Supporting information to:

Determinants of Regioselectivity and Chemoselectivity in Fosfomycin Resistance Protein FosA from QM/MM Calculations

Rong-Zhen Liao, Walter Thiel*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany

*Corresponding Author: thiel@kofo.mpg.de

Contents:

1.	System preparation using CHARMM version C31B1	S2
2.	QM calculations of the uncatalyzed reaction	S 7
3.	Enzymatic GSH addition	S13
4.	Enzymatic water addition	S22
5.	Complete citations for references 42, 53, and 55	S28

1. System preparation using CHARMM version C31B1

1.1 Preparation of the PDB structure.

The dimeric form of FosA (PDB code: 1LQP, resolution 1.19 Å) was used for preparing the system. The orientations of Asn, Gln, and His side chains were adjusted manually according to their local hydrogen-bonding network when necessary. The flipped residues are listed below:

His: 107, both chain A and B.

The active region included all atoms within 30 Å of the manganese atom of chain A. All Lys and Arg residues were chosen to be protonated at their side chains and all Glu and Asp residues were deprotonated at their side chains. All Tyr residues were chosen to be protonated at their side chains except Tyr39 of chain A (the catalytic base). The protonation states of His residues were chosen as follows:

HSD (proton at ND1): 7, 64, 84, 112, both chain A and B

HSP (protons at both ND1 and NE2): 107, both chain A and B

1.2 CHARMM parameters.

Parameters for fosfomycin are specified below (CHELPG charges were calculated at the B3LYP/def2-SVP level).

RESI FCN	-2.00	00 !			
ATOM C1	CT1	-0.02 !			
ATOM H1	HA	-0.01 !			
ATOM C2	CT1	0.21 !			
ATOM H2	HA	-0.08 !			
ATOM C3	CT3	-0.09 !	O2P	H1 H2	H4
ATOM O1	OS	-0.49 !			
ATOM P	Р	1.36 !	O1PP	C1C2	С3Н3
ATOM O1P	ON3	-0.97 !		\ /	
ATOM O2P	ON3	-0.97 !	O3H	P 01	H5
ATOM O3P	ON3	-0.97 !			
ATOM H3	HA	0.01 !			
ATOM H4	HA	0.01 !			
ATOM H5	HA	0.01 !			
BOND C1	P C1	O1 C1	H1		
BOND P	O1P P	O2P PC)3P		
BOND C2	O1 C2	H2			
BOND C3	C2 C3	H4 C3	H5 C3	H3	
PATCHING	FIRST NO	ONE LAST N	IONE		

Notice: The topology files for fosfomycin were only used for the setup of QM/MM calculations. We do not recommend using them for classical MM calculations without extensive validation.

1.3 System hydration.

The system with added hydrogen atoms was hydrated using a water droplet composed of a 40 Å sphere of equilibrated TIP3 water molecules centered at manganese of chain A. All water molecules with their oxygen atoms within 2.8 Å of any protein non-hydrogen atom were deleted. Following this, the water sphere and the GSH substrate was subjected to energy minimization [steepest descent (SD) for 1000 steps and adapted-basis Newton Raphson (ABNR) for 3000 steps] and to molecular dynamics (MD) for 50 ps (20 ps heating to 300K) with a stochastic boundary potential³ using the CHARMM force field implemented in the CHARMM program.⁴ During the whole procedure, all non-H atoms of non-TIP3 residues (protein, fosfomycin, Mn and its ligands) were kept fixed. The water molecules were kept rigid during the heating period using the SHAKE constraint algorithm.⁵ Finally, the water molecules and the GSH substate were minimized for 3000 steps using the ABNR method. The final structure then served as the starting structure for subsequent solvation. This procedure was repeated five times (six solvations in total). The number of water molecules added each time is shown below:

Number of water molecules added							
Sol-1	Sol-2	Sol-3	Sol-4	Sol-5	Sol-6		
6931	694	318	202	183	103		

