
SECOND PROGRESS REPORT

1993 { 1995

February 1995

I N F O R M A T I K

Max{Planck{Institut f�ur Informatik

Im Stadtwald

66123 Saarbr�ucken

Germany

Contents

I Overview 1

II The Algorithms and Complexity Group 5

1 Personnel 7

2 Executive Summary 8

3 Research Themes 11

3.1 Parallel and Distributed Computing : 11

3.1.1 Parallel Merge Sorting : 11

3.1.2 Parallel Graph Algorithms : 12

3.1.3 Lock-Free Data Structures : 18

3.1.4 Adaptive Dynamic Load Balancing : 19

3.1.5 Basic Problems on Meshes : 20

3.1.6 Locality in Parallel Algorithms : 23

3.1.7 Parallel Algorithms for Molecular Dynamics Simulation of Synthetic

Polymers : 25

3.2 Computational Geometry : 27

3.2.1 Proximity Problems : 27

3.2.2 Range Searching : 32

3.2.3 Abstract Voronoi Diagrams : 34

3.2.4 Geometric Optimization Problems : 35

3.2.5 Intersection-Detection Problems : 37

3.2.6 Geometric Constraints : 40

3.3 Data Structures and Combinatorial Algorithms : : : : : : : : : : : : : : : : : : 42

3.3.1 Partial orders : 42

3.3.2 Lower Bounds for the Matrix Chain Ordering Problem : : : : : : : : : : 43

3.3.3 On-Line Algorithms : 45

3.3.4 String Searching : 47

3.3.5 Pattern Matching in Compressed Texts : : : : : : : : : : : : : : : : : : 48

3.3.6 Probabilistic Analysis of Algorithms : 49

3.3.7 Enumerating Spanning Trees in Graphs : : : : : : : : : : : : : : : : : : 51

3.3.8 Degree Sequence Problems : 52

3.3.9 Random Walks on Graphs : 53

3.3.10 Algorithms for Sparse Graphs and Networks : : : : : : : : : : : : : : : : 55

3.3.11 Approximation Algorithms for NP-hard Problems : : : : : : : : : : : : 59

3.3.12 Computation of Exact Ground States of Ising Spin Glasses : : : : : : : 60

3.4 Complexity Theory : 62

3.4.1 Directed s-t Connectivity : 62

3.4.2 The Additive Fragment of Linear Logic and NC

1

: : : : : : : : : : : : : 64

3.4.3 Lower Bounds on Decision Trees : 65

3.4.4 Circuit Complexity : 67

3.5 The LEDA Platform : 68

3.5.1 Overview : 69

3.5.2 Exact Geometric Computations : 70

3.5.3 Trapezoidal decomposition induced by a set of line segments : : : : : : 73

4 Visitors 75

5 Journal and Conference Activities 77

5.1 Editorial positions : 77

5.2 Conference positions : 77

5.3 Organization of Workshops : 77

6 Teaching Activities 78

7 Dissertations and Habilitations 79

7.1 Dissertations : 79

7.2 Habilitations : 80

8 Organization of our Group 80

9 Cooperations 80

9.1 SFB 124 VLSI{Entwurfsmethoden und Parallelit�at : : : : : : : : : : : : : : : : 81

9.2 ALCOM : 81

9.3 ALTEC : 81

9.4 HCM : 82

9.5 GIF : 82

9.6 Industry : 82

10 Recent Publications 83

10.1 In Journals : 83

10.2 In Conference Proceedings : 84

10.3 Technical Reports : 89

III The Programming Logics Group 99

1 Personnel 101

2 Visitors 102

3 Executive Summary 103

4 Journal and Conference Activities 107

4.1 Editorial positions : 107

4.2 Conference Positions : 107

4.2.1 Memberships in Organizing Committees : : : : : : : : : : : : : : : : : : 107

4.2.2 Memberships in Program Committees : : : : : : : : : : : : : : : : : : : 107

4.3 Organization of Workshops and Conferences : 108

5 Teaching Activities 110

6 Dissertations and Habilitations 111

6.1 Doctorates (to be completed in 1995) : 111

6.2 Habilitations : 111

6.3 Masters Theses in Progress : 111

6.4 Masters Theses : 111

7 Grants 112

8 Research Areas 121

8.1 Automated Theorem Proving for Predicate Logic : : : : : : : : : : : : : : : : : 121

8.1.1 Saturation-Based Theorem Proving : 121

8.1.2 Con
uent Rewriting Systems : 125

8.1.3 Order-Sorted Logics : 125

8.1.4 Constraint Solving : 127

8.1.5 E�ciency in Theorem Provers : 128

8.1.6 Clause Linking : 130

8.2 Non-Classical Logics : 130

8.2.1 Representation Theorems and Model Theoretic Semantics : : : : : : : : 131

8.2.2 Quanti�er Elimination : 133

8.2.3 Special Representations : 134

8.2.4 Translation from Modal into Predicate Logic : : : : : : : : : : : : : : : 135

8.2.5 Saturation of Modal Logic Background Theories : : : : : : : : : : : : : 135

8.2.6 Logic and Uncertainty : 136

8.2.7 Reason Maintenance : 138

8.2.8 Case Study: Knowledge Representation using Non-Classical Logics : : : 138

8.2.9 Summary : 140

8.3 Logic and functional programming : 140

8.3.1 Integration of Functional and Logic Languages : : : : : : : : : : : : : : 140

8.3.2 Analysis and Optimization of Declarative Programs : : : : : : : : : : : 142

8.3.3 Linear Logic Based Program Analysis : : : : : : : : : : : : : : : : : : : 144

8.3.4 Constraint Logic Programming : 144

8.4 Higher order logic : 146

8.4.1 Metatheory in a logical framework : 146

8.4.2 Labelled deductive systems : 148

8.4.3 Program synthesis : 149

8.4.4 Automated Reasoning in Higher-Order Logic : : : : : : : : : : : : : : : 151

8.4.5 Investigations on Polymorphic �-Calculi with Subtyping : : : : : : : : : 151

8.5 Other work : 152

8.5.1 Program Synthesis : 152

8.5.2 Applying Algebraic Speci�cation Techniques to the Speci�cation of Dy-

namic Systems : 153

8.5.3 Data Compression with Genetic Algorithms : : : : : : : : : : : : : : : : 153

8.6 Implementations : 154

8.6.1 ACID : 154

8.6.2 The SAXOPHONE prover : 154

8.6.3 The MOTEL system : 155

8.6.4 The Quanti�er Elimination Algorithm SCAN : : : : : : : : : : : : : : : 156

8.6.5 CLP : 156

8.6.6 PROP : 157

8.6.7 The Saturate System : 157

9 Publications 157

9.1 Journals and Book Chapters : 157

9.2 Conferences : 159

9.3 Reports : 162

IV Appendix 169

1 Present technical con�guration 171

1.1 Technical facilities : 171

1.2 Administration : 171

1.3 External data communication : 172

1.4 Future infrastructural steps : 172

Part I

Overview

The Max-Planck-Institut f�ur Informatik

Research Programme

The institute is devoted to basic research in computer science, and in particular to the study

of complex computer systems.

Complexity in computer systems arises for various reasons: A problem can be complex due

to huge masses of data that have to be handled, sometimes in real time. For this sort of problem

e�cient algorithms and data structures as well as parallel processing are of great importance.

Parallel algorithms are often designed for theoretical machines which abstract from the actual

communication between their processors in one way or another. The problem of how we should

actually build such machines is still unsolved.

Or complexity can mean logical complexity as we �nd it in large software systems, with

many layers of abstraction, where applications from di�erent problem domains interact with

each other in often unpredictable ways. Here we need to apply methods based on mathematical

logic in order to structure, reason about, and develop more systematically, such large systems.

Today's computer systems are very complex in the way that they consist of a large number of

hardware components which operate concurrently and which are physically distributed, often

in a non-local manner. We want to understand better the nature of such systems, how to

develop them such that they behave predictably and as wanted and to ensure that they are,

by the way they are constructed, insensitive to faults in their components.

Computer systems are more and more used to realize and simulate some part of the real or

of an imaginary world. Such simulations have to deal with all of the forms of complexity we

have mentioned above.

Structure

The institute is planned to eventually consist of �ve research groups, to �t this research pro-

gramme, in the following areas:

1. Algorithms and Complexity

2. Programming Logics

3. Concurrent and Distributed Systems

4. Computer Architecture

5. Simulation and Virtual Reality

Since it opened in Dec. 1990 two research units have been installed, the Algorithms and

Complexity group headed by K. Mehlhorn, and the Programming Logics group headed by

H. Ganzinger. In addition to these two, a research group at the University of Potsdam, headed

by M. G�ossel, is associated with the institute. This group investigates fault tolerant computing.

At present 16 research associates, 26 doctorate students and 17 postdocs are a�liated with

the institute. The scienti�c sta� is complemented by an administrative unit (11 members,

including secretaries), by a computing support unit (5 members of sta�) and by our library (2

members of sta�). The computing support unit currently operates a network of approximately

120 workstations.

3

The Max-Planck-Institut f�ur Informatik

Grants

The institute is involved in a number of projects related to research grants awarded by the Eu-

ropean Union, by the German Science Foundation (DFG) and by the German Ministery of Re-

search and Technology (BMFT); for the descriptions of these grants see sections II.9 and III.7.

Funding of these projects in 1994 was about 2,2 Mio. DM.

Results

In the two parts to follow we describe in detail, for the two research groups, the research pro-

grammes and results obtained in the period December 1993 through February 1995. We have

continued to be very successful in our research, as documented by our many scienti�c publi-

cations, including about 130 articles in journals, books or proceedings of major international

conferences.

Many of the institute's results are, in addition, available to the public through computer pro-

grams such as the LEDA library of e�cient algorithms, the ACID collection for term indexing

data structures, the SCAN system for second-order quanti�er elimination and circumscription,

and the SATURATE experimental theorem prover.

Teaching Activities

The institute makes an e�ort to o�ering a variety of courses to computer science students of

the Universit�at des Saarlandes. Courses taught during the period of this report are listed in

Sections II.6 and III.5. In the same period 3 doctoral dissertations and 4 habilitations have

been successfully completed.

Professional Activities

Members of the institute have been involved in the organization of 11 workshops and confer-

ences. In 17 cases we have been invited to join the program committee of major international

conferences, not counting program committee memberships for national and international work-

shops. Finally, we serve on the editorial board of 11 scienti�c journals.

Professorships

The following members of the institute have been o�ered (tenured) professorships in 1993/94

which they have accepted.

Michael Hanus (Programming Logics Group): C3, RWTH Aachen.

Stefan N�aher (Algorithms and Complexity Group): C3, U. Halle.

Rolf Socher (Programming Logics Group): C2, FH Emden.

Awards

Susanne Albers , member of the Algorithms and Complexity Group, has been awarded the Otto

Hahn Medal of the Max-Planck-Gesellschaft in recognition of her excellent doctoral thesis about

lookahead in on-line algorithms.

Kurt Mehlhorn has been awarded the Karl Heinz Beckurts Prize for his distinguished scienti�c

contributions to the area of e�cient algorithms and especially for his e�ort in making the

results of his �eld accessible for practical exploitation in academia as well as in industry.

4

Part II

The Algorithms and Complexity

Group

The Algorithms and Complexity Group

1 Personnel

Director:

Prof. Dr. Kurt Mehlhorn

Researchers:

Dr. Susanne Albers (until September 1994; now at ICSI, Berkeley, USA)

Dr. Srinivasa Arikati

Dr. Sunil Arya

Dr. Greg Barnes (until August 1994; now at University of Waterloo, Canada)

Dr. Phil Bradford (since September 1994; previously at Indiana University, USA)

Dr. Vasilis Capoyleas (since October 1994; previously at Purdue University, USA)

Dr. Shiva Chaudhuri

Dr. Devdatt Dubhashi (until August 1994; now at BRICS, Univ. of Aarhus, Denmark)

Dr. Rudolf Fleischer

Dr. Naveen Garg (since September 1994; previously at IIT, Delhi, India)

Privatdozent Dr. Torben Hagerup

Dr. Ramesh Hariharan (since September 1994; previously at Courant Institute, NYU, USA)

Dr. Pierre Kelsen (since October 1994; previously at Univ. of British Columbia, Canada)

Dr. Hans-Peter Lenhof

Dr. Sanjeev Mahajan (since September 1994; previously at Simon Fraser Univ., Canada)

Dr. Anil Maheshwari (until August 1994; now at TIFR, Bombay, India)

Prof. Dr. Kurt Mehlhorn

Dr. Michael M�uller (until May 1994; now at RIB Bausoftware GmbH, Stuttgart, Germany)

Dr. Petra Mutzel (since November 1994; previously at K�oln Universit�at, Germany)

Privatdozent Dr. Stefan N�aher (until September 1994; now at Halle Universit�at, Germany)

Dr. Christine R�ub

Dr. Sanjeev Saluja (since October 1994; previously at TIFR, Bombay, India)

Dr. Stefan Schirra

Dr. Christian Schwarz (since September 1994; previously at ICSI, Berkeley, USA)

Dr. Jop Sibeyn

Dr. Michiel Smid

Dr. Phillipas Tsigas (since January 1995; previously at CTI, Univ. of Patras, Greece)

Dr. Christian Uhrig

Dr. Christos Zaroliagis

Ph.D. students:

Hannah Bast (since December 1994)

Christoph Burnikel

Jordan Gergov

Gerhard Kl�ar (until January 1994; now at Techniker Krankenkasse, Hamburg, Germany)

Thomas Lauer

Markus Paul

Volker Priebe

Ronald Rasch (until August 1994; now at Techn. Univ. Bergakademie Freiberg, Germany)

Knut Reinert

Thomas Schilz

Erik Schwarzenecker

7

The Algorithms and Complexity Group

Christian Thiel

Secretaries:

Andrea E�er

Ingrid Finkler

Martina Horn

2 Executive Summary

The goal of the research unit \Algorithms and Complexity" is to understand the computational

complexity of algorithmic problems and to develop e�cient algorithms and data structures for

their solution. Our work spans from theory to practice. We have managed, quite successfully,

to intertwine theory with practice; in fact, frequently the same researchers are involved in both.

Our theoretical results appear in numerous publications in reputed conferences and journals

and the practical work has resulted in useful, commercial-quality software. Besides we are also

actively involved in teaching.

As in previous years, our research concentrates on computational geometry, parallel algo-

rithms, data structures and graph algorithms, computational complexity, and implementation

of algorithms. There is a slight shift in emphasis, though. We have increased our strength

in combinatorial optimization and we have picked up more applied themes. We now brie
y

survey our results in each of the �ve areas and refer the reader to Section 3 for more details.

Parallel and Distributed Algorithms (coordinators Torben Hagerup and Christine R�ub):

We have developed algorithms for a variety of models of computation: PRAMs, �xed intercon-

nection networks like hypercubes and meshes, and synchronous and asynchronous distributed

machines. Problems under consideration are sorting, merging, routing, graph algorithms, load

balancing, and a framework for the lock-free implementation of data-structures. Three speci�c

results are:

Christine R�ub has studied the average-complexity of odd-even merge sort. She showed that

its average running time on many networks is O((n logn)=p) provided that the size n of the

input is at least the square of the number p of processors.

Job Sibeyn has continued to investigate sorting and routing algorithms on meshes. He has

developed a simple deterministic algorithm that routes any permutation in time 2n + o(n) on

an n� n mesh. This is optimal up to low-order terms.

On the applied side Christine R�ub and Hans-Peter Lenhof are working on the molecular

dynamics simulation of synthetic polymers. They are using a CM5 (at GMD in Bonn) and an

iPSC/860 (at Universit�at des Saarlandes) for their experiments.

Computational Geometry (coordinators Kurt Mehlhorn and Michiel Smid): We continued

and extended our work on proximity problems: Several algorithms that result from our previous

work were implemented using LEDA. Also, we started investigating new topics in this area, such

as approximate nearest neighbor searching and the construction of spanners. We completed

our work on unifying abstract furthest-site Voronoi diagrams. We worked extensively on many

types of intersection searching problems, such as approximate range searching, generalized

intersection searching, rectangle enclosure problems, intersection problems on moving objects,

and collision detection problems for moving polyhedra. We started working on geometric

optimization problems in low-dimensional space (such as computing the width or roundness of

a point set and computing a largest empty anchored cylinder), and on geometric constraints,

a research area with many applications in CAD. Two speci�c results are:

8

The Algorithms and Complexity Group

In a sequence of papers, Sunil Arya, David Mount, and Michiel Smid (with varying co-

authors) have obtained much improved Euclidean spanners. A spanner is a graph de�ned on

n points in the plane that approximates the complete graph in the sense that any two points

are connected by a path whose length exceeds the Euclidean distance of the points by only a

constant factor. Their construction gives spanners of bounded degree, low weight, and small

diameter.

Elmar Sch�omer (from the Universit�at des Saarlandes) and Christian Thiel obtained the �rst

subquadratic algorithms to test whether two polyhedra collide under translational or rotational

movement.

Data Structures and Combinatorial Algorithms (coordinator Kurt Mehlhorn): Our work

in this area spans a wide range, from probabilistic analysis of algorithms to on-line algorithms,

and from algorithms for sparse graphs and networks to pattern matching. Besides, our evolving

group in combinatorial optimization is involved in research on approximation algorithms for

NP-complete problems and on the more applied side in graph drawing and the computation of

ground states for Ising spin glasses. Two speci�c results are:

Susanne Albers exhibited a randomized algorithm for the list-update problem that is �-

competitive, where � is the golden ratio.

Christos Zaroliagis (with co-authors from Patras University, his previous a�liation) ex-

plores the use of hammock-decompositions for obtaining fast sequential and parallel graph and

network algorithms, e.g. in the all-pairs shortest paths problem. Let ~
 be the minimum number

of outerplanar graphs into which a graph decomposes. Then 1 � ~
 � n. The running time

of the new algorithms matches the previously best bounds when ~
 = n. For small ~
, it is

signi�cantly smaller.

LEDA (coordinators Kurt Mehlhorn and Stefan N�aher): We have further developed the LEDA

platform for combinatorial and geometric computing. It is used by several hundred academic

and industrial groups world-wide as the basis of their algorithms development. In January

1995 we have released version 3.1. Its most exciting new features are correct implementations

of some basic geometric algorithms; they handle all degeneracies and avoid the dangers of

inexact arithmetic. A signi�cant part of LEDA is now so mature that several companies have

made it the basis of serious software development. The spin-o� company LEDA GmbH plans

to maintain, distribute and further develop this part of LEDA.

Complexity Theory: This is a small e�ort compared to the other four. Nevertheless, we

have worked on fundamental problems; namely, on the complexity of circuits, of directed s� t

connectivity, of linear logic, and of decision trees. A speci�c new result is:

Shiva Chaudhuri was able to show that the set of functions computable by uniform polyno-

mial size circuits of constant depth properly includes those computable by uniform linear size

circuits of constant depth.

Stefan N�aher completed his Habilitation in 1994, and he is now associate professor of Computer

Science at the University of Halle. The Habilitation of Michiel Smid has just been completed

(February 1995). Two graduate students (G. Kl�ar and R. Rasch) completed their Ph.D. work,

ten Ph.D students are currently working in the group. Section 7 surveys their topics and

expected completion dates. Most of the researchers in the group are on two-year post-doc

contracts or three-year graduate student scholarships and hence there is considerable
uctua-

tion. We run an intensive seminar and lecture program to spur interaction within the group.

We have two 45-minute \noon seminars" per week, which every group member has to attend,

9

The Algorithms and Complexity Group

and two 90-minute lectures per week. The lectures are reserved for two to four week intensive

treatments of \hot" topics, see Section 8 for more details. We run an intensive visitor program;

more than 30 guests visited our group for stays up to three months, cf. Section 4 for details.

The group contributes to the master's program in Computer Science at the Universit�at des

Saarlandes. Ten master students have �nished their master's thesis under our supervision in

the last 12 months. We have o�ered thirteen courses and seminars in the last year, cf. Section

6 for details. The group is involved in �ve national and international research projects. Section

9 gives details.

10

The Algorithms and Complexity Group

3 Research Themes

This section describes the work (theoretical and practical) done by our group. It is divided into

�ve subsections, one per each working area. To be easily distinguishable, references regarding

work done by members of the group (during the period considered in this report) are marked

with a � .

3.1 Parallel and Distributed Computing

3.1.1 Parallel Merge Sorting

Investigator: Christine R�ub

Sorting is an important and ubiquitous problem in parallel computation. This section discusses

two results concerning parallel sorting algorithms. The �rst one shows that Batcher's odd-even

merge sort can be implemented to run optimally, for random large inputs, on many existing

parallel machines, and the second one shows that sorting by merging can, on the hypercube

model, be optimal (in the worst as well as in the average case) only when the size of the input

is relatively large compared with the number of processors available.

Batcher's odd-even merge sort is a well-known parallel algorithm for sorting. Originally this

algorithm was described as a comparator network of size O(n log

2

n) that sorts n elements in

time O(log

2

n) [1]. However, it can also be used as a sorting procedure on a parallel computer.

In this case there will, in general, be fewer processors than input elements. Odd-even merge

sort can then be implemented by substituting all comparisons (and exchanges) between two

elements by splits of two sorted lists at the median of their union.

In practice, when comparing di�erent sorting algorithms, odd-even merge sort has not been

used often. Instead, another sorting algorithm proposed by Batcher [1], namely bitonic sorting,

has been used in the comparisons. Because of its small constant factors, bitonic sort is quite

e�cient on many parallel machines. One reason that has been mentioned for this preference is

that odd-even merge sort is not as \composable" [2] as bitonic sort.

In [4] we show, however, that odd-even merge sort can be implemented (by keeping the

communication between processors to a minimum) so that it performs on the average much

better than bitonic sort. More precisely, we show that the average running time of odd-even

merge sort can be O((n=p)(logn + log p log(1 + p

2

=n))) (with small constant factors), whereas

the average running time of bitonic sort is �((n=p)(logn + log

2

p)). (n is the size of the input

and p is the number of processors used. The average is taken over all possible ways to store

the input elements evenly distributed among the processors.) In particular, odd-even merge

sort needs on the average much less communication than bitonic sort; this is important since

communication is still relatively expensive on existing parallel machines.

Because of its small constant factors, this implementation of odd-even merge sort yields, for

random inputs, good speedups on many existing parallel machines. Its main advantages are

that it is comparison-based, i.e., can sort arbitrary elements, that the elements are distributed

evenly among the processors at the end, and that it is adaptive. The latter means that it will

work even faster for presorted inputs. Also, there are no problems when the input contains

many identical keys like in Sample Sort [2], one of the fastest known parallel sorting algorithms.

The hypercube interconnection model for a parallel computer is de�ned as follows. We

are given p (p a power of two) processors P

0

; :::; P

p�1

that are connected in the form of a

log p-dimensional hypercube. I.e., each processor P

i

is connected to all processors P

j

such

that the binary representation of i and j di�er in exactly one position. The development

of a deterministic algorithm for sorting on the hypercube that is work-optimal and runs in

11

The Algorithms and Complexity Group

polylogarithmic time is a long-standing open problem and has attracted considerable interest.

There are, however, several work-optimal deterministic algorithms for sorting on the PRAM-

model that run in polylogarithmic time. All of these algorithms have in common that they

sort by repeatedly merging pairs of sorted sequences. Thus a question to ask is: is the same

possible for the hypercube, i.e., is it possible to merge two sorted lists of altogether n elements

using O(n) work and polylog(n) time? In [3] we show that this is not the case. Speci�cally,

we show the following. Let n be the size of the input and let p be the number of processors

available. Then sorting by repeatedly merging pairs of lists of elements can, for the average

case, not be optimal if p � n

0:5+�

for any � > 0.

References

[1] K.E. Batcher. Sorting networks and their applications. Proceedings, AFIPS Spring Joint Computer

Conference, pages 307{314, 1968.

[2] G.E. Blelloch, L. Dagum, S.J. Smith, K. Thearling, and M. Zagha. An evaluation of sorting as a

supercomputer benchmark. Technical Report RNR-93-002, NAS Applied Research Branch, 1993.

[3] Ch. R�ub. Lower bounds for merging on the hypercube. Proc. 2nd Italian Conference on Algorithms�

and Complexity, LNCS 778, pages 213{222, 1994.

[4] Ch. R�ub. On the average running time of odd-even merge sort. Proc. 12th Symposium on Theoretical�

Aspects of Computer Science, STACS '95, 1995. To appear.

3.1.2 Parallel Graph Algorithms

Investigators: Srinivasa Arikati, Shiva Chaudhuri, Torben Hagerup, Anil Maheshwari and

Christos Zaroliagis

Recently much of our research into parallel algorithms has been focussed on parallel graph al-

gorithms. We understand the term in a wide sense, including parallel algorithms for computing

various quantities de�ned by input graphs and networks (this covers the bulk of our work) as

well as parallel algorithms for unrelated problems that use graphs internally as part of their

computation.

Graph Decompositions

Graph decompositions have played an important role in sequential computation. Their role in

parallel computation is perhaps even more prominant, since quite often the e�cient parallel

solution of many problems requires the invention and use of original, novel approaches rad-

ically di�erent from those used to solve the same problems sequentially. In other cases, the

novel parallel solution paradigm stems from a non-trivial parallelization of a speci�c sequential

method (e.g. merge-sort for EREW PRAM optimal sorting).

Motivated by the second paradigm, we have given an e�cient parallel algorithm for de-

composing an n-vertex, m-edge graph G into a number, ~
, of outerplanar subgraphs (called

hammocks) satisfying certain separator properties [22]. Our work is based on the sequential

hammock decomposition technique introduced by Frederickson [15] and the parallel ear decom-

position technique [23], thus we call it the hammock-on-ears decomposition. The number of

hammocks produced is closely related to certain embedding properties of G (e.g. genus) and

varies from 1 up to �(m) [15]. Roughly speaking, ~
 is a measure of the topological complexity

of G. The better the topological characteristics of G are, the smaller the value of ~
 becomes.

(For example, if G is outerplanar, then ~
 = 1.) Our algorithm runs in O(logn log logn)

12

The Algorithms and Complexity Group

(resp. O(logn)) time using O(n + m) CREW (resp. CRCW) PRAM processors [22]. The

hammock-on-ears decomposition implies a general framework for solving graph problems e�-

ciently in parallel, especially when the input graph is sparse, i.e. m = O(n). The main idea

of the technique is to partially reduce the solution of a given problem � on G to the solution

of � on subgraphs with a particular nice structure (hammocks) and then combine the partial

solutions. The value of the technique is demonstrated by improving previous bounds for certain

instances of shortest paths and related problems on sparse graphs. The details of these results

are given in the rest of this subsection.

We plan to continue work on graph decompositions. We would like to �nd more e�cient

solutions to graph problems, by decomposing the input graph into subgraphs with a known

structure, solving these subproblems and combining the solutions.

Shortest Paths

The shortest path problem is maybe the most fundamental problem in network optimization.

Its theoretical and practical importance has been widely recognized and an extensive list of

applications can be found in the recent book by Ahuja, Magnanti and Orlin [1]. The problem

is to �nd paths of minimum weight between vertices in an n-vertex, m-edge directed graph

(digraph) G with real edge weights. There are two main versions of the problem: the single-

source or shortest path tree problem, which asks for shortest paths from a speci�c vertex to

all other vertices in G, and the all-pairs shortest paths (apsp) problem, which asks for such

paths between every pair of vertices in G. Note that an apsp algorithm which outputs apsp

information in the standard form (i.e. either in a table, or as n shortest path trees), requires

(n

2

) time and space. Both versions of the problem have been intensively studied, especially

in sequential computation.

The best results for the apsp case are due to Frederickson [15, 16] and are based on the

sequential hammock decomposition (mentioned previously in the \Graph Decompositions")

and on a special encoding of apsp information which uses a local table (called a compact

routing table) for apsp inside a hammock and a global table for apsp between hammocks. This

encoding avoids the
(n

2

) lower bound needed for the time and space if the output has to be in

the standard form. In [15], an O(n+ ~

2

log ~
) time algorithm for the apsp problem in a sparse

digraph is given. If the input digraph is planar, then the above bound reduces to O(n + ~

2

)

[16]. In both cases, the space used is O(n + ~

2

).

In parallel computation, the best previous result for apsp is due to Han, Pan and Reif [18],

and requires O(n

3

) work, even for the case where G is a non-planar sparse digraph. The result

is based on the matrix powering method. If G is planar, then the best previous result was

given by Cohen [12] and runs in O(log

5

n) time using O(n

2

) work on a CREW PRAM.

We have worked towards closing the gap between the time performed by the best sequential

algorithm for the apsp problem and the work performed by a parallel algorithm. Based on

the hammock-on-ears decomposition (described previously in the \Graph Decompositions"),

as well as on other techniques, we have achieved the following results [22]. For the case of

sparse digraphs, we have given a CREW PRAM algorithm for the apsp problem, which runs in

O(log

2

n) time using O(n log

2

n+ ~

3

) work. If the input digraph is planar, then our algorithm

runs in O(log

2

n + log

5

~
) time using O(n log

2

n + ~

2

) work. The space used in both cases

is O(n + ~

2

) and the encoding of apsp information is the same as in [15, 16]. Note that

our algorithms perform very well when ~
 = o(n) (i.e., in all cases where the graph has nice

topological properties).

The shortest paths problem appears to have a special irregularity, when the input digraph G

contains negative edge weights. In this case, a shortest path between two vertices v and u exists,

13

The Algorithms and Complexity Group

i� no path from v to u contains a cycle of total negative weight. Thus, �nding negative cycles

in digraphs is fundamental for the shortest paths problem. In [21], we have given an algorithm

for detecting, and outputting if it exists, a negative cycle in planar and sparse digraphs. The

resource bounds of the algorithm are the same as those for the apsp problem described above.

In the special case where G is outerplanar, we gave an O(logn log

�

n)-time, O(n)-work CREW

PRAM algorithm.

Another way of avoiding the
(n

2

) lower bound for the apsp problem is to make a prepro-

cessing of the input digraph G so that subsequent shortest path or distance queries, between

any pair of vertices, can be e�ciently answered. Moreover, it is of particular interest to be

able to update the data structures created during the preprocessing, after the change of an

edge weight, in appropriately short time (i.e., without recomputing everything from scratch).

We refer to this problem as the dynamic shortest paths problem. We have recently given [14] a

parallel CREW PRAM algorithm for the dynamic shortest paths problem in planar digraphs,

which is also based on the hammock-on-ears decomposition. A distance query is answered in

O(logn + log

2

~
) time using O(logn + ~
) work, after a preprocessing of the planar digraph in

O(logn log

�

n + log

5

~
) time and O(n logn log

�

n + ~

1:5

) work. The space used is O(n + ~

1:5

).

If the shortest path is also required, then it can be output in the same time as the distance

query and in additional work proportional to the number of the edges of the path. We can

update the data structures set up by our preprocessing algorithm, after an edge weight modi�-

cation, in O(logn+ log

3

~
) time using O(logn+ ~

1:5

) work. We are not aware of any previous

parallel algorithm for the problem. If the input digraph is outerplanar, then the preprocessing

can be done in O(logn) time and O(n logn) work. The bounds for the query and the update

operations can be derived from the above, by setting ~
 = 1.

Another important application of our parallel graph decomposition result, concerns the

following problem, known as the quickest path problem. Assume that we are given a network

N represented as a digraph, where the vertices represent transmitters/receivers without data

memories and the edges represent communication channels. Each edge e has a capacity c(e)

and a lead (or delay) time l(e) associated with it. The transmission time to send � units of

data from a given source s to a destination t using path p is T (�; p) = l(p) +

�

c(p)

, where l(p)

is the sum of the lead times of the edges in p, and c(p) is the minimum capacity of the edges

in p. The quickest path problem is to �nd a path of minimum transmission time to transmit

the � units of data from s to t. Note that this problem is quite di�erent from the shortest

path problem, since a subpath of a quickest path is not necessarily a quickest path itself. We

have recently given the �rst e�cient parallel and dynamic algorithms for the quickest paths

problem on sparse networks [19]. The results are partially based on our previously mentioned

algorithms for the apsp and the dynamic shortest paths problem.

We plan to work more in the above directions. Work in progress aims at �nding faster and

more e�cient algorithms for the dynamic shortest paths problem on sparse digraphs.

Parallel Network Flow

Important classes of graphs and networks are those of bounded tree-width. While the precise

de�nition of the tree-width of a graph is technical and omitted here, the important intuition

is that graphs of small tree-width resemble trees in many ways (although not necessarily from

a super�cial inspection). Many important computational problems, although hard for general

input graphs, are simple for input graphs that are trees. The challenge therefore is to exploit the

tree-like structure of graphs of small tree-width in a computational context in order to obtain

algorithms for such graphs that are (almost) as e�cient as the corresponding algorithms for

14

The Algorithms and Complexity Group

trees. We have shown how to do this for the fundamental maximum-
ow problem.

The best algorithms for computing maximum
ows in general networks with n vertices

and m edges have running times around �(nm). For sparse networks, thus, the running

time is quadratic in the input size. In contrast, we showed in [17] that maximum
ows in

n-vertex networks of bounded treewidth can be computed in O(n) sequential time and in

O(logn) parallel time on an O(n=logn)-processor EREW PRAM. The latter result holds only

if structural information about the input graph in the form of a so-called tree decomposition is

provided as part of the input. Ongoing work aims at removing this condition by showing how

to compute a tree decomposition of the input graph (almost) as e�ciently as we can solve the

maximum-
ow problem.

Pre�x Graphs

The range product problem is, for a given set S equipped with an associative operator �,

to preprocess a sequence a

1

; : : : ; a

n

of elements from S so as to enable e�cient subsequent

processing of queries of the form: Given a pair (s; t) of integers with 1 � s � t � n, return

a

s

� a

s+1

� � � � � a

t

. The generic range-product problem and special cases thereof, usually

with � computing the maximum of its arguments according to some linear order on S, have

been extensively studied, often without the problem under investigation being recognized as

a range-product problem. We show in [11] that a large number of previous sequential and

parallel algorithms for such problems can be uni�ed and simpli�ed by means of pre�x graphs,

graphs that are closely related to the fundamental Ackermann's function. In more detail,

our method applies to sequential range queries [2], addition on unbounded-fanin circuits [10],

parallel segmented broadcasting [9, 25], parallel linear-range merging [8], parallel range maxima

of c-bounded sequences [9], and parallel randomized range maxima [7]. While no new results

were obtained, the uni�ed approach allowed us, in 13 pages, to reprove results whose original

derivation spans nearly 100 journal pages.

Implicit Representation of Graphs

A fundamental data structuring question in the design of e�cient algorithms is how to represent

a graph in memory using as little space as possible, so that given any two vertices we can test

if they are adjacent in O(1) time [20, 27]. The well-known adjacency matrix representation

permits adjacency queries in O(1) time, but it requires �(n

2

) space, even in the case where the

input graph is sparse (i.e. it has a linear number of edges). Another characterization of sparse

graphs is given by the arboricity. The arboricity of a graph G is de�ned as max

H

fm

H

=(n

H

�1)g,

where H is an n

H

-vertex, m

H

-edge subgraph of G. (For example, planar graphs have arboricity

3.) Now sparse graphs are the graphs of bounded arboricity. It follows by a theorem of Nash-

Williams [20] that a graph with arboricity c can be implicitly represented in memory using only

(c+1)n space. In such a case, G is said to have an optimal implicit representation. The known

parallel algorithms for �nding an optimal implicit representation of a sparse graph G were based

on involved techniques for matroid union and intersection [24]. Moreover, they run in O(log

3

n)

time using O(n

4:5

) processors on a randomized CREW PRAM. The only deterministic parallel

algorithm known, was for the case of planar graphs and runs in O(logn log logn) time using

O(n) work on a CRCW PRAM.

