fS�g� RB� � fS�g� RB� � fS�g� Then ALB� � f�� �g�
ARB� � f�g� ARB� � f�g� ALB� � � when S� is considered� S� forces us to merge blocks
B� and B�� i�e�� d � � in Lemma � c�� and hence IG��C� has only one block B�� Moreover
LB� � fS�� S�g and RB� � fS�� S�g�

It is now easy to derive an e	cient way of dealing with the interlacing graph from Lemma ��
Suppose that we processed edges e�� � � � � ei already and want to process edge ei�� next� At
this point we keep blocks B�� � � � � Bh in a stack S where h is de�ned as in Lemma � a�� Also
for each l� � � l � h� we maintain the multi�sets ALBl and ARBl in a doubly linked list�
The lists ALBl and ARBl are ordered according to DFS�numbers� From the stack position
corresponding to Bl we have pointers to the front and back end of lists ALBl and ARBl�
The test for bipartiteness of IG i���C� given in Lemma � b� is now easily implemented by
Program ��

The running time of Program � is clearly O�h�d���� Also� it correctly computes d as de�ned
in Lemma � c�� The new blocks of IG i���C� are now easily formed by Program �� The
running time of Program � is also clearly O�h�d��� provided we are given �A�ei����fwjg��
Also� it correctly computes lists ALB and ARB� Note that these lists are ordered according
to the remark at the end of the proof of Lemma � c�� We can now give the complete planarity
testing algorithm� see Program ��
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l � h� ��
while max�ALBl�� �ARBl��� � lowpt�ei���
do if ALBl�� is non�empty and maxALBl�� � lowpt �ei���

then interchange LB l�� and RB l�� fi�
if ALBl�� is non�empty and maxALBl�� � lowpt �ei���
then IG i���C� is not bipartite and hence

the graph can be declared non�planar fi�
l� l � �

od�
d� l�

Program �

ALB� ARB� ��
for l from d to h
do ALB� ALB concatenated with ALBl�

ARB� ARB concatenated with ARBl

od�
ALB� ALB concatenated with �A�ei��� � fwjg��
pop Bh� � � � � Bd from stack S�
add B to stack S�

Program �

Lemma �� Program � tests strong planarity in linear time and space�

Proof� Observe �rst that line ��� determines the spine of cycle C�e�� in time proportional
to the length of the spine� The stem w�� � � � � wr is not explicitly constructed� we only
mention it in order to keep the same notation as in Lemmas � and �� Next we argue that
bipartiteness of IG�C� is tested correctly� The correctness of loop ���!��� is obvious from
the discussions above� Suppose now that we processed all edges emanating from wj� In
order to prepare for processing the edges emanating from wj�� we only have to delete all
occurrences of wj�� on lists ALBl and ARBl� This is done in lines ���!����� Note that all
occurrences of wj�� must be in the top entries of stack S by Lemma � a�� Hence lines ���!
���� work correctly� When control reaches line ���� the interlacing graph IG�C� is bipartite
and hence S�e�� is planar� Moreover� for every block B in the stack S the lists ALB and
ARB contain exactly the attachments below wr of segments in the block� In line ���� we
now test the condition for strong planarity given in Lemma �� It states that for all blocks B
of IG�C� either fw�� � � � � wr��g


S
S�e	�LBA�e� � � or fw�� � � � � wr��g


S
S�e	�RBA�e� � ��

Of course� we can always interchange L and R such that the latter is the case� It remains to
argue that lines ��
� to ���� correctly compute the ordered set A�e��� fxg of attachments�
Let l� be minimal such that max�ALBl� � ARBl�� 	 w�� Then ALBl � ARBl � fw�g for
l � l� and either ALBl� � fw�g or ARBl� � fw�g by line ����� Also min�ALBl �ARBl� 	
max�ALBl�� �ARBl��� 	 max�ARBl� �ALBl� � for l � l� by Lemma � a� and hence either
ALBl � � or ARBl � � for l � l� by line ����� Thus lines ��
� to ���� work correctly and
the correctness proof is complete�

We still have to analyze the running time� Note �rst that stronglyplanar is called at most
once for each edge� Also� each tree edge belongs to exactly one spine� Hence the total time
spent in lines ���� ���� ���� ���� ��� �without counting the time spent within recursive calls��

��



�
� procedure stronglyplanar�e� � edge��
co tests whether segment S�e��� e� � �x� y�� is strongly planar�

If so� it returns the ordered �according to dfsnum� list of
attachments of S�e�� excluding x oc

��� �nd the spine of cycle C�e�� by starting in node y and always
taking the �rst edge on every adjacency list until a back edge is
encountered� This back edge leads to node w� � lowpt�y��
Let w�� � � � � wr be the tree path from w� to x � wr and
and let wr�� � y� � � � � wk be the spine constructed above�

��� let S be an empty stack of blocks�
��� for j from k downto r � �
��� do for all edges e� �except the �rst� emanating from wj

��� do stronglyplanar�e���
��� let A�e�� be the ordered list of attachments of S�e��

as returned by the successful call stronglyplanar�e���
��� update stack S as described in Programs � and �
��� od�
��� let Bh be the top entry in stack S�

��
� while max�ALBh �ARBh� � wj��

���� do remove node wj�� from ALBh and ARBh�
���� if ALBh and ARBh become empty
���� then pop Bh from the stack� h� h� � fi
���� od
���� od�

co if control reaches this point then IG�C� is bipartite�
We will now test for strong planarity and compute A�e�� oc

���� L� �� co an empty list oc
���� for l from � to h
���� do if maxALBl 	 w� and maxARBl 	 w�

���� then declare S�e�� not strongly planar and stop fi�
��
� if ALBl �� � and maxALBl 	 w�

���� then L� L conc ARBl conc ALBl

���� else L� L conc ALBl conc ARBl fi
���� od�
���� return L
���� end�

Program �

���� ���� ��� and ���� is O�m�� Let us look at line ��� next� Observe that line ��� is executed
at most once for each edge� Also� at most one block is pushed on stack S in one execution
of line ���� and execution time of line ��� is proportional to the number of entries removed
from stack S� Since only m elements are added to stacks S altogether� only m elements can
be removed and hence the total time spent in line ��� is O�m�� The same argument shows
that the total time spent in lines ����!���� is O�m�� because the time spent in these lines is
proportional to the number of elements removed from stacks S in these lines� Lines ��
�!
���� still remain to be considered� Only endpoints of back edges are placed on lists ALB
and ARB� No back edge is placed twice on a list and each back edge is removed at most
once� Hence the total cost of lines ��
�!���� is O�m��
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Theorem �� Let G � �V�E� be a graph� Then planarity of G can be tested in time O�n��

Proof� If m � �n� � then G is non�planar� If m � �n� � then we can divide G into its
biconnected components in time O�m� � O�n�� For each biconnected component we can
test its planarity in linear time� Also� a graph is planar i� its biconnected components are
planar�
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