1.4 System equilibration.

Following system neutralization, the system was subjected to a 1 ns MD simulation with a 1 fs timestep. The simulation employed Langevin dynamics and a stochastic boundary potential.³ An active region was defined including all protein residues within 30 Å of the manganese ion of chain A. Within this region, the manganese ion and the non-hydrogen atoms of His7, His64, Glu110, and fosfomycin were kept fixed. The system was first minimized for 3600 ABNR steps, then heated to 300K for 20ps (with SHAKE constraints⁵), and finally equilibrated for 1 ns. Five random snapshots were used for QM/MM calculations. The quality of the structure was assessed by calculating the root-mean-square deviation (RMSD) between the Cartesian coordinates of each snapshot and the crystal structure:

	100ps	200ps	300ps	400ps	500ps	600ps	700ps	800ps	900ps	1ns
RMSD (Å)	0.744	0.797	0.826	0.812	0.850	0.813	0.854	0.826	0.909	0.896

For setting up the system for the water attack reaction, the GSH substrate was deleted, solvated with water molecules, and neutralized by adding one chloride ion. The system was then equilibrated for 1 ns using the same procedure as for the GSH system. The final snapshot was then used for QM/MM calculations.

References:

- Sawai, H.; Sugimoto, H.; Kato, Y.; Asano, Y.; Shiro, Y.; Aono, S. J. Biol. Chem.
 2009, 284, 32089-32096.
- 2. Schnur, D. M.; Dalton, D. R. J. Org. Chem. 1988, 53, 3313-3316.
- 3. Brooks, C. L.; Karplus, M. J. Chem. Phys. 1983, 79, 6312-6325.
- Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.;
 Karplus, M. J. Comput. Chem. 1983, 4, 187-217.
- 5. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327-341.
- 6. Boucher, J.-L.; Delaforge, M.; Mansuy, D. Biochemistry 1994, 33, 7811-7818.

2. QM calculations of the uncatalyzed reaction

Figure S1. Changes in energy (relative to **React**) along the IRC paths for the attack at C1 (top) and C2 (bottom) with a step size of 0.03 amu^{1/2}Bohr.

	React	TS_{C1}	TS _{C2}	Prod _{C1}	Prod _{C2}
B3LYP/def2-SVP	-1351.224283	-1351.186271	-1351.184124	-1351.259669	-1351.250377
B3LYP/def2-SVP-SMD	-1351.30458	-1351.262462	-1351.260411	-1351.348147	-1351.342446
B3LYP/def2-TZVPP	-1352.268321	-1352.226869	-1352.226065	-1352.303376	-1352.298048
M06/def2-TZVPP	-1351.863841	-1351.822648	-1351.821546	-1351.903805	-1351.894304
wB97X/def2-TZVPP	-1352.073646	-1352.023133	-1352.023077	-1352.113398	-1352.106266
B2PLYP/def2-TZVPP	-1351.557514	-1351.520002	-1351.518285	-1351.601156	-1351.593697
Free energy corrections	0.153861	0.155579	0.155187	0.161453	0.158949

Table S1. Calculated energies (in Hartree) of reactant, transition states, and products for the uncatalyzed reaction at various levels.

React

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Ŷ	Z	
1	6	0	1.057337	0.908605	1.049986	
2	6	0	0.699484	2.150150	0.335416	
3	6	0	0.105875	2.209015	-1.046920	
4	8	0	2.073697	1.766351	0.477347	
5	15	0	0.893402	-0.822382	0.419682	
6	8	0	-0.278107	-1.453934	1.142114	
7	8	0	2.300547	-1.457221	0.970779	
8	8	0	0.932858	-0.811804	-1.117274	
9	16	0	-3.553167	0.486483	-0.493114	
10	6	0	-3.249131	0.143004	1.285433	
11	8	0	3.576187	-0.180379	-1.134617	
12	1	0	-1.364583	-2.107693	-0.310606	
13	1	0	1.030005	0.946656	2.150320	
14	1	0	0.440841	3.006990	0.979742	
15	1	0	0.412695	1.329286	-1.627320	
16	1	0	0.421010	3.134798	-1.558981	
17	1	0	-0.994841	2.199140	-0.977157	
18	1	0	3.003548	-1.164699	0.342818	
19	1	0	-2.233244	-0.260490	1.416172	
20	1	0	-3.348220	1.087138	1.842186	
21	1	0	-3.981130	-0.577714	1.683699	
22	1	0	2.692621	-0.485107	-1.457810	
23	1	0	3.316573	0.663906	-0.721864	
24	8	0	-1.613749	-2.050346	-1.258930	
25	1	0	-0.786116	-1.637760	-1.585486	
26	1	0	-2.772356	-0.548440	-0.959964	