In [3], we have presented a very simple and optimal parallel algorithm, which runs in

O(logn) time and O(n) work on a CRCW PRAM, for computing an optimal implicit repre-

sentation of a sparse graph. Moreover, since computing the exact value of the arboricity seems

to be hard [24, 27], we have given an e�cient deterministic parallel algorithm for computing a

15

The Algorithms and Complexity Group

2-approximate value for arboricity. Surprisingly enough, we have also shown [3] that using this

approximate value, we can still obtain an optimal implicit representation of a sparse graph.

We plan to continue work in this direction. More precisely, we would like to investigate the

case where the input graph may change dynamically.

Degree Sequence Problems

An important problem in graph algorithms is to compute a (simple) graph satisfying given

degree constraints. An integer sequence d is called a degree sequence if there exists a graph G

such that the degrees of its vertices are equal to the components of the sequence d. The graph

G is said to be a realization of the sequence d.

Given an integer sequence d, there are two problems of interest: the decision problem is to

test if d is realizable; the search problem is to compute a realization of d.

In the context of parallel computation the distinction between search problems and decision

problems is far more important than in sequential computation because we are interested in

algorithms that run in sublinear time. And in fact there are many cases where a decision

problem is easy or even trivial to solve in parallel, but the corresponding search problem is

challenging (see [26] for details). Degree sequence problems are one such important case. The

decision problem can be solved by verifying certain linear inequalities (see e.g. [6]) and the

veri�cation can be done easily and e�ciently in parallel. The parallel complexity of the search

problem, on the other hand, has been open so far.

There has been recent interest in parallel algorithms for the search problem. It is shown

in [13] that a special case of this problem is in NC. We completely solved the search problem

by presenting an e�cient deterministic parallel algorithm to compute a realization G of a given

sequence d [5]. Ours is the �rst NC algorithm for this problem and the algorithm runs in

O(logn) time using O(n + m) CRCW PRAM processors, where n and m denote the number

of vertices and edges in G.

We continued our study of degree sequence problems by considering connectivity require-

ments. A graph G is k-edge-connected (resp. k-vertex-connected) if G can not be disconnected

by deleting k or fewer edges (resp. vertices). Given d and an integer k, we studied the following

problems. (i) Compute a k-edge-connected realization of d. (ii) Compute a k-vertex-connected

realization of d. We presented the �rst parallel algorithms for these problems [4]. Our results

are as follows, where n and m denote the number of vertices and edges in the realization: (a) a

randomized parallel algorithm for problem (i) that runs in O(k polylog(n)) time using O(n

4:5

m)

CRCW PRAM processors, and a deterministic parallel algorithm for the same problem that

runs in O(k polylog(n)) time using a polynomial number of processors (the polynomial has a

very high degree); (b) an e�cient deterministic parallel algorithm for problem (ii) when k = 2;

the algorithm runs in O(logn) time using O(n + m) CRCW PRAM processors.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice-Hall, 1993.

[2] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Technical

Report 71/87, Tel-Aviv University, 1987.

[3] S. Arikati, A. Maheshwari, and C. Zaroliagis. Saving bits made easy. In Proc. 6th Canadian Confer-�

ence on Computational Geometry (CCCG'94), pages 140{146, August 1994. Also Tech. Rep. MPI-

I-94-148, 1994.

16

The Algorithms and Complexity Group

[4] S.R. Arikati. On the parallel complexity of the degree sequence problems. Technical Report�

MPI-I-94-162, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1994.

[5] S.R. Arikati and A. Maheshwari. Realizing degree sequences in parallel. In Proc. 5th ISAAC'94,�

Lecture Notes in Comp. Sci. (LNCS) 834:261{269, Springer-Verlag, 1994. To appear in SIAM

Journal Discrete Math.

[6] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[7] O. Berkman, Y. Matias, and U. Vishkin. Randomized range-maxima in nearly-constant parallel

time. Comput. Complexity, 2:350{373, 1992.

[8] O. Berkman and U. Vishkin. On parallel integer merging. Inform. and Computation, 106:266{285,

1993.

[9] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,

22:221{242, 1993.

[10] A. K. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits and associative functions.

J. Comput. Syst. Sci., 30:222{234, 1985.

[11] S. Chaudhuri and T. Hagerup. Pre�x graphs and their applications. In Proc. 20th International�

Workshop on Graph-Theoretic Concepts in Computer Science(WG 94), Springer Lecture Notes in

Computer Science, to appear.

[12] E. Cohen. E�cient parallel shortest-paths in digraphs with a separator decomposition. In Proc. 5th

ACM Symp. on Parallel Algorithms and Architectures (SPAA'93), pages 57{67, July 1993.

[13] A. Dessmark, A. Lingas, and O. Garrido. On the parallel complexity of maximum f-matching

and the degree sequence problem. In Proc. MFCS'94, Lecture Notes in Comp. Sci. (LNCS) 841:

316{325, Springer-Verlag, 1994.

[14] H. Djidjev, G. Pantziou, and C. Zaroliagis. On-line and dynamic algorithms for shortest path�

problems. In Proc. 12th Symp. on Theoretical Aspects of Computer Science (STACS'95), to appear.

LNCS, Springer-Verlag, March 1995. Also Tech. Rep. MPI-I-94-114, 1994.

[15] G. Frederickson. Using cellular graph embeddings in solving all pairs shortest path problems.

In Proc. 30th Annual IEEE Symp. on Foundations of Comp. Science (FOCS'89), pages 448{453,

October 1989.

[16] G. Frederickson. Planar graph decomposition and all pairs shortest paths. J. ACM, 38(1):162{204,

January 1991.

[17] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizations of k-terminal
ow net-�

works and computing network
ows in partial k-trees. In Proc. 6th Annual ACM-SIAM Symposium

on Discrete Algorithms, 1995.

[18] Y. Han, V. Pan, and J. Reif. E�cient parallel algorithms for computing all pair shortest paths in

directed graphs. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures (SPAA' 92),

pages 353{362, July 1992.

[19] D. Kagaris, G. Pantziou, S. Tragoudas, and C. Zaroliagis. Quickest paths: Parallelization and�

dynamization. In Proc. 28th Hawaii Int'l Conference on System Sciences (HICCS-28), to appear,

1995.

[20] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In Proc. 20th ACM Symp. on

Theory of Computing (STOC'88), pages 334{343, May 1988.

17

The Algorithms and Complexity Group

[21] D. Kavvadias, G. Pantziou, P. Spirakis, and C. Zaroliagis. E�cient sequential and parallel algo-�

rithms for the negative cycle problem. In Proc. 5th Int'l Symp. on Algorithms and Computation

(ISAAC'94), pages 270{278. LNCS 834, Springer-Verlag, August 1994.

[22] D. Kavvadias, G. Pantziou, P. Spirakis, and C. Zaroliagis. Hammock-on-ears decomposition: A�

technique for the e�cient parallel solution of shortest paths and other problems. In Proc. 19th

Symp. on Mathematical Foundations of Comp. Science (MFCS'94), pages 462{472. LNCS 841,

Springer-Verlag, August 1994. Also Tech. Rep. MPI-I-94-131, 1994.

[23] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and st-numbering

in graphs. Theoretical Computer Science, 47:277{298, 1986.

[24] H. Narayanan, H. Saran, and V.V. Vazirani. Randomized parallel algorithms for matroid union

and intersection, with applications to arborescences, and edge-disjoint spanning trees. In Proc. 3rd

ACM-SIAM Symposium on Discrete Algorithms (SODA'92), 1992.

[25] P. Ragde. The parallel simplicity of compaction and chaining. J. Alg., 14:371{380, 1993.

[26] E. Upfal, R.M. Karp, and A. Wigderson. The complexity of parallel search. Technical report, IBM

Research Report, RJ 5434 (55563), N.Y., 1986.

[27] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, Vol.A, chapter 10, pages 525{631. Elsevier, 1990.

3.1.3 Lock-Free Data Structures

Investigator: Greg Barnes

When a data structure is shared between several concurrently executing processes, the consis-

tency of the data structure has traditionally been ensured through means of exclusive access.

However, the relative speed of concurrently executing processes may vary dramatically over

time for a variety of reasons, i.e., a process may experience arbitrarily long delays with respect

to other processes, such that granting exclusive access to a process entails the risk of delaying

all processes for an inde�nite length of time | they cannot proceed until a single slow process

relinquishes its lock on the shared data structure. Data structures that do not su�er from this

problem are called lock-free.

Herlihy [2] described a general method for deriving a lock-free data structure from an arbi-

trary data structure, but his approach adds very signi�cantly to the time needed for operations

on the data structure: An operation that would take time T in a sequential setting takes time

proportional to T +C, where C is the time needed to make a logical copy of the data structure;

C can be much larger than T . In [1] we present an alternative technique that provides the

semantics of exclusive access without relying on mutual exclusion. Using this technique, we

devise the caching method, a general method of implementing lock-free data structures that

is provably better than Herlihy's method for many well-known data structures. The caching

method implements an operation of sequential cost T to run in O(T logT) time.

References

[1] Greg Barnes. A method for implementing lock-free shared data structures. In Proc. 5th ACM�

Symposium on Parallel Algorithms and Architectures, 1993.

[2] M. Herlihy. A methodology for implementing highly concurrent data objects. In Proc. 2nd Annual

ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming, pages 197{206,

1993.

18

The Algorithms and Complexity Group

3.1.4 Adaptive Dynamic Load Balancing

Investigators: Torben Hagerup and Thomas Lauer

Because of the increasing commercial availability of parallel computers with a signi�cant num-

ber of processors, a study of dynamic load balancing was initiated in cooperation with Siemens

AG (division ZFE BT SE 42). The goal is to �nd dynamic load-balancing algorithms that

perform well for large systems (asymptotic results), and for smaller systems (commercially

available sizes) as well. This is advantageous because you can change the size of your com-

puter and bene�t directly from the greater number of processors without changing your load

balancing algorithm.

Let us �rst explain what we mean by load balancing: in order to solve a problem e�ciently

on a parallel computer we have to distribute the work over the available processors. We call

this task load distribution, because the load (work) must be distributed over the processors.

We will de�ne load balancing as a special kind of load distribution and introduce it below.

If the load pattern is known in advance, we can perform load distribution using a static

function mapping the load packages to the processors; for examples, see [1, 9]. But often the

load pattern is data-dependent and not known in advance. So we have to look for dynamic load

distribution schemes, which distribute the load as it arises. The overall strategy in most of the

algorithms concerned with dynamic load balancing is nearly the same: when a load package

is generated in a processor, it is sent to another randomly chosen processor, which consumes

the package, i.e., carries out the associated task. If the number of packages is su�ciently large

(n > p log p, where n is the number of packages and p is the number of processors), one can

show that with high probability the processors will have nearly the same number of packages.

Some re�nements of this strategy with corresponding analysis can be found in [2] and [4].

But this strategy has two disadvantages: all load packages must be sent to another processor,

and load packages generated in the same processor with high probability will be consumed in

di�erent processors. The �rst problem is a disadvantage because we have to route many packets

even if it is not necessary (for example: if all processors generate nearly the same number of

load packages). The second problem is a disadvantage because often a parent problem creates

many related child problems that can be solved more e�ciently if they are located on the same

processor.

From these disadvantages the idea of load balancing arises (we call this strategy load bal-

ancing to distinguish it from the former idea of simple load distribution). In a load balancing

algorithm a processor normally works on its own problems and only if its load diverges heavily

from the average over all processors it tries to balance its load with another processor.

A �rst attempt at load balancing was made in [10]. That paper gives an algorithm where

a processor initiates a balancing step depending on the size of the local load, and it is shown

that the expected load on each processor varies only by a constant factor from the average

load. Motivated by the practical experiments in [8, 5] and [7] L�uling and Monien proposed

another dynamic load balancing scheme in [6]. Here a processor balances its load with another

processor if its load has grown/shrunk by more than a constant factor since its last balancing

step. In the analysis they also prove that the expected load on each processor varies only by a

constant factor from the average load. Moreover some experiments and numerical calculation

lead to the suggestion that the variance is also small.

Our goal is to derive bounds showing that not only the expected load but also the actual

load of each processor is within a small range around the average load. To do this we extended

the algorithm in [6] and gave a high-probability analysis. In 1993 we could already achieve our

goal if we allow periodical counting waves . These are periodically started computations over

19

The Algorithms and Complexity Group

the whole network that compute a quantity related to the average load.

During the past year we extended the algorithm further to guarantee that waves are only

executed when they are necessary. This means that the number of waves depends on the

behavior of the load pattern. Dramatical load changes lead to many counting waves, while a

quieter load pattern results in a small number of waves.

In the literature an algorithm capable of changing dynamically according to the behavior

of the system is said to be adaptive.

We call the method that we use to start waves depending on the load-pattern distributed

counting and think that this method and analysis may have applications in other �elds of

parallel and distributed computing.

All results can be found in [3].

References

[1] S. Bhatt and I. Ipsen. How to embed trees in hypercubes. Technical Report YALEU/DCS/RR-

443 1985, Yale University, 1985.

[2] R. Karp and Y. Zhang. A randomized parallel branch-and-bound procedure. In Proceedings of the

20th Annual ACM Symposium on Theory of Computing, pages 290{300, 1988.

[3] T. Lauer. Adaptive dynamische Lastbalancierung. PhD thesis, Universit�at des Saarlandes, to�

appear.

[4] T. Leighton, M. Newman, A.G. Ranade, and E. Schwabe. Dynamic tree embeddings in butter
ies

and hypercubes. In Proc. of the 1st ACM Symp. on Parallel Algorithms and Architectures, pages

224{234, 1989.

[5] R. L�uling and B. Monien. Load balancing for distributed branch & bound algorithms. In Proc. of

Int. Parallel Processing Symposium, pages 543{549, 1992.

[6] R. L�uling and B. Monien. A dynamic load balancing algorithm with provable good performance.

In Proc. of the 5th ACM Symp. on Parallel Algorithms and Architectures, pages 164{172, 1993.

[7] R. L�uling, B. Monien, M. R�acke, and S. Tsch�oke. E�cient parallelization of a branch & bound

algorithm for the symmetric traveling salesman problem. In Proc. of the European Workshop on

Parallel Computing, 1992.

[8] R. L�uling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative study. In

Proc. of the 3rd IEEE Symposium on Parallel and Distributed Processing, 1991.

[9] B. Monien and I. H. Sudborough. Embedding one interconnection network in another. Computing

Supp., 7:257{282, 1990.

[10] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme for task allocation

in parallel machines. In Proc. of the 1991 ACM Symp. on Parallel Algorithms and Architectures,

pages 237{245, 1991.

3.1.5 Basic Problems on Meshes

Investigators: Heiko Schr�oder and Jop F. Sibeyn

Realistic parallel computers have a distributed memory and communicate through an intercon-

nection network. Two fundamental problems on such parallel computers are communication

and sorting. In communication typically every processing unit, PU, has a certain number of

packets to send, k, and to receive, l. The problem is to route the given set of packets as

20

The Algorithms and Complexity Group

e�ciently as possible to their destinations. This we call the k-l routing problem. In a sort-

ing problem all packets have a certain key, and the processors are indexed in a �xed way.

The packets must be rearranged such that they appear in the right order with respect to the

indexing.

We consider the case of the n � n mesh, in which n

2

PUs are connected by a regular two-

dimensional grid of bidirectional communication links. Every PU may send and receive up to

four packets in every step. The natural generalization is a d-dimensional n � � � � � n mesh.

Most results mentioned hereafter can be extended to this case.

The most elementary problem is the 1-1 routing problem, also called permutation routing [1,

11, 3]. We achieved considerable improvements over previous algorithms.

In [5] we consider a general approach for routing and sorting on meshes. For k-k sorting we

achieve the optimal k �n=2 + o(k �n) steps, with a deterministic algorithm. For the 1-1 sorting

problem, we are the �rst to give a deterministic algorithm requiring only 2 � n + o(n) steps.

Though of great theoretical importance, these algorithms still have considerable drawbacks:

the indexing of the mesh must be quite unnatural, and the 1-1 sorting algorithm is fairly

complicated. Furthermore, for practical values of n the performance is rather poor. Therefore,

we design in [8] algorithms which perform well for all n, and sort the packets with respect to

more natural indexing schemes. We also show how 1-1 sorting can be performed in 2 �n+ o(n)

steps by a much simpler algorithm than in [5].

Even more general than k-k routing is the arbitrary k-l routing problem. For k and l

approximately equal, one cannot do much better than to perform a maxfk; lg-maxfk; lg routing.

But, when k and l are di�erent, k = o(l) or l = o(k), the routing time can be reduced to

p

k � l � n=2 + o(

p

k � l) steps [13]. Such more general routing patterns appear for example, in

PRAM simulations.

For the very simple case that we have a one-dimensional mesh consisting of n linearly con-

nected PUs, routing and sorting are trivial. For the case that there is an additional connection

between the �rst and the last PU, it is not immediate how a factor two should be gained. This

problem is analyzed in [9].

In practice it is often considered undesirable to have to store packets in a PU while a

connection over which they have to travel is occupied by another packet. In the so-called

hot-potato routing algorithms, packets are always on the move, until they eventually reach

their destinations. Only recently it has been discovered that O(n) steps are su�cient for a

permutation routing. In [2] the standing result is considerably improved: it is shown that

3

1

=

2
� n steps are su�cient.

There are several other problems that are almost as important as routing and sorting. One

of them is list ranking. In many parallel algorithms, particularly algorithms on graphs, one

needs to determine the ranks of nodes which are contained in a set of linked lists. In parallel

this is a hard problem, because it is not obvious how to break the symmetry. On a parallel

computer communicating through an interconnection network we have the additional problem

that list ranking is very non-local and appears to inherently require a lot of communication.

In [10] we give improved algorithms for list ranking on meshes.

Deterministic PRAM Simulation

Parallel Random Access Machines, PRAMs, are popular as a programming and thinking model,

because, by abstracting away the communication issue, they allow us to concentrate on the

inherent parallelism of a problem. If we would like to actually perform such a computation,

we would need some algorithm which simulates the PRAM on a distributed memory machine.

21

The Algorithms and Complexity Group

In [7] we consider the deterministic simulation of a PRAM on a two-dimensional mesh.

Limiting Technology RAM Computation

If processors continue to speed up, and memories continue to grow, the time will come when the

basic RAM assumption, that every memory cell can be addressed in unit time, breaks down.

In [12] we give a general approach that might be useful in that case.

Recon�gurable Meshes

Technology may allow to have switches at every interconnection, such that several connections

can be shorted to form a bus. On a bus one PU may send a packet and any other connected

PU may pick the information up. On such a recon�gurable mesh, many problems that are

hard to solve e�ciently on a normal mesh can now be solved incredibly fast. In [4] we analyze

improved k-k routing algorithms for this model of computation.

Layout of the Petersen Graph

Simple architectures with constant degree have clear advantages over more complex architec-

tures. Nonetheless, it is at least of theoretical importance to look for the `best' architecture.

The goodness of a network depends, among other things, on its diameter, its degree, and its

bisection width. In these respects the Petersen-graph based family of networks performs very

well. Once this has been noticed, it becomes interesting whether this network has a reasonable

layout in VLSI [6].

References

[1] Bogdan S. Chlebus, M. Kaufmann, and Jop F. Sibeyn. Deterministic permutation routing on�

meshes. In Proc. 5th Symposium on Parallel and Distributed Processing, pages 814{821. IEEE,

1993.

[2] Michael Kaufmann, Harald Lauer, and Heiko Schr�oder. Fast deterministic hot-potato routing on�

processor arrays. In Proc. Annual International Symposium on Algorithms and Computation, pages

333{341. Springer-Verlag, 1994.

[3] Michael Kaufmann, Uli Meyer, and Jop F. Sibeyn. Towards practical permutation routing on�

meshes. In Proc. 6th Symposium on Parallel and Distributed Processing, pages 664{671. IEEE,

1994. Also Tech. Rep. MPI-I-94-153, 1994.

[4] Michael Kaufmann, Heiko Schr�oder, and Jop F. Sibeyn. Asymptotically optimal and practical�

routing on the recon�gurable mesh. Accepted in Parallel Processing Letters, 1995.

[5] Michael Kaufmann, Jop F. Sibeyn, and Torsten Suel. Derandomizing algorithms for routing and�

sorting on meshes. In Proc. 5th Symposium on Discrete Algorithms, pages 669{679. ACM-SIAM,

1994.

[6] Sabine

�

Ohring, Jop F. Sibeyn, and Ondrej S�ykora. Optimal VLSI-layout for the e�cient Pe-�

tersen based interconnection network family. In Proc. 6th International Conference Parallel and

Distributed Computing and Systems, pages 121{124. IASTED, 1994. Also Tech. Rep. TR-II-SAS-

06/94/22, Institute for Informatics, Slovac Academy of Sciences, 1994.

[7] Andrea Pietracaprina, Geppino Pucci, and Jop F. Sibeyn. Constructive deterministic PRAM simu-�

lation on a mesh-connected computer. In Proc. 6th Symp. on Parallel Algorithms and Architectures,

pages 248{256. ACM, 1994.

22

The Algorithms and Complexity Group

[8] Jop F. Sibeyn. Desnaki�cation of mesh sorting algorithms. In Proc. 2nd European Symposium�

on Algorithms, LNCS 855, pages 337{390. Springer-Verlag, 1994. Also Tech. Rep. MPI-I-94-102,

1994.

[9] Jop F. Sibeyn. Deterministic sorting on circular arrays. In Proc. 8th International Parallel Pro-�

cessing Symposium, pages 406{410. IEEE, 1994.

[10] Jop F. Sibeyn. Independent sets and list ranking on meshes. In Proc. Computing Science in the�

Netherlands, pages 271{280, Amsterdam, Netherlands, 1994. SION.

[11] Jop F. Sibeyn, Bogdan S. Chlebus, and Michael Kaufmann. Shorter queues for permutation routing�

on meshes. In Proc. 19th Symposium on the Mathematical Foundations of Computer Science, LNCS

841, pages 597{607. Springer-Verlag, 1994.

[12] Jop F. Sibeyn and Tim Harris. Exploiting locality in LT-RAM computation. In Proc. 4th Scandi-�

navian Workshop on Algorithm Theory, pages 338{349. Springer-Verlag, 1994.

[13] Jop F. Sibeyn and Michael Kaufmann. Deterministic 1-k routing on meshes. In Proc. 11th Sym-�

posium on Theoretical Aspects of Computer Science, LNCS 775, pages 237{248. Springer-Verlag,

1994. Also Tech. Rep. MPI-I-93-163, 1993.

3.1.6 Locality in Parallel Algorithms

Investigator: Pierre Kelsen

We consider a model of parallel computation in which the processors are nodes in a graph with

the edges representing direct communication links. We call this graph the \communication

graph". We assume that all processors are synchronized. In one time step each processor can do

some local computation and exchange messages with each of its neighbors in the communication

graph. Thus, after t time steps each processor has collected information about the nodes at

distance at most t from itself. In order to allow nontrivial problems to be solved we need

to have some symmetry-breaking rule. We follow the standard approach of assigning unique

labels in the range f1; : : : ; ng to the n processors (see e.g. [6]). We shall refer to this model of

computation as the \distributed model".

We are interested in the complexity of the � + 1-coloring problem in this model, i.e., the

problem of coloring the vertices of a graph with maximum degree � with � + 1 colors so that

no two adjacent vertices receive the same color. The � + 1 coloring problem is closely related

to the maximal independent set (MIS) problem, i.e., the problem of computing a set of nodes

that does not contain two adjacent nodes and that is not properly contained in another set

with this property. In fact there is a well-known NC reduction from � + 1-coloring to MIS

(see [8]). This reduction cannot, however, be done e�ciently in the distributed model. We give

a brief survey of results regarding the complexity of these problems in the distributed model.

If the degree of the communication graph is small, then a technique based on deterministic

coin tossing [3] can be used to obtain fast algorithms for several problems including � + 1-

coloring [4] and MIS. An approach to extend this technique to arbitrary graphs makes use

of so-called cluster decompositions: the idea is to decompose the communication graph into

connected components of small diameter (clusters) so that the graph induced by the clusters has

small chromatic number [2]. Using this technique Awerbuch et al. [2] derived the �rst sublinear

time distributed algorithms for the � + 1-coloring problem and the MIS problem. By giving

faster algorithms for computing a cluster decomposition Panconesi and Srinivasan [10] obtained

somewhat faster algorithms for these problems. The resulting algorithms run in n

O(1=

p

logn)

time which is still signi�cantly slower than polylogarithmic time.

23

The Algorithms and Complexity Group

In view of these rather weak upper bounds it is natural to investigate lower bounds for these

problems. Linial [6] proved a
(log

�

n) lower bound on the complexity of � + 1 coloring and

MIS on a ring. This bound is tight because of earlier results of Cole and Vishkin [3]. (Linial

also gives a O(log

�

n) time distributed algorithm for coloring a graph with O(�

2

) colors.) Naor

and Stockmeyer [9] investigate the class of problems that can be solved in constant time on

graphs of bounded degree. Despite these e�orts no nontrivial lower bound for � + 1-coloring

is known for graphs of arbitrary degree.

In [5] we study the complexity of � + 1-coloring in the distributed model for two reasons.

The �rst obvious reason for doing this is the rather large gap between lower and upper bounds

for this problem for arbitrary graphs. Another reason is the potential for gaining insight

into an outstanding open question in this area, namely the question whether derandomization

is possible in the distributed model. Indeed all current derandomization techniques require

central computation to be carried out in order to zero in on a good sample point. Such an

approach would result in distributed algorithms running in time at least proportional to the

diameter of the network. On the other hand fast and simple randomized algorithms are known

for problems such as � + 1-coloring [8] and MIS [7, 1]. Having a derandomization technique

that preserves locality would be of eminent interest since it would imply e�cient distributed

solutions for these problems and many other problems.

The approach we propose in [5] to study the � + 1-coloring problem presents a sharp

departure from earlier methods based on cluster decomposition. Our method is based on

studying the structure of neighborhood graphs. Informally a neighborhood graph represents

the structure of the neighborhoods of a �xed radius in the graph. The concept of neighborhood

graph was �rst introduced by Linial [6] in connection with deriving lower bounds on the

complexity of graph-theoretic problems in the distributed model.

To describe the results of our work [5], we �rst remark that the � + 1-coloring problem is

nontrivial even if we assume that all processors know the graph and that only the labeling of

the processors is unknown (e.g., chosen by an adversary). Indeed the best upper bound for this

seemingly simpler problem is the same as that for the general problem. We prove in [5] that the

problem of coloring a known graph with unknown labeling with � + 1 colors can be solved in

time O((logn)

5

) in the distributed model with messages of length O(logn). It is worth pointing

out that all known lower bounds (including those of Linial [6]) hold for this restricted problem.

Therefore one consequence of our result is that current lower bound techniques are not strong

enough to show that � + 1 coloring cannot be done in polylog time in the distributed model

(for arbitrary graphs).

We extend the previous result to an in�nite class of graphs that includes vertex transitive

graphs. More precisely, we prove the existence of an algorithm that colors every graph in this

class with � + 1 colors in time O((logn)

5

) in the distributed model. For this result we assume

that messages exchanged in one time step may be of length O(n�).

Both of these results are nonconstructive, i.e., we give existence proofs for these algorithms.

These proofs are based on the analysis of a randomized algorithm for � + 1 coloring. This

analysis is rather di�cult because of the complex dependencies of various random variables

that are involved. The main tool that we use are martingale inequalities. We believe that the

use of martingale inequalities in this context is somewhat unusual and of independent interest.

References

[1] N. Alon, L. Babai, and A. Itai. A fast randomized parallel algorithm for the maximal independent

set problem. J. Algorithms, 7:567{583, 1986.

24

The Algorithms and Complexity Group

[2] B. Awerbuch, A.V. Goldberg, M. Luby, and S.A. Plotkin. Network decomposition and locality

in distributed computation. In Proceedings of the IEEE Symposium on Foundations of Computer

Science, pages 364{369, 1989.

[3] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking.

Inform. and Control, 70:32{56, 1986.

[4] A.V. Goldberg, S. Plotkin, and G.E. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM

J. Disc. Math., 1:434{446, 1989.

[5] P. Kelsen. Some results on distributed � + 1-coloring. Manuscript, 1994.�

[6] N. Linial. Locality in distributed graph algorithms. SIAM J. Comp., 21:193{201, 1992.

[7] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comp.,

15:1036{1053, 1986.

[8] M. Luby. Removing randomness in parallel computation without a processor penalty. JCSS,

47:250{286, 1993.

[9] M. Naor and S. Stockmeyer. What can be computed locally ? In Proceedings of the 25th Annual

ACM Symposium on the Theory of Computing, pages 184{193, 1993.

[10] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network de-

composition problems. In Proceedings of the 24th Annual ACM Symposium on the Theory of

Computing, pages 581{592, 1992.

3.1.7 Parallel Algorithms for Molecular Dynamics Simulation of Synthetic Poly-

mers

Investigators: Hans-Peter Lenhof and Christine R�ub

The study of molecular motion by molecular dynamics (MD) simulation is an important tool

for testing and developing hypotheses about chemical and physical processes. In an MD-

simulation the motions of the atoms of a molecular system are simulated using Newton's

equation of motions. Given the atomic positions at time t, the interaction forces as well

as the atomic positions and velocities of all atoms at time t + � are computed by integrating

Newton's equation numerically. The time step � of a simulation is typically of the order of

10

�15

seconds, i.e. every iteration step of the simulation represents 10

�15

seconds in reality. To

study the dynamics of macro molecules it is necessary to carry out the simulation for a longer

period of time, i.e., many steps have to be executed. (If we want to simulate the behaviour

of a macro molecule for, say, 10

�8

s, the number of executed steps will be 10

7

.) One way to

increase the number of time steps that can be simulated is to execute each iteration in parallel.

Over the last ten years many parallel algorithms for MD-simulation of biopolymers (most

of them for proteins) have been developed and implemented. Since proteins fold up to very

compact con�gurations (they \collapse"), these parallel algorithms place the protein into a

small box. This box is decomposed into cubes that are then distributed among the processors.

Each processor computes in each iteration step the interaction forces and new positions of all

atoms that are contained in its cubes. There are two causes for communication between the

processors: (a) atoms that are contained in cubes of di�erent processors interact with each

other; (b) because the atoms move over time, they will sometimes have to be sent to a di�erent

processor. Since proteins have a relatively �xed and compact con�guration, this method leads to

algorithms with modest communication requirements where the work is distributed reasonably

well among the processors.

25

The Algorithms and Complexity Group

This method has also been used for MD-simulations of synthetic polymers. However, in

this case this technique is not very e�cient because synthetic polymers show a completely

di�erent behaviour from biopolymers: The trajectory of a synthetic polymer is more or less a

three dimensional random walk, i.e. very often the atoms have to be moved to di�erent boxes

(and processors). Synthetic polymers do not build compact coils, but their long chains build

\long loose" coils, i.e., the volume of any box that contains the molecule will be much larger

than the volume of the molecule. Since the dynamics of synthetic polymers can be studied by

simulating a single macro molecule, most of the cells used above will be empty. This makes it

much more di�cult to achieve a good load balance.

Our aim is to develop and implement e�cient parallel algorithms for MD-simulation of

synthetic polymers that make use of the special properties and behaviour of these polymers.

These algorithms should run on various parallel machines. We do this in collaboration with

Bernd Jung from the Max-Planck-Institute for Polymer Research in Mainz.

One method is the following. We cut the polymer chain into pieces and each piece gets

assigned to one processor. This processor is responsible for all atoms in its piece. To carry out

the simulation, �rstly communication between processors responsible for adjacent subchains

is necessary. If subchains are at a certain time near enough to e�ect each other, also the

processors assigned to these have to communicate. This will, in general, be only the case for

very few of the subchains.

We have implemented a �rst version of this method in C [1] that considers only interactions

along the chain. This version runs and has been tested on Intel's iPSC/860 and Thinking

Machine's CM5. (In Fig. 1 we list some runnig times and speedups for the iPSC/860.) In the

next step we want to include the interactions between atoms that are not neighbours in the

chain but are located near enough to e�ect each other.

300 C-atoms 1000 C-atoms 3000 C-atoms

proc. time in s speedup time in s speedup time in s speedup

1 1419 100 4688 100 14048

�

100

2 751 95 2409 97 | |

4 423 83 1337 88 3911 90

8 247 72 721 81 2029 86

16 147 60 400 73 1118 78

Fig. 1. Running times and speedups for 10000 iterations (i.e. 10

�11

s of real time) on the

iPSC/860. Speedups are listed as percentage of the maximum possible (e.g. 60 % of 16 if a

molecule with 16 C-atoms is simulated using 16 processors). The marked (*) running time is

an estimation since the space requirement for this size of input was too large.

Since January 1995 this project is supported by the DFG in the Schwerpunktprogramm

\E�ziente Algorithmen f�ur diskrete Probleme und ihre Anwendungen".

References

[1] P.S. M�uller. Parallele Molekulardynamiksimulation. Diplomarbeit, in preparation, Saarbr�ucken,�

1995.

26

The Algorithms and Complexity Group

3.2 Computational Geometry

3.2.1 Proximity Problems

Investigators: Sunil Arya, Dave Mount, Christian Schwarz and Michiel Smid

The closest-pair problem

Given a set S of n points in IR

d

, where d is a �xed constant, the (static) closest pair problem

is to �nd the minimum distance among all pairs of points in S. The dynamic closest pair

problem is to maintain the closest pair in the set S as S is modi�ed by insertions and deletions

of points. While the static closest problem has been thoroughly studied for a long time, the

dynamic problem has attracted much interest recently. A survey on static and dynamic closest

pair algorithms appears in the PhD thesis of Christian Schwarz [11], which was completed in

August 1993 at this institute.

Returning to the group after a one-year postdoctoral stay at the International Computer

Science Institute (ICSI) in Berkeley (USA) in October 1994, Christian Schwarz completed a

study on implementation and application of dynamic closest pair algorithms [12], started during

his stay at ICSI.

The paper discusses the implementation of two recently developed randomized algorithms,

both described in [11]. First, there is a randomized incremental algorithm [10] with an expected

update time of O(1) for random insertions and deletions of points. The second, more compli-

cated algorithm [9] supports arbitrary insertions and deletions in expected time O(logn). The

fundamental data structure in both algorithms is a grid. The stated complexities are valid

under the assumption that hashing is used to store points in a grid, with constant access and

update time per point. Using balanced trees instead of hashing would increase the running

times by a factor of log n.

An important application of dynamic closest pair algorithms is hierarchical clustering, which

is of interest in statistics. Another application is particle simulation: in each simulation step,

we want to know the impact of a point on the other points. One method that is often used

to reduce the amount of computation is to cluster the points hierarchically and then compare

each point with the clusters in which it is contained rather than with any other point.

While a number of static closest pair algorithms have been implemented, especially for

d = 2, the only dynamic algorithm that has been implemented is the one that stores the

nearest neighbor for each point in the set S and the smallest of these values, which is the

closest pair. When a point is inserted into or deleted from S, this information is maintained

in time O(n), since a point can only be nearest neighbor to a constant number of points in S.