TS_{C1}

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Ŷ	Z	
1		0	-0.200187	0.793657	-0.728243	
2	6	Ő	-0.788450	1.982200	-0.108307	
3	6	Õ	-0.961352	2.131304	1.390388	
4	8	0	-1.844680	1.431628	-0.853565	
5	15	0	-0.487449	-0.934446	-0.212137	
6	8	0	0.765817	-1.816370	-0.659949	
7	8	0	-1.604684	-1.504873	-1.221165	
8	8	0	-0.866091	-1.049075	1.247846	
9	16	0	2.321477	1.025741	0.202835	
10	6	0	3.258418	0.407248	-1.246409	
11	8	0	-3.584391	-0.341128	0.153602	
12	1	0	1.381164	-1.901114	0.140025	
13	1	0	0.221868	0.918975	-1.725998	
14	1	0	-0.391634	2.919754	-0.545679	
15	1	0	-1.234497	1.175885	1.856658	
16	1	0	-1.743506	2.882611	1.595821	
17	1	0	-0.016682	2.481252	1.836697	
18	1	0	-2.488919	-1.170934	-0.903722	
19	1	0	2.852359	-0.554243	-1.601576	
20	1	0	3.218757	1.124344	-2.086256	
21	1	0	4.323228	0.255926	-0.994597	
22	1	0	-3.044181	-0.634653	0.909062	
23	1	0	-3.081718	0.463608	-0.146463	
24	8	0	2.001697	-1.709047	1.636566	
25	1	0	1.102575	-1.546582	1.980875	

п	C C
	3 C2

Center	Atomic	Atomic	mic Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.403864	0.711480	-0.879516	
2	6	0	0.328335	1.718298	-0.111298	
3	6	0	0.135146	2.032377	1.346335	
4	8	0	-1.311254	1.777781	-0.837260	
5	15	0	-0.971063	-0.892179	-0.160521	
6	8	0	-2.308073	-1.205064	-1.008366	
7	8	0	-1.184645	-0.855984	1.337678	
8	8	0	0.032545	-2.023697	-0.671917	
9	16	0	2.766237	0.633467	0.256836	
10	6	0	3.070564	-0.034400	-1.424740	
11	8	0	-3.520623	0.787163	0.305531	
12	1	0	-2.988130	-0.551898	-0.680092	
13	1	0	0.010970	0.487776	-1.881972	
14	1	0	0.877859	2.438344	-0.715299	
15	1	0	-0.298632	1.177836	1.880434	
16	1	0	-0.538225	2.899846	1.451474	
17	1	0	1.102449	2.293461	1.796997	
18	1	0	0.727567	-2.170239	0.064344	
19	1	0	2.354954	-0.832839	-1.682920	
20	1	0	2.986296	0.754899	-2.193684	
21	1	0	4.088117	-0.457478	-1.501965	
22	1	0	-3.089051	0.403381	1.089019	
23	1	0	-2.780909	1.337900	-0.078776	
24	8	0	1.568046	-2.013783	1.395698	
25	1	0	0.794011	-1.653608	1.867350	
26	1	0	2.069814	-1.178025	1.127939	

Prod_{C1}

Center Atomic Atomic Coordinates (Angstroms)					 oms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.188504	0.820509	-0.534912
2	6	0	-0.847006	1.828196	0.062730
3	6	0	-0.948956	1.784275	1.593537
4	8	0	-2.102782	1.720489	-0.552124
5	15	0	-0.292953	-0.994202	-0.442357
6	8	0	1.113800	-1.784611	-0.772256
7	8	0	-1.287340	-1.259854	-1.551264
8	8	0	-0.682456	-1.318797	1.013752
9	16	0	1.856168	1.208298	0.189167
10	6	0	2.940492	0.765895	-1.207984
11	8	0	-3.340483	-0.684291	0.103242
12	1	0	1.548977	-1.987788	0.091998
13	1	0	0.257519	1.045923	-1.611080
14	1	0	-0.463272	2.828435	-0.215598
15	1	0	-1.235774	0.778795	1.931427
16	1	0	-1.705365	2.516549	1.918796
17	1	0	0.011112	2.042163	2.071693
18	1	0	-2.849450	-0.990229	-0.700433
19	1	0	2.738761	-0.270602	-1.511306
20	1	0	2.784762	1.450010	-2.057563

21	1	0	3.979792	0.860252	-0.858048	
22	1	0	-2.705206	-1.003573	0.775031	
23	1	0	-2.566031	0.900651	-0.252036	
24	8	0	1.803495	-1.816862	1.882998	
25	1	0	0.812238	-1.743451	1.819199	
26	1	0	2.055487	-0.888730	1.731591	

Prod_{C2}

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Ŷ	Z	
1	6	0	0.495571	-0.913037	-0.268945	
2	6	0	-0.761885	-1.527996	0.385200	
3	6	0	-0.711888	-1.511524	1.915492	
4	8	0	1.559162	-1.723615	0.198574	
5	15	0	0.832411	0.925202	-0.017785	
6	8	0	2.262414	1.146531	-0.488034	
7	8	0	0.395096	1.406680	1.366115	
8	8	0	-0.179077	1.606545	-1.136338	
9	16	0	-2.396403	-0.818544	-0.111522	
10	6	0	-2.286967	-0.750682	-1.929385	
11	8	0	4.042048	-0.697354	-0.470939	
12	8	0	-1.956960	2.481419	0.758025	
13	1	0	3.435075	0.103161	-0.589357	
14	1	0	0.391145	-1.015694	-1.370020	
15	1	0	-0.779307	-2.579578	0.046538	
16	1	0	-0.646463	-0.477008	2.281443	
17	1	0	0.197175	-2.041510	2.233465	
18	1	0	-1.592234	-2.016662	2.346973	
19	1	0	-0.900778	2.069805	-0.644033	
20	1	0	-1.561091	0.015568	-2.235621	
21	1	0	-2.020383	-1.734040	-2.348567	
22	1	0	-3.289625	-0.474346	-2.289699	
23	1	0	4.266521	-0.611593	0.466400	
24	1	0	2.421777	-1.397997	-0.148154	
25	1	0	-1.096700	2.236559	1.201789	
26	1	0	-2.359276	1.599801	0.666592	

3.Enzymatic GSH addition

Figure S2. Evolution of selected distances in Å during the MD simulation. The average value is also indicated. The atom labels are defined in *Figure 3*.

For Sn1, the following residues (within 13 Å of C1 of fosfomycin, 1383 atoms) were allowed to move during the geometry optimizations:

Chain A: LEU5, ASN6, HSD7, LEU8, THR9, LEU10, ALA11, VAL12, LEU15, GLU31, ALA32, ARG33, TRP34, GLN36, GLY37, ALA38, TYN39, LEU40, GLU41, LEU45, TRP46, LEU47, CYS48, LEU49, SER50, ARG51, GLU52

Chain B: ASP61, TYR62, THR63, HSD64, TYR65, ALA66, PHE67, GLY68, PHE74, TRP89, LYS90, GLN91, ASN92, ARG93, SER94, GLU95, GLY96, ASP97, SER98, PHE99, TYR100, PHE101, ARG108, LEU109, GLU110, ALA111, HSD112, VAL113, GLY114, ASP115, LEU116, ARG117, SER118, ARG119, LEU120, ALA122, CYS123, TYR128, MET131