To do hierarchical clustering with a dynamic closest pair structure, each cluster is repre-

sented by a point, e.g. by the mass center of the points that form the cluster. Repeatedly,

the two closest clusters are merged, which is implemented by replacing the two points forming

the closest pair by a new point, e.g. their weighted average. Hierarchical clustering based on

the simple linear-time update algorithm takes time O(n

2

). Using our randomized closest pair

algorithm for arbitrary updates improves the clustering time to O(n logn).

As already mentioned, the fundamental structure in both algorithms is a grid. More pre-

cisely, the important concept is that of neighborhood in a grid. Implementing the algorithms

closely to the original description revealed that in practice, the average number of points per

grid box is very small. Thus, the searches needed to access the neighborhood boxes dominated

over the time needed to process the points actually found in this area. Using larger grids would

rebalance this relation, but the algorithm for arbitrary updates actually needs the neighbor-

hood concept with the speci�ed grid sizes for its correctness. To alleviate this problem, the

27

The Algorithms and Complexity Group

concept of a virtual grid is introduced. It decouples the logical mesh size from the internal

(larger) mesh size which is used to actually store the points. Experiments were conducted to

determine good values for internal grid sizes for the use in both closest pair algorithms.

The algorithms were implemented in C++ using LEDA. Due to the importance of grids in the

design of geometric algorithms, the implementation contributes a dedicated data type \grid"

that can be used like other LEDA types.

As a �rst benchmark, the algorithms were tested for point sets of several dimensions under a

random update model. Experiments showed that introducing virtual grids drastically decreased

the running times of both randomized algorithms. The simplicity of the randomized incremental

algorithm over the algorithm for arbitrary updates showed signi�cantly in the running times.

Hierarchical clustering was used as the second benchmark. Having the application to parti-

cle simulation in mind, three-dimensional point sets were examined under various distributions.

The randomized incremental algorithm which was superior in the �rst experiment cannot be

applied here: hierarchical clustering is a worst-case application of a dynamic closest pair algo-

rithm in the sense that at each update step, the closest pair is modi�ed. The complexity of the

randomized incremental algorithm is directly related to the number of changes of the closest

pair, however, and as a result, using it for hierarchical clustering would take
(n

2

) time.

Therefore, the randomized algorithm for arbitrary updates was compared with the simple

linear-time update algorithm. Using virtual grids, the randomized algorithm beats the simple

algorithm for problems exceeding roughly 1000 points.

Nearest neighbor searching

The nearest neighbor problem is: given a set of n points in d-dimensional space, S � IR

d

, and

given a query point q 2 IR

d

, �nd the point of S that minimizes the distance to q. Answering

nearest neighbor queries is among the most important problems in computational geometry

because of its numerous applications to areas such as data compression, pattern recognition,

statistics, and learning theory.

The problem of preprocessing a set of n points S so that nearest neighbor queries can be

answered e�ciently has been extensively studied. Nearest neighbor searching can be performed

quite e�ciently in relatively low dimensions. However, as the dimension d increases, either the

space or time complexities increase dramatically. For d � 3, there is no known algorithm for

nearest neighbor searching that achieves both nearly linear space and polylogarithmic query

time in the worst case.

The di�culty of �nding an algorithm with the above performance characteristics for nearest

neighbor queries suggests seeking weakened formulations of the problem. One formulation is

that of computing approximate nearest neighbors. Given any � > 0, a (1 + �)-nearest neighbor

of q is a point p 2 S such that, for all p

0

2 S

dist(p; q)

dist(p

0

; q)

� 1 + �:

Arya and Mount [2] showed that given a point set S and any � > 0, the point set can be

preprocessed by a randomized algorithm running in O(n

2

) expected time and O(n logn) space,

so that approximate nearest neighbor queries can be answered by a randomized algorithm that

runs in O(log

3

n) expected time.

In [4, 5], Arya et al. improve this result in a number of ways. They present an algorithm

that preprocesses a set of n points in IR

d

in O(n logn) time, and produces a data structure of

space O(n) such that for any query point q and any � > 0, approximate nearest neighbor queries

28

The Algorithms and Complexity Group

can be answered in O(logn) time. This improves the results of Arya and Mount signi�cantly

in the following respects.

� Space and query time are asymptotically optimal (for �xed d and �) in the algebraic

decision tree model of computation.

� The preprocessing is independent of �, so that one data structure can answer queries for

all degrees of precision.

� All algorithms are deterministic, rather than randomized, but the code is still quite

simple.

� It is possible to insert and delete data points e�ciently.

� Constant factors depending exponentially on dimension have been eliminated from the

preprocessing time and space. (Exponential constant factors still remain in the query

time.)

Because this problem is of considerable practical interest, the importance of the last item

cannot be overstated. When dealing with large point sets (n � 10; 000) in moderately large

dimensions (say d � 12), constant factors in space that are on the order of 2

d

or (1=�)

d

(even

with O(n) space) are too large for practical implementation.

The algorithm for computing nearest neighbors extends to actually enumerating points in

approximately increasing distance from the query point. In particular Arya et al. show that,

after the same preprocessing, given any point q, � > 0, and k, the (1+�)-approximate k nearest

neighbors can be computed in O(k logn) time. They also show that the data structure can

be extended to support dynamic updates for point insertion and deletion in O(logn) time,

assuming a model of computation in which bitwise exclusive-or, integer division and integer

logarithms can be computed in constant time. Their method is based on a standard technique

called box-decomposition.

Boundary e�ects in nearest neighbor searching

Most average-case analyses of nearest neighbor searching algorithms are made under the sim-

plifying assumption that the dimension d is �xed and the number of data points n is so large

that boundary e�ects can be ignored. This greatly simpli�es the analysis because for any query

point (assuming it is chosen from the same distribution as the data points), the statistical

distribution of the data points surrounding it can be assumed to be essentially independent of

the location of the query point.

However, there are many important applications where the number of data points n and

dimension d are related. One such application is vector quantization, a technique used in

the compression of speech and images. Samples taken from a signal are blocked into vectors

of length d (typically after applying some smoothing transforms). Based on a training set of

vectors, a set of code-vectors is �rst precomputed. The technique then encodes each new vector

by the index of its nearest neighbor among the code-vectors. The rate r of a vector quantizer is

the number of bits used to encode a sample, and it is related to n, the number of code-vectors,

by n = 2

rd

. For the common case of r = 1, it follows that n = 2

d

.

For applications in which d and n are related, the theoretical analyses may signi�cantly

overestimate the running time of the algorithm. Intuitively, the reason is that when a query

point lies close to the periphery of the point set, a signi�cant amount of the space that would

29

The Algorithms and Complexity Group

otherwise need to be searched for the nearest neighbor may be pruned away. Because exponen-

tial constant factors in dimension are one of the main obstacles to extending nearest neighbor

searching to much higher dimensions (where many more important applications reside), it is

of important practical interest to accurately understand the nature of these factors.

In [3], Arya, Mount and Narayan provide a theoretical explanation of the phenomenon

of these boundary e�ects in nearest neighbor searching. They analyze the bucketing and k-d

tree algorithms, taking into account the e�ects of the boundary. They assume that points

are uniformly distributed in a d-dimensional unit hypercube, and that distances are measured

using the L

1

metric. Their main result is that given 2

d

points in d dimensions, the expected

number of cells visited by the bucketing algorithm grows as 1:566

d

. This is signi�cantly smaller

than the growth rate of 2

d

predicted by previous analyses which ignore boundary e�ects.

Euclidean spanners

Let G = (S;E) be a weighted graph, and let d

G

(u; v) be the length of a shortest path between

vertices u and v in G. Let t > 1 be any constant. A subgraph G

0

is a t-spanner for G if, for all

pairs of vertices u and v, d

G

0
(u; v) � t � d

G

(u; v). When S is a set of n points in IR

d

, G is the

complete graph, and the length of edge (u; v) is the Euclidean distance between these points,

then we call G a complete Euclidean graph and G

0

a Euclidean t-spanner.

Spanners are important geometrical structures, since they provide a mechanism for approx-

imating the complete Euclidean graph in a much more economical form. Of course, a spanner

should have a small number of edges (ideally O(n)). It is known already for some time how to

construct a Euclidean t-spanner having O(n) edges in O(n logn) time, which is optimal in the

algebraic computation tree model. For many applications, it is important that the spanner be

endowed with other properties. These include the following:

Low weight: The total sum of the edge lengths in the spanner should be as small as possible.

The best that can be hoped for is some constant times the weight of the minimum

spanning tree, O(w(MST)).

Bounded degree: The number of edges incident to any vertex should be bounded.

Small spanner diameter: The spanner diameter (or simply diameter) is de�ned as the small-

est integer D such that for any pair u and v of vertices there is a t-spanner path between

u and v containing at most D edges. For spanners of bounded degree the best that can

be hoped for is logarithmic diameter. In some applications even smaller diameters may

be desirable, but this comes at the expense of increasing degree.

A natural analogy can be made between spanners and a transportation network of roads

connecting a large number of locations. Low weight means that the amount of concrete needed

to build the roads is small, bounded degree means that no location in the network has more

than a bounded number of roads incident to it, and small diameter means that it is possible

to describe any spanner path concisely.

Previous work on spanners has focused on achieving one property or the other. However, a

transportation network which achieves small diameter by massively increasing total weight is

of little practical value. This suggests the important question of whether there exist spanners

that simultaneously achieve some or all of these properties.

Arya and Smid [8] considered the problem of constructing a t-spanner that has simultane-

ously bounded degree and low weight. Such a spanner can easily be constructed by a greedy

30

The Algorithms and Complexity Group

algorithm that considers all pairs of points in increasing order of their distances. Clearly, im-

plementing the algorithm in a straightforward way leads to a running time that is at least

quadratic. Aray and Smid show how this greedy algorithm can be implemented so that the

running time is bounded by O(n log

d

n). Each vertex in the resulting spanner has a degree that

is bounded by a constant, and the total weight of the spanner is proportional to the weight of

a minimum spanning tree of the points. We note that previously, the best known algorithm

for constructing a bounded degree spanner|without any constraints on the total weight|had

quadratic running time.

In [6, 7], Arya, Mount and Smid consider spanners of small diameter. First, they give a

very simple randomized algorithm for constructing a t-spanner with diameter O(logn). This

algorithm generalizes Skip Lists|more precisely the analysis of this data structure|in a non-

trivial way. The algorithm has running time O(n log

d�1

n). It turns out that this spanner

can be maintained under insertion and deletions of points in the model of random updates.

Previously, no spanners were known that can be maintained under updates. Arya, Mount and

Smid also give a deterministic algorithm for constructing a t-spanner having diameter O(logn).

This algorithm is based on so-called well-separated pair decompositions and its running time

is bounded by O(n logn), which is optimal.

In Arya et al. [1], a number of new constructions for spanners are presented. In almost

all cases these constructions are provably optimal from the perspectives of computation time,

space, and performance on the properties listed above. The problem is complicated by the fact

that there are obvious tradeo�s between these properties. (For example, reducing diameter

requires the creation of long edges, which in turn increases total weight, or may increase the

number of edges needed in the spanner.) For this reason, we consider all possible combinations

of these properties.

The results of [1] arise from a number of improved techniques in spanner constructions,

but one deserves particular mention. An important data structure used in the construction

of spanners is the well-separated pair decomposition, introduced by Callahan and Kosaraju.

This structure represents the O(n

2

) pairs of points using only O(n) pairs of geometrically \well-

separated" pairs of subsets of points. Arya et al. [1] give a novel method of further decomposing

a well-separated pair decomposition into a constant number of hierarchically organized sets of

well-separated pairs. Using this decomposition, a class of spanners can be viewed as being the

union of a constant number of trees. Moreover, each of the O(n

2

) spanner paths arises as the

unique path between two leaves in one of these trees. The fact that the O(n

2

) spanner paths

can be partitioned among a constant number of trees is a rather remarkable fact in itself, and

suggests a great deal about special structure of these graphs.

Among the results in [1] is the construction of a t-spanner of diameter O(�(n)) with only

O(n) edges, where �(n) is the inverse of the Ackermann function, a very slowly growing func-

tion. (Of course, this spanner does not have bounded degree.) This is remarkable, because at

�rst sight one may think that logn is a lower bound on the diameter of spanners with a linear

number of edges.

The main result in [1] is an algorithm for constructing a t-spanner that has simultaneously

bounded degree, small diameter, and low weight. This algorithm has running time O(n logn),

which is optimal. Hence, this paper basically answers all questions regarding spanners.

References

[1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: short, thin, and�

lanky. In Proc. 27th Annual ACM Symposium on the Theory of Computing (STOC'95), to appear,

1995.

31

The Algorithms and Complexity Group

[2] S. Arya and D. M. Mount. Approximate nearest neighbor queries in �xed dimensions. In Proc.

4th ACM-SIAM Sympos. Discrete Algorithms, pages 271{280, 1993.

[3] S. Arya, D. M. Mount, and O. Narayan. Accounting for boundary e�ects in nearest neighbor search-�

ing. In Proc. 11th Ann. ACM Sympos. Comput. Geometry, to appear, 1995. Also Tech. Rep. MPI-

I-94-159.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for�

approximate nearest neighbor searching. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,

pages 573{582, January 1994.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for�

approximate nearest neighbor searching. Manuscript (revised), January 1995.

[6] S. Arya, D. M. Mount, and M. Smid. Dynamic algorithms for geometric spanners of small diam-�

eter: randomized solutions. Technical Report MPI-I-94-156, Max-Planck-Institut f�ur Informatik,

Saarbr�ucken, Germany, 1994.

[7] S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms for geometric�

spanners of small diameter. In Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),

pages 703{712, 1994.

[8] S. Arya and M. Smid. E�cient construction of a bounded degree spanner with low weight. In�

Proc. 2nd Annu. European Sympos. Algorithms (ESA), volume 855 of Lecture Notes in Computer

Science, pages 48{59, 1994.

[9] M. J. Golin, R. Raman, C. Schwarz, and M. Smid. Randomized data structures for the dynamic

closest-pair problem. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 301{310, 1993.

[10] M. J. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for closest pair

problems. In Proc. 5th Canad. Conf. Comput. Geom., pages 246{251, 1993.

[11] C. Schwarz. Data structures and algorithms for the dynamic closest pair problem. PhD thesis,�

Universit�at des Saarlandes, Saarbr�ucken, Germany, December 1993.

[12] C. Schwarz. Dynamic closest pair algorithms: implementation and application. Technical Report�

MPI-I-95-1-003, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1995.

3.2.2 Range Searching

Investigators: Sunil Arya and Dave Mount

The range searching problem is among the fundamental problems in computational geometry.

A set P of n data points is given in d-dimensional real space, IR

d

, and a space of possible

ranges is considered (e.g. d-dimensional rectangles, spheres, halfspaces, or simplices). The

goal is to preprocess the points so that, given any query range Q, the points in P \ Q can

be counted or reported e�ciently. More generally, one may assume that the points have been

assigned weights, and the problem is to compute the accumulated weight of the points in P \Q,

weight(P \Q), under some commutative semigroup.

There is a rich literature on this problem. For many applications, the number of data points

is su�ciently large that one is limited to using only linear or roughly linear space in solving

the problem. Most research has focused on solving this problem exactly, but lower bounds

show that if linear space is assumed, the problem cannot be solved in polylogarithmic time.

This suggests that it may be worthwhile considering variations of the problem, which may

achieve these better running times. In [1], Arya and Mount consider an approximate version of

32

The Algorithms and Complexity Group

range searching. Rather than approximating the count, they consider the range to be a fuzzy

range, so that data points that are \close" to the boundary of the range (relative to the range's

diameter) may or may not be included in the count.

More precisely, given a bounded range Q of diameter s, and given � > 0, de�ne Q

�

to be

the locus of points whose distance from a point exterior to Q is at least s�, and Q

+

to be the

locus of points whose distance from a point interior to Q is at most s�. De�ne a legal answer

to an �-approximate range query to be weight(P

0

) for any subset P

0

such that

P \Q

�

� P

0

� P \ Q

+

:

This de�nition allows for two-sided errors, by failing to count points that are barely inside the

range, and counting points barely outside the query range.

The result of such an approximate range search is probably interesting only for fat ranges.

Overmars [2] de�nes an object Q to be k-fat if for any point p in Q, and any ball B with p

as center that does not fully contain Q in its interior, the portion of B covered by Q is at

least 1=k. For ranges that are not k-fat, the diameter of the range is potentially very large

compared to the thickness of the range at any point. However, there are many applications of

range searching which involve fat ranges.

There are a number of reasons that this formulation of the problem is worth considering. It

is well known that what seems to make range queries \hard" to solve are the points that are near

the boundary of the range. However, there are many applications where data are imprecise,

and ranges themselves are imprecise. For example, the user of a geographic information system

that wants to know how many single family dwellings lie within a 60 mile radius of Manhattan,

may be quite happy with an answer which is only accurate to within a few miles. Furthermore,

the user is free to adjust the value of � to whatever precision is desired, understanding that a

tradeo� in running times is involved.

In [1], Arya and Mount show that by allowing approximate ranges, it is possible to achieve

signi�cant improvements in running times, both from a theoretical as well as practical perspec-

tive. They show that (for �xed dimension) after O(n logn) preprocessing, and with O(n) space,

�-approximate range queries can be answered in time O(logn + 1=�

d

). Under the assumption

that ranges are convex, this can be strengthened to O(logn+ 1=�

d�1

). Some of the features of

their method are

� The data structure and preprocessing time are independent of the space of possible ranges

and �. This only assumes that in constant time (depending on dimension) it is possible to

determine whether there is a nonempty intersection between the inner and outer ranges

(Q

�

and Q

+

) and a cube.

� Space and preprocessing time are free of exponential factors in dimension. Space is O(dn)

and preprocessing time is O(dn logn).

� The algorithms are quite simple. The data structure is a variant of the well-known

quadtree data structure.

� Implementation and experimental results show that even for uniformly distributed points

in dimension 2, there is a very signi�cant improvement in the running time if a small

approximation error is allowed.

They also present a lower bound of
(logn + 1=�

d�1

), for the complexity of answering �-

approximate range queries assuming a partition tree approach for cubical range in �xed dimen-

sion. Thus their approach is optimal under these assumptions for convex ranges.

33

The Algorithms and Complexity Group

References

[1] S. Arya and D. M. Mount. Approximate range searching. In Proc. 11th Ann. ACM Sympos. Com-�

put. Geometry, to appear, 1995.

[2] M. H. Overmars. Point location in fat subdivisions. Inform. Process. Lett., 44:261{265, 1992.

3.2.3 Abstract Voronoi Diagrams

Investigator: Ronald Rasch

Since 1975, when Shamos and Hoey discovered Voronoi diagrams for computer science, Voronoi

diagrams have been among the structures most frequently investigated in Computational Ge-

ometry. This is motivated by the wide range of applications for which Voronoi diagrams have

been proved a powerful tool. In general, the Voronoi diagram is de�ned for a space M , a �nite

set S of sites and a distance measure d giving a distance for each pair (x; s) with x 2 M and

s 2 S. In this setting the Voronoi diagram partitions M into regions such that each region

contains all points of M having the same closest (or furthest) site among the elements of S.

Di�erent types of Voronoi diagrams are obtained by varying the space. Frequently, we have

M = IR

2

, sites are points, spheres, or polyhedra, and the distance function is the L

p

-norm, a

convex distance function, or a weighted distance function.

With the notion of abstract Voronoi diagram, Klein has proposed a unifying approach to

closest-point Voronoi diagrams for the important case M = IR

2

. Klein's approach covers the

most important types of closest point Voronoi diagrams in the plane by replacing the notion

of distance by the topological concept of bisecting curves.

We have contributed to the mathematical as well as the algorithmic treatment of both

closest-point and furthest-point abstract Voronoi diagrams. Our results about the closest-point

abstract Voronoi diagrams were mentioned in the previous report.

This year, Rasch completed his Ph.D. Thesis [1]. He shows that the theory of closest-

point abstract Voronoi diagram can be generalized to furthest-point diagrams. Furthest-point

abstract Voronoi diagrams are shown to have a tree structure and linear complexity. The work

includes an O(n logn) time randomized incremental algorithm for the construction of such a

diagram. Note that in this way, we obtain a generic algorithm for the construction of all types

of furthest-point Voronoi diagrams that �t in the abstract Voronoi diagram model. Moreover,

this algorithm is optimal in the algebraic computation tree model. Examples of sites and

distance functions that fall in the abstract model are

1. point sites under the L

1

- and L

2

-metric,

2. circle sites under the L

2

-metric,

3. line segments under the L

2

-metric,

4. power diagrams.

It is well known that the closest- and furthest-point Voronoi diagrams, for the case where

the sites are planar points and the distance metric is the Euclidean metric, can be computed

in linear time provided the sites are in convex position, i.e., all sites lie on their convex hull.

Rasch de�nes the notion of convex position in the abstract Voronoi diagram model, and he

shows that for sites in convex position the diagram can be computed in linear time.

34

The Algorithms and Complexity Group

References

[1] R. Rasch. Abstrakte inverse Voronoidiagramme. PhD thesis, Dept. Comput. Sci., Univ. Saarlandes,�

Saarbr�ucken, Germany, 1994.

3.2.4 Geometric Optimization Problems

Investigators: Michiel Smid and Christian Thiel

A problem from neurosurgery

Geometric optimization problems in low-dimensional spaces have received great attention. Such

problems often occur in practical situations. Consider the following example from the �eld

of neurosurgery: A surgeon wants to remove tissue samples from the brain of a patient for

diagnosis purposes. This is done by inserting a probe through a small hole in the skullcap of

the patient. In order to minimize the exposure to danger, the point of entry has to be chosen

in such a way that the trajectory of the probe stays away from certain brain areas. If we

model this trajectory as a ray, and the brain areas we want to avoid by weighted points in

three-dimensional space, then we want to �nd a ray R emanating from the position at which

we want to remove the tissue sample such that the minimal weighted distance from any of the

points to R is maximal.

The Euclidean distance between two points p and q is denoted by d(p; q). If p is a point

in IR

d

, and R is a closed subset of IR

d

, then the distance between p and R is de�ned as

d(p; R) := minfd(p; q) : q 2 Rg. Finally, we de�ne an anchored ray as a ray that emanates

from the origin.

The above mentioned optimization problem is the three-dimensional version of the following

problem: Given a set S of n points in IR

d

, such that each point p of S has a weight w(p), compute

an anchored ray R for which min

p2S

w(p) � d(p; R) is maximal.

Smid and Thiel [2] show how to solve the planar version of this problem in O(n logn) time,

which is optimal. Previously, the best known algorithm for this problem had running time

O(n�(n) logn), where �(n) is the inverse of the Ackermann function. Hence, the result of

Smid and Thiel is only a modest improvement. The interesting fact about their algorithm,

however, is its simplicity. Also, the analysis uses basic concepts from combinatorial geometry,

such as lower envelopes and Davenport-Schinzel sequences, in an elegant way.

The three-dimensional version of the anchored ray problem can be solved in roughly

quadratic time, again by using lower envelopes. Smid and Thiel show how to use the parametric

search technique to improve this to O(n log

5

n) time, which is a drastic improvement.

The width and roundness of a point set

Another application of geometric optimization problems is in the area of shape analysis. In

this �eld, we want to approximate a point set by a simple geometric �gure. As an example,

assume we have a large number of mass-manufactured circular pro�les. In order to test the

quality of such a pro�le, we take sample points from its surface. The pro�le is acceptable if

the smallest annulus that contains all these sample points has a width that is less than some

tolerance factor. (The American National Standards Institute recommends this measure to be

used for testing circular pro�les.)

Smid and Janardan [1] consider two such approximation problems. Before we formulate

them, we need some de�nitions. A slab is de�ned as the closed region lying between any two

parallel lines in the plane, and an annulus as the closed region lying between any two concentric

35

The Algorithms and Complexity Group

circles of �nite radius in the plane. The width of a slab (resp. annulus) is de�ned as the distance

between its bounding lines (resp. the di�erence of the radii of its bounding circles).

The two problems considered in [1] are: Given a set S of points in the plane, compute

its width, which is de�ned as the minimum width of any slab that contains all points of S,

respectively compute its roundness, which is de�ned as the minimum width of any annulus

that contains all points of S.

The problem of computing the width of a planar point set was considered already previously.

Smid and Janardan give a new characterization of the width. This leads to a new O(n logn)

time algorithm for computing the width. In order to give this new characterization, we need

to introduce some notions.

Let NVD(S) (resp. FVD(S)) denote the closest-point (resp. furthest-point) Voronoi dia-

gram of S. If e is an unbounded edge of NVD(S) or FVD(S), then w(e) will denote the limit

of d(x; F (x)) � d(x;N(x)), if x goes to in�nity on e. Then the width of S is equal to the

minimum value of w(e) over all unbounded edges e of NVD(S). Also, the width of S is equal

to the minimum value of w(e) over all unbounded edges e of FVD(S).

The problem of computing the roundness of a planar point set has received considerable

attention recently. For x 2 IR

2

, let N(x) (resp. F (x)) denote a nearest (resp. furthest) neighbor

of x in S. Then the minimum-width annulus centered at x that contains all points of S has

width d(x; F (x)) � d(x;N(x)), where d(�; �) is the Euclidean distance function. Hence, the

problem is to minimize the function d(x; F (x))� d(x;N(x)) over all points x in the plane.

Let G be the planar graph obtained by superimposing these two diagrams. In many places

in the literature, it is claimed that there is an optimal annulus having its center at a vertex

of G. This fact is used to derive e�cient algorithms for computing the roundness. It seems,

however, that no proof of the claim appears in the literature. Smid and Janardan show that

the claim is in fact wrong. Moreover, they give the correct form and give a rigorous proof.

The main di�culty in the proof is that the minimum of the function d(x; F (x))�d(x;N(x))

may not exist at all and instead we need to characterize its in�mum. For example, consider a

set of points on the Y {axis. For any point x in the plane, the value of d(x; F (x))� d(x;N(x))

is positive. If we let x go to in�nity on the positive X-axis, then d(x; F (x)) � d(x;N(x))

converges to zero. The reader may argue that this only happens if all points are on a line. This

is, however, not the case. In [1], an example of a set of points is given, not all on a line, such

that any annulus containing all points has width strictly larger than one, whereas the points

are contained in a slab of width one. As it turns out, this fact is one of the reasons why the

proof of the characterization of the roundness is non-trivial. The characterization is as follows:

The roundness of the set S is the minimum of the width of S and

minfd(v; F (v))� d(v;N(v)) : v is a vertex of Gg:

Moreover, the following is shown in [1]: Suppose there is an optimal slab such that one of its

bounding lines contains exactly one point of S. Then the roundness of S is strictly smaller

than the width of S.

References

[1] M. Smid and R. Janardan. On the width and roundness of a set of points in the plane. Technical�

Report MPI-I-94-111, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1994.

[2] M. Smid and C. Thiel. Computing a largest empty anchored cylinder, and related problems. In�

preparation, 1995.

36

The Algorithms and Complexity Group

3.2.5 Intersection-Detection Problems

Investigators: Michiel Smid and Christian Thiel

Generalized intersection searching problems

Problems arising in diverse areas, such as computer graphics, robotics, VLSI layout design, and

databases can often be formulated as intersection searching problems. In a generic instance of

such a problem, a set S of geometric objects is to be preprocessed into a suitable data structure

so that given a query object q we can answer e�ciently questions regarding the intersection of

q with the objects in S. The problem comes in two versions, depending on whether S remains

�xed or changes through insertion and deletion of objects|the static version and the dynamic

version, respectively. In the dynamic version, which arises very often owing to the highly

interactive nature of the above-mentioned applications, we wish to perform the updates more

e�ciently than simply recomputing the data structure from scratch after each update, while

simultaneously maintaining fast query response times. Typical examples of (S; q)-combinations

include:

1. S consists of points in IR

d

and q is a d-range: This is the d-dimensional range searching

problem.

2. S consists of d-ranges and q is a point in IR

d

: This is the d-dimensional point enclosure

searching problem.

3. S consists of intervals on the real line and q is an interval: This is the interval intersection

searching problem.

4. S consists of horizontal line segments in the plane and q is a vertical line segment: This

is the orthogonal segment intersection searching problem.

5. S consists of line segments in the plane and q is a line segment: This is the segment

intersection searching problem.

Due to their numerous applications, intersection searching problems have been the subject

of much study and e�cient algorithms have been devised for many of them.

The e�ciency of an intersection searching algorithm is measured by the space used by the

data structure, the query time, and, in the dynamic setting, the update time. The space and

update time are expressed as a function of n, whereas the query time is expressed as a function

of both n and the output size k (i.e., the number of intersected objects) and is typically of the

form O(f(n) +k) or O(f(n) +k � g(n)), for some functions f and g. Such a query time is called

output-sensitive.

In many applications, a more general form of intersection searching arises: Here the objects

in S come aggregated in disjoint groups and of interest are questions regarding the intersection

of q with the groups rather than with the objects. (q intersects a group if and only if it

intersects some object in the group.) It will be convenient to associate with each group a

di�erent color and imagine that all the objects in the group have that color. Then, in the

generalized reporting problem, we want to report the distinct colors intersected by q; in the

dynamic setting, an object of some (possibly new) color is inserted in S or an object in S is

deleted. Note that the generalized problem reduces to the standard one when each color class

has cardinality one.

37

The Algorithms and Complexity Group

We give two examples where such generalized problems arise: (1) Consider the personnel

database of a large company, which contains age and salary information for employees across all

departments. Given an age{salary range, we wish to report the departments with employees

in that range. Clearly, this is an instance of the generalized 2-dimensional range searching

problem. (2) VLSI designs often consist of several layers, where each layer is typically comprised

of thousands of iso-oriented rectangles. Often it is necessary to wire certain subsets of these

layers using vertical channels called vias. Given a candidate position for a via (a point), the

layout designer is faced with the problem of identifying the layers that get electrically connected,

i.e., those layers that have at least one rectangle containing the via. This can be solved by

assigning each layer a di�erent color and solving an instance of the generalized 2-dimensional

point enclosure searching problem.

One approach to solving a generalized problem is to try to take advantage of solutions known

for the corresponding standard problem. For instance, we can solve a generalized reporting

problem by �rst determining the objects intersected by q (a standard reporting problem) and

then reading o� the distinct colors. However, the query time can be very high since q could

intersect
(n) objects but only O(1) distinct colors. For a generalized reporting problem, we

seek query times that are sensitive to the number, i, of distinct colors intersected, typically of

the form O(f(n) + i) or O(f(n) + i � g(n)), where f and g are polylogarithmic.

Gupta, Janardan and Smid [2, 4, 5] did an extensive study on these generalized intersection

searching problems. In [5], a uni�ed approach is given for solving generalized intersection prob-

lems on axes-parallel objects, such as points, iso-oriented rectangles, and horizontal/vertical

line segments. One of the ingredients is the use of partially persistent data structures. In [2],

the results are generalized to objects that can have an arbitrary orientation. Finally, in [4],

a generic technique is given for solving generalized intersection searching problems for curved

objects such as circles and circular arcs.

The rectangle enclosure problem

The problem of computing intersections in a set of rectangles has received much attention.

There are several variants of the problem depending on the notion of \intersection" that is

used. Gupta, Janardan, Smid, and Dasgupta [6] consider the following version of the problem:

Given a set R of n axes-parallel rectangles in the plane, report all pairs (R

0

; R) of rectangles

such that R encloses R

0

. This problem �nds applications in the computer-aided-design of VLSI

circuits.

Let k denote the number of pairs (R

0

; R) of rectangles such that R encloses R

0

. In 1982, Lee

and Preparata [7] showed how the problem can be solved in O(n log

2

n+k) time. They mention

as an open problem whether this can be improved. The algorithm of Lee and Preparata has

never been improved.

In [6], an algorithm having a running time of O(n logn log logn + k log logn) is given.

This algorithm �rst normalizes the coordinates in the sense that each coordinate is an integer

between one and n. Then, the problem is solved by means of a divide-and-conquer algorithm.

In the merge step of this algorithm, we have to report red-blue enclosures in a set of red and

blue rectangles. This problem is solved using a sequence of non-trivial sweep steps. Since

all coordinates are from a �nite universe, we can use van Emde Boas trees in order to search

among them in O(log logn) time rather than O(logn) time. In this way, the merge step of

the divide-and-conquer algorithm takes O((n + k

0

) log log n) time, where k

0

is the number of

dominance pairs that are reported in this step.

38

The Algorithms and Complexity Group

Problems on moving objects

Problems involving geometric objects that are in time-dependent motion arise in diverse appli-

cations, such as, for instance, tra�c control, robotics, manufacturing, and animation, to name

just a few. In such problems, we are given a collection of geometric objects, such as points,

line segments, or polyhedra, along with a description of their motion, which is usually speci�ed

by a low-degree polynomial in the time parameter t. The objective is to answer questions

concerning (i) properties of the objects (e.g., the closest pair) at a given time instant t or in

the so-called \steady-state", i.e., at t = 1; or (ii) the combinatorics of the entire motion i.e.,

from t = 0 to t = 1 (e.g., the number of topologically di�erent Euclidean minimum spanning

trees determined by a set of moving points); or (iii) the existence of certain properties (e.g.,

collision) or computing the optimal value of some property (e.g., the smallest diameter) over

the entire motion.

The systematic study of such dynamic problems was initiated by Atallah [1]. Examples

of problems considered by him include computing the time intervals during which a given

point appears on the convex hull of a set of moving points and determining the steady-state

closest/farthest pair, and smallest enclosing circle for moving points.

In [3], problems of type (iii) are addressed. Speci�cally, they consider sets of moving objects

such as points, line segments, or axes-parallel hyper-rectangles in IR

d

and are interested in

questions such as: \Do two objects ever collide?" and \What is the smallest inter-point

distance or smallest diameter ever attained?" Of course, these problems can be solved easily in

quadratic time, by brute-force. Gupta, Janardan and Smid show that many instances of this

problem can be solved in subquadratic time. The strategy for solving these dynamic problems

is to reduce the problem at hand to a di�erent problem on a set of static objects. The latter

problem is then solved using techniques such as sweeping, orthogonal range searching, halfspace

range searching, simplex compositions, and parametric search.

Collision detection for moving polyhedra

The demands on quality, security and higher production capacity in manufacturing increase

the need for automation during the phase of product design. To �nd potential faults in the

design as soon as possible one uses simulation programs: these predict the physical properties

and reactions of the product and check whether particular prefabricated parts can be easily

assembled. For the latter purpose, e�cient methods for collision detection are needed. In

general, collision detection is an essential prerequisite of simulations of mechanical tools.

Sch�omer and Thiel [8] consider the problem of designing e�cient algorithms for collision

detection between two moving objects. They assume the following model: (i) Objects are

rigid bodies (polyhedra) in IR

3

, their surfaces consist of planar faces with straight boundaries;

(ii) An object may be moving translationally in an arbitrary direction or it may be rotating

around an arbitrary axis. These restrictions are based on the fact that real objects can be easily

modelled by polyhedra and every motion can be approximated by a sequence of translations

and rotations.

It is not di�cult to see that in IR

3

a collision between a moving polyhedral object and

a stationary obstacle is computable in time O(n

2

), where n denotes the complexity of the

two objects. In fact, previously, no subquadratric algorithms were known for these problems.

Even the special case of two convex polyhedra, one of which is rotating has not been solved

up to now. This particular problem was posed as an open question by Jack Snoeyink during

the Third Dagstuhl Seminar on Computational Geometry in March 1993: Given two convex

polyhedra A,B, and an axis of rotation, compute the smallest angle by which B has to rotate

39

The Algorithms and Complexity Group

to meet A. Can this be done in sub-quadratic time?

Sch�omer and Thiel give the �rst sub-quadratic algorithms, which solve the collision problem

between two general polyhedra, one of which is moving translationally or rotating around a

�xed axis, whereas the other is stationary. They get a running time of O(n

8=5+�

) for the

translational movement and O(n

5=3+�

) for the rotational movement, where � is an arbitrary

small positive constant.

The �rst collision between two polyhedra can either be a collision between a vertex of one

polyhedron and a facet of the other or a collision between two edges. The former case is the

simpler one and is treated by simple plane sweep techniques. The latter problem is the harder

problem. Sch�omer and Thiel show how to preprocess the set of stationary segments, such that

they can e�ciently compute the �rst segment hit by a moving query segment. They proceed

in three steps: In the �rst step the parametric search technique of Meggido is used to reduce

the problem of computing the �rst intersection during the motion to the problem of computing

the total number of intersections during the motion. In the second step, the latter problem is

reduced to a combination of halfspace and simplex range searching problems; the key technique

here is linearization. In the third step the range searching problems are solved using known

techniques of van Kreveld and Matou�sek. After that the general technique can be applied to

the collision problem of line segments which move translationally or rotate around a �xed axis.

References

[1] M.J. Atallah. Some dynamic computational geometry problems. Computers and Mathematics with

Applications, 11:1171{1181, 1985.

[2] P. Gupta, R. Janardan, and M. Smid. E�cient algorithms for generalized intersection searching on�

non-iso-oriented objects. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 369{378, 1994.

[3] P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and proximity problems involving�

moving geometric objects. In Proc. 2nd Annu. European Sympos. Algorithms (ESA), volume 855 of

Lecture Notes in Computer Science, pages 278{289, 1994.

[4] P. Gupta, R. Janardan, and M. Smid. On intersection searching problems involving curved objects.�

In Proc. 4th Scandinavian Workshop on Algorithm Theory (SWAT), volume 824 of Lecture Notes

in Computer Science, pages 183{194, 1994.

[5] P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection searching problems:�

counting, reporting, and dynamization. Journal of Algorithms, to appear, 1995.

[6] P. Gupta, R. Janardan, M. Smid, and B. Dasgupta. The rectangle enclosure and point-dominance�

problems revisited. In Proc. 11th Ann. ACM Sympos. Comput. Geometry, to appear, 1995. Also

Tech. Rep. MPI-I-94-142.

[7] D.T. Lee and F.P. Preparata. An improved algorithm for the rectangle enclosure problem. Journal

of Algorithms, 3:218{224, 1982.

[8] E. Sch�omer and C. Thiel. E�cient collision detection for moving polyhedra. Technical Report�

MPI-I-94-147, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1994.

3.2.6 Geometric Constraints

Investigator: Vasilis Capoyleas

40

The Algorithms and Complexity Group

The problem of Geometric Constraints can be de�ned as follows: Given a set of unknown

geometric objects (which we call geometries) and a set of constraints on them, we want to �nd

the feasible sets of objects [4, 5, 3].

With the geometries restricted to points, this is a classical problem in Mathematics; it is

the main topic of Distance Geometry. Its algorithmic aspects, however, have received little

attention from the theoretical computer science community so far. It is easy to show that even

the simplest version: \Given names for points on a line and distances between some pairs of

them, �nd the points", is NP-hard.

However, new practical applications, motivate closer attention. This problem appears in

a very explicit manner in Computer-Aided-Design (CAD) systems. A popular new trend is

parametric CAD systems, in which the position in space of new geometries is not de�ned

directly, but instead, various constraints are given, which the new geometries must satisfy. The

system must deduce the correct positions of the geometries, from the constraints [5].

For example, in systems like Pro/Engineer, Euclid, EMS Intergraph, the user is allowed

to sketch a set of lines, points and circles representing a design, with the mouse. The system

gets some rough idea of the intended places. Then the user identi�es some of the sketched

geometries, to which he assigns constraints. These can be �xing a distance, �xing an angle,

forcing some combinatorial incidences, or even an equation involving expressions in which the

values of distances or angles and so on, appear as atoms. Then the system has to �nd a

solution; a set of geometries that satisfy all the constraints. Note that there might be more

degrees of freedom than constraints (under-constraining), or a subset of the geometries may

involve more constraints than degrees of freedom (over-constraining). Over-constraining and

under-constraining are called structural de�ciencies [6]. Usually, one checks for structural

de�ciencies, before trying to �nd a solution.

As noticed above, in practical CAD systems, the user provides the system with a rough

sketch. This sketch can be used to obtain some orientation information. This motivates the

study of a di�erent formulation of the Geometric Constraint problem, in which, orientation

information about the desired set of geometries is available. It is no longer clear if the problem

is NP-hard.

Two main research directions are detecting structural de�ciencies in a system of geometric

constraints and solving a system of geometric constraints, when orientation information is

available [4]. Partial and ad hoc solutions, are used successfully in practice [4, 5], but there are

not many rigorous theoretical results. When checking for structural de�ciencies of systems of

points and distances, one can borrow from the theory of rigidity [2].

The Geometric Constraint problem comes in many di�erent versions, depending on the

allowable kinds of geometries and the allowable kinds of constraints. Kinds of geometries used in

practice, include points, lines, planes, circles, spheres, etc. Kinds of constraints used in practice,

are simple or complicated equations, involving distances or angles. The Geometric Constraint

problem becomes more and more complicated, as one allows more kinds of geometries and

constraints. For almost all the cases, nothing is known. Every case is treated separately by

CAD software developers.

Recently, we were able to show that all versions of the Geometric Constraint problem

commonly met in practice, can be reduced to the most simple one, which involves only points

and distances in two dimensions [1]. In this work, we de�ne a large class of Geometric Constraint

problems, in two and three dimensions and show that they are all linearly reducible to some

equivalent one, involving only points and distances in two dimensions.

Currently, we are trying to use our reduction techniques to cover the more complicated

cases, by extending results known for the case of points and distances.

41

The Algorithms and Complexity Group

References

[1] V. Capoyleas. A reduction theory for geometric constraint problems. In preparation, 1995.�

[2] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity, volume 2 of AMS Graduate

Studies in Mathematics. American Mathematical Society, 1994.

[3] G. Kramer. Solving Geometric Constraint Systems (A case study in kinematics). MIT Press, 1992.

[4] J. C. Owen. Algebraic solutions for geometry from dimensional constraints. In Symposium on Solid

Modeling Foundations and CAD/CAM Applications. ACM Press, 1991.

[5] J. C. Owen. Constraints on simple geometry in two and three dimensions. Technical report, D-Cubed

Ltd., 68 Castle Street, Cambridge CB3 OAJ, UK., 1993.

[6] W. Whiteley. Constraining plane geometric con�gurations in cad: Directions and lengths. preprint,

June 1994.

3.3 Data Structures and Combinatorial Algorithms

3.3.1 Partial orders

Investigators: Devdatt Dubhashi, Kurt Mehlhorn, Desh Ranjan and Christian Thiel

In the general problem of searching and sorting ordered data structures we are given a partially{

ordered data structure modeled by a poset P, and a storage function f : P ! IR such that

p �

P

q implies f(p) � f(q). We may think of the elements of the poset as data locations where

real numbers are stored consistent with the poset ordering.

In the searching problem for partial orders, we are given a real number � and are asked

to locate it in the poset (if it is present) with a minimum number of comparisons of the form

� � f(p) or � = f(p), for p 2 P. By the Central Element Theorem of Linial and Saks [3], it

follows that the direct information{theoretic lower bound of logN (where N is the number of

ideals in P) can indeed be attained if one can locate so-called central elements in the poset.

Hence for the problem of searching ordered data structures, the search for central elements

is fundamental. Linial and Saks went on to prove a deep theorem which asserted that every

poset in fact possesses such central elements. Their proof was, however, non-constructive and

the question of whether such elements can actually be found constructively was left open.

The sorting problem for general posets is: given a �nite set P and an unknown partial order

� on P , determine the partial order using a minimum number of comparisons of the form p � q

for p; q 2 P . The central elements again play a key role. Given a procedure to obtain central

elements, the sorting problem for posets with n elements and having a total of N ideals can be

solved with O(n logN) comparisons [3]. In [1], we gave an information-theoretic lower bound

of
(n logN) for this problem.

Faigle et al. showed in [2] an intimate connection between the problem of generating

central elements and the problem of counting ideals in the poset. The latter problem is known

to be P-complete in general [4]. In [1], we investigated if randomisation helps in solving the

approximate version of this P-complete problem as it indeed does in some other well known

cases. We presented schemes for (e�ciently) transforming a randomised generation procedure

for central elements (which often exists for some classes of posets) into randomised procedures

for approximately counting ideals in the poset and for testing if an arbitrary element is central.

In turn, we showed how to use this approximate counting of ideals to bootstrap the original

generating procedure into one with a strongly ampli�ed probability of generating a central

element.

42

The Algorithms and Complexity Group

References

[1] D. Dubhashi, K. Mehlhorn, D. Ranjan, and C. Thiel. Searching, sorting and randomised algorithms�

for central elements and ideal counting in posets. In Proceedings 13th Conference on Foundations

of Software Technology and Theoretical Computer Science (FSTTCS'93), pages 436{443. LNCS

761, Springer-Verlag, 1993. Also Technical Report MPI-I-93-154, Max-Planck-Institut Saarbr�ucken,

1993.

[2] U. Faigle, L. Lov�asz, R.Schrader, and G. Tur�an. Searching in trees, series-parallel and interval

orders. SIAM Journal on Computing, 15:1075{1084, 1986.

[3] N. Linial and M. Saks. Searching ordered structures. Journal of Algorithms, 6:86{103, 1986.

[4] J.S. Provan and M.O. Ball. The complexity of counting cuts and of computing the probability that

a graph is connected. SIAM Journal on Computing, 12:777{788, 1983.

3.3.2 Lower Bounds for the Matrix Chain Ordering Problem

Investigator: Phil Bradford

An important problem in combinatorial optimization, with many applications, is to �nd the

cheapest way to multiply a chain of n matrices, where the matrices are pairwise compatible but

of varying dimensions. The problem is known as the matrix chain ordering problem (MCOP) [1,

3]. Two matrices M

i

and M

j

, of dimensions d

i

�d

i+1

and d

j

�d

j+1

respectively, are compatible

i� d

i+1

= d

j

. A list of compatible matrices is a matrix chain. We take the cost of multiplying

a d

i

� d

j

matrix by a d

j

� d

k

matrix as d

i

d

j

d

k

. In the product of any chain of n matrices

M

1

�M

2

� � � � �M

n

, we must consider the n + 1 dimensions d

1

; d

2

; � � � ; d

n+1

. Given a matrix

chain and multiplying the matrices in this chain according to all valid parenthesizations gives

the same result because matrix multiplication is associative. However, products based on

di�erent parenthesizations may lead to di�erent total costs.

The MCOP is the focus of much pedagogy because of its amenability to an elementary

dynamic programming solution. Many of the popular books on the design and analysis of

algorithms and combinatorial optimization use the MCOP as a central example of the dynamic

programming paradigm. We have found at least twelve standard text books containing this

example, see for example [1, 3, 8]. Furthermore, the fastest known algorithm for the MCOP

takes O(n lgn) time and is due to Hu and Shing [4, 5].

To our knowledge all algorithms for the MCOP and their analyses explicitly or implicitly

assume that an n-matrix input to the MCOP can have an optimal solution that is any of

the Catalan number of parenthesizations. These assumptions are made without any other

considerations. In [2], we have shown that to have certain optimal parenthesizations whose tree

representations are of depth �(n) we must have input matrix dimensions that are exponential

in n. In particular, to have certain alternating products output as solutions to the MCOP, we

need to have exponential inputs.

The comparison based model assumes that the complete cost of any matrix product is

atomic. That is, the costs of di�erent possible matrix products can be compared only with

each other and every such comparison is of constant cost. In this model an
(n lgn) lower

bound is given for a very restricted case of the MCOP and our comparison based lower bound

seems to be implied by Ramanan's algebraic decision tree lower bound [6, 7].

Finally, we have given a trade-o� between the input lower bound and the atomic comparison

based lower bound. This trade-o� is based on the optimal product tree depth. It shows that

hard instances of the comparison based model are easy instances in terms of input complexity

and vice versa.

43

The Algorithms and Complexity Group

An associative product of the form

(M

1

� ((M

2

� ((M

3

� � � � �M

n�3

) �M

n�2

)) �M

n�1

)) �M

n

is an alternating product. In [2], we have shown for an n-matrix input to the MCOP to generate

an alternating product as a solution, the input matrices must be of exponential size. That is,

in some sense alternating products are the \hardest" instances for the input lower bound.

Products of the form,

(((M

1

�M

2

) � (M

3

�M

4

)) � ((M

5

�M

6

) � (M

7

�M

8

)))

are full balanced trees since their binary tree representation is a balanced full tree. Fully

balanced trees are the hardest instances for our atomic comparison based model.

Prior to our results, algorithms and their analyses did not account for input size for solving

the MCOP. However, �nding lower bounds for the MCOP has been the focus of some research.

A. C.-C. Yao's work on decision trees has played an important role in the development of

good lower bounds for a variety of problems, in the context of our results, see for example [9].

Building on Yao's work, Ramanan showed that such techniques give a lower bound such that [6,

7]:

\If we could extend our lower bound technique to bounded degree algebraic decision

trees, we would have a tight
(n lgn) lower bound for the [MCOP]."

Ramanan's lower bound technique works on a problem that seems to be a close relative of the

matrix chain ordering problem, although it has not yet clinched an
(n lgn) lower bound for

the MCOP. Ramanan recently mentioned that his lower bound proof requires that the input

consist of a polynomial number of bits [7, Page 849]: \So our lower bound proof requires that

the input consist of a large number of bits." But, again this is only for a problem that seems

to be a close relative of the MCOP.

References

[1] A. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[2] P.G. Bradford, V. Choppella, and G.J.E. Rawlins. Lower bounds for the matrix chain ordering�

problem. To appear in the Proceedings of LATIN '95, 1995.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw Hill/MIT

Press, 1990.

[4] T.C. Hu and M.T. Shing. Computation of matrix product chains. Part I. SIAM Journal on Com-

puting, 11:362{373, 1982.

[5] T.C. Hu and M.T. Shing. Computation of matrix product chains. Part II. SIAM Journal on

Computing, 13:228{251, 1984.

[6] P. Ramanan. A new lower bound technique and its application: Tight lower bound for a poly-

gon triangularization problem. In Proceedings 2nd ACM-SIAM Symposium on Discrete Algorithms

(SODA'91), pages 281{290, 1991.

[7] P. Ramanan. A new lower bound technique and its application: Tight lower bound for a polygon

triangularization problem. SIAM Journal on Computing, 23:834{851, 1994.

[8] R. Sedgewick. Algorithms, second edition. Addison-Wesley, 1989.

[9] A.C. Yao. Lower bounds for algebraic computation trees with integer inputs. SIAM Journal on

Computing, 20:655{668, 1991.

44

The Algorithms and Complexity Group

3.3.3 On-Line Algorithms

Investigator: Susanne Albers

The competitive analysis of on-line algorithms is a new fruitful area of research that has de-

veloped in the past eight years. On-line algorithms receive the input data incrementally one

by one and must react to each new input portion, not knowing future data. On-line problems

typically arise in data structuring, scheduling, exploration or learning, and distributed com-

puting. An on-line algorithm is said to be c-competitive if it computes for any input sequence

a solution which is at most a factor of c away from an optimal solution for this input.

Randomized Algorithms for the List Update Problem

The list update problem is a fundamental on-line problem in the area of data structures. It is

among the �rst on-line problems that have been studied with respect to competitiveness. The

problem is to maintain a set of items as an unsorted, linear linked list. A list update algorithm

must serve a sequence of requests to items in the list. Serving a request to the item at position

i in the current list incurs a cost of i. Immediately after a request, the requested item may be

moved at no extra cost to any position closer to the front of the list. The goal is to serve the

request sequence so that the total cost is as small as possible.

The optimal competitive factor of deterministic on-line algorithms for the list update has

been known for some time: Sleator and Tarjan [13] showed that the well-known MOVE-TO-

FRONT algorithm, which moves an item to the front of the list each time it is requested, is

2-competitive. Karp and Raghavan observed that no deterministic on-line algorithm for the list

update problem can be better than 2-competitive. On the other hand, the optimal competitive

factor of randomized on-line algorithms has not been determined yet. Irani [9] has presented a

randomized on-line algorithm that is

31

16

-competitive. Reingold et al. [12] have given a family of

COUNTER and RANDOM RESET algorithms that achieve a competitive ratio of

p

3 � 1:73.

This has been the best upper bound known so far for randomized list update algorithms.

We have developed a new family of randomized on-line algorithms that beat the competitive

ratio of

p

3. Our improved algorithms are called TIMESTAMP algorithms and achieve a

competitiveness of maxf2�p; 1+p(2�p)g, for any real number p 2 [0; 1]. Setting p = (3�

p

5)=2,

we obtain a �-competitive algorithm, where � = (1+

p

5)=2 � 1:62 is the Golden Ratio. TIME-

STAMP algorithms coordinate the movements of items using some information on past requests.

We can reduce the required information at the expense of increasing the competitive ratio. We

have presented a very simple version of the TIMESTAMP algorithms that is 1:68-competitive.

The family of TIMESTAMP algorithms also includes a new deterministic 2-competitive on-line

algorithm that is di�erent from the MOVE-TO-FRONT rule. The results of this work appeared

in [3].

On-line Page Replication

Page replication and migration problems are important on-line problems in distributed data

management. The problem is to distribute a set of memory pages in a network of processors,

each of which has its local memory, so that a sequence of memory accesses can be processed at

low cost. More speci�cally, the goal is to minimize the cost incurred by communication (when

a processor wants to read a page that is not in its local memory) and possible re-allocation

of pages. In the page migration problem, only one copy of each page may exist. On the

other hand, in the page replication problem, multiple copies are allowed and the problem is to

determine which local memories should contain a copy of a given page.

45

The Algorithms and Complexity Group

Awerbuch et al. [5] have presented a deterministic on-line replication strategy for general

graphs that achieves an optimal competitive ratio of O(logn), where n is the number of pro-

cessors. However, for many important topologies, this bound is not very expressive. Black and

Sleator [7] have proposed an optimal deterministic on-line algorithm for trees and uniform net-

works which is 2-competitive. A uniform network is a complete graph in which all edges have

the same length. Koga [10] has developed a randomized replication algorithm for trees that

is 1.71-competitive. For the ring topology, randomized replication algorithm with competitive

ratios of 2(2 +

p

3) and 4 have been proposed [6, 10]. No e�cient deterministic algorithm for

rings was known so far.

We have developed a number of new deterministic and randomized on-line replication algo-

rithms. We concentrated on network topologies that are important in practice and for which

on-line algorithms with a constant competitive factor can be given. More speci�cally, we have

developed an optimal randomized on-line replication algorithm for trees and uniform networks;

its competitive factor is

e

e�1

� 1:58. Furthermore we have considered on-line replication algo-

rithms for rings and presented general techniques that transform large classes of c-competitive

algorithms for trees into 2c-competitive algorithms for rings. As a result we have obtained a

randomized on-line algorithm for rings that is 3.16-competitive. We have also derived two very

simple 4-competitive on-line algorithms for rings which are either deterministic or memoryless.

Our replication results appeared in [4].

Lookahead in On-line Algorithms

In the research period 1991 { 1993, we had mainly worked on the problem of lookahead in on-

line algorithms: What improvement can be achieved in terms of competitiveness if an on-line

algorithm sees not only the present request to be served but also some future requests? We

had introduced two di�erent models of lookahead and had studied \classical" on-line problems

such as paging, list update, the k-server problem and metrical task systems using these models.

See the Progress Report 1991 { 1993 [1] for a more detailed description of our results. The

question of lookahead is still an interesting topic in the on-line community, cf. [11, 8] for some

recent papers. Some of our results were published only recently, e.g. our results on list update

with lookahead were presented in [2].

References

[1] Progress report 1991{1993. Technical report, Max-Planck-Institut f�ur Informatik, 66123

Saarbr�ucken, Germany, November 1993.

[2] S. Albers. A competitive analysis of the list update problem with lookahead. Proceedings Mathe-�

matical Foundations of Computer Science (MFCS'94), 1994.

[3] S. Albers. Improved randomized on-line algorithms for the list update problem. to appear in�

Proceedings 6th ACM-SIAM Symposium on Discrete Algorithms (SODA'95), January 1995.

[4] S. Albers and H. Koga. New on-line algorithms for the page replication problem. In Proceedings�

4th Scandinavian Workshop on Algorithm Theory (SWAT'94). LNCS 824, Springer Verlag, 1994.

[5] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed �le allocation. In Proceedings 25th

ACM Symposium on Theory of Computing (STOC'93), pages 164{173, May 1993.

[6] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management. In

Proceedings 24th ACM Symposium on Theory of Computing (STOC'92, pages 39{50, May 1992.

46

The Algorithms and Complexity Group

[7] D.L. Black and D.D. Sleator. Competitive algorithms for replication and migration problems.

Technical Report CMU-CS-89-201, Carnegie Mellon University, 1989.

[8] E.F. Grove. On-line bin packing with lookahead. To appear in Proceedings 6th ACM-SIAM

Symposium on Discrete Algorithms (SODA'95), January 1995.

[9] S. Irani. Two results on the list update problem. Information Processing Letters, 38:301{306, 1991.

[10] H. Koga. Randomized on-line algorithms for the page replication problem. In Proceedings 4th

Symposium on Algorithms and Complexity, pages 436{445. LNCS 762, Springer-Verlag, 1993.

[11] E. Koutsoupias and C.H. Papadimitriou. Beyond competitive analysis. In Proceedings 35th IEEE

Symposium on Foundations of Computer Science (FOCS'94), pages 394{400, 1994.

[12] N. Reingold, J. Westbrook, and D.D. Sleator. Randomized competitive algorithms for the list

update problem. Algorithmica, 11 (1):15{32, 1994.

[13] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Communication

of the ACM, 28:202{208, 1985.

3.3.4 String Searching

Investigator: Torben Hagerup

Imagine that we are given a table of size n, each of whose entries is a k-character string. The

entries in the table are sorted according to the lexicographical order, as in a dictionary, and

we want to determine whether a particular k-character string is present in the table, i.e., we

want to look up a word in a dictionary. How many character comparisons between the query

string and the table are needed in the worst case?

One possibility is to use standard binary search, each stage of which now compares two

full k-character strings. The resulting algorithm uses O(k logn) comparisons. Another simple

approach by Hirschberg [3] achieves O(k + n) comparisons, showing that binary search is not

always optimal. On the other hand, when k is small relative to n, O(k+n) is not very impressive.

Other bounds of O(k logn=log k) and O(k

p

logn + logn) were indicated by Hirschberg and

Kosaraju [2, 4]. Still, despite the fundamental nature of the problem, its complexity is not

known, and no progress was reported for over a decade.

In [1], we showed that the string-searching problem can be solved with

O

0

@

k log logn

log log (4 +

k log logn

logn

)

+ k + logn

1

A

character comparisons in the worst case, which subsumes all other known upper bounds. De-

spite the complicated form of this bound, we believe that it expresses the exact complexity

of the problem (up to a constant factor), and current research aims to demonstrate this by

establishing a matching lower bound.

References

[1] A. Andersson, T. Hagerup, J. H�astad, and O. Petersson. The complexity of searching a sorted�

array of strings. In Proceedings 26th ACM Symposium on Theory of Computing (STOC'94), pages

317{325, May 1994.

[2] D.S. Hirschberg. A lower worst-case complexity for searching a dictionary. In Proceedings 16th

Allerton Conference on Communication, Control, and Computing, pages 50{53, 1978.

47

The Algorithms and Complexity Group

[3] D.S. Hirschberg. On the complexity of searching a set of vectors. SIAM Journal on Computing,

9:126{129, 1980.

[4] S.R. Kosaraju. On a multidimensional search problem. In Proceedings 11th ACM Symposium on

Theory of Computing (STOC'79), pages 67{73, May 1979.

3.3.5 Pattern Matching in Compressed Texts

Investigator: Ramesh Hariharan

Pattern matching in strings is an important problem in computer science as well as in other

sciences. The simplest form of the problem is to locate a string p, called pattern, in another

string s, occurring as a substring of s. This problem has been extensively studied, and we refer

the readers to [1] for an excellent survey. There are several well-known algorithms which solve

this problem in time linear in the sum of the lengths of the two strings.

The problem we addressed in [3] is that of locating a pattern p in a string s, which is given

in a compressed form. In particular, we considered strings given in compressed forms obtained

by adaptive dictionary encoding schemes [2], which are essentially encoding schemes proposed

by Ziv and Lempel [7, 8], or their variants.

In these schemes, a string s is compressed by replacing a substring of the string by a

reference to an earlier occurrence of the same substring in s. Various restrictions, due to

e�ciency (mostly space e�ciency) concerns, lead to di�erent compression schemes. We study

this problem, in its full generality, by allowing a compression scheme in which any duplicate

occurrence of a string may be replaced by a reference to its earlier occurrence. The reference

is usually a pair of integers: a pointer to the starting position of the earlier occurrence of the

substring in s, and the length of the substring. Such a compression scheme was studied and

implemented in O(jsj) time by [6].

Let the length of the compressed string � (representing s) be n, and the length of the

pattern (uncompressed, i.e., in its original form) be m. Then, we gave an algorithm which runs

in time O(m

2

+ n

3=2

� log n � log logn � log(�(�)) + t), where �(�) is the expansion complexity

(as opposed to Lempel and Ziv's compression complexity [4]) of the compressed string �. The

exact de�nition of expansion complexity is rather technical, but it su�ces to say that it is upper

bounded by the length of s, the uncompressed form of �. However, if substrings replaced in

the compression refer to substrings which overlap heavily with the replaced substring, then the

expansion complexity of � can be order of magnitude lesser. The number of occurrences of p

detected in s is given by the output sensitivity factor t.

Note that, if m

2

is greater than n

3=2

, then the m

2

factor in the above complexity is rather

expensive. We gave another algorithm which runs in time O(m logm+ n � (

p

n logn � log logn �

log(�(�)) + log

3

m � log logm) + t).

We also considered the complexity of locating p in �, when � is obtained by other compres-

sion schemes. We showed that for most practical compression schemes, which are special cases

of [6], including [7, 8, 5], there is an algorithm which runs in time O(min(m

2

+n;m logm+n �

log

3

m � log logm) + t).

References

[1] A. Aho. Algorithms for �nding patterns in strings. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, Volume A. Elsevier, 1990.

[2] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.

48

The Algorithms and Complexity Group

[3] R. Hariharan and C.S. Jutla. Pattern matching in Ziv-Lempel compressed strings. Manuscript,�

1994.

[4] A. Lempel and J. Ziv. On the complexity of �nite sequences. IEEE Transactions on Information

Theory, IT-22:75{81, 1976.

[5] V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In A. Apostolico and

Z. Galil, editors, Combinatorial Algorithms on Words, pages 131{140. NATO ASI Series, Vol. F12,

Springer-Verlag, 1984.

[6] M. Rodeh, V. Pratt, and S. Even. Linear algorithm for data compression via string matching.

Journal of the ACM, 28:16{24, 1981.

[7] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions

on Information Theory, IT-23:337{342, 1977.

[8] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Trans-

actions on Information Theory, IT-24:530{536, 1978.

3.3.6 Probabilistic Analysis of Algorithms

Investigators: Shiva Chaudhuri, Devdatt Dubhashi and Desh Ranjan

The analysis of many randomized algorithms, for example in dynamic load balancing, in the

probabilistic divide-and-conquer paradigm and distributed edge-coloring [5, 6, 7, 8, 9], requires

ascertaining the precise nature of the correlation between the random variables arising in the

following prototypical \balls-and-bins" experiment. Suppose a certain number of balls are

thrown uniformly and independently at random into n bins. Let X

i

be the random variable

denoting the number of balls in the ith bin, i 2 [n], where [n] denotes the set f1; 2; :::; ng. These

variables are clearly not independent and are intuitively negatively related, i.e., when one of

the variables is \large", another is likely to be \small". In [3] we made this mathematically

precise by proving the following type of correlation inequalities:

� For index sets I; J � [n] such that I\J = ; or I [J = [n], and any non{negative integers

t

I

; t

J

,

Pr[

X

i2I

X

i

� t

I

j

X

j2J

X

j

� t

J

] � Pr[

X

i2I

X

i

� t

I

]:

� For any disjoint index sets I; J � [n], any I

0

� I; J

0

� J and any non{negative integers

t

i

; i 2 I and t

j

; j 2 J ,

Pr[

^

i2I

X

i

� t

i

j

^

j2J

X

j

� t

j

] � Pr[

^

i2I

0

X

i

� t

i

j

^

j2J

0

X

j

� t

j

]:

Although these inequalities are intuitively appealing, establishing them is non{trivial; in par-

ticular, direct counting arguments become intractable very fast. We proved the inequalities of

the �rst type by an application of the celebrated FKG Correlation Inequality. The proof for

the second uses only elementary methods and hinges on some monotonicity properties.

More importantly, we then introduced a general methodology that may be applicable when-

ever the random variables involved are negatively related. Precisely, we invoked a general notion

of negative association of random variables and showed that:

� The variables X

i

are negatively associated. This yields most of the previous results in a

uniform way.

49

The Algorithms and Complexity Group

� For a set of negatively associated variables, one can apply the Cherno�-Hoe�ding bounds

to the sum of these variables. This provides a tool that facilitates analysis of many

randomized algorithms, for example, the ones mentioned above.

The analysis in [7, 8, 9] seems to strongly hint in another direction, namely that these

negatively related variables are in some sense stochastically dominated by a set of independent

random variables with the same marginals. Thereby, one hopes to salvage tools such as the

Cherno�{Hoe�ding bound also for analysis involving the dependent set of variables. In [4] we

exploded myths of this kind and argued that stochastic majorisation in conjunction with an

independent set of variables is actually much less useful a notion than it might have appeared.

However, there are positive results to o�set the negative ones just mentioned. The perfor-

mance attributes of a broad class of randomised algorithms can be described by a recurrence

relation of the form T (x) = a(x) + T (H(x)), where a is a function and H(x) is a random

variable. For example, consider an algorithm that, on an input of size x, performs a(x) work

to generate a subproblem of size H(x) and then solves the subproblem recursively. (Here H(x)

is a random variable taking values in [0; x] and whose distribution depends on the algorithm;

moreover, E[H(x)]� m(x) for a �xed function m(x) satisfying 0 � m(x) � x.) Hence, T (x) is

a random variable whose distribution depends on the distribution of H(x). Karp [5] recognised

that the analysis of all such algorithms can be conveniently formulated as tail bounds on the

distribution of T (x). He gave the following bounds on the tail of the distribution of T (x):

Pr[T (x) � u(x) + wa(x)] � (m(x)=x)

w

where u(x) =

P

i�0

a(m

(i)

(x)) and m

(0)

(x) = x and m

(i+1)

(x) = E[H(m

(i)

(x))]. The bounds

show that the deviation of T (x) from its \expected" value behaves in a fashion similar to that

given by Cherno� bounds for the sum of independent random variables. However, the bounds

hold for only those distributions of H(x) such that m(x)=x is nondecreasing, which renders the

result inapplicable to a number of probabilistic algorithms [2]. Furthermore, the proof, while

ingenious o�ers no intuition as to why the results hold.

In [1], we give an alternative analysis that uses stochastic dominance to reduce the problem

to giving a Cherno�-like bound for unbounded random variables. This analysis also allows

us to prove similar results for the case when m(x)=x is decreasing, allowing the results to be

applied to a wider class of algorithms.

References

[1] S. Chaudhuri and D. Dubhashi. (Probabilistic) Recurrence Relations Revisited. In Proceedings II�

Latinamerican Symposium on Theoretical Informatics (LATIN '95), 1995. to appear.

[2] D. Dubhashi and A. Panconesi. Near optimal distributed edge colouring. Technical Report MPI-I-�

94-136, Max-Planck-Institut f�ur Informatik, 66123 Saarbr�ucken, Germany, July 1994.

[3] D. Dubhashi and D. Ranjan. Some correlation inequalities for probabilistic analysis of algorithms.�

Technical Report MPI-I-94-143, Max-Planck-Institut f�ur Informatik, 66123 Saarbr�ucken, Germany,

August 1994.

[4] D. Dubhashi and D. Ranjan. Stochastic majorisation : exploding some myths. Technical Report�

MPI-I-94-144, Max-Planck-Institut f�ur Informatik, 66123 Saarbr�ucken, Germany, August 1994.

[5] R. Karp. Probabilistic recurrence relations. In Proceedings of the 23th ACM Symposium on Theory

of Computing (STOC'91), pages 190{197, 1991.

50

The Algorithms and Complexity Group

[6] T. Lauer. Adaptive dynamische Lastbalancierung. PhD thesis, Universit�at des Saarlandes, to appear.�

[7] A. Panconesi. Locality in distributed computing. PhD thesis, Cornell University, 1993.

[8] A. Panconesi and A. Srinivasan. Fast randomized algorithms for distributed edge coloring. In

Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 251{262, 1992.

[9] A. Srinivasan. Techniques for probabilistic analysis and randomness-e�cient computation. PhD

thesis, Cornell University, 1993.

3.3.7 Enumerating Spanning Trees in Graphs

Investigator: Ramesh Hariharan

Enumerating combinatorial objects is a fundamental problem in computer science. Spanning

tree enumeration in directed and undirected graphs is one such classical problem, which arises

in the solution of electrical networks [6].

There was much early work on this problem, for example [1, 7, 8]. For undirected graphs,

Read and Tarjan [9] gave an algorithm which runs in O(NE + V + E) time, on a graph with

N spanning trees, E edges and V vertices. Gabow and Myers [2] re�ned this approach to

obtain an algorithm which runs in O(NV + V + E) time. This algorithm is optimal if all

spanning trees have to be explicitly output. On the other hand, if only a computation tree

which describes relative changes between spanning trees is desired, then the above algorithm

is no longer optimal because the output has just O(N) size. The algorithm of Gabow and

Myers takes O(V) time per spanning tree even to generate just the computation tree. Note

that if desired, all spanning trees can be explicitly enumerated in O(NV) time using the above

computation tree. Kapoor and Ramesh [4, 5] gave an algorithm to generate the computation

tree of relative changes between spanning trees in O(N + V + E) time, which is optimal.

The case of directed graphs seems to be harder. Shinoda [8] gave an algorithm which could

take exponential time per spanning tree in the worst case. Gabow and Myers [2] gave an

algorithm which runs in O(NE + V + E) time. Kapoor and Ramesh [4] gave an algorithm to

generate the computation tree of relative changes between spanning trees in O(NV +V

3

) time.

The question that then remained open was whether this computation tree could be generated

in o(V) time per spanning tree.

We [3] answered the above question in the a�rmative by showing that the above compu-

tation tree can be generated using just O(logV) time per spanning tree. More precisely, we

gave an O(N log V +V

2

�(V; V) +VE) algorithm for generating the computation tree (�(V; V)

is the functional inverse of Ackermann's function). It is interesting to note that but for one

component in the algorithm, the rest of the algorithm runs in just O(�(V; V)) time per span-

ning tree. The \slow" component, which involves maintaining edges in a certain order, takes

O(logV) time per spanning tree. We believe that this order can be maintained more e�ciently

but have not been able to give an algorithm to do so. An interesting side-e�ect of our algorithm

is a procedure which, given vertex v of the graph, determines which edges occur in none of the

spanning trees rooted at v in O(V �(V; V) + E) time.