Water: CRYW47, CRYW56, CRYW67, CRYW69, CRYW75, CRYW133, CRYW153, CRYW170, CRYW246, WZ116, WZ1364, WZ1378, WZ1466, WZ1693, WZ1866, WZ11081, WZ11271, WZ11334, WZ11377, WZ11435, WZ11471, WZ11599, WZ11632, WZ11661, WZ11703, WZ11863, WZ12058, WZ12116,WZ12245,WZ12323, WZ12333, WZ12374, WZ12422, WZ12524, WZ12644, WZ12725, WZ12946, WZ12959, WZ13004, WZ13061, WZ13242, WZ13243, WZ13879, WZ13889, WZ217, WZ225, WZ295, WZ2183, WZ2237, WZ2372, WZ2613, WZ2651, WZ2672, WZ2690, WZ2863, WZ21265, WZ21320, WZ21328, WZ21467, WZ21781, WZ21849, WZ21864, WZ22061, WZ2207, WZ22214, WZ22421, WZ22588, WZ22602, WZ22810, WZ23036, WZ23044, WZ23212, WZ23308, WZ23415, WZ23514, WZ23522, WZ23566, WZ23599, WZ23686, WZ23806, WZ3166, WZ3174

Mn, Fosfomycin, and GSH

3.1 QM region M1a (87 atoms) for GSH addition

Figure S3. Energy profile for proton transfer between GSH and Tyr39 in the lowest sextet state computed at the QM(B3LYP/def2-SVP)/CHARMM level using the reaction coordinate $d_{S-H1}-d_{O1-H1}$ for QM region M1a.

Figure S4. Energy profile for the GSH attack at C1 in the lowest sextet state computed at the QM(B3LYP/def2-SVP)/CHARMM level using the reaction coordinate $d_{S-C1}-d_{O2-C1}$ for QM region M1a.

Figure S5. Energy profile for the GSH attack at C2 in the lowest sextet state computed at the QM(B3LYP/def2-SVP)/CHARMM level using the reaction coordinate $d_{S-C2}-d_{O2-C2}$ for QM region M1a.

stationary points for OSTI attack using QMI region MITa.							
	B3LYP/BS1:MM			B3LYP/ TZVPP:MM		.	
	QM	MM	QM/MM	QM	QM/MM	- Dispersion	
⁶ React	-3831.347634	-156.507944	-3987.855578	-3834.036635	-3990.5446	-0.123466	
⁴ React	-3831.289179	-156.508194	-3987.797373	-3833.980683	-3990.4889	-0.125599	
² React	-3831.263952	-156.507940	-3987.771892	-3833.956886	-3990.4648	-0.126501	
⁶ TS1	-3831.339885	-156.507689	-3987.847574	-3834.028638	-3990.5363	-0.122160	
⁶ Int1	-3831.340365	-156.507543	-3987.847908	-3834.029821	-3990.5356	-0.121632	
⁶ TS2 _{C1}	-3831.335269	-156.502985	-3987.838254	-3834.021428	-3990.5244	-0.125852	
⁶ TS2 _{C2}	-3831.328819	-156.498103	-3987.826922	-3834.015748	-3990.5139	-0.125399	
⁶ Prod _{C1}	-3831.388277	-156.497221	-3987.885498	-3834.073004	-3990.5702	-0.128134	
⁶ Prod _{C2}	-3831.373564	-156.490236	-3987.863800	-3834.057379	-3990.5476	-0.128347	

Table S2. Calculated QM, MM, QM/MM and dispersion energies (in Hartree) of optimized stationary points for GSH attack using QM region **M1a**.