References

[1] S.M. Chase. Analysis for algorithms for �nding all spanning trees of a graph. Technical Report

RC3190, IBM T.J. Watson Research Center, 1970.

[2] H.N. Gabow and E. Myers. Finding all spanning trees of directed and undirected graphs. SIAM

Journal on Computing, 7, 1978.

51

The Algorithms and Complexity Group

[3] R. Hariharan, S. Kapoor, and V. Kumar. Algorithms for generating all spanning trees of directed�

graphs. Manuscript, 1994.

[4] S. Kapoor and H. Ramesh. Algorithms for generating all spanning trees of undirected, directed

and weighted graphs. In Workshop on Algorithms and Data Structures (WADS'91). LCNS 519,

Springer-Verlag, 1991.

[5] S. Kapoor and H. Ramesh. Algorithms for generating all spanning trees of undirected and weighted

graphs. SIAM Journal on Computing, 24, 1995.

[6] W. Mayeda. Graph Theory. John Wiley, NY, 1972.

[7] G.J. Minty. A simple algorithm for listing all trees of a graph. IEEE Transactions on Circuit Theory,

CT-12:120{128, 1965.

[8] S. Shinoda. Finding all possible directed trees of a directed graph. Electron Communication, Japan,

51-A:45{47, 1968.

[9] R.E. Tarjan and R.E. Read. Bounds on backtrack algorithms for listing cycles, paths and spanning

trees. Networks, 5:237{252, 1975.

3.3.8 Degree Sequence Problems

Investigators: Srinivasa Arikati and Anil Maheshwari

An important problem in graph algorithms is to compute a (simple) graph satisfying the given

degree constraints. An integer sequence d is called a degree sequence if there exists a graph G

such that the degrees of its vertices are equal to the components of the sequence d. The graph

G is said to be a realization of the sequence d.

Given an integer sequence d of length n, there are two problems of interest: the decision

problem is to test if d is realizable; the search problem is to compute a realization of d. A

characterization of degree sequences known as the Erd}os-Gallai inequalities [3] results in an

O(n)-time algorithm for the decision problem. Another characterization called the Havel-

Hakimi characterization [3] leads to an e�cient algorithm for the search problem and the

algorithm can be implemented in O(n log log n) time (see, e.g. [2]). Designing an O(n)-time

algorithm for the search problem has been open so far. We presented an O(n)-time algorithm

for computing a realization G of a given degree sequence [1]. Observe that G may have
(n

2

)

edges. Our algorithm computes an implicit representation of G and this representation needs

only O(n) space.

References

[1] S.R. Arikati and A. Maheshwari. An O(n) algorithm for realizing sequences. In Proceedings 14th�

Conference on Foundations of Software Technology and Computer Science (FSTTCS'94), pages

125{136. LNCS 880, Springer-Verlag, December 1994.

[2] T. Asano. Graphical degree sequence problems with connectivity requirements. In Proceedings 4th

International Symposium on Algorithms and Computation (ISAAC'93), pages 38{47. LNCS 762,

Springer-Verlag, December 1993.

[3] L. Lov�asz and M. Plummer. Matching Theory. Academic Press, Budapest, Hungary, 1986.

52

The Algorithms and Complexity Group

3.3.9 Random Walks on Graphs

Investigator: Greg Barnes

Consider a simple random walk on G, an undirected graph with n vertices and m edges. At each

time step, if the walk is at vertex v, it moves to a vertex chosen uniformly at random from the

neighbors of v. Random walks have been studied extensively, and have numerous applications in

theoretical computer science, including space-e�cient algorithms for undirected connectivity [4,

8], derandomization [1], recycling of random bits [12], approximation algorithms [9, 14], e�cient

constructions in cryptography [11], and self-stabilizing distributed computing [13].

Frequently (see, for example, Karger et al. [16] and Nisan et al. [17]), we are interested in

E[T (N)], the expected time before a simple random walk on an undirected connected graph, G,

visits its N

th

distinct vertex, N � n. The corresponding question for edges is also interesting,

and arises in the work of Broder et al. [8]: how large is E[T (M)], the expected time before

a simple random walk on an undirected connected graph, G, traverses its M

th

distinct edge,

M� m? In [6], we gave upper bounds on E[T (N)] and E[T (M)] for arbitrary graphs. While

a great deal was previously known about how quickly a random walk covers the entire graph

(see, for example, [2, 4, 7, 15, 18]), little was known about the behavior of a random walk before

the vertices are covered. These bounds help �ll the gaps in our knowledge of random walks,

giving a picture of the rate at which a random walk explores a �nite or an in�nite graph.

Aleliunas et al. [4] showed that the expected time to visit all vertices of an arbitrary graph

(called the cover time) is O(mn) � O(n

3

). Using this bound, Linial derived a bound for general

N of E[T (N)] = O(N

4

) [16, Lemma 4.1]. Linial [personal communication] conjectured that

the cover time bound generalizes to all N , that is, 8N � n;E[T (N)] = O(N

3

). We proved

Linial's conjecture.

Theorem 1 For any connected graph on n vertices, and for any N � n, E[T (N)] = O(N

3

):

Zuckerman [18] proved an upper bound of O(mn) on the time to traverse all edges in a general

graph. We are unaware of any previous nontrivial bounds for M < m. We proved:

Theorem 2 For any connected graph with m edges, and for anyM� m, E[T (M)] = O(M

2

):

Theorem 2 holds even if G is not a simple graph (i.e., if we allow self-loops and parallel edges).

Let E[T (M;N)] be the expected time for a simple random walk to either traverse M distinct

edges or visit N distinct vertices (whichever comes �rst). Then the following theorem implies

both the above theorems, by considering E[T (N

2

;N)] and E[T (M;M)], respectively.

Theorem 3 For any connected graph with m edges and n vertices, and for any M and N

such that M� m or N � n, E[T (M;N)] = O(MN):

In the above three theorems, the graph G need not be �nite. If G is a graph with in�nitely

many vertices (each vertex of �nite degree), then we can consider only the �nite portion of G

that is within distance N (or M) from the starting vertex of the random walk, and the proofs

remain unchanged. For �nite graphs, the following theorem serves to complete the picture of

the rate at which vertices (or edges) are discovered. It provides better bounds than Theorems 1

and 2 when the number of vertices to be discovered is larger than

p

m or the number of edges

to be discovered is larger than n.

Theorem 4 For any simple connected graph on n vertices and m edges, for any N � n,

E[T (N)] = O(mN); and for any M� m, E[T (M)] = O(nM):

53

The Algorithms and Complexity Group

Our theorems are the best possible in the sense that there exist graphs for which the bounds

are tight up to constant factors (e.g., the n-cycle for Theorem 2). However, these bounds can

be re�ned if additional information regarding the structure of G is given. The work of Kahn

et al. [15] indicates that d

min

, the minimum degree of the vertices in the graph G, is a useful

parameter to consider. They showed that the expected cover time of any connected graph is

O(mn=d

min

), implying a cover time of O(n

2

) for regular graphs. This inverse dependency on

d

min

applies also to short random walks. Preliminary results in this direction (tight up to a

logarithmic factor) were presented in [5]. The super
uous logarithmic factor in these results

was subsequently removed by Feige [10], building upon proof techniques that were developed

by Aldous [3]. Aldous is writing a textbook giving a systematic account of random walks on

graphs and reversible Markov chains. The current draft [3] contains results similar to ours in

the regular graph setting.

While the short term behavior of random walks is worth studying in its own right, short

random walks also have immediate applications in many areas of computer science. Our results,

of course, cannot be applied to all such areas. For example, much stronger results are already

known about the properties of short random walks on the special class of graphs known as

expanders (see, for example, Ajtai et al. [1], and Jerrum and Sinclair [14]). One might hope our

results would dramatically improve the algorithms of Karger et al. [16] and Nisan et al. [17] for

undirected connectivity. As mentioned above, both require an estimate of E[T (N)] (and both

used the estimate E[T (N)] = O(N

4

)). Unfortunately, substituting our bound only improves

the constants for the algorithms, since the running times of both depend on the logarithm of

E[T (N)], not E[T (N)].

Our results may yield signi�cant improvements for other randomized algorithms. In par-

ticular, consider randomized time-space tradeo�s for undirected S-T connectivity (ustcon),

as studied by Broder et al. [8]. One key property of Broder et al.'s algorithm is that a short

random walk from a given edge traverses many edges. Improved bounds on E[T (M)], then,

would seem to provide an improvement to their tradeo�. Partial results in this direction were

presented in [5], and further improvements are presented by Feige [10].

References

[1] M. Ajtai, J. Koml�os, and E. Szemer�edi. Deterministic simulation in LOGSPACE. In Proceedings

19th ACM Symposium on Theory of Computing (STOC'87), pages 132{140, May 1987.

[2] D.J. Aldous. Lower bounds for covering times for reversible Markov chains and random walks on

graphs. Journal of Theoretical Probability, 2(1):91{100, 1989.

[3] D.J. Aldous. Reversible Markov chains and random walks on graphs. Draft, 1993.

[4] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz, and C. Racko�. Random walks, universal traversal

sequences, and the complexity of maze problems. In Proceedings 20th Symposium on Foundations

of Computer Science (FOCS'79), pages 218{223, October 1979.

[5] G. Barnes and U. Feige. Short random walks on graphs. In Proceedings 25th ACM Symposium on�

Theory of Computing (STOC'93), pages 728{737, May 1993.

[6] G. Barnes and U. Feige. Short random walks on graphs. Technical Report MPI-I-94-121, Max-�

Planck-Institut f�ur Informatik, 66123 Saarbr�ucken, Germany, April 1994.

[7] A.Z. Broder and A.R. Karlin. Bounds on the cover time. Journal of Theoretical Probability,

2(1):101{120, 1989.

54

The Algorithms and Complexity Group

[8] A.Z. Broder, A.R. Karlin, P. Raghavan, and E. Upfal. Trading space for time in undirected s-t

connectivity. In Proceedings 21th ACM Symposium on Theory of Computing (STOC'89), pages

543{549, May 1989.

[9] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for approximating the

volume of convex bodies. In Proceedings 21 ACM Symposium on Theory of Computing (STOC'89),

pages 375{381, May 1989.

[10] U. Feige. A randomized time-space tradeo� of

~

O(m

^

R) for USTCON. In Proceedings 34th Sympo-

sium on Foundations of Computer Science (FOCS'93), pages 238{246, November 1993.

[11] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman. Security preserving

ampli�cation of hardness. In Proceedings 31st Symposium on Foundations of Computer Science

(FOCS'90), pages 318{326, October 1990.

[12] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings 30th Symposium

on Foundations of Computer Science (FOCS'89), pages 248{253, October 1989.

[13] A. Israeli and M. Jalfon. Token management schemes and random walks yield self-stabilizing

mutual exclusion. In Proceedings 9th ACM Symposium on Principles of Distributed Computing

(PODC'90), pages 119{131, 1990.

[14] M. Jerrum and A. Sinclair. Conductance and the rapid mixing property for Markov chains: The

approximation of the permanent resolved. In Proceedings 20th ACM Symposium on Theory of

Computing (STOC'88), pages 235{244, May 1988.

[15] J.D. Kahn, N. Linial, N. Nisan, and M.E. Saks. On the cover time of random walks on graphs.

Journal of Theoretical Probability, 2(1):121{128, 1989.

[16] D.R. Karger, N. Nisan, and M. Parnas. Fast connected components algorithms for the EREW

PRAM. In Proceedings ACM Symposium on Parallel Algorithms and Architectures (SPAA'92),

pages 373{381, June 1992.

[17] N. Nisan, E. Szemer�edi, and A. Wigderson. Undirected connectivity in O(log

1:5

n) space. In Pro-

ceedings 33rd Symposium on Foundations of Computer Science (FOCS'92), pages 24{29, October

1992.

[18] D.I. Zuckerman. On the time to traverse all edges of a graph. Information Processing Letters,

38(6):335{337, 1991.

3.3.10 Algorithms for Sparse Graphs and Networks

Investigators: Srinivasa Arikati, Shiva Chaudhuri, Torben Hagerup, Anil Maheshwari and

Christos Zaroliagis

Many of the graphs or networks used in various applications have a particular sparse structure.

Roughly speaking, this means that the graph or the network has a number of edges propor-

tional to the number of vertices. Typical examples of sparse graphs, which are widely used

in algorithms design, include trees, outerplanar graphs, series-parallel graphs, planar graphs,

graphs of small genus and graphs of bounded treewidth.

Recently, a major part of our work has focussed on the e�cient solution of combinatorial

problems on sparse graphs and networks. More precisely, we have concentrated our e�ort on

two important subclasses: (i) on the well-known class of planar graphs; and (ii) on the class

of graphs having bounded treewidth. The precise de�nition of this latter class is technical and

omitted here, but the important intuition is that graphs of small treewidth resemble trees in

55

The Algorithms and Complexity Group

many ways (although not necessarily from a super�cial inspection). The challenge therefore

with the above classes is to exploit the planarity or the tree-like structure of the graph in a

computational context, in order to obtain algorithms which are more e�cient than the ones for

general graphs (in both cases), or that are (almost) as e�cient as the corresponding algorithms

for trees (in the case of graphs with bounded treewidth). We have shown how to do this for

some fundamental problems, including (among others) shortest paths and maximum
ow. (The

results for the latter problem are discussed in subsection 3.1.2.)

Shortest Paths

Finding shortest paths in directed graphs (digraphs) is perhaps the most fundamental (and

de�nitely the simplest) problem in network optimization. Given an n-vertex, m-edge digraph

G with real edge weights, the shortest paths problem asks for �nding paths of minimum weight

between vertices in G. There are two main versions of the problem. In the single-source or

shortest path tree problem, we seek for shortest paths from a speci�c vertex to all other vertices

in G. In the all-pairs shortest paths (apsp) problem, we seek for shortest paths between every

pair of vertices in G. Due to its fundamental importance and wide applicability (see e.g. [1]

for an extensive list of applications), both versions of the shortest paths problem have been

extensively studied.

An apsp algorithm which outputs apsp information in the standard form (i.e., either in a

table, or as n shortest path trees), requires
(n

2

) time and space. A more e�cient approach

(which avoids this lower bound) is to preprocess the digraph so that subsequently, queries can

be e�ciently answered. A query speci�es two vertices and a shortest path query asks for a

minimum weight path between them, while a distance query only asks for the weight of such

a path. Moreover, it is important that the data structures, created during preprocessing, can

be updated e�ciently (without recomputing everything from scratch) to re
ect any change in

edge weights. We refer to this problem as the dynamic shortest paths problem.

Our group has worked towards more e�cient solutions of the apsp problem and its dy-

namic version. More precisely, we have considered two important subclasses of sparse digraphs,

namely planar digraphs and digraphs of bounded treewidth.

The best previous result for the dynamic shortest paths problem in planar digraphs was

due to Feuerstein and Spaccamela [7]. Their algorithm makes an O(n logn) preprocessing of

the input digraph G and then answers a distance or a shortest path query in O(n) time. The

data structures set up during the preprocessing can be updated in O(log

3

n) time, after the

modi�cation of an edge weight. Based on the hammock decomposition technique (see subsection

3.1.2) which decomposes a planar digraph into ~
 outerplanar graphs called hammocks (1 � ~
 <

n), as well as on other techniques, we have given an algorithm for the dynamic shortest path

problem [5]. A distance query is answered in O(logn+ ~
) time and a shortest path one in O(L)

additional time (where L is the number of edges in the required path), after an O(n+ ~
 log ~
)

preprocessing of G. We can update the data structures set up during the preprocessing in

O(logn + log

3

~
) time. Note that our algorithm performs very well when ~
 = o(n) (i.e., in all

cases where G has nice topological properties). In the case where G is outerplanar (~
 = 1),

the distance query and update time are logarithmic, and the preprocessing time is linear. Our

data structures can also answer shortest path tree queries e�ciently and our results can be

extended to hold in digraphs with genus o(n).

When the preprocessing for the apsp problem is restricted to be O(n), e�cient algorithms

were known only for outerplanar digraphs [8] and graphs of treewidth 2 [3]; they answered

56

The Algorithms and Complexity Group

distance queries in O(�(n))

1

and O(logn) time respectively. We have very recently [4] given

algorithms for the apsp problem that depend on the treewidth of the input digraph. When the

treewidth is a constant, our algorithms can answer distance queries in O(�(n)) time after O(n)

preprocessing. This improves upon the previous results since the class of constant treewidth

graphs includes both the above classes of graphs. In the same paper [4], we also gave an

algorithm for the dynamic shortest path problem for the class of digraphs of constant treewidth.

A distance query is answered in O(�(n)) time after O(n) preprocessing. The algorithm updates

the data structures, after a change in an edge weight, in time O(n

�

), for any arbitrarily small

constant 0 < � < 1. (Shortest path queries are answered in time proportional to the number

of the edges of the path.)

If the input digraph G has negative edge weights, then some of the shortest paths may

not be de�ned due to cycles of negative weight [1], called negative cycles. The negative cycle

problem is therefore fundamental to �nding shortest paths in G. The problem is closely related

to �nding a shortest path tree, since most algorithms either construct a shortest path tree

rooted at a given vertex, or �nd a negative cycle. But constructing a shortest path tree is

often easier when the digraph has non-negative edge weights. In this latter case, the best

algorithm for general digraphs takes O(m + n logn) time [9] to construct the shortest path

tree. If the digraph has negative real edge weights, then one needs O(nm) time to either

construct a shortest path tree, or �nd a negative weight cycle (Bellman-Ford method [1]). The

same happens in the case of planar digraphs. There is an O(n) time algorithm for constructing

a shortest path tree in a digraph with non-negative real edge weights [12], while a shortest path

tree or a negative cycle can be found in O(n

1:5

logn) time if the digraph has both positive and

negative real edge weights [13].

We have worked towards closing the gap between the complexity of computing a shortest

path tree in a digraph with non-negative real edge weights, and that of �nding a negative cycle

in a digraph with both positive and negative real edge weights. For the case of planar digraphs,

we gave in [11] an algorithm which �nds a negative cycle in O(n+ ~

1:5

log ~
) time and is based

on the previously mentioned decomposition of the input planar digraph into ~
 outerplanar

graphs, called hammocks. (In the case that there is no negative cycle, the algorithm can be

easily modi�ed to output the shortest path tree as well.) For the case of digraphs with constant

treewidth, we have very recently given [4] an O(n) time algorithm for either constructing a

shortest path tree or �nding a negative cycle. To the best of our knowledge, this is the most

general class of graphs for which the complexity of computing a shortest path tree matches

that of �nding a negative cycle.

We plan to work more along the above directions, especially on �nding faster solutions for

the dynamic shortest paths problem in planar digraphs.

Compact Representation of Sparse Graphs

A fundamental data structuring question in the design of e�cient algorithms, is how to rep-

resent a graph in memory using as little space as possible, so that given any two vertices we

can test if they are adjacent in O(1) time [10, 15]. The well-known adjacency matrix rep-

resentation permits adjacency queries in O(1) time, but it requires �(n

2

) space even for the

case when the input graph is sparse (i.e., it has a linear number of edges). Another charac-

terization of sparse graphs is given by the arboricity. The arboricity of a graph G is de�ned

as max

H

fm

H

=(n

H

� 1)g, where H is an n

H

-vertex, m

H

-edge subgraph of G. (For example,

planar graphs have arboricity 3.) Now sparse graphs are the graphs of bounded arboricity. It

1

�(n) is the inverse of Ackermann's function and is a very slowly growing function.

57

The Algorithms and Complexity Group

follows by a theorem of Nash-Williams [10], that a graph with arboricity c can be compactly

represented in memory using only (c+ 1)n space. In such a case, G is said to have an optimal

compact or implicit representation. The known algorithms for obtaining an optimal implicit

representation of a sparse graph ran in O(n

4

) time and were based on involved techniques such

as Edmonds' results on matroid partitioning [6]. Also, the results of Schnyder [14], imply an

O(n) time algorithm for the optimal implicit representation of planar graphs.

We achieved the goal of computing an optimal implicit representation of a sparse graph,

by giving a very simple and optimal O(n) time algorithm for this problem [2]. Furthermore,

since computing the exact value of the arboricity seems to be hard [15], we have given an

e�cient algorithm for computing a 2-approximate value for arboricity. Surprisingly enough,

we have also shown [2] that using this approximate value, we can still obtain an optimal implicit

representation of a sparse graph.

We plan to continue work in this direction. In particular, we would like to investigate the

case where the input graph may change dynamically.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice-Hall, 1993.

[2] S. Arikati, A. Maheshwari, and C. Zaroliagis. Saving bits made easy. In Proceedings 6th Canadian�

Conference on Computational Geometry (CCCG'94), pages 140{146, August 1994. Also Technical

Report MPI-I-94-148, Max-Planck-Institut f�ur Informatik, 1994.

[3] H. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In Proceedings 19th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG'93), pages 112{124. LNCS 790,

Springer-Verlag, 1994.

[4] S. Chaudhuri and C. Zaroliagis. Shortest path queries in digraphs of small treewidth. In�

Proc. 22nd Int'l Colloquium on Automata, Languages and Programming (ICALP'95), to appear.

LNCS, Springer-Verlag, 1995.

[5] H. Djidjev, G. Pantziou, and C. Zaroliagis. On-line and dynamic algorithms for shortest path�

problems. In Proc. 12th Symp. on Theoretical Aspects of Computer Science (STACS' 95), to

appear. LNCS, Springer-Verlag, 1995. Also Tech. Rep. MPI-I-94-114, 1994.

[6] J. Edmonds. Minimum partition of a matroid into independent sets. Research of the NBS, 69B:67{

72, 1965.

[7] E. Feuerstein and A.M. Spaccamela. Dynamic algorithms for shortest paths in planar graphs.

Theoretical Computer Science, 116:359{371, 1993.

[8] G. Frederickson. Using cellular graph embeddings in solving all pairs shortest path problems.

accepted in Journal of Algorithms, 1994.

[9] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network optimization

algorithms. Journal of the ACM, 34:596{615, 1987.

[10] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In Proceedings 20th ACM

Symposium on Theory of Computing (STOC'88), pages 334{343, May 1988.

[11] D. Kavvadias, G. Pantziou, P. Spirakis, and C. Zaroliagis. E�cient sequential and parallel algo-�

rithms for the negative cycle problem. In Proceedings 5th International Symposium on Algorithms

and Computation (ISAAC'94), pages 270{278. LNCS 834, Springer-Verlag, August 1994.

58

The Algorithms and Complexity Group

[12] P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar

graphs. In Proceedings 26th ACM Symposium on Theory of Computing (STOC'94), pages 27{37,

May 1994.

[13] K. Mehlhorn and B. Schmidt. A single source shortest path algorithm for graphs with separators. In

Proceedings Fundamentals of Computation Theory (FCT'83), pages 302{309. LNCS 158, Springer-

Verlag, 1983.

[14] W. Schnyder. Embedding planar graphs on the grid. In Proceedings 1st ACM-SIAM Symposium

on Discrete Algorithms (SODA'90), January 1990.

[15] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, Volume A, chapter 10, pages 525{631. Elsevier, 1990.

3.3.11 Approximation Algorithms for NP-hard Problems

Investigators: Naveen Garg, Ramesh Hariharan and Sanjeev Mahajan

Since most real world combinatorial optimization problems are NP-hard and it is unlikely that

they could be solvable in polynomial time, researchers in the past have attempted to �nd

polynomial time algorithms that guarantee a solution with value that is within a multiplicative

factor of � of the value of the optimal solution. The factor � is variously referred to as the

performance guarantee or the approximation bound of the algorithm and an algorithm with

performance guarantee � is called an �-approximation algorithm.

One approach to NP-hard problems involving cuts in graphs has been to de�ne a multi-

commodity
ow problem such that the maximum
ow is a good lower bound on the value of

the minimum cut. A fundamental problem in this setting is regarding the feasibility of
ow {

Given a multicommodity
ow problem, in which each commodity has an associated demand

(the amount of that commodity which we wish to ship), one often needs to know if there is a

feasible
ow, i.e., a
ow that satis�es the demands and obeys the capacity constraints. For a

feasible
ow to exist it is necessary that the capacity of any cut exceed the sum of the demands

that are separated by the cut. A natural question to ask is how large a \safety margin" is

needed, i.e., by what factor should the capacity of a cut exceed the total demand separated by

the cut, in order to ensure existence of a feasible
ow.

The optimization version of the feasibility problem for multicommodity
ow is to �nd the

maximum f such that a fraction f of each demand can be routed concurrently. The fraction

f is called the maximum concurrent
ow; the problem is feasible if f � 1. De�ne the sparsest

cut to be the cut that minimizes the ratio of the total capacity of the cut to the sum of the

demands separated by the cut. It is easy to see that f cannot exceed the sparsest cut ratio

and in [5] it was proved that f is at least as large as the sparsest cut ratio times
(

1

logk

).

This approximate min-max relation implies that an O(log k) safety margin is su�cient for

ow routability. The proof of this theorem also yields a randomised O(log k)-approximation

algorithm for the sparsest cut in the graph (computing the sparsest cut is NP-hard). In [2] we

provided an alternate proof of this fact. Our proof is conceptually similar to that of [5] but has

the advantage that it yields a deterministic O(log k)-approximation algorithm for the sparsest

cut in a graph.

Leighton and Rao [4] showed how an �-approximation algorithm for the sparsest cut can be

used to obtain a separator of weight at most O(� logn) times the weight of the best bisection.

These ideas combined with the algorithms in [1] produce polylogarithmic approximations for

a host of VLSI related problems.

59

The Algorithms and Complexity Group

Another approach to NP-hard problems involves semide�nite programming. In [3], Goe-

mans and Williamson use semide�nite programming to design randomized algorithms in order

to give approximation algorithms for NP-hard problems such as Max-Cut, Max-Dicut and

Max-SAT. These algorithms achieve the best known approximation ratios. They then give a

general method of derandomizing these algorithms. In [6], we �rst point out a
aw in their

derandomization scheme and then show how to correctly derandomize their randomized algo-

rithms.

References

[1] S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph layout problems. Journal of

Computer and System Sciences, 28(2):300{343, 1984.

[2] N. Garg. A deterministic O(logk)-approximation algorithm for the sparsest cut. Manuscript, 1995.�

[3] M. Goemans and D. Williamson. 0.878 approximation algorithms for max cut and max sat. In

Proc. 26th ACM Symposium on Theory of Computing (STOC'94), pages 422{431, May 1994.

[4] F.T. Leighton and S. Rao. An approximate max-
ow min-cut theorem for uniform multicommodity

ow problems with application to approximation algorithms. In Proceedings 29th IEEE Symposium

on Foundations of Computer Science (FOCS'88), pages 422{431, 1988.

[5] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic

applications. In Proceedings 35th IEEE Symposium on Foundations of Computer Science (FOCS'94),

pages 577{591, 1994.

[6] S. Mahajan and R. Hariharan. Correctly derandomizing the 0.878 approximation algorithm for max�

cut. Manuscript, 1995.

3.3.12 Computation of Exact Ground States of Ising Spin Glasses

Investigator: Petra Mutzel

The computation of exact ground states of Ising spin glasses is one of the challenging problems

in Statistical Physics. The problem for the 2-dimensional standard spin glass model with

periodic boundary conditions and zero magnetic �eld can be formulated as a max-cut problem

on toroidal grid graphs. The magnetic �eld can be modeled as a supernode added to the

toroidal grid graph, where the supernode is adjacent to all the grid nodes [3]. When there is

no external magnetic �eld and all nearest neighbor interactions are +J or �J , the problem

is solvable in polynomial time [1]. If we have general (e.g. normally distributed) interactions

and no �eld, the complexity status is open. The problem gets NP-hard as soon as a non-zero

magnetic �eld occurs [1]. We focused our research on two di�erent approaches.

One idea was to try to extend the combinatorial max-cut algorithm on planar graphs to

toroidal grid graphs. For a planar graph G, a maximum cut can be found by solving a minimum-

weight perfect matching problem in a special graph constructed from G [10, 11]. The max-cut

problem on toroidal graphs can be transformed into a similar minimum matching problem

with side constraints. These side-constraints are certain evenness conditions on the rows and

columns of the grid and can be tested easily.

Unfortunately, we have not yet succeeded in solving this restricted matching problem. Since

the interest in computing the exact ground states is only statistical, we proposed to solve the

unrestricted minimum-weight perfect matching problem. If the evenness conditions are satis�ed

(this can be checked easily in O(k+l) time for a k�l grid), the maximum cut is found. Otherwise

a di�erent instance is generated.

60

The Algorithms and Complexity Group

Our experimental results con�rm our conjecture that about one quarter of all runs are

successful for instances with normally distributed nearest neighbor interactions, and that this

sample is statistically meaningful [7].

Our second approach was to use a branch and cut algorithm in order to compute exact

ground states of Ising spin glasses with and without a magnetic �eld. The facial structure

of the polyhedra associated with all cuts of a given complete graph has already been studied

by many researchers [8, 5]. However, there are only a few papers investigating the polyhedral

structure for general graphs [4].

We investigated the facial structure of the polytope associated with all cuts occurring in

the toroidal grid graph G

k�l

. In addition to the trivial inequalities and the cycle inequalities,

special subdivisions of K

5

are facet-de�ning inequalities for the associated cut polyhedra. These

subdivisions of K

5

which are obtained by using the node-splitting operation given in [4] are

embeddable on G

k�l

and can be zero-lifted to yield facets for the cut polytope associated with

the toroidal grid graph G

k�l

.

Using the branch and cut paradigm is, up to now, the only way to compute exact ground

states of 2-dimensional spin glasses of reasonable sizes. Previous branch and cut algorithms

have been able to solve 2-dimensional spin glass instances with periodic boundary conditions

and general (normally distributed) interactions for instances of sizes up to 30� 30 [9], and one

35� 35 instance [2].

In our newest computational experiments we have been able to solve instances with and

without magnetic �eld of sizes up to 100� 100 in a reasonable amount of time [6].

References

[1] F. Barahona. On the computational complexity of ising spin glass models. Journal of Physics A:

Mathematical Gen., 36:3241{3253, 1982.

[2] F. Barahona. Ground-state magnetization of Ising spin glasses. Physical Review B, 49:12864, 1994.

[3] F. Barahona, M. Gr�otschel, M. J�unger, and G. Reinelt. An application of combinatorial optimiza-

tion to statistical physics and circuit layout design. Operations Research, 36:493{513, 1988.

[4] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Programming, 36:157{173,

1986.

[5] C. De Simone. The Max Cut Problem. PhD thesis, Rutgers University, 1991.

[6] C. De Simone, M. Diehl, M. J�unger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground states�

of Ising spin glasses: New experimental results with a branch and cut algorithm. to appear in the

Journal of Statistical Physics, 1995.

[7] C. De Simone, M. J�unger, P. Mutzel, and G. Rinaldi. An approach to a combinatorial algorithm�

for max cut on toroidal grid graphs. Extended Abstract, 1994.

[8] M. Deza and M. Laurent. Facets for the cut cone I/II. Mathematical Programming, 56:121{160,

161{181, 1992.

[9] M. Gr�otschel, M. J�unger, and G. Reinelt. Calculating exact ground states of spin glasses: A poly-

hedral approach. In J.L. van Hemmen and J. Morgenstern, editors, Proceedings of the Heidelberg

Colloquium on Glassy Dynamics, Lecture Notes in Physics 275, pages 325{353. Springer-Verlag,

1987.

[10] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on

Computing, 4:221{225, 1975.

61

The Algorithms and Complexity Group

[11] G.I. Orlova and Y.G. Dorfman. Finding the maximal cut in a graph. Engrg. Cybernetics, 10:502{

506, 1972.

3.4 Complexity Theory

3.4.1 Directed s-t Connectivity

Investigator: Greg Barnes

The s-t connectivity problem is a fundamental one in computational complexity theory [17].

The s-t connectivity problem for directed graphs (stcon) is the prototypical complete prob-

lem for nondeterministic logarithmic space [14]. Both stcon and the corresponding problem

for undirected graphs, ustcon, are DLOG-hard | any problem solvable deterministically in

logarithmic space can be reduced to either problem [11, 14]. Understanding the complexity

of s-t connectivity is, therefore, a key to understanding the relationship between determinis-

tic and nondeterministic space bounded complexity classes. For example, showing that there

is no deterministic logarithmic space algorithm for directed connectivity would separate the

classes DSPACE(logn) and NSPACE(logn), while devising such an algorithm would prove that

DSPACE(f(n)) = NSPACE(f(n)) for any constructible f(n) =
(log(n)) [14]. Unfortunately,

determining the complexity of stcon remains a di�cult open problem. A fruitful intermediate

step is to explore time-space tradeo�s for stcon; that is, the simultaneous time and space

requirements of algorithms for directed connectivity.

Proving lower bounds on the time or space requirements of stcon for a general model of

computation, such as a Turing machine, is beyond the reach of current techniques. Thus, it is

natural to consider a structured model [5] whose basic operations are based on the structure of

the graph, as opposed to being based on the bits in the graph's encoding. A natural structured

model for the problem of s-t connectivity is the \jumping automaton for graphs", or JAG,

introduced by Cook and Racko� [8]. A JAG moves a set of pebbles on the graph. There are two

basic operations | moving a pebble along a directed edge in the graph, and jumping a pebble

from its current location to the vertex occupied by another pebble. Although the JAG model

is structured, it is not weak. In particular, it is general enough that most known deterministic

algorithms for graph connectivity can be implemented on it. Poon [12] introduced the more

powerful node-named JAG (NNJAG), an extension of the JAG model where the computation

is allowed to depend on the names of the nodes on which the pebbles are located.

Cook and Racko� [8] proved a lower bound of

�

log

2

n= log log n

�

on the space required

for a JAG to compute directed s-t connectivity (stcon). Berman and Simon [4] extended

this result to randomized JAGs, and Poon [12] extended it to a probabilistic version of the

NNJAG. Tompa [16] showed lower bounds on the product of the time and space needed when

using certain natural approaches to solve stcon. Many time-space lower bounds have been

proved for undirected s-t connectivity on various weak versions of the JAG model [3, 7, 8].

Edmonds was the �rst to prove a time-space lower bound for ustcon on the unrestricted JAG

model [9].

The standard algorithms for s-t connectivity, breadth- and depth-�rst search, run in optimal

time �(m+n) and use �(n logn) space. At the other extreme, Savitch's Theorem [14] provides

a small space (�(log

2

n)) algorithm that requires time exponential in its space bound (i.e.,

time n

�(logn)

). Barnes et al. [1] showed the �rst sublinear space, polynomial time algorithm

for stcon. All of these algorithms can be implemented on the standard JAG [8, 13]. Using

the NNJAG's ability to access the names of the nodes in the graph, Poon [12] showed how

to implement Immerman's and Szelepcs�enyi's nondeterministic O(logn)-space algorithm for

62

The Algorithms and Complexity Group

directed s-t nonconnectivity [10, 15] on a nondeterministic NNJAG. It is not clear that this

algorithm can be implemented on a standard nondeterministic JAG.

In [2], we could prove lower bounds of ST =
(n

2

= logn) and S

1=2

T =
(mn

1=2

) for stcon

on the JAG model, and of S

1=3

T =
(m

2=3

n

2=3

) on the more powerful Node-Named JAG

model, where S is the space and T the time used by the JAG, This last bound is proved on

probabilistic NNJAGs by transforming the machine into a structured branching program, and

following the framework introduced by Borodin et al. [6]. These lower bounds approach the

known upper bound of T = O(m) when S = �(n logn), and are the �rst time-space tradeo�

on JAGs with an unrestricted number of jumping pebbles.

References

[1] G. Barnes, J.F. Buss, W.L. Ruzzo, and B. Schieber. A sublinear space, polynomial time algorithm�

for directed s-t connectivity. In Proceedings 7th Structure in Complexity Theory, pages 27{33, June

1992. Submitted for publication.

[2] G. Barnes and J.A. Edmonds. Time-space lower bounds for directed s-t connectivity on JAG�

models. Technical Report MPI-I-94-119, Max-Planck-Institut f�ur Informatik, 66123 Saarbr�ucken,

Germany, April 1994.

[3] P.W. Beame, A. Borodin, P. Raghavan, W.L. Ruzzo, and M. Tompa. Time-space tradeo�s for

undirected graph connectivity. In Proceedings 31st Symposium on Foundations of Computer Science

(FOCS'90), pages 429{438, October 1990. Full version: University of Washington Department of

Computer Science and Engineering Technical Report 93-02-01, 44 pages; submitted for publication.

[4] P. Berman and J. Simon. Lower bounds on graph threading by probabilistic machines. In Proceed-

ings 24th Symposium on Foundations of Computer Science (FOCS'83), pages 304{311, November

1983.

[5] A. Borodin. Structured vs. general models in computational complexity. L'Enseignement

Math�ematique, XXVIII(3-4):171{190, 1982.

[6] A. Borodin, M.J. Fischer, D.G. Kirkpatrick, N.A. Lynch, and M. Tompa. A time-space tradeo�

for sorting on non-oblivious machines. Journal of Computer and System Sciences, 22(3):351{364,

1981.

[7] A. Borodin, W.L. Ruzzo, and M. Tompa. Lower bounds on the length of universal traversal

sequences. Journal of Computer and System Sciences, 45(2):180{203, 1992.

[8] S.A. Cook and C.W. Racko�. Space lower bounds for maze threadability on restricted machines.

SIAM Journal on Computing, 9(3):636{652, 1980.

[9] J.A. Edmonds. Time-space trade-o�s for undirected ST -connectivity on a JAG. In Proceedings

25th ACM Symposium on Theory of Computing (STOC'93), pages 718{727, May 1993.

[10] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Com-

puting, 17(5):935{938, 1988.

[11] H.R. Lewis and C.H. Papadimitriou. Symmetric space-bounded computation. Theoretical Com-

puter Science, 19(2):161{187, 1982.

[12] C.K. Poon. Space bounds for graph connectivity problems on node-named JAGs and node-oriented

JAGs. In Proceedings 34th Symposium on Foundations of Computer Science (FOCS'93), November

1993.

63

The Algorithms and Complexity Group

[13] C.K. Poon. A sublinear space, polynomial time algorithm for directed st-connectivity on the JAG

model. Manuscript, 1993.

[14] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal

of Computer and System Sciences, 4(2):177{192, 1970.

[15] R. Szelepcs�enyi. The method of forcing for nondeterministic automata. Acta Informatica, 26:279{

284, 1988.

[16] M. Tompa. Two familiar transitive closure algorithms which admit no polynomial time, sublinear

space implementations. SIAM Journal on Computing, 11(1):130{137, 1982.

[17] A. Wigderson. The complexity of graph connectivity. In Proceedings 17th Symposium on Mathe-

matical Foundations of Computer Science (MFCS'92), pages 112{132. LNCS 629, Springer-Verlag,

1992.

3.4.2 The Additive Fragment of Linear Logic and NC

1

Investigator: Phil Bradford

Since Girard's introduction of linear logic in 1987, there have been a number of papers about the

computational complexity of derivability in fragments of linear logic. Lincoln et al. [6] showed

that provability in the multiplicative-additive fragment of linear logic is Pspace-complete.

In [1] we have shown that derivability in the additive fragment of linear logic is NC

1

-complete

under D-logtime (hence AC

0

) reductions. From here on, \NC

1

" always means D-logtime

uniform NC

1

or equivalently log-time bounded alternating Turing machines; see [7]. Our work

builds on Buss's result that the Boolean sentence value problem is NC

1

-complete.

Our result may be interpreted in a number of ways, since it connects two di�erent enter-

prises. In the literature on the complexity of fragments of linear logic, our results can be seen

in contrast with Kanovich's results showing the multiplicative fragment of linear logic is NP-

complete [5]. Further, Lincoln et al. showed that the additive and multiplicative fragments

together capture Pspace.

Our work shows how the additive fragment of linear logic embodies the notion of alternation

in both NC and Pspace. (That is, the additive fragment of linear logic embodies a classical

notion of parallelism.) In fact, the connection is more pervasive than just the results of this

paper. Consider Lincoln et al.'s proof that the multiplicative-additive fragment is Pspace-

complete [6]. The proof actually shows that the degree of alternation of the additive connectives

corresponds to the levels of the polynomial hierarchy.

The class NC

1

includes problems with fast parallel solutions. It is in Ptime, and many

interesting problems have been shown to be in NC

1

, including parsing context-free grammars,

multiplication, and sorting [4, 8]. Buss [2, 3] and Buss et al. [4] showed that the Boolean

sentence value problem is NC

1

-complete. In the roughest terms, these papers provided an

algorithm for the Boolean sentence value problem which uses a polynomial number of indepen-

dent processors, each doing a very small (logarithmic) amount of work. Therefore these results

show that a simple and eminently important logical question, that of evaluating Boolean sen-

tences, is in NC

1

. Our work may be regarded as an application of Buss's techniques to proof

theory: we show that the derivability problem for sequents in the additive fragment of linear

logic is also NC

1

-complete. To do this, we generalize Buss's pebbling games from single trees

to pairs of trees. We hope that our generalization of these pebbling games suggests other

extensions of the game-theoretic perspective.

64

The Algorithms and Complexity Group

References

[1] Phillip G. Braford, Jean-Yves Marion, and Lawrence S. Moss. The additive fragment of linear logic�

is NC

1

-complete. In To appear in the Proceedings of the International Conference in Logic and

Computational Complexity, 1995.

[2] S. R. Buss. The boolean formula value problem is in ALOGTIME. In Symposium on the Theory of

Computing (STOC), pages 123{131, 1987.

[3] S. R. Buss. Algorithms for boolean formula evaluation and for tree contraction. In P. Clote and

J. Krajicek, editors, Arithmetic, Proof Theory, and Computational Complexity, pages 96{115. Ox-

ford Logic Guides, 1993.

[4] S. R. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula

evaluation. SIAM J. on Comp., 21:755{780, 1992.

[5] M. I. Kanovich. Horn programming in linear logic is NP-complete. In 7

th

Logic in Computer

Science Conference (LICS), pages 200{210, 1992.

[6] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional linear logic.

Annals Pure Appl. Logic, 56:239{311, 1990.

[7] W. Ruzzo. On uniform circuit complexity. J. of Computer and System Sci., 22:365{383, 1981.

[8] J. E. Savage. The Complexity of Computing. Wiley, 1976.

3.4.3 Lower Bounds on Decision Trees

Investigator: Rudolf Fleischer

Among other algebraic complexity measures, the algebraic decision tree and algebraic compu-

tation tree models have turned out to be very useful in proving lower bounds for elementary

combinatorial or geometric problems like maximum �nding, set equality, set disjointness and

sorting (see [1] for more examples) or even more complicated problems like convex polygon

inclusion [10] and motion planning [8].

The algebraic decision tree model is an abstraction of \real" algorithms where only com-

parisons between input variables or functions of input variables are counted whereas all other

time-consuming operations like data-management, function evaluation or other control struc-

tures have zero cost. For complex problems, this simpli�cation can make the problem consid-

erably easier; for example, the knapsack problem which is known to be NP-complete has a

polynomial solution in the decision tree model [7]. Therefore, lower bounds in the decision tree

model can only be tight for quite simple problems.

A decision problem is a partition of IR

n

into sets S

1

; S

2

; � � � ; S

q

. A decision tree T for a

decision problem is a binary tree in which internal nodes are labeled by predicates de�ned on

IR

n

, outgoing edges of an internal node are labeled by true or false, and leaves are labeled by

one of the S

i

. The evaluation of T on input x 2 IR

n

starts at the root and then proceeds

downwards by evaluating the predicate at an internal node and taking the appropriate of the

two outgoing edges. Finally, a leaf with label S

x

is reached. S

x

is the result of the computation,

the path x followed is the computation path of x, and T is correct if x 2 S

x

for all x. The

worst-case running time of T is the length of the longest computation path in T .

T is called an algebraic decision tree if all functions evaluated at internal nodes are de�ned

by polynomials. The most restricted algebraic decision trees are comparison trees where only

comparisons between two input variables are allowed [5]. Linear decision trees where linear

65

The Algorithms and Complexity Group

functions of the input variables can be used [2, 5, 11] are more powerful. Products of linear

functions were used in [13] and arbitrary polynomials of bounded degree in [1] and [14]. Finally,

arbitrary analytic functions were allowed in [6] and [9]. Of course, this classi�cation of algebraic

decision trees is not exhaustive and many other restrictions on the functions can be found in

the literature.

We assume that the decision problem is a membership problem, i.e. we want to decide

whether an input x 2 IR

n

is in a set S � IR

n

(we call S the target set), but the lower bounds

mentioned below can easily be transformed into similar bounds for arbitrary decision problems.

Whereas many di�erent lower bound techniques for restricted decision trees are known [1,

2, 5, 10, 14], the only known results about analytic decision trees are due to Rabin [9] and

Jaromczyk [6]. Rabin proved the fundamental Theorem that any analytic decision tree for S

must have depth jH j if S is de�ned by a set H of independent linear inequalities. Jaromczyk

generalized Rabin's Theorem to sets S de�ned by arbitrary polynomial inequalities.

In [4] we gave an alternative proof of Rabin's Theorem by using a new lower bound technique

which we had developed to solve an open question raised by Yao. In [14], Yao showed that

median tests are not really more powerful than simple comparisons between the input variables

when computing the largest k elements of n given numbers. He asked whether this can be

generalized to functions which are arbitrary products of linear functions (the median test can

be written as the product of two linear functions).

We showed that it can be generalized. Our proof technique is based on a dimension argument

and works only for sets S de�ned by linear inequalities. Let rank(S) be the maximal dimension

of a linear subspace contained in the closure of S. We show that, for any computation path p

in the decision tree, the closure of the set of inputs x which have computation path p always

contains a linear subspace of dimension n� length(p). Hence length(p) � n � rank(S).

It seems to be the �rst time that a dimension argument is used to derive good lower bounds

for nonlinear decision trees.

We would like to point out that we learned after the publication of our results that a similar

proof of Rabin's Theorem had been obtained earlier by Pardo and Tom�as [12], and that one

can �nd even more general approaches in the mathematics literature [3].

References

[1] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Symp. on Theory of

Computing (STOC'83), pages 80{86, 1983.

[2] A. Bj�orner, L. Lov�asz, and A.C. Yao. Linear decision trees : Volume estimates and topological

bounds. In Proc. 24th Symp. on Theory of Computing (STOC'92), pages 170{177, 1992.

[3] J. Bochnak, M. Coste, and M.F. Roy. G�eom�etrie Alg�ebrique R�eelle, Ergebnisse der Mathematik

und ihrer Grenzgebiete, Folge 3, Bd. 12. Springer Verlag, 1987.

[4] R. Fleischer. Decision trees : Old and new results. In Proc. 25th Symp. on Theory of Computing�

(STOC'93), pages 468{477, May 1993. Also Technical Report MPI-I-92-125.

[5] F. Fussenegger and H.N. Gabow. A counting approach to lower bounds for selection problems.

J. of the ACM, 26:227{238, 1979.

[6] J.W. Jaromczyk. Lower bounds for problems de�ned by polynomial inequalities. In Symp. on

Foundations of Computing Theory (FCT'81), pages 165{172. LNCS 117, Springer Verlag, 1981.

[7] F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional knapsack

problem. J. of the ACM, 31(3):668{667, 1984.

66

The Algorithms and Complexity Group

[8] C. O'D�unlaing. A tight lower bound for he complexity of path-planning for a disc. Information

Processing Letters, 28(4):165{170, 1988.

[9] M. Rabin. Proving simultaneous positivity of linear forms. J. on Computer System Sciences,

6:639{650, 1972.

[10] P. Ramanan. Obtaining lower bounds using arti�cial components. Information Processing Letters,

24(4):243{246, 1987.

[11] M. Snir. Comparisons between linear functions can help. J. on Theoretical Computer Science,

19:321{330, 1982.

[12] R. Tom�as and M. Pardo. Rabin's width of a complete proof and the width of a semialgebraic set.

In European Conference on Computer Algebra, pages 133{139. LNCS 378, Springer Verlag, June

1987.

[13] A.C. Yao. On selecting the k largest with median tests. Algorithmica, 4(2):293{300, 1989.

[14] A.C. Yao. Algebraic decision trees and euler characteristics. In Proc. 33th Conf. on the Foundations

of Computer Science (FOCS'92), pages 268{277, 1992.

3.4.4 Circuit Complexity

Investigator: Shiva Chaudhuri

A fundamental goal of circuit complexity theory is to obtain bounds on the resources required

to solve various problems. In spite of the importance of the problem, obtaining bounds on the

resources required to solve most natural problems remains an open problem. The best size

lower bound for a natural problem, PARITY, is 4n � 4. In order to understand the nature

of various circuit resources, various restrictions of the model have been studied, with some

success. Bounded depth circuits, in particular, have been closely studied. The class AC

0

is the

set of functions computable by uniform polynomial size circuits of constant depth. The class

LC

0

is the set of functions computable by uniform linear size circuits of constant depth [6, 7].

While LC

0

appears to be a severely restricted class, it turns out to contain surprisingly complex

functions. It was not even known whether LC

0

is properly contained in AC

0

[6].

In [2], we answer this question in the a�rmative. An 1=4-approximate selector is any

function whose value is 0 if the number of 1's in the input is less than n=4, 1 if the number

of 1's is more than 3n=4 and can be either 0 or 1 otherwise. Such a function provides a rough

estimate of the number of 1's and is extremely useful in parallel computation [6, 3]. Recently,

Ajtai gave a uniform construction of an AC

0

circuit to compute such a function [1]. Our main

result gives a tight, superlinear lower bound on the number of gates in any constant depth

circuit that computes such a function. Thus, no approximate selector function is in LC

0

. This

shows that LC

0

is strictly contained in AC

0

.

We actually prove a size-depth tradeo� for a general class of functions. The robustness

of a function is essentially the maximum number of input bits that can always be revealed

to an adversary without revealing the value of the function. For example, the robustness

of PARITY is n � 1, of MAJORITY, bn=2c. A �-approximate selector is any function that

satis�es: f : f0; 1g

n

�! f0; 1g such that for x 2 f0; 1g

n

, s(x) < (1=2 � �)n) f(x) = 0

and s(x) < (1=2 + �)n) f(x) = 1, where s(x) is de�ned to be the number of 1's in x. The

robustness of a �-approximate selector is at least n=2��n. We show that if a circuit of depth k

with S gates computes a function of robustness R, then S =
(R

1+�(k)

), where �(k) = 1=2

2k+1

.

This implies that a linear size circuit that computes a 1=4-approximate selector has depth

67

The Algorithms and Complexity Group

(log logn). The lower bound is optimal upto the value of �(k). We give uniform constructions

of circuits of depth O(k), computing a 1=4-approximate selector, with O(n

1+�(k)

) gates where

�(k) = 1=2

k

, which imply a linear size circuit of depth O(log logn).

While the number of gates has been extensively studied as a resource in circuit complexity,

much less attention has been given to wires and none to the trade-o� between gates and wires.

We study this tradeo�, via small threshold functions. The threshold function T

n

k

assumes the

value 1 i� at least k of its input bits have value 1.

It follows from the lower bounds in [4], that T

n

k

is in AC

0

i� (logk)= log logn = bdc for some

constant d. It also follows that a circuit of depth d for T

n

k

must have at least exp 2(
(k

1=d

))

gates. In [5] depth d circuits for T

n

k

are given which use exp 2(O(k log logn)

1=d

) gates and

O(n(k logn)

2

) wires. The lower bound of [4] shows that the number of gates is close to

optimal, but gives no information about the number of wires. In particular, can we achieve a

circuit that has a linear number of wires? We give a partial answer to this question, by showing

that any circuit computing T

n

k

which has at most n=4 gates must have kn=2 wires. This bound

holds for circuits of any depth, and is one of very few bounds for unbounded depth circuits.

Thus, if k is not a constant, it is not possible to simultaneously achieve a sublinear number

of gates and a linear number of wires. This bound is the best possible for unrestricted depth

circuits, since T

n

k

can be computed by a circuit of depth O(logn) with O(n) gates and wires.

We conjecture a bound of the form
(nf(k)) on the number of wires in a constant depth

circuit computing T

n

k

, where f(k) �! 1. We are working on this problem and have been able

to prove some partial results in this direction.

References

[1] M. Ajtai. Approximate counting with uniform constant depth circuits. In DIMACS Series in Disc.

Math. and Theoret. Comp. Sci., American Math. Society, pages 1{20, 1993.

[2] S. Chaudhuri. LC

0

� AC

0

: Polynomial is strictly better than linear. Submitted, 1994.�

[3] T. Goldberg and U. Zwick. Optimal deterministic approximate parallel pre�x sums and their ap-

plications. Submitted, 1994.

[4] J. H�astad. Almost optimal lower bounds for small depth circuits. In Proceedings 18th Symp. Theory

of Computation, pages 6{20, 1986.

[5] J. H�astad, I. Wegener, N. Wurm, and S-Z. Yi. Optimal depth, very small size circuits for symmetric

functions in AC

0

. Information and Computation, 108:200{211, 1994.

[6] I. Newman, P. Ragde, and A. Wigderson. Perfect hashing, graph entropy and circuit complexity.

In Proceedings 5th Ann. Conf. on Structure in Complexity Theory, pages 91{99, 1990.

[7] P. Ragde and A. Wigderson. Linear-size constant-depth polylog-threshold circuits. Information

Processing Letters, 39:143{146, 1991.

3.5 The LEDA Platform

The LEDA project, started in 1988, has already been described in the previous Progress Report

(November 1993). A more detailed description can be either found in that report, or via

World Wide Web in http:://www.mpi-sb.mpg.de/LEDA/leda.html. Here we only give a

short overview of LEDA and describe its new feature concerning correct implementations of

some basic geometric algorithms by handling all degeneracies and avoiding the dangers of

inexact arithmetic.

68

The Algorithms and Complexity Group

3.5.1 Overview

Investigators: Kurt Mehlhorn, Stefan N�aher and Christian Uhrig

Combinatorial and geometric computing rely heavily on data types like stacks, queues, dic-

tionaries, sorted sequences, priority queues, graphs, points, segments, etc. LEDA (Library of

E�cient Data types and Algorithms) is a library that provides such data types and algorithms.

Some of its main features are:

� LEDA provides most of the data types and algorithms described in text books in the

area and makes them easy to use for non-experts.

� LEDA provides very e�cient implementations for each of the data types. It provides a

mechanism which allows the user to choose among di�erent implementations for the same

data type.

� LEDA contains a comfortable data type graph that supports the implementation of graph

algorithms in a form close to the typical text book representation.

A signi�cant part of LEDA is now so mature that several hundred sites (including universi-

ties and industrial software companies all over the world) have made it the basis of algorithms

and serious software development. For instance, there is an intensive cooperation with Siemens

AG [5, 6]. Moreover, it is no longer the mission of a research institute to maintain it. Kurt

Mehlhorn, Stefan N�aher, and Christian Uhrig have founded LEDA GmbH which (after a license

agreement with the Max-Planck-Gesellschaft) plans to distribute, maintain and further develop

LEDA. Also, a veri�cation group at the DFKI (Deutsches Forschungszentrum f�ur K�unstliche

Intelligenz) plans to verify several parts of the library.

The main concepts of LEDA are described in [9]. The user manual [11] lists the speci�ca-

tions of all data types and algorithms contained in the current version 3.1 of the library and

gives many example programs.

Kurt Mehlhorn and Stefan N�aher are writing a book about LEDA that will contain a

tutorial and provide many details about the design and the implementation of LEDA.

Current and future work (besides what is described in the following sections) includes the

incorporation of new data structures [12] and of combinatorial [1, 2, 10, 14] as well as geometric

algorithms [3, 4, 7, 8, 13].

References

[1] J. Dorchain. Implementierung eines Algorithmus zum Berechnen der Konvexen H�ulle. Diploma�

Thesis (in preparation), Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1995.

[2] P. Hilpert. Implementierung von Heuristiken zum Traveling Salesman Problem. Diploma Thesis�

(in preparation), Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1995.

[3] K. Jung. Konvexe Polyeder. Diploma Thesis (in preparation), Max-Planck-Institut f�ur Informatik,�

Saarbr�ucken, 1995.

[4] P. Ksinsik. Ein approximativer Bewegungsplanungsalgorithmus zum Bewegen eines Rechteckes�

basierend auf Voronoi-Diagrammen, deren Distanzfunktionen durch Orientierungen des Rechtecks

gegeben sind. Diploma Thesis (in preparation), Max-Planck-Institut f�ur Informatik, Saarbr�ucken,

1995.

69

The Algorithms and Complexity Group

[5] U. Lauther. A fast planning tool for routing and scheduling of cargo trains. In ALCOM Workshop,

1993.

[6] U. Lauther. Routing and scheduling of trains, a prototype based on LEDA. In Workshop on

Optimization in Production and Transportation, 1994.

[7] S. Leinenbach. Eine e�ziente Implementierung des Datentyps Polyeder. Diploma Thesis (in�

preparation), Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1995.

[8] S. Lutter. Ein approximativer Bewegungsplanungsalgorithmus zum Bewegen zweier gelenkver-�

bundener Rechtecke. Diploma Thesis (in preparation), Max-Planck-Institut f�ur Informatik,

Saarbr�ucken, 1995.

[9] K. Mehlhorn and S. N�aher. LEDA: A platform for combinatorial and geometric computing. Com-�

munications of the ACM, 38(1):96{102, 1995.

[10] U. Meyer. Deterministische PRAM-Simulation auf Gittern. Diploma Thesis (in preparation),�

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1995.

[11] S. N�aher. LEDA Manual, Version 3.1. Technical Report MPI-I-95-1-002, Max-Planck-Institut f�ur�

Informatik, Saarbr�ucken, January 1995.

[12] M. Paul. Augmented tree data structures based on skiplists and randomized search trees. Ph.D.�

Thesis (in preparation), Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1995.

[13] K.D. Rottmann. Bewegen eines Polygons. Diploma Thesis (in preparation), Max-Planck-Institut�

f�ur Informatik, Saarbr�ucken, 1995.

[14] T. Ziegler. Implementierung eines Algorithmus f�ur das Maximum Weighted Matching Problem.�

Diploma Thesis (in preparation), Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1995.

3.5.2 Exact Geometric Computations

Investigators: Christoph Burnikel, Kurt Mehlhorn, Stefan N�aher, Stefan Schirra and Chris-

tian Uhrig

In computational geometry almost all papers assume exact real arithmetic. Implementors of

geometric algorithms then often simply replace the exact real arithmetic of this model by

�xed precision arithmetic, thereby making theoretically correct algorithms incorrect. Two ap-

proaches have been taken to remedy this situation. The �rst approach is redesigning geometric

algorithms for �xed precision arithmetic. The redesign is di�cult and can inherently lead to

inexact results. In many cases the algorithms di�er signi�cantly from their exact arithmetic

counterparts and that is probably the biggest disadvantage of the inexact arithmetic approach:

it does not allow us to directly use the vast body of available geometric algorithms. The other

approach advocates the use of exact real arithmetic. In principle, this approach is trivial. After

all, it is well known how to compute exactly with integers, rationals, and even algebraic num-

bers. So the question really is: Can exact arithmetic be provided in an e�cient and convenient

way?

We considered two basic geometric problems in more detail, line segment intersection and

Voronoi diagram of line segments and points. For the well-known plane sweep algorithm by

Bentley and Ottmann [2] for computing the intersection of a set of line segments, exact rational

arithmetic is su�cient if the coordinates of all input points determining the segments are dou-

bles. Our implementation [5] in LEDA uses the so-called
oating point �lters [4] to reduce the

overhead of exact computation. Based on an error analysis potentially unreliable computations

70

The Algorithms and Complexity Group

are �ltered out. Only if the computation with doubles does not guarantee exactness, e.g. in a

sign computation, the computation is done (again) using exact rational arithmetic. Our im-

plementation is about three times slower than the straightforward unreliable implementation

using computation with doubles, but it is correct!

In Voronoi diagram computations an important test is the incircle test. A vertex of a

Voronoi diagram is the center of a circle touching three sites. The incircle test asks for the

position (inside, on, or outside) of a fourth site with respect to a Voronoi circle. Assume for

concreteness that the three de�ning sites are the origin p and lines l

1

and l

2

and that the fourth

site is a line l

3

. Assume further that the equation of line l

i

is a

i

x+ b

i

y + c = 0 with a

i

, b

i

, and

c

i

being 2k-bit integers. The Voronoi vertex v has coordinates (x

v

; y

v

) where

x

v

=

a

1

c

2

+ a

2

c

1

�

r

2c

1

c

2

(a

1

a

2

� b

1

b

2

+

q

(a

2

1

+ b

2

1

)(a

2

2

+ b

2

2

))

q

(a

2

1

+ b

2

1

)(a

2

2

+ b

2

2

)� a

1

a

2

� b

1

b

2

and

y

v

=

b

1

c

2

+ b

2

c

1

� sign(a

1

b

2

+ a

2

b

1

)

r

2c

1

c

2

(b

1

b

2

� a

1

a

2

+

q

(a

2

1

+ b

2

1

)(a

2

2

+ b

2

2

))

q

(a

2

1

+ b

2

1

)(a

2

2

+ b

2

2

)� a

1

a

2

� b

1

b

2

:

The incircle test involves a comparison between the distance between v and p and the

distance between v and l

3

and is therefore tantamount to comparing x

2

v

+y

2

v

and (b

3

x

v

+b

3

y

v

+

c

3

)=(a

2

3

+b

2

3

). We show that precision 48k su�ces for this test, which is two orders of magnitude

better than the bound obtained by applying general root separation bounds from computer

algebra. The tests can be evaluated by repeated squaring and exact arbitrary precision integer

arithmetic or by a
oating point computation that guarantees the required precision. The

latter approach can be improved by lazy evaluation, i.e. increasing the precision in steps until

su�cient precision is reached. Our experiments with incircle tests generated by an unreliable

Voronoi diagram algorithm have shown that both approaches take roughly the same amount

of time. We report on our results in [3]. Our experiments have also shown that the full 48k

precision was rarely needed in the examples. On average, precision 6k seems to su�ce.

In both examples exact computation is provided by the user herself. The code looks still

quite di�erent from the code produced by implementors who simply replace exact real compu-

tation by
oating point arithmetic (especially if repeated squaring is used), although from an

algorithmic point of view it is essentially the same. There is clearly a need to package the exact

computation. Therefore we added new number types to LEDA, that facilitate exact computa-

tion for many geometric problems. The most general one is the data type real. Every integer is

a real and reals are closed under the operations addition, subtraction, multiplication, division

and squareroot. All comparison operators f>;�; <;�;=g are exact. In order to determine the

sign of a real number x the data type �rst computes a separation bound q such that jxj � q

implies x = 0 and then computes an approximation of x of su�cient precision to decide the

sign of x. The user may assist the data type by providing a separation bound q. The data

type also allows evaluation of real expressions with arbitrary precision. The following is (part

of) the LEDA manual page for reals.

71

The Algorithms and Complexity Group

real x + y addition

real x � y subtraction

real x � y multiplication

real x = y division

real � x negation

real sqrt(real x) squareroot operation

int x.sign() returns �1 if (the exact value of) x is < 0, 1

if x > 0, 0 if x is = 0.

int x.sign(int k) as above. Precondition: if jxj � 2

�k

then x =

0.

void x.improve(int k) (re-)computes the approximation of x such

that its absolute error is bounded by 2

�k

.

void x.compute(int k) (re-)computes the approximation of x; each

numerical operation is carried out with k bi-

nary places.

void x.compute up to(int k) (re-)computes the approximation of x such

that the relative error is bounded by 2

�k

.

bool x < y returns true if x is smaller than y

bool x : : : y further exact comparisons

The data type real provides exact computation in a convenient way. In an implementation

of a geometric algorithm in C

++

, reals can be used like doubles.For example, the following

C

++

procedure realizes the incircle test discussed above.

int incircle(real a

1

, real b

1

, real c

1

, real a

2

, real b

2

, real c

2

, real a

3

, real b

3

, real c

3

)

f

real N = (a

1

� a

1

+ b

1

� b

1

) � (a

2

� a

2

+ b

2

� b

2

);

real C = a

1

� a

2

� b

1

� b

2

;

real D = sqrt(N) � (a

1

� a

2

+ b

1

� b

2

);

real S = �(a

1

� b

2

+ a

2

� b

1

);

real x

v

= (a

1

� c

2

+ a

2

� c

1

+ sqrt(2 � c

1

� c

2

� (sqrt(N) + C))=D;

real y

v

= (b

1

� c

2

+ b

2

� c

1

+ S:sign() � sqrt(2 � c

1

� c

2

� (sqrt(N) �C))=D;

real E = (a

3

� x

v

+ b

3

� y

v

+ c

3

) � (a

3

� x

v

+ b

3

� y

v

+ c

3

) � (a

3

� a

3

+ b

3

� b

3

) � (x

v

� x

v

+ y

v

� y

v

);

return E:sign();

g

If a

i

; b

i

; c

i

are known to be 2k-bit integers, the sign computation E.sign() can be replaced

by E.sign(48 � k), see [3]. Without this assistance the sign computation could be very slow.

The implementation of reals is based on the LEDA data types integer and big
oat which

are arbitrary precision integers and
oating point numbers with exponents and mantissa of

arbitrary length. Similar to [1, 8] a real is represented by the expression which de�nes it.

Furthermore it has a double approximation x̂ together with a relative error bound �

x

. It also

uses
oating-point �lter and lazy evaluation: When the double test is inconclusive the quality

of the approximation is repeatedly doubled (using calls of improve) until a decision is possible.

A decision is possible if either the absolute value of the approximation is less than its absolute

error or the separation bound is reached. The latter bound is either provided by the user or

computed as in [7, 8].

Recent experiments have shown that the code obtained by replacing doubles by reals in

the straightforward implementation of the line segment intersection algorithm is about eight

times slower than the original code.

72

The Algorithms and Complexity Group

References

[1] M.O. Benouamer, P. Jaillon, D. Michelucci, and J-M. Moreau. A \lazy" solution to imprecision in

computational geometry. In 5th Canadian Conf. on Computational Geometry, pages 73{78, 1993.

[2] J.L. Bentley and T.A. Ottmann. Algorithms for reporting and counting geometric intersections. In

IEEE Trans. Comput., volume C-28, pages 643{647, 1979.

[3] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments:�

Theoretical and experimental results. In Algorithms - ESA'94. LNCS, Springer-Verlag, September

1994.

[4] S. Fortune and C. van Wyk. E�cient exact arithmetic for computational geometry. Proc. of the 9th

Symp. on Computational Geometry, pages 163{171, 1993.

[5] K. Mehlhorn and S. N�aher. Implementation of a sweep line algorithm for the straight line seg-�

ment intersection problem. Technical Report MPI-I-94-160, Max-Planck-Institut f�ur Informatik,

Saarbr�ucken, October 1994.

[6] K. Mehlhorn and S. N�aher. The implementation of geometric algorithms. In 13th World Computer�

Congress IFIP94, volume 1, pages 223{231. Elsevier Science B.V. North-Holland, Amsterdam, 1994.

[7] M. Mignotte. Mathematics for Computer Algebra. Springer Verlag, 1992.

[8] Ch.K. Yap and T. Dube. The exact computation paradigm. In Computing in Euclidean Geometry.

World Scienti�c Press. to appear, 2nd edition.

3.5.3 Trapezoidal decomposition induced by a set of line segments

Investigator: Thomas Schilz

A fundamental problem in computational geometry is to compute the trapezoidal decomposi-

tion induced by a set of line segments. The problem is de�ned as follows: From each segment's

endpoint and from each point of intersection between two segments raise a vertical attachment

upwards and downwards to the �rst segment reached, in both directions. This way the plane

is decomposed into trapezoidal regions.

The problem has been intensively investigated in the past and there exist deterministic [1]

as well as randomized [3, 2] optimal algorithms with (expected) time complexity O(n logn+k)

where n is the number of segments and k is the number of intersections.

The cited algorithms all assume that their input is non degenerate, which means that there

are no overlapping segments, no more than two segments intersecting in a common point and no

two endpoints or intersection points sharing a common x coordinate. Usually the authors point

out that a degenerate input may be slightly perturbed such that the degeneracies disappear.

But if we consider the case of several line segments intersecting in a common point then it is

desirable to obtain a running time of O(n logn+ i) where i is the number of intersection points

not the number of pairs of intersecting segments. Perturbing the input makes this impossible.

In [4] we present an implementation, in C++ using LEDA, of the algorithm in [3] (p. 84�)

that handles degeneracies explicitly and show how the desired running time can easily be

achieved in this way.

73

The Algorithms and Complexity Group

References

[1] Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting line segments in

the plane. Technical Report UIUCDCS{R{88{1419, Department of Computer Science, University

of Illinois at Urbana{Champaign, March 1988.

[2] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational geom-

etry, II. Discrete & Computational Geometry, 4:387{421, 1989.

[3] Ketan Mulmuley.Computational geometry: an introduction through randomized algorithms. Prentice

Hall, 1994.

[4] T. Schilz. Implementation of a randomized incremental algorithm for computing the trapezoidal�

decomposition induced by a set of line segments in the plane (to appear). Technical report, Max-

Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, March 1995.

74

The Algorithms and Complexity Group

4 Visitors

Since December 1993, the following researchers (39 in total) visited or are visiting our group.