3.2 QM region M2a (170 atoms) for GSH addition

Figure S6. Optimized structure of reactant complex (⁶*React*) for QM region M2a (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

Figure S7. Optimized structure of transition state (${}^{6}TS1$) and intermediate (${}^{6}Int1$) for proton transfer for GSH attack with QM region M2a (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

Figure S8. Optimized structure of transition states for the attack on C1 (${}^{6}TS2_{C1}$) and C2 (${}^{6}TS2_{C2}$) for GSH attack with QM region M2a (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

Figure S9. Optimized structure of product complexes for the attack on C1 (${}^{6}Prod_{C1}$) and C2 (${}^{6}Prod_{C2}$) for GSH attack with QM region M2a (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

Sumonally Points for Cost and a control of the cost of							
	B3LYP/BS1:MM			B3LYP/ TZVPP:MM		.	
	QM	MM	QM/MM	QM	QM/MM	Dispersion	
⁶ React	-6072.603482	-155.221188	-6227.824670	-6077.958242	-6233.179430	-0.289562	
⁴ React	-6072.545688	-155.222055	-6227.767743	-6077.902712	-6233.124767	-0.292053	
² React	-6072.520505	-155.222191	-6227.742696	-6077.878308	-6233.100499	-0.293156	
⁶ TS1	-6072.596297	-155.223800	-6227.820097	-6077.947486	-6233.171286	-0.292667	
⁶ Int1	-6072.602013	-155.222549	-6227.824562	-6077.954512	-6233.177061	-0.292130	
⁶ TS2 _{C1}	-6072.586467	-155.223237	-6227.809704	-6077.934824	-6233.158061	-0.296474	
⁶ TS2 _{C2}	-6072.577932	-155.219054	-6227.796986	-6077.927126	-6233.146180	-0.294173	
⁶ Prod _{C1}	-6072.623224	-155.222922	-6227.846146	-6077.967225	-6233.190147	-0.300019	
⁶ Prod _{C2}	-6072.606502	-155.221691	-6227.828193	-6077.946019	-6233.167710	-0.301518	

Table S3. Calculated QM, MM, QM/MM and dispersion energies (in Hartree) of optimized stationary points for GSH attack using QM region M2a.

4. Enzymatic water Addition

Figure S10. Evolution of selected distances in Å during the MD simulation. The average value is also indicated. The atom labels are defined in *Figure 8*.

The following residues (within 13 Å of C1 of fosfomycin, 1383 atoms) were allowed to move during the geometry optimizations:

Chain A: LEU5, ASN6, HSD7, LEU8, THR9, LEU10, ALA11, VAL12, LEU15, GLU31, ALA32, ARG33, TRP34, GLN36, GLY37, ALA38, TYN39, LEU40, LEU45, TRP46, LEU47, CYS48, LEU49, SER50, ARG51, GLU52, PRO53

Chain B: ASP61, TYR62, THR63, HSD64, TYR65, ALA66, PHE67, TRP89, LYS90, GLN91, ASN92, ARG93, SER94, GLU95, GLY96, ASP97, SER98, PHE99, TYR100, PHE101, ARG108, LEU109, GLU110, ALA111, HSD112, VAL113, GLY114, ASP115, LEU116, SER118, ARG119, LEU120, ALA122, CYS123, TYR128, MET131

Water: CRYW47, CRYW56, CRYW67, CRYW153, CRYW170, CRYW283, CRYW365, WZ118, WZ1120, WZ1558, WZ1622, WZ1696, WZ1772, WZ1949, WZ11209, WZ11223, WZ11237, WZ11333, WZ11372, WZ11414, WZ11510, WZ11525, WZ11533, WZ11609, WZ11708, WZ11780, WZ11856, WZ11882, WZ11909, WZ11996, WZ12021, WZ12100, WZ12331, WZ12374, WZ12642, WZ12669, WZ12693, WZ12732, WZ12847, WZ13002, WZ13073, WZ13255, WZ13335, WZ13408, WZ13421, WZ13495, WZ13637, WZ13719, WZ13746, WZ13755, WZ13943, WZ25, WZ223, WZ2130, WZ2164, WZ2238, WZ2445, WZ2468, WZ2670, WZ2687, WZ2738, WZ2951, WZ2132, WZ21311, WZ21381, WZ21382, WZ21474, WZ21531, WZ21598, WZ21621, WZ21726, WZ21951, WZ22017, WZ22173, WZ2250, WZ22382, WZ22400, WZ22519, WZ22548, WZ22592, WZ22775, WZ2821, WZ22845, WZ22891, WZ22936, WZ23149, WZ23184, WZ3192, WZ3209, WZ23321, WZ23508, WZ23715, WZ23739, WZ23800, WZ23960, WZ314, WZ3181, WZ3227, WZ3415, WZ3451, WZ3452, WZ3471, WZ3475, WZ3477,