Alberts, David 01.03.94 - 31.07.94 FU Berlin

Anhalt, Christopher 03.06.94 Universit�at Karlsruhe

Prof. Chen, Danny 01.06.94 - 31.07.94 University of Notre Dame,

Notre Dame, Indiana, USA

Prof. Cheng, Siu-Wing 01.07.94 - 22.07.94 The Hong Kong University

of Science and T., Hong Kong

Dr. Chlebus, Bogdan 01.08.94 - 30.09.94 Warsaw University,

Warsaw, Poland

Prof. Cho, Hwan Gue 17.01.94 - 16.01.95 Pusan National University,

Pusan, Korea

Dr. Cucher, Felipe 26.04.94 Universit�at Pompen Fabra,

Barcelona, Spain

Prof. Drysdale, Scott 27.02.94 - 04.03.94 Dartmouth College,

Hanover, New Hampshire, USA

Dr. Golin, Mordecai 20.06.94 - 03.07.94 The Hong Kong University

of Science and T., Hong Kong

Dr. Golin, Mordecai 15.07.94 - 29.07.94 The Hong Kong University

of Science and T., Hong Kong

Gupta, Prosenjit 08.07.94 - 30.09.94 University of Minnesota

Minneapolis, Minnesota, USA

Prof. Hartmanis, J. 01.10.93 - 31.05.94 Cornell University,

Ithaca, New York, USA

Huson, Daniel 24.08.94 Universit�at Bielefeld

Dr. Jansen, Klaus 29.06.94 Universit�at Trier

Prof. J�unger, M. 04.02.94 Universit�at K�oln

Prof. Kapoor, Sanjiv 10.06.94 - 31.07.94 Indian Institute of

Technology, New Delhi, Indien

Prof. Katoh, Naoki 29.09.94 - 01.10.94 Kobe Univ. of Commerce

Kobe, Japan

Prof. Klein, Rolf 13.09.94 Fernuniversit�at Hagen

Koga, Hisashi 23.06.94 - 05.07.94 The University of Tokyo,

Tokyo, Japan

Prof. Krithivasan, K. 01.06.94 - 30.06.94 Indian Institute of

Technology, Madras, Indien

Dr. La Poutr�e, Han 10.01.94 - 14.01.94 Utrecht University,

Utrecht , The Netherlands

Prof. Lingas, Andrzej 28.06.94 - 30.06.94 Lund University,

Lund, Sweden

75

The Algorithms and Complexity Group

Dr. L�uling, Reinhard 31.05.94 - 01.06.94 Universit�at Paderborn

Prof. Mount, Dave 20.06.94 - 15.12.94 University of Maryland,

Maryland, USA

Dr. Mutzel, Petra 30.05.94 - 01.06.94 Universit�at K�oln

�

Ohring, Sabine 15.06.94 - 17.06.94 University of North Texas,

Denton, Texas, USA

Dr. Palios, Leonidas 12.09.94 - 22.09.94 The Geometric Center,

Minneapolis, Minnesota, USA

Dr. Panconesi, A. 11.01.94 - 18.01.94 CWI Amsterdam,

Amsterdam, The Netherlands

Papatrianta�lou, Marina 01.01.95 - 31.12.95 Computer Technology Institute,

Univ. of Patras, Greece

Dr. Raman, Rajeev 24.10.94 - 23.11.94 King's College London,

London, United Kingdom

Dr. Ranjan, Desh 15.05.94 - 15.08.94 New Mexico State University

Las Cruces, New Mexico, USA

Dr. Rauch, Monika 04.07.94 - 05.07.94 Cornell University,

Ithaca, USA

Ru�ng, Andreas 15.06.94 MPI f�ur Physik,

M�unchen

Prof. Salowe, Je�rey 15.06.94 - 31.07.94 University of Virginia,

Charlottesville, Virginia, USA

Prof. Schr�oder, Heiko 01.03.94 - 20.11.94 University of Newcastle,

Newcastle, Australia

Prof. Spirakis, Paul 13.04.94 Computer Technology Institute,

Univ. of Patras, Greece

Dr. Suel, Thorsten 13.12.94 - 20.12.94 NEC Research Institute,

Princeton, New Jersey, USA

Prof. Sugihara, K. 08.03.94 University of Tokyo

Tokyo, Japan

Prof. Zelikovsky, A. 21.09.94 - 30.11.94 Institute of Mathematics

Kishinev, Moldova

76

The Algorithms and Complexity Group

5 Journal and Conference Activities

5.1 Editorial positions

Kurt Mehlhorn has been an editor of Algorithmica (since 1985), Computational Geometry:

Theory and Applications (since 1990), Information and Computation (since 1985), Int'l Journal

of Computational Geometry (since 1990), Discrete and Computational Geometry (since 1988),

and SIAM Journal on Computing (since 1988).

5.2 Conference positions

Torben Hagerup is/was a program committee member of the:

- 6th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1994), Cape

May, New Jersey, USA.

- 4th Scandinavian Workshop on Algorithm Theory (SWAT 1994),

�

Arhus, Denmark.

- 10th International Conference on Fundamentals of Computation Theory (FCT 1995), Dres-

den, Germany.

- 7th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1995), Santa

Barbara, California, USA.

- 2nd Workshop on Parallel Algorithms for Irregularly Structured Problems (Irregular 1995),

Lyon, France.

Kurt Mehlhorn was the chairman of the program committee of the 10th Annual ACM Sympo-

sium on Computational Geometry, 1994.

5.3 Organization of Workshops

Rudolf Fleischer organized the \22. Workshop �uber Komplexit�atstheorie, Datenstrukturen und

e�ziente Algorithmen" (22nd Workshop on Complexity Theory, Data Structures and E�cient

Algorithms) which took place in the Max-Planck-Institut f�ur Informatik on February 8, 1994.

This workshop takes place three times a year, always in Germany. Twenty talks were given

and the workshop was attended by (slightly more than) �fty people. Abstracts of the talks can

be found in the Technical Report MPI-I-94-104.

Kurt Mehlhorn, with Jan van Leeuwen (Utrecht) and Thomas Reps (Madison), organized

the Dagstuhl-Seminar on \Incremental Computation and Dynamic Algorithms" held in Schlo�

Dagstuhl (near Saarbr�ucken) on May 2-6, 1994. The purpose of the Seminar was to bring

two research communities together that have common interests, but which (to date) have

had relatively limited contact; namely, theoretical computer scientists working in the area of

\dynamic algorithms", and programming-language and systems researchers working in the area

of \incremental computing". The Seminar provided the opportunity to present the state-of-

the-art in the relevant �elds at a high level and to let the two research communities bene�t

from each other's insights. Twenty-seven talks were given and the Seminar was attended by

thirty-one participants from Europe and the United States. Abstracts of the talks can be found

in the Dagstuhl-Seminar-Report No. 88.

77

The Algorithms and Complexity Group

Kurt Mehlhorn, with Robert Tarjan (Princeton), organized the Workshop on \E�cient

Algorithms" held in the Mathematisches Forschungsinstitut Oberwolfach (near Freiburg) on

August 7-13, 1994. The goal of the Workshop was to stimulate research in (almost) all areas

of algorithms' design. Particular emphasis was given on the e�cient solution of large prob-

lems (with respect to the size of the input) and on the design of simple, easy to implement,

algorithms. Twenty-nine talks were given and the Workshop was attended by thirty-one par-

ticipants from Europe and the United States. Abstracts of the talks can be found in the

Tagungsbericht 34/1994 of the Mathematisches Forschungsinstitut Oberwolfach.

6 Teaching Activities

The group contributes intensively to the Computer Science Curriculum. The core courses

\Praxis des Programmierens", \Datenstrukturen und Algorithmen" and \Optimierung" are

always taught by members of the group. In addition we teach some specialized courses.

Summer Semester 1994

Lectures:

Praxis des Programmierens (K. Mehlhorn, S. Schirra)

Algorithmen und Komplexit�at II (S. Albers, M. Smid)

Randomisierte Algorithmen (T. Hagerup)

String Matching (H.P. Lenhof)

Parallele Algorithmen f�ur Netzwerke (C. R�ub, J. Sibeyn)

Seminar:

Datenstrukturen und Netzwerkalgorithmen (R. Fleischer, K. Mehlhorn)

Project Class:

Softwarekonstruktion (S. N�aher, C. Uhrig)

Winter Semester 1994/95

Lectures:

Praxis des Programmierens (S. Schirra)

Datenstrukturen und Algorithmen (K. Mehlhorn, C. Schwarz)

On-line Algorithmen (R. Fleischer)

Computational Biology (H.P. Lenhof)

Graph- und Netzwerkalgorithmen (S. Chaudhuri, C. R�ub)

Project Class:

E�ziente Algorithmen unter LEDA (K. Mehlhorn, C. Uhrig)

We are also teaching the course \C-Blockkurs" which is a compact (lasting two weeks) intro-

duction into the C programming language. Furthermore there is a course called \Ausgew�ahlte

Kapitel aus E�ziente Algorithmen" (\Selected Topics in Algorithms"). It is organized by our

post-docs and intented for Ph.D. students. (See section 8.)

Class Notes

For some of the courses there are class notes prepared by the lecturer. Michiel Smid wrote

class notes [6] on selected topics in data structures. They cover skip lists, the union-�nd prob-

78

The Algorithms and Complexity Group

lem, range trees and the post-o�ce problem, and maintaining order in a list. In his class

notes on interactive proof systems [4], Sanjeev Saluja covers recent developments which led to

results on the hardness of approximability of some NP-hard problems like MaxClique. The

class notes start with a review of the early result IP=PSPACE [3, 5]. Next probabilisti-

cally checkable proofs (PCP) are introduced. Then the intermediate result of Arora and

Safra [2]: NP � PCP(log(n); polylog(n)) is proved and it is also shown that the above re-

sult can be strengthened further. Then it is proved: NP � PCP(poly; 1); which is another

important building block of the �nal result. Finally it is shown how strengthened version

of the Arora-Safra result and the above result can be combined to obtain the �nal result :

NP � PCP(log(n); 1) [1].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and hardness of

approximation problems. In Proc. 33rd IEEE Symp. on Foundations of Computer Science, pages

14{23, 1992.

[2] S. Arora and S. Safra. Probabilistic checking of proofs; a new characterization of NP. In Proc. 33rd

IEEE Symp. on Foundations of Computer Science, pages 2{13, 1992.

[3] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods for interactive proof systems. In

Proc. 31st IEEE Symp. on Foundations of Computer Science, pages 2{10, 1990.

[4] J. Radhakrishnan and S. Saluja. Interactive proof system. Technical report, Max-Planck-Institut�

f�ur Informatik, Saarbr�ucken, Germany, 1995.

[5] A. Shamir. IP = PSPACE. In Proc. 31st IEEE Symp. on Foundations of Computer Science, pages

11{15, 1990.

[6] M. Smid. Lecture notes: selected topics in data structures. Technical Report MPI-I-94-155, Max-�

Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1994.

7 Dissertations and Habilitations

7.1 Dissertations

Completed:

Kl�ar G.: Verdrahtungsprobleme auf planaren Graphen. June 1994.

Rasch R.: Furthest Site Abstract Voronoi Diagrams. September 1994.

Ongoing:

Bast H.: E�cient Parallel Algorithms for Fundamental Problems on the CRCW PRAM. De-

cember 1997

2

.

Burnikel Ch.: Precision and Degeneracy in Geometric Computations. March 1995

2

.

Lauer Th.: Dynamische Lastbalancierung. February 1995

2

.

Paul M.: Augmented Tree Data Structures Based on Skiplists and Randomized Search Trees.

February 1995

2

.

Priebe V.: Analysis of randomized combinatorial algorithms. June 1995

2

.

Reinert K.: Algorithmen zur Sequenzanalyse. December 1997

2

.

Schilz T.: Verteilte Algorithmen f�ur den Design{Rule{Check von VLSI{Layouts. June 1995

2

.

2

Expected completion date.

79

The Algorithms and Complexity Group

Schwarzenecker E.: Ein NP{vollst�andiges Problem aus der Kartographie. February 1995

2

.

Thiel Ch.: Schnitt von Polyedern in h�oheren Dimensionen. March 1995

2

.

7.2 Habilitations

Completed:

N�aher St.: Das Minimum Cost Flow-Problem. June 1994.

Smid M.: Nachbarschaftsprobleme in der algorithmischen Geometrie. February 1995.

8 Organization of our Group

The group meets two to four times a week at 1.30 pm.

On Monday and Wednesday (1.30 - 2.15) we have our noon seminar. It lasts about 45

minutes and is reserved for presentations of new results and ongoing research. We also ask our

guests to give presentations in the noon seminar.

On Tuesday and Thursday (1.30 - 3.00) we run the \Selected Topics in Algorithms" course.

This course is reserved for two to four week intensive treatments of subjects of current interest.

Topics treated from December 1993 until today were:

Recon�gurable Networks (H. Schr�oder)

The Blum-Shub-Smale Model of Computation over the Reals (F. Cucker)

Majorization and its applications (S. Arikati)

Approximate max-
ow min-cut theorems for Multicommodity Flows (N. Garg)

Spanners: Approximating the complete Euclidean graph (S. Arya, D. Mount, M. Smid)

Pattern Matching (R. Hariharan)

Hammock Decomposition of Graphs (C. Zaroliagis)

Semi-de�nite Programming (S. Mahajan)

Interactive Proof Systems (S. Saluja)

Topics in Probabilistic Methods (P. Kelsen).

We have elected an executive committee (K. Mehlhorn, T. Hagerup, V. Priebe, S. Arya,

A. E�er, C. Schmitz) which makes the day to day decisions concerning the group.

9 Cooperations

At an informal level we cooperate with researchers from the other research group of the Max-

Planck-Institut f�ur Informatik and from the Computer Science Department of the university.

With Ganzinger's group we cooperate on two problems: speci�cation of abstract data types

and identi�cation of partial orders. In the computer science department our main contacts

are Prof. Hotz (on VLSI{design), Prof. Paul (on parallel algorithms), Prof. Buchmann (on

computer algebra), and Prof. Wilhelm (on parallel programming languages).

At an institutional level we are involved in �ve research projects:

� SFB 124 VLSI{Entwurfsmethoden und Parallelit�at,

� ESPRIT Basic Research Action No. 7141 (ALCOM II),

� EC Cooperative Action IC-1000{project ALTEC,

� EC-project HCM,

� GIF research project: Arrangements in Computational Geometry.

80

The Algorithms and Complexity Group

9.1 SFB 124 VLSI{Entwurfsmethoden und Parallelit�at

The Sonderforschungsbereich (SFB) 124 is a special research e�ort, sponsored by the DFG

(Deutsche Forschungsgemeinschaft). The project is directed towards the practical aspects of

parallel systems: design, understanding, programming, and optimized use.

The project was initiated in 1983, and has been prolonged recently until December 1997.

Probably this is going to be the last three year period of the project.

Partners and group leaders of the project are:

Universit�at Kaiserslautern (Professors: H�arder, Nehmer)

Universit�at des Saarlandes (Professors: Buchmann, Hotz, Loeckx, Mattern, Molitor, Paul,

Thiele, Wilhelm, Zimmermann)

Max-Planck-Institut f�ur Informatik (Prof. Mehlhorn)

9.2 ALCOM

ALCOM (Algorithms and Complexity) is an Esprit basic research action. It involves 12 partners

in nine EU countries. The purpose of ALCOM is to foster algorithms research within Europe

and to stimulate cooperation among research institutes from the EU. ALCOM has been very

successful in reaching these goals. It has given the European algorithms community an identity

and its own conference ESA (European Symposium on Algorithms), and it has led to close

collaboration within it.

The project started in 1989 as ALCOM I. The actual ALCOM II project runs from 24-7-

1992 until 23-7-1995. Presently we are planning for a further three year period on a slightly

di�erent basis, but it is not sure that this will be granted.

Kurt Mehlhorn and Christoph Storb coordinate the action. Torben Hagerup is our local

contact person.

Partners and group leaders of the action are:

�

Arhus University,

�

Arhus, Denmark (Prof. E. M. Schmidt)

Universitat Polit�ecnica de Catalunya, Barcelona, Spain (Prof. J. Diaz)

Freie Universit�at, Berlin, Germany (Prof. E. Welzl)

University of Dublin, Dublin, Irish Republic (Prof. C. O'D�unlaing)

EHESS, Paris, France (Prof. P. Rosenstiehl)

INRIA{Paris, Rocquencourt, France (Dr. P. Flajolet)

Universit�at-GH Paderborn, Paderborn, Germany (Prof. B. Monien)

Computer Technology Institute, Patras, Greece (Prof. P. Spirakis)

Universit�a di Roma, Roma, Italy (Prof. G. Ausiello)

INRIA{Sophia-Antipolis, Sophia-Antipolis, France (Dr. J. Boissonnat)

University of Utrecht, Utrecht, Netherlands (Prof. J. van Leeuwen)

University of Warwick, Coventry, Great Britain (Prof. M. Paterson)

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany (Prof. K. Mehlhorn)

9.3 ALTEC

ALTEC (Basic Algorithms for Future Technologies) is the extension of ALCOM to Eastern

Europe. The goals are similar, but, as the project is of a much smaller nature, not so highly

set. Through the project we get some additional travel money, and some money for personnel.

The project has been successful in strengthening contacts between the various involved sites.

Twice a year a workshop is organized.

81

The Algorithms and Complexity Group

The project has started in 1992 and will run out in March 1995. A prolongation is not

planned. Though we will continue to cooperate at an informal level.

The ALTEC project is chaired by Prof. van Leeuwen. Jop Sibeyn is our local contact

person.

Partners and group leaders of the project are:

University of Bordeaux, Bordeaux, France (Prof. Cori)

Comenius University, Bratislava, Slovakia (Prof. Rovan)

Slovac Academy of Science, Bratislava, Slovakia (Prof. Sykora)

E�otv�os University, Budapest, Hungary (Prof. R�onyai)

Charles University, Prague, Czech Republic (Professors: Kucera, Wiedermann)

University of Utrecht, Utrecht, Netherlands (Prof. van Leeuwen)

Warsaw University, Warsaw, Poland (Prof. Rytter)

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany (Prof. Mehlhorn)

9.4 HCM

Human Capital and Mobility (HCM) is the post-doc program of the European Union. The

project strives for the development of more e�cient algorithms, and to make these algorithms

accessible to the non-algorithmic community. We have two post-doc positions paid from money

of this project.

The project has started in 1994, and runs for three years. HCM is not a cooperation project:

there are no partners, though other institutes pro�t from the same funding.

9.5 GIF

The German-Israeli Foundation for Scienti�c Research and Development (GIF) is a bi-national

science foundation. It was created by the two governments in order to promote and fund joint

civil research and development projects in basic and applied research.

We have been successfully working with our Israeli partner Micha Sharir from Tel Aviv

University and our German partner Emo Welzl from Free University in Berlin on randomized

techniques and related studies concerning arrangements in computational geometry. Our work

bene�ted from mutual visits.

In the GIF II project we will study various basic problems in computational and discrete ge-

ometry involving arrangements of curves and surfaces, and investigating the use of randomized

techniques to solve many of these problems.

The GIF I project, Randomized Techniques and Related Studies of Arrangements in Com-

putational Geometry, runs from 1-10-1990 until 30-9-1994, (including an extension of one year

without additional funding). The GIF II project, Study of Arrangements and Randomized

Techniques in Discrete and Computational Geometry, spans the period from 1-1-1995 until

31-12-97. The local contact person is Stefan Schirra.

Partners and group leaders of the project are:

Freie Universit�at, Berlin, Germany (Prof. E. Welzl)

Tel-Aviv University, Tel-Aviv, Israel (Prof. M. Sharir)

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany (Prof. K. Mehlhorn)

9.6 Industry

Our main industrial partner is Siemens AG, Munich. Dr. Hammer from Siemens and Torben

Hagerup and Thomas Lauer cooperate on load balancing algorithms for parallel machines. Dr.

82

The Algorithms and Complexity Group

Lauther has cooperated with Stefan N�aher, Kurt Mehlhorn and Christian Uhrig on e�cient

graph algorithms and a planning tool for scheduling cargo trains. In the past year, Chris-

tian Uhrig has spent three months with Lauther's group. Thomas Lauer holds a Siemens

Ph.D. scholarship. Kurt Mehlhorn serves on the scienti�c advisory board of Siemens corporate

research.

Through the LEDA project we have loose contacts to several other companies. These

relations are of the producer-consumer type, that is, we receive bug reports and sometimes

enthusiastic comments.

10 Recent Publications

10.1 In Journals

[1] H. Alt, L. Guibas, K. Mehlhorn, R. Karp, and A. Widgerson. A method for obtaining

randomized algorithms with small tail probabilities. Algorithmica, to appear.

[2] S.R. Arikati and A. Maheshwari. Realizing degree sequences in parallel. SIAM Journal

Discrete Math., to appear.

[3] H. Bast and T. Hagerup. Fast parallel space allocation, estimation and integer sorting.

Information and Computation, to appear.

[4] G. Bilardi, S. Chaudhuri, D. Dubhashi, and K. Mehlhorn. A lower bound for area universal

networks. Information Processing Letters, 51(2):101{106, July 1994.

[5] S. Chaudhuri. Tight bounds on oblivious chaining. SIAM Journal on Computing, 23,

December 1994.

[6] J. Cheriyan and T. Hagerup. A randomized maximum-
ow algorithm. SIAM Journal on

Computing, to appear, April 1995.

[7] J. Cheriyan, T. Hagerup, and K. Mehlhorn. An o(n

3

)-time maximim-
ow algorithm. SIAM

Journal on Computing, to appear.

[8] C. De Simone, M. Diehl, M. J�unger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground

states of Ising spin glasses: New experimental results with a branch and cut algorithm. to

appear in the Journal of Statistical Physics, 1995.

[9] P. Dietz, K. Mehlhorn, R. Raman, and C. Uhrig. Lower bounds for set intersection queries.

Algorithmica, to appear.

[10] R. Fleischer. A tight lower bound for the worst case of bottom-up-heapsort. Algorithmica,

11:104{115, 1994.

[11] R. Fleischer, H. Jung, and K. Mehlhorn. A communication-randomness tradeo� for two-

processor systems. Information and Computation, to appear, January 1995.

[12] P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection searching

problems: counting, reporting, and dynamization. Journal of Algorithms, to appear, 1995.

[13] T. Hagerup. A lower bound for the emulation of PRAM memories on processor networks.

Information and Computation, to appear.

83

The Algorithms and Complexity Group

[14] T. Hagerup. Fast deterministic processor allocation. Journal of Algorithms, to appear,

May 1995.

[15] T. Hagerup and J�org Keller. Fast parallel permutation algorithms. Parallel Processing

Letters, to appear.

[16] T. Hagerup and Miros law Kuty lowski. Fast integer merging on the EREW PRAM. Algo-

rithmica, to appear.

[17] T. Hagerup and M. Maas. Generalized topological sorting in linear time. Nordic Journal

of Computing, 1:38{49, 1994.

[18] P.J. He�ernan and S. Schirra. Approximate decision algorithms for point set congruence.

Computational Geometry: Theory and Applications, 4:137{156, 1994.

[19] M. Kaufmann and K. Mehlhorn. A linear-time algorithm for the homotopic routing prob-

lem in grid graphs. SIAM Journal of Computing, 23(2):227{246, 1994.

[20] Michael Kaufmann, Heiko Schr�oder, and Jop F. Sibeyn. Asymptotically optimal and

practical routing on the recon�gurable mesh. Parallel Processing Letters, to appear, 1995.

[21] H.-P. Lenhof and M. Smid. An optimal construction method for generalized convex layers.

International Journal of Computational Geometry & Applications, 3:245{267, 1993.

[22] H.-P. Lenhof and M. Smid. Using persistent data structures for adding range restrictions

to searching problems. RAIRO Theoretical Informatics and Applications, 28:25{49, 1994.

[23] H.-P. Lenhof and M. Smid. Maintaining the visibility map of spheres while moving the

viewpoint on a circle at in�nity. Algorithmica, 13:301{312, 1995.

[24] K. Mehlhorn and S. N�aher. LEDA: A platform for combinatorial and geometric computing.

Communications of the ACM, 38(1):96{102, 1995.

[25] M. M�uller, Ch. R�ub, and W. R�ulling. A circuit for exact summation of
oating-point

numbers. Information Processing Letters, to appear, 1995.

[26] C. Schwarz, M. Smid, and J. Snoeyink. An optimal algorithm for the on-line closest-pair

problem. Algorithmica, 12:18{29, 1994.

[27] M. Smid. Dynamic rectangular point location, with an application to the closest pair

problem. Information and Computation, 116:1{9, 1995.

10.2 In Conference Proceedings

[1] S. Albers. A competitive analysis of the list update problem with lookahead. Proceedings

Mathematical Foundations of Computer Science (MFCS'94), 1994.

[2] S. Albers. Improved randomized on-line algorithms for the list update problem. Proceedings

6th ACM-SIAM Symposium on Discrete Algorithms (SODA'95), to appear, January 1995.

[3] S. Albers and H. Koga. New on-line algorithms for the page replication problem. In

Proceedings 4th Scandinavian Workshop on Algorithm Theory (SWAT'94). LNCS 824,

Springer Verlag, 1994.

84

The Algorithms and Complexity Group

[4] A. Andersson, T. Hagerup, J. H�astad, and O. Petersson. The complexity of searching a

sorted array of strings. In Proceedings 26th ACM Symposium on Theory of Computing

(STOC'94), pages 317{325, May 1994.

[5] S. Arikati, A. Maheshwari, and C. Zaroliagis. Saving bits made easy. In Proc. 6th Canadian

Conference on Computational Geometry (CCCG'94), pages 140{146, August 1994. Also

Tech. Rep. MPI-I-94-148, 1994.

[6] S.R. Arikati and A. Maheshwari. Realizing degree sequences in parallel. In Proc. 5th

ISAAC'94, Lecture Notes in Comp. Sci. (LNCS) 834:261{269, Springer-Verlag, 1994.

[7] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: short,

thin, and lanky. In Proc. 27th Annual ACM Symposium on the Theory of Computing

(STOC'95), to appear, 1995.

[8] S. Arya and D. M. Mount. Approximate range searching. In Proc. 11th Ann. ACM

Sympos. Comput. Geometry, to appear, 1995.

[9] S. Arya, D. M. Mount, and O. Narayan. Accounting for boundary e�ects in nearest

neighbor searching. In Proc. 11th Ann. ACM Sympos. Comput. Geometry, to appear,

1995. Also Tech. Rep. MPI-I-94-159.

[10] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm

for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM Sympos. Discrete

Algorithms, pages 573{582, January 1994.

[11] S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms for geo-

metric spanners of small diameter. In Proc. 35th Annu. IEEE Sympos. Found. Comput.

Sci. (FOCS), pages 703{712, 1994.

[12] S. Arya and M. Smid. E�cient construction of a bounded degree spanner with low weight.

In Proc. 2nd Annu. European Sympos. Algorithms (ESA), volume 855 of Lecture Notes in

Computer Science, pages 48{59, 1994.

[13] G. Barnes and U. Feige. Short random walks on graphs. In Proceedings 25th ACM

Symposium on Theory of Computing (STOC'93), pages 728{737, May 1993.

[14] Greg Barnes. A method for implementing lock-free shared data structures. In Proc. 5th

ACM Symposium on Parallel Algorithms and Architectures, 1993.

[15] P.G. Bradford, V. Choppella, and G.J.E. Rawlins. Lower bounds for the matrix chain

ordering problem. To appear in the Proceedings of LATIN '95, 1995.

[16] Phillip G. Braford, Jean-Yves Marion, and Lawrence S. Moss. The additive fragment

of linear logic is NC

1

-complete. In To appear in the Proceedings of the International

Conference in Logic and Computational Complexity, 1995.

[17] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line

segments: Theoretical and experimental results. In Algorithms - ESA'94. LNCS, Springer-

Verlag, September 1994.

85

The Algorithms and Complexity Group

[18] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. In

Proc. of the 5th ACM-SIAM Symp. on Discrete Algorithms, pages 16{23, 1994.

[19] S. Chaudhuri and D. Dubhashi. (Probabilistic) Recurrence Relations Revisited. In Pro-

ceedings II Latinamerican Symposium on Theoretical Informatics (LATIN '95), 1995. to

appear.

[20] S. Chaudhuri and T. Hagerup. Pre�x graphs and their applications. In Proc. 20th Inter-

national Workshop on Graph-Theoretic Concepts in Computer Science(WG 94), Springer

Lecture Notes in Computer Science, to appear.

[21] S. Chaudhuri and C. Zaroliagis. Shortest path queries in digraphs of small treewidth. In

Proc. 22nd Int'l Colloquium on Automata, Languages and Programming (ICALP'95), to

appear. LNCS, Springer-Verlag, 1995.

[22] B. Chlebus, A. Gambin, and P. Indyk. PRAM computations resilient to memory faults. In

Proc. 2nd Annual European Symposium on Algorithms (ESA '94), pages 401{412. LNCS

855, Springer-Verlag, 1994.

[23] Bogdan S. Chlebus, M. Kaufmann, and Jop F. Sibeyn. Deterministic permutation routing

on meshes. In Proc. 5th Symposium on Parallel and Distributed Processing, pages 814{821.

IEEE, 1993.

[24] A. Datta. E�cient parallel algorithms for geometric k-clustering problems. In Proc. 11th

Annual Symposium on Theoretical Aspects of Computer Science (STACS '94), pages 475{

486. LNCS 775, Springer-Verlag, 1994.

[25] O. Devillers, M.J. Golin, K. Kedem, and S. Schirra. Revenge of the dog: Queries on

Voronoi diagrams of moving points. In Proc. of the 6th Canadian Conference on Compu-

tational Geometry, pages 122{127, 1994.

[26] H. Djidjev, G. Pantziou, and C. Zaroliagis. On-line and dynamic algorithms for shortest

path problems. In Proc. 12th Symp. on Theoretical Aspects of Computer Science (STACS'

95), to appear. LNCS, Springer-Verlag, March 1995. Also Tech. Rep. MPI-I-94-114, 1994.

[27] D. Dubhashi, K. Mehlhorn, D. Ranjan, and C. Thiel. Searching, sorting and randomised al-

gorithms for central elements and ideal counting in posets. In Proceedings 13th Conference

on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'93),

pages 436{443. LNCS 761, Springer-Verlag, 1993. Also Technical Report MPI-I-93-154,

Max-Planck-Institut Saarbr�ucken, 1993.

[28] R. Fleischer. Decision trees : Old and new results. In Proc. 25th Symp. on Theory of

Computing (STOC'93), pages 468{477, May 1993. Also Technical Report MPI-I-92-125.

[29] R. Fleischer. A simple balanced search tree with O(1) worst-case update time. In Proc. 4th

International Symposium on Algorithms and Computation (ISAAC'93), pages 138{146.

LNCS 762, Springer Verlag, December 1993.

[30] N. Garg, H. Saran, and V.V. Vazirani. Finding separator cuts in planar graphs within twice

the optimal. In Proceedings, 35

th

Annual IEEE Symposium on Foundations of Computer

Science, pages 14{23, November 1994.

86

The Algorithms and Complexity Group

[31] P. Gupta, R. Janardan, and M. Smid. E�cient algorithms for generalized intersection

searching on non-iso-oriented objects. In Proc. 10th Annu. ACM Sympos. Comput. Geom.,

pages 369{378, 1994.

[32] P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and proximity problems

involving moving geometric objects. In Proc. 2nd Annu. European Sympos. Algorithms

(ESA), volume 855 of Lecture Notes in Computer Science, pages 278{289, 1994.

[33] P. Gupta, R. Janardan, and M. Smid. On intersection searching problems involving curved

objects. In Proc. 4th Scandinavian Workshop on Algorithm Theory (SWAT), volume 824

of Lecture Notes in Computer Science, pages 183{194, 1994.

[34] P. Gupta, R. Janardan, M. Smid, and B. Dasgupta. The rectangle enclosure and point-

dominance problems revisited. In Proc. 11th Ann. ACM Sympos. Comput. Geometry, to

appear, 1995. Also Tech. Rep. MPI-I-94-142.

[35] T. Hagerup. Optimal parallel string algorithms: Merging, sorting and computing the

minimum. In Proceedings, 26th Annual ACM Symposium on Theory of Computing (STOC

1994), pages 382{391, 1994.

[36] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizations of k-terminal

ow networks and computing network
ows in partial k-trees. In Proc. 6th Annual ACM-

SIAM Symposium on Discrete Algorithms, 1995.

[37] J. Hartmanis. The structure of the complexity of computations: a guided tour through

complexity classes. In Proc. of the IFIP 13th World Computer Congress on Technology

and Foundations: Information Processing '94, Vol. 1, pages 213{220. IFIP Transactions

/ A-51, Elsevier, 1994.

[38] J. Hartmanis and S. Chari. On the intellectual terrain around NP. In Proc. 2nd Italian

Conference on Algorithms and Complexity (CIAC '94), pages 1{11. LNCS 778, Springer-

Verlag, 1994.

[39] D. Kagaris, G. Pantziou, S. Tragoudas, and C. Zaroliagis. Quickest paths: Parallelization

and dynamization. In Proc. 28th Hawaii Int'l Conference on System Sciences (HICCS-28),

to appear, 1995.

[40] S. Kapoor and M. Smid. New techniques for exact and approximate dynamic closest-point

problems. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 165{174, 1994.

[41] Michael Kaufmann, Harald Lauer, and Heiko Schr�oder. Fast deterministic hot-potato

routing on processor arrays. In Proc. Annual International Symposium on Algorithms and

Computation, pages 333{341. Springer-Verlag, 1994.

[42] Michael Kaufmann, Uli Meyer, and Jop F. Sibeyn. Towards practical permutation routing

on meshes. In Proc. 6th Symposium on Parallel and Distributed Processing, pages 664{671.

IEEE, 1994. Also Tech. Rep. MPI-I-94-153, 1994.

[43] Michael Kaufmann, Jop F. Sibeyn, and Torsten Suel. Derandomizing algorithms for rout-

ing and sorting on meshes. In Proc. 5th Symposium on Discrete Algorithms, pages 669{679.

ACM-SIAM, 1994.

87

The Algorithms and Complexity Group

[44] D. Kavvadias, G. Pantziou, P. Spirakis, and C. Zaroliagis. E�cient sequential and parallel

algorithms for the negative cycle problem. In Proc. 5th Int'l Symp. on Algorithms and

Computation (ISAAC'94), pages 270{278. LNCS 834, Springer-Verlag, August 1994.

[45] D. Kavvadias, G. Pantziou, P. Spirakis, and C. Zaroliagis. Hammock-on-ears decomposi-

tion: A technique for the e�cient parallel solution of shortest paths and other problems.

In Proc. 19th Symp. on Mathematical Foundations of Comp. Science (MFCS '94), pages

462{472. LNCS 841, Springer-Verlag, August 1994. Also Tech. Rep. MPI-I-94-131, 1994.

[46] L. Kucera. Coloring k-colorable graphs in constant expected parallel time. In Proc. 19th In-

ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG'93), pages

167{176. LNCS 790, Springer-Verlag, 1994.

[47] H.-P. Lenhof and M. Smid. An animation of a �xed-radius all-nearest-neighbors algorithm.

In Proc. 10th Annual ACM Sympos. Comput. Geom., page 387, 1994.

[48] A. Maheshwari and A. Lingas. A simple optimal parallel algorithm for reporting paths

in a tree. In Proc. 11th Annual Symposium on Theoretical Aspects of Computer Science

(STACS '94), pages 487{495. LNCS 775, Springer-Verlag, 1994.

[49] K. Mehlhorn and S. N�aher. The implementation of geometric algorithms. In 13th

World Computer Congress IFIP94, volume 1, pages 223{231. Elsevier Science B.V. North-

Holland, Amsterdam, 1994.

[50] K. Mehlhorn, R. Sundar, and Ch. Uhrig. Maintaining dynamic sequences under equality

test in polylogarithmic time. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms

(SODA'94), pages 213{222, 1994.

[51] Sabine

�

Ohring, Jop F. Sibeyn, and Ondrej S�ykora. Optimal VLSI-layout for the e�cient

Petersen based interconnection network family. In Proc. 6th International Conference

Parallel and Distributed Computing and Systems, pages 121{124. IASTED, 1994. Also

Tech. Rep. TR-II-SAS-06/94/22, Institute for Informatics, Slovac Ac ademy of Sciences,

1994.

[52] Andrea Pietracaprina, Geppino Pucci, and Jop F. Sibeyn. Constructive deterministic

PRAM simulation on a mesh-connected computer. In Proc. 6th Symp. on Parallel Algo-

rithms and Architectures, pages 248{256. ACM, 1994.