Mn and Fosfomycin

4.1 QM region M1b (81 atoms) for water addition

	B3LYP/BS1:MM			B3LYP/T2	D	
-	QM	ММ	QM/MM	QM	QM/MM	- Dispersion
⁶ React	-3429.987987	-157.134642	-3587.122629	-3432.550755	-3589.685397	-0.113163
⁴ React	-3429.931346	-157.133351	-3587.064697	-3432.495226	-3589.628577	-0.116192
² React	-3429.904767	-157.133511	-3587.038278	-3432.470154	-3589.603665	-0.116976
⁶ TS2 _{C1}	-3429.959221	-157.132571	-3587.091792	-3432.517072	-3589.648954	-0.117253
⁶ TS2 _{C2}	-3429.961360	-157.135015	-3587.096375	-3432.520149	-3589.655164	-0.116147
⁶ Prod _{C1}	-3429.995791	-157.135332	-3587.131123	-3432.549422	-3589.684754	-0.116119
⁶ Prod _{C2}	-3430.004464	-157.135835	-3587.140299	-3432.554878	-3589.690713	-0.116017

Table S4. Calculated QM, MM, QM/MM and dispersion energies (in Hartree) of optimized stationary points for water attack using QM region **M1b**.

4.2 QM region M2b (170 atoms) for water addition

Figure S11. Optimized structure of reactant complex (⁶React) for water attack with QM region M2b (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

Figure S12. Optimized structure of transition states for the attack on C1 (${}^{6}TS_{C1}$) and C2 (${}^{6}TS_{C2}$) for water attack with QM region M2b (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

Figure S13. Optimized structure of product complexes for the attack on C1 (${}^{6}Prod_{C1}$) and C2 (${}^{6}Prod_{C2}$) for water attack with QM region M2b (B3LYP/MM). For clarity, unimportant hydrogen atoms are not shown. Distances are given in Å.

stationary points for water attack using QM region 1420.							
	B3LYP/BS1:MM			B3LYP/ T2	D		
	QM	MM	QM/MM	QM	QM/MM	- Dispersion	
⁶ React	-5585.310834	-156.171157	-5741.481991	-5590.542121	-5746.713278	-0.265069	
⁴ React	-5585.252802	-156.171233	-5741.424035	-5590.485315	-5746.656548	-0.268740	
² React	-5585.227065	-156.171231	-5741.398296	-5590.459773	-5746.631004	-0.269469	
⁶ TS2 _{C1}	-5585.284154	-156.164963	-5741.449117	-5590.509472	-5746.674435	-0.269539	
⁶ TS2 _{C2}	-5585.287930	-156.166776	-5741.454706	-5590.515674	-5746.682450	-0.267947	
⁶ Prod _{C1}	-5585.324606	-156.161891	-5741.486497	-5590.548148	-5746.710039	-0.268129	
⁶ Prod _{C2}	-5585.330311	-156.165561	-5741.495872	-5590.551843	-5746.717404	-0.267981	

Table S5. Calculated QM, MM, QM/MM and dispersion energies (in Hartree) of optimizedstationary points for water attack using QM region M2b.

5. Complete citations for references 42, 53, and 55.

- (42) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, **2009**.
- (53) MacKerell, Jr., A. D.; Bashford, D.; Bellott, M.; Dunbrack, Jr., R. L.; Evanseck, J.;
 Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-MacCarthy, D.; Kuchnir,
 L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.;
 Prodhom, B.; Reiher, III, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.;
 Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. *Chem. B* 1998, 102, 3586-3616.
- (55) Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.;
 French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.;
 Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King,
 F.; Karlsen, E.; Sjøvoll, M.; Fahmi, A.; Schäfer, A.; Lennartz, C. J. Mol. Struct.
 (*THEOCHEM*) 2003, 632, 1-28.