[53] Ch. R�ub. Lower bounds for merging on the hypercube. Proc. 2nd Italian Conference on

Algorithms and Complexity, LNCS 778, pages 213{222, 1994.

[54] Ch. R�ub. On the average running time of odd-even merge sort. Proc. 12th Symposium on

Theoretical Aspects of Computer Science, STACS'95, 1995. To appear.

[55] Jop F. Sibeyn. Desnaki�cation of mesh sorting algorithms. In Proc. 2nd European

Symposium on Algorithms, LNCS 855, pages 337{390. Springer-Verlag, 1994. Also

Tech. Rep. MPI-I-94-102, 1994.

[56] Jop F. Sibeyn. Deterministic sorting on circular arrays. In Proc. 8th International Parallel

Processing Symposium, pages 406{410. IEEE, 1994.

88

The Algorithms and Complexity Group

[57] Jop F. Sibeyn. Independent sets and list ranking on meshes. In Proc. Computing Science

in the Netherlands, pages 271{280, Amsterdam, Netherlands, 1994. SION.

[58] Jop F. Sibeyn, Bogdan S. Chlebus, and Michael Kaufmann. Shorter queues for permu-

tation routing on meshes. In Proc. 19th Symposium on the Mathematical Foundations of

Computer Science, LNCS 841, pages 597{607. Springer-Verlag, 1994.

[59] Jop F. Sibeyn and Tim Harris. Exploiting locality in LT-RAM computation. In Proc. 4th

Scandinavian Workshop on Algorithm Theory, pages 338{349. Springer-Verlag, 1994.

[60] Jop F. Sibeyn and Michael Kaufmann. Deterministic 1-k routing on meshes. In Proc.

11th Symposium on Theoretical Aspects of Computer Science, LNCS 775, pages 237{248.

Springer-Verlag, 1994. Also Tech. Rep. MPI-I-93-163, 1993.

10.3 Technical Reports

� MPI{I{93{166

E�cient algorithms for generalized intersection searching on non-iso-oriented objects

Author(s): Prosenjit Gupta, Ravi Janardan, Michiel Smid

In a generalized intersection searching problem, a set S of colored geometric objects is to be preprocessed

so that, given a query object q, the distinct colors of the objects of S that are intersected by q can be

reported or counted e�ciently. These problems generalize the well-studied standard intersection searching

problems and are rich in applications. Unfortunately, the solutions known for the standard problems do

not yield e�cient solutions to the generalized problems. Recently, e�cient solutions have been given for

generalized problems where the input and query objects are iso-oriented, i.e., axes-parallel, or where the

color classes satisfy additional properties, e.g., connectedness. In this paper, e�cient algorithms are given

for several generalized problems involving non-iso-oriented objects. These problems include: generalized

halfspace range searching in R

d

, for any �xed d � 2, segment intersection searching, triangle stabbing, and

triangle range searching in R

2

. The techniques used include: computing suitable sparse representations

of the input, persistent data structures, and �ltering search.

� MPI{I{94{102

Desnaki�cation of mesh sorting algorithms (revised and extended version)

Author(s): Jop Sibeyn

In all recent near-optimal sorting algorithms for meshes, the packets are sorted with respect to some

snake-like indexing. Such algorithms are useless in many practical applications. In this paper we present

deterministic algorithms for sorting with respect to the more natural row-major indexing.

For 1-1 sorting on an n�n mesh, we give an algorithm that runs in 2 �n+o(n) steps, with maximal queue

size �ve. It is considerably simpler than earlier algorithms. Another algorithm performs k-k sorting in

k � n=2 + o(k � n) steps. Furthermore, we present uni-axial algorithms for row-major sorting. Uni-axial

algorithms have clear practical and theoretical advantages over bi-axial algorithms. We show that 1-1

sorting can be performed in 2

1

2

� n + o(n) steps. Alternatively, this problem is solved in 4

1

3

� n steps for

all n. For the practically important values of n, this algorithm is much faster than any algorithm with

good asymptotical performance.

� MPI{I{94{103

On the intellectual terrain around NP

Author(s): Suresh Chari, Juris Hartmanis

In this paper we view P

?

= NP as the problem which symbolizes the attempt to understand what is

and is not feasibly computable. The paper shortly reviews the history of the developments from G�odel's

1956 letter asking for the computational complexity of �nding proofs of theorems, through computational

complexity, the exploration of complete problems for NP and PSPACE, through the results of structural

complexity to the recent insights about interactive proofs.

89

The Algorithms and Complexity Group

� MPI{I{94{104

Komplexit�atstheorie und e�ziente Algorithmen

Editor: Rudolf Fleischer

This publication contains abstracts of the 22nd workshop on complexity theory and e�cient algorithms.

The workshop was held on February 8, 1994, at the Max Planck Institute for Computer Science,

Saarbr�ucken, Germany.

� MPI{I{94{105

An implementation of a convex hull algorithm: version 1.0

Author(s): Michael M�uller, Joachim Ziegler

We give an implementation of an incremental construction algorithm for convex hulls in IR

d

using Lit-

erate Programming and LEDA in C++. We treat convex hulls in arbitrary dimensions without any

non-degeneracy assumption. The main goal of this paper is to demonstrate the bene�ts of the literate

programming approach. We �nd that the time we spent for the documentation parts is well invested.

It leads to a much better understanding of the program and to much better code. Besides being easier

to understand and thus being much easier to modify, it is �rst at all much more likely to be correct. In

particular, a literate program takes much less time to debug. The di�erence between traditional straight

forward programming and literate programming is somewhat like the di�erence between having the idea to

a proof of some theorem in mind versus actually writing it down accurately (and thereby often recognizing

that the proof is not as easy as one thought).

� MPI{I{94{106

New on{line algorithms for the page replication problem

Author(s): Susanne Albers, Hisashi Koga

The page replication problem arises in the memory management of large multiprocessor systems. Given

a network of processors, each of which has its local memory, the problem consists of deciding which local

memories should contain copies of pages of data so that a sequence of memory accesses can be accom-

plished e�ciently. We present new competitive on-line algorithms for the page replication problem and

concentrate on important network topologies for which algorithms with a constant competitive factor can

be given. We develop the �rst optimal randomized on-line replication algorithm for trees and uniform

networks; its competitive factor is approximately 1.58. Furthermore we consider on-line replication algo-

rithms for rings and present general techniques that transform large classes of c-competitive algorithms

for trees into 2c-competitive algorithms for rings. As a result we obtain a randomized on-line algorithm

for rings that is 3.16-competitive. We also derive two 4-competitive on-line algorithms for rings which are

either deterministic or memoryless. All our algorithms improve the previously best competitive factors

for the respective topologies.

� MPI{I{94{110

Quickest paths: faster algorithms and dynamization

Author(s): Dimitrios Kagaris, Grammati E. Pantziou, Spyros Tragoudas, Christos D. Zaroliagis

Given a network N = (V;E; c; l), where G = (V;E), jV j = n and jEj = m, is a directed graph, c(e) > 0

is the capacity and l(e) � 0 is the lead time (or delay) for each edge e 2 E, the quickest path problem

is to �nd a path for a given source{destination pair such that the total lead time plus the inverse of the

minimum edge capacity of the path is minimal. The problem has applications to fast data transmissions

in communication networks. The best previous algorithm for the single pair quickest path problem runs

in time O(rm + rn log n), where r is the number of distinct capacities of N . In this paper, we present

algorithms for general, sparse and planar networks that have signi�cantly lower running times. For general

networks, we show that the time complexity can be reduced to O(r

�

m+ r

�

n log n), where r

�

is at most

the number of capacities greater than the capacity of the shortest (with respect to lead time) path in N .

For sparse networks, we present an algorithm with time complexity O(n log n + r

�

n + r

�

~
 log ~
), where

~
 is a topological measure of N . Since for sparse networks ~
 ranges from 1 up to �(n), this constitutes

an improvement over the previously known bound of O(rn log n) in all cases that ~
 = o(n). For planar

networks, the complexity becomes O(n log n+ n log

3

~
 + r

�

~
). Similar improvements are obtained for the

90

The Algorithms and Complexity Group

all{pairs quickest path problem. We also give the �rst algorithm for solving the dynamic quickest path

problem.

� MPI{I{94{111

On the width and roundness of a set of points in the plane

Author(s): Michiel Smid, Ravi Janardan

Let S be a set of points in the plane. The width (resp. roundness) of S is de�ned as the minimum width

of any slab (resp. annulus) that contains all points of S. We give a new characterization of the width of a

point set. Also, we give a rigorous proof of the fact that either the roundness of S is equal to the width of

S, or the center of the minimum-width annulus is a vertex of the closest-point Voronoi diagram of S, the

furthest-point Voronoi diagram of S, or an intersection point of these two diagrams. This proof corrects

the characterization of roundness used extensively in the literature.

� MPI{I{94{112

On-line and dynamic shortest paths through graph decompositions (preliminary ver-

sion)

Author(s): Hristo N. Djidjev, Grammati E. Pantziou, Christos D. Zaroliagis

We describe algorithms for �nding shortest paths and distances in a planar digraph which exploit the

particular topology of the input graph. We give both sequential and parallel algorithms that work on

a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. For

outerplanar digraphs, for instance, the data structures can be updated after any such change in only

O(log n) time, where n is the number of vertices of the digraph. The parallel algorithms presented here

are the �rst known ones for solving this problem. Our results can be extended to hold for digraphs of

genus o(n).

� MPI{I{94{113

Fast algorithms for collision and proximity problems involving moving geometric

objects

Author(s): Prosenjit Gupta, Ravi Janardan, Michiel Smid

Consider a set of geometric objects, such as points, line segments, or axes-parallel hyperrectangles in IR

d

,

that move with constant but possibly di�erent velocities along linear trajectories. E�cient algorithms are

presented for several problems de�ned on such objects, such as determining whether any two objects ever

collide and computing the minimum inter-point separation or minimum diameter that ever occurs. The

strategy used involves reducing the given problem on moving objects to a di�erent problem on a set of

static objects, and then solving the latter problem using techniques based on sweeping, orthogonal range

searching, simplex composition, and parametric search.

� MPI{I{94{114

On{line and dynamic algorithms for shortest path problems

Author(s): Hristo N. Djidjev, Grammati E. Pantziou, Christos D. Zaroliagis

We describe algorithms for �nding shortest paths and distances in a planar digraph which exploit the

particular topology of the input graph. An important feature of our algorithms is that they can work

in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. For

outerplanar digraphs, for instance, the data structures can be updated after any such change in only

O(log n) time, where n is the number of vertices of the digraph. We also describe the �rst parallel

algorithms for solving the dynamic version of the shortest path problem. Our results can be extended to

hold for digraphs of genus o(n).

� MPI{I{94{115

E�cient construction of a bounded degree spanner with low weight

Author(s): Sunil Arya, Michiel Smid

Let S be a set of n points in IR

d

and let t > 1 be a real number. A t-spanner for S is a graph having the

points of S as its vertices such that for any pair p; q of points there is a path between them of length at

most t times the euclidean distance between p and q.

91

The Algorithms and Complexity Group

An e�cient implementation of a greedy algorithm is given that constructs a t-spanner having bounded

degree such that the total length of all its edges is bounded by O(log n) times the length of a minimum

spanning tree for S. The algorithm has running time O(n log

d

n). Also, an application to the problem of

distance enumeration is given.

� MPI{I{94{117

On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm

Author(s): Kurt Mehlhorn, Petra Mutzel

We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing

algorithm. The embedding phase runs in linear time. An implementation based on this paper can be

found in [Mehlhorn-Mutzel-Naeher-94].

� MPI{I{94{119

Time{space lower bounds for directed s-t connectivity on JAG models

Author(s): Greg Barnes, Je� A. Edmonds

Directed s-t connectivity is the problem of detecting whether there is a path from a distinguished vertex

s to a distinguished vertex t in a directed graph. We prove time-space lower bounds of ST =
(n

2

= log n)

and S

1=2

T =
(mn

1=2

) for Cook and Racko�'s JAG model, where n is the number of vertices and m the

number of edges in the input graph, and S is the space and T the time used by the JAG. We also prove a

time-space lower bound of S

1=3

T =
(m

2=3

n

2=3

) on the more powerful node-named JAG model of Poon.

These bounds approach the known upper bound of T = O(m) when S = �(n log n).

� MPI{I{94{120

A method for implementing lock-free shared data structures

Author(s): Greg Barnes

We are interested in implementing data structures on shared memory multiprocessors. A natural model

for these machines is an asynchronous parallel machine, in which the processors are subject to arbitrary

delays. On such machines, it is desirable for algorithms to be lock-free, that is, they must allow concurrent

access to data without using mutual exclusion. E�cient lock-free implementations are known for some

speci�c data structures, but these algorithms do not generalize well to other structures. For most data

structures, the only previously known lock-free algorithm is due to Herlihy. Herlihy presents a simple

methodology to create a lock-free implementation of a general data structure, but his approach can be

very expensive.

We present a technique that provides the semantics of exclusive access to data without using mutual ex-

clusion. Using this technique, we devise the caching method, a general method of implementing lock-free

data structures that is provably better than Herlihy's methodology for many well-known data structures.

The cost of one operation using the caching method is proportional to T log T , where T is the sequential

cost of the operation. Under Herlihy's methodology, the cost is proportional to T +C, where C is the time

needed to make a logical copy of the data structure. For many data structures, such as arrays and well

connected pointer-based structures (e.g., a doubly linked list), the best known value for C is proportional

to the size of the structure, making the copying time much larger than the sequential cost of an opera-

tion. The new method can also allow concurrent updates to the data structure; Herlihy's methodology

cannot. A correct lock-free implementation can be derived from a correct sequential implementation in a

straightforward manner using this method. The method is also
exible; a programmer can change many

of the details of the default implementation to optimize for a particular pattern of data structure use.

� MPI{I{94{121

Short random walks on graphs

Author(s): Greg Barnes, Uriel Feige

We study the short term behavior of random walks on graphs, in particular, the rate at which a random

walk discovers new vertices and edges. We prove a conjecture by Linial that the expected time to �nd

N distinct vertices is O(N

3

). We also prove an upper bound of O(M

2

) on the expected time to traverse

M edges, and O(MN) on the expected time to either visit N vertices or traverse M edges (whichever

comes �rst).

92

The Algorithms and Complexity Group

� MPI{I{94{122

Realizing degree sequences in parallel

Author(s): Srinivasa Arikati, Anil Maheshwari

A sequence d of integers is a degree sequence if there exists a (simple) graph G such that the components

of d are equal to the degrees of the vertices of G. The graph G is said to be a realization of d. We provide

an e�cient parallel algorithm to realize d. Before our result, it was not known if the problem of realizing

d is in NC.

� MPI{I{94{131

Hammock-on-ears decomposition:

A technique for the e�cient parallel solution of shortest paths and other problems

Author(s): Dimitris Kavvadias, Grammati E. Pantziou, Paul Spirakis, Christos D. Zaroliagis

We show how to decompose e�ciently in parallel any graph into a number, ~
, of outerplanar subgraphs

(called hammocks) satisfying certain separator properties. Our work combines and extends the sequen-

tial hammock decomposition technique introduced by G. Frederickson and the parallel ear decomposition

technique, thus we call it the hammock-on-ears decomposition. We mention that hammock-on-ears decom-

position also draws from techniques in computational geometry and that an embedding of the graph does

not need to be provided with the input. We achieve this decomposition in O(log n log log n) time using

O(n +m) CREW PRAM processors, for an n-vertex, m-edge graph or digraph. The hammock-on-ears

decomposition implies a general framework for solving graph problems e�ciently. Its value is demon-

strated by a variety of applications on a signi�cant class of (di)graphs, namely that of sparse (di)graphs.

This class consists of all (di)graphs which have a ~
 between 1 and �(n), and includes planar graphs and

graphs with genus o(n). We improve previous bounds for certain instances of shortest paths and related

problems, in this class of graphs. These problems include all pairs shortest paths, all pairs reachability,

and detection of a negative cycle.

� MPI{I{94{136

Near{optimal distributed edge coloring

Author(s): Devdatt Dubhashi, Alessandro Panconesi

We give a distributed randomized algorithm to edge color a network. Given a graph G with n nodes and

maximum degree �, the algorithm,

{ For any �xed � > 0, colours G with (1 + �)� colours in time O(log n).

{ For any �xed positive integer s, colours G with �+

�

(log �)

s

= (1+o(1))� colours in time O(log n+

log

2s

� log log �).

Both results hold with probability arbitrarily close to 1 as long as �(G) =
(log

1+d

n), for some d > 0.

The algorithm is based on the R�odl Nibble, a probabilistic strategy introduced by Vojtech R�odl. The

analysis involves a certain pseudo{random phenomenon involving sets at the vertices of the graph.

� MPI{I{94{137

Improved parallel integer sorting without concurrent writing

Author(s): Susanne Albers, Torben Hagerup

We show that n integers in the range 1 : : n can be stably sorted on an EREW PRAM using O(t) time

and O(n(

p

log n log log n+(log n)

2

=t)) operations, for arbitrary given t � log n log log n, and on a CREW

PRAM using O(t) time and O(n(

p

log n + log n=2

t=log n

)) operations, for arbitrary given t � log n. In

addition, we are able to sort n arbitrary integers on a randomized CREW PRAM within the same

resource bounds with high probability. In each case our algorithm is a factor of almost �(

p

log n) closer

to optimality than all previous algorithms for the stated problem in the stated model, and our third result

matches the operation count of the best known sequential algorithm. We also show that n integers in

the range 1 : :m can be sorted in O((log n)

2

) time with O(n) operations on an EREW PRAM using a

nonstandard word length of O(log n log log n logm) bits, thereby greatly improving the upper bound on

the word length necessary to sort integers with a linear time-processor product, even sequentially. Our

algorithms were inspired by, and in one case directly use, the fusion trees of Fredman and Willard.

93

The Algorithms and Complexity Group

� MPI{I{94{142

The rectangle enclosure and point-dominance problems revisited

Author(s): Prosenjit Gupta, Ravi Janardan, Michiel Smid, Bhaskar Dasgupta

We consider the problem of reporting the pairwise enclosures among a set of n axes-parallel rectangles in

IR

2

, which is equivalent to reporting dominance pairs in a set of n points in IR

4

. For more than ten years,

it has been an open problem whether these problems can be solved faster than in O(n log

2

n + k) time,

where k denotes the number of reported pairs. First, we give a divide-and-conquer algorithm that matches

the O(n) space and O(n log

2

n + k) time bounds of the algorithm of Lee and Preparata, but is simpler.

Then we give another algorithm that uses O(n) space and runs in O(n log n log log n + k log log n) time.

For the special case where the rectangles have at most � di�erent aspect ratios, we give an algorithm

that runs in O(�n log n + k) time and uses O(n) space.

� MPI{I{94{143

Some correlation inequalities for probabilistic analysis of algorithms

Author(s): Devdatt Dubhashi, Desh Ranjan

The analysis of many randomized algorithms, for example in dynamic load balancing, probabilistic divide-

and-conquer paradigm and distributed edge-coloring, requires ascertaining the precise nature of the cor-

relation between the random variables arising in the following prototypical \balls-and-bins" experiment.

Suppose a certain number of balls are thrown uniformly and independently at random into n bins. Let

X

i

be the random variable denoting the number of balls in the ith bin, i 2 [n]. These variables are clearly

not independent and are intuitively negatively related. We make this mathematically precise by proving

the following type of correlation inequalities:

{ For index sets I; J � [n] such that I \ J = ; or I [J = [n], and any non{negative integers t

I

; t

J

,

Pr[

X

i2I

X

i

� t

I

j

X

j2J

X

j

� t

J

] � Pr[

X

i2I

X

i

� t

I

]:

{ For any disjoint index sets I;J � [n], any I

0

� I; J

0

� J and any non{negative integers t

i

; i 2 I

and t

j

; j 2 J

Pr[

^

i2I

X

i

� t

i

j

^

j2J

X

j

� t

j

] � Pr[

^

i2I

0

X

i

� t

i

j

^

j2J

0

X

j

� t

j

]:

Although these inequalities are intuitively appealing, establishing them is non{trivial; in particular, direct

counting arguments become intractable very fast. We prove the inequalities of the �rst type by an

application of the celebrated FKG Correlation Inequality. The proof for the second uses only elementary

methods and hinges on some monotonicity properties.

More importantly, we then introduce a general methodology that may be applicable whenever the random

variables involved are negatively related. Precisely, we invoke a general notion of negative association of

random variables and show that:

{ The variables X

i

are negatively associated. This yields most of the previous results in a uniform

way.

{ For a set of negatively associated variables, one can apply the Cherno�-Hoe�ding bounds to the

sum of these variables. This provides a tool that facilitates analysis of many randomized algorithms,

for example, the ones mentioned above.

� MPI{I{94{144

Stochastic majorisation: exploding some myths

Author(s): Devdatt Dubhashi, Desh Ranjan

The analysis of many randomised algorithms involves random variables that are not independent, and

hence many of the standard tools from classical probability theory that would be useful in the analysis,

such as the Cherno�{Hoe�ding bounds are rendered inapplicable. However, in many instances, the

random variables involved are, nevertheless negatively related in the intuitive sense that when one of

the variables is \large", another is likely to be \small". (this notion is made precise and analysed in

[1].) In such situations, one is tempted to conjecture that these variables are in some sense stochastically

94

The Algorithms and Complexity Group

dominated by a set of independent random variables with the same marginals. Thereby, one hopes

to salvage tools such as the Cherno�{Hoe�ding bound also for analysis involving the dependent set of

variables. The analysis in [6, 7, 8] seems to strongly hint in this direction. In this note, we explode myths

of this kind, and argue that stochastic majorisation in conjunction with an independent set of variables

is actually much less useful a notion than it might have appeared.

� MPI{I{94{145

Pre�x graphs and their applications

Author(s): Shiva Chaudhuri, Torben Hagerup

The range product problem is, for a given set S equipped with an associative operator �, to preprocess a

sequence a

1

; : : : ; a

n

of elements from S so as to enable e�cient subsequent processing of queries of the

form: Given a pair (s; t) of integers with 1 � s � t � n, return a

s

� a

s+1

� � � � � a

t

. The generic range

product problem and special cases thereof, usually with � computing the maximum of its arguments

according to some linear order on S, have been extensively studied. We show that a large number of

previous sequential and parallel algorithms for these problems can be uni�ed and simpli�ed by means of

pre�x graphs.

� MPI{I{94{147

E�cient collision detection for moving polyhedra

Author(s): Elmar Sch�omer, Christian Thiel

In this paper we consider the following problem: given two general polyhedra of complexity n, one of

which is moving translationally or rotating about a �xed axis, determine the �rst collision (if any) between

them. We present an algorithm with running time O(n

8=5+�

) for the case of translational movements and

running time O(n

5=3+�

) for rotational movements, where � is an arbitrary positive constant. This is the

�rst known algorithm with sub-quadratic running time.

� MPI{I{94{148

E�cient computation of compact representations of sparse graphs

Author(s): Srinivasa Arikati, Anil Maheshwari, Christos D. Zaroliagis

Sparse graphs (e.g. trees, planar graphs, relative neighborhood graphs) are among the commonly used

data-structures in computational geometry. The problem of �nding a compact representation for sparse

graphs such that vertex adjacency can be tested quickly is fundamental to several geometric and graph

algorithms. We provide here simple and optimal algorithms for constructing a compact representation

of O(n) size for an n-vertex sparse graph such that the adjacency can be tested in O(1) time. Our

sequential algorithm runs in O(n) time, while the parallel one runs in O(log n) time using O(n=log n)

CRCW PRAM processors. Previous results for this problem are based on matroid partitioning and thus

have a high complexity.

� MPI{I{94{149

Revenge of the dog: queries on Voronoi diagrams of moving points

Author(s): Oliver Devillers, Mordecai Golin, Stefan Schirra, Klara Kedem

Suppose we are given n moving postmen described by their motion equations p

i

(t) = s

i

+v

i

t; i = 1; : : : ; n,

where s

i

2 IR

2

is the position of the i'th postman at time t = 0, and v

i

2 IR

2

is his velocity. The problem

we address is how to preprocess the postmen data so as to be able to e�ciently answer two types of

nearest neighbor queries. The �rst one asks who is the nearest postman at time t

q

to a dog located at

point s

q

. In the second type a fast query dog is located a point s

q

at time t

q

, its velocity is v

q

where

v

q

> jv

i

j for all i = 1; : : : ; n, and we want to know which postman the dog can catch �rst. We present

two solutions to these problems. Both solutions use deterministic data structures.

� MPI{I{94{150

On characteristic points and approximate decision algorithms for the minimumHaus-

dor� distance

Author(s): L. Paul Chew, Klara Kedem, Stefan Schirra

We investigate approximate decision algorithms for determining whether the minimum Hausdor� distance

between two points sets (or between two sets of nonintersecting line segments) is at most ". An approx-

imate decision algorithm is a standard decision algorithm that answers yes or no except when " is in

95

The Algorithms and Complexity Group

an indecision interval where the algorithm is allowed to answer don't know. We present algorithms

with indecision interval [��
; �+
] where � is the minimum Hausdor� distance and
 can be chosen by

the user. In other words, we can make our algorithm as accurate as desired by choosing an appropriate

. For two sets of points (or two sets of nonintersecting lines) with respective cardinalities m and n

our approximate decision algorithms run in time O(("=
)

2

(m+ n) log(mn)) for Hausdor� distance under

translation, and in time O(("=
)

2

mn log(mn)) for Hausdor� distance under Euclidean motion.

� MPI{I{94{153

Towards practical permutation routing on meshes

Author(s): Michael Kaufmann, Uli Meyer, Jop F. Sibeyn

We consider the permutation routing problem on two-dimensional n � n meshes. To be practical, a

routing algorithm is required to ensure very small queue sizes Q, and very low running time T , not only

asymptotically but particularly also for the practically important n up to 1000. With a technique inspired

by a scheme of Kaklamanis/Krizanc/Rao, we obtain a near-optimal result: T = 2 � n+O(1) with Q = 2.

Although Q is very attractive now, the lower order terms in T make this algorithm highly impractical.

Therefore we present simple schemes which are asymptotically slower, but have T around 3 � n for all n

and Q between 2 and 8.

� MPI{I{94{155

Lecture notes: selected topics in data structures

Author(s): Michiel Smid

This text contains the lecture notes for the course Ausgew�ahlte Kapitel aus Datenstrukturen, which was

given by the author at the Universit�at des Saarlandes during the winter semester 1993/94. The course

was intended for 3rd/4th year students having some basic knowledge in the �eld of algorithm design.

The following topics are covered: Skip Lists, the Union-Find Problem, Range Trees and the Post-O�ce

Problem, and Maintaining Order in List.

� MPI{I{94{156

Dynamic algorithms for geometric spanners of small diameter: randomized solutions

Author(s): Sunil Arya, David M. Mount, Michiel Smid

Let S be a set of n points in IR

d

and let t > 1 be a real number. A t-spanner for S is a directed graph

having the points of S as its vertices, such that for any pair p and q of points there is a path from p to q

of length at most t times the Euclidean distance between p and q. Such a path is called a t-spanner path.

The spanner diameter of such a spanner is de�ned as the smallest integer D such that for any pair p and

q of points there is a t-spanner path from p to q containing at most D edges.

A randomized algorithm is given for constructing a t-spanner that, with high probability, contains O(n)

edges and has spanner diameter O(log n). A data structure of size O(n log

d

n) is given that maintains

this t-spanner in O(log

d

n log log n) expected amortized time per insertion and deletion, in the model of

random updates, as introduced by Mulmuley.

Previously, no results were known for spanners with low spanner diameter and for maintaining spanners

under insertions and deletions.

� MPI{I{94{158

Further improvements of Steiner tree approximations

Author(s): Marek Karpinski, Alexander Zelikovsky

The Steiner tree problem requires to �nd a shortest tree connecting a given set of terminal points in a

metric space. We suggest a better and fast heuristic for the Steiner problem in graphs and in rectilinear

plane. This heuristic �nds a Steiner tree at most 1.757 and 1.267 times longer than the optimal solution

in graphs and rectilinear plane, respectively.

� MPI{I{94{159

Accounting for boundary e�ects in nearest neighbor searching

Author(s): Sunil Arya, Dave Mount, Onuttom Narayan

Most analyses of nearest neighbor searching algorithms have been made under the assumption that the

number of data points is very large. This assumption simpli�es the analysis by eliminating boundary

96

The Algorithms and Complexity Group

e�ects, because for any query point the statistical distribution of the data points surrounding it is inde-

pendent of the location of the query point. This assumption is often not met in applications such as vector

quantization, where there is a relationship between dimension and the number of points. We provide an

accurate analysis of the number of buckets visited in L

1

nearest neighbor searching by the bucketing and

k-d tree algorithms, assuming 2

d

points uniformly distributed in dimension d. Our analysis is tight in the

limit as d approaches in�nity. Empirical evidence is presented showing that the analysis applies even in

low dimensions.

� MPI{I{94{160

Implementation of a sweep line algorithm for the straight line segment intersection

problem

Author(s): Kurt Mehlhorn and Stefan N�aher

We describe a robust and e�cient implementation of the Bentley-Ottmann sweep line algorithm based

on the LEDA library of e�cient data types and algorithms. The program computes the planar graph

G induced by a set S of straight line segments in the plane. The nodes of G are all endpoints and all

proper intersection points of segments in S. The edges of G are the maximal relatively open subsegments

of segments in S that contain no node of G. All edges are directed from left to right or upwards. The

algorithm runs in time O((n+ s)logn) where n is the number of segments and s is the number of vertices

of the graph G. The implementation uses exact arithmetic for the reliable realization of the geometric

primitives and it uses
oating point �lters to reduce the overhead of exact arithmetic.

� MPI{I{94{162

On the parallel complexity of degree sequence problems

Author(s): Srinivasa R. Arikati

An integer sequence d is called a degree sequence if there exists a simple graph G such that the degrees

of its vertices are precisely the components of d; in that case, G is a realization of d. Given d and an

integer k, we study two problems: (i) compute a k-edge-connected realization of d, (ii) compute a k-

vertex-connected realization of d. The main contributions of this paper are the �rst parallel algorithms

for these problems. Speci�cally, we show that problem (i) can be solved in

~

O(k) time using a polynomial

number of processors. For problem (ii) we present an e�cient algorithm when k = 2; the algorithm runs

in logarithmic time using a linear number of processors.

97

Part III

The Programming Logics Group

The Programming Logics Group

1 Personnel

Director:

Harald Ganzinger

Researchers:

David Basin

Alexander Bockmayr

Michael Hanus ({December 1994)

Se�an Matthews

Hans J�urgen Ohlbach

Andreas Podelski (October 94{)

Rolf Socher ({February 1994)

Post-doctoral fellows and Guests:

Penny Anderson (previously at INRIA Sophia Antipolis)

Yannis Dimopoulos ({July 1994; previously at University of Athens)

Peter Madden (previously at the University of Edinburgh)

Sergei Vorobyov (previously at INRIA-Lorraine & CRIN)

Emil Weydert (previously at IMS Stuttgart)

Ph.D. students:

Peter Barth

Hubert Baumeister

Detlef Fehrer ({October 1994)

Peter Graf

J�orn Hopf

Ullrich Hustadt

Manfred Jaeger

Thomas Kasper

Andreas Nonnengart

Renate Schmidt

Georg Struth

J�urgen Stuber

Andreas T�onne

Uwe Waldmann

Christoph Weidenbach

Luca Vigan�o

Frank Zartmann

Secretaries:

Ellen Fries

Christine Kiesel (March 1994{)

Ellen Schreck ({March 1994)

101

The Programming Logics Group

2 Visitors

Since December 1993, the following researchers (28 in total) have visited, or are visiting, our

group.

1994

Dov Gabbay 01.07.91{01.07.95 Imperial College, London

Dragan Cvetkovic 01.07.92{01.01.94 University of Yugoslavia

Witold Charatonik 01.06.93{01.08.93 University of Wroclaw

Leo Bachmair 01.07.93{01.07.94 SUNY at Stony Brook

David Plaisted 01.08.93{01.08.94 University of North Carolina

Leszek Pacholski 22.11.93 University of Wroclaw

Shahid Rahman 01.01.94{01.04.95 Universit�at des Saarlandes

Jerzy Marcinkowski 01.01.94{01.02.94 University of Wroclaw

Chris Brink 01.01.94{01.02.94 University of Cape Town

Helge Ritter 09.02.94{10.02.94 Universit�at Bielefeld

Christoph Brzoska 22.02.94 Universit�at Karlsruhe

Robert Nieuwenhuis 24.02.94{26.02.94 Universidad Politecnica

de Cataluna

Ta Chen 01.03.94{01.04.94 SUNY at Stony Brook

Scot Drysdale 01.03.94 Dartmouth College

Janusz Miroforidis 01.04.94{01.06.94 University of Wroclaw

Pierre Lescanne 21.04.94{22.04.94 INRIA-Lorraine & CRIN

Zhenyu Qian 26.04.94 Universit�at Bremen

Madala Rama

Koteswara Krishna Rao 01.05.94{01.08.94 Tata Institute, Bombay

Penny Anderson 19.05.94{20.05.94 INRIA, Sophia-Antipolis

Alex Simpson 17.06.94{25.06.94 University of Edinburgh

Matt Kaufmann 05.07.94 Computational Logic Inc.

Peter B. Andrews 06.07.94 Carnegie Mellon University

Kai Hauser 04.07.94{06.07.94 UCA at Berkeley

Alan Bundy 01.09.94{01.12.94 University of Edinburgh

Ernst-R�udiger Olderog 05.12.94{17.12.94 Universit�at Oldenburg

1995

Michael Maher 16.01.95{17.01.95 IBM at Yorktown Heights

Bernhard Ste�en 16.01.95{17.01.95 Universit�at Passau

Tiziana Margaria 16.01.95{17.01.95 Universit�at Passau

102

The Programming Logics Group

3 Executive Summary

The research unit `Programming Logics' applies methods of mathematical logic to a variety of

problems in computer science. Computation is deduction, a principle that is taken literally in

the area of Logic Programming. Formal speci�cations of software and hardware are formulae

in logical systems. Program development and veri�cation is based on proving theorems about

speci�cations and programs. Computation often means to simulate some model of the real

world. While in logic programming and in program synthesis and veri�cation one applies, to a

large extent, the classical logics known from mathematics, simulation of the real world requires

logics that allow us to treat incomplete and changing knowledge and to reason about beliefs,

wishes, knowledge, and the like, of their agents. For this purpose so called `non-classical' logics

have to be designed, investigated and applied.

Our work is both theoretical and practical in nature. A large fraction of it is essentially

concerned with searching for new and better methods for �nding proofs with the support of

a computer. As the practical worth of results in this area can often not be judged from the

theory alone, we are engaged in various implementation projects in which we try to obtain

experimental evidence of the practical potential of our results.

During the last year it has become more and more evident that a unifying theme of the

broad spectrum of research within the group is how to exploit mathematical techniques within

meta-mathematical reasoning. Axiomatic presentations of theories, like software and hardware

systems, are not just unstructured collections of formulae. Often they contain axiomatizations

of standard mathematical theories such as numbers, orderings, sets, on top of which other struc-

tures of a less fundamental nature are de�ned. Speci�c reasoning in non-standard logics might

be considered as attempts to distinguish certain structures by moving them to the meta-level.

For instance, modal logic might be conceived as an approach to capturing certain interesting

classes of binary relations (accessibility relations) within predicate logic formulations. Talking

about mathematics, mathematical logic, is meta-mathematics. But at the same time it is, it-

self, a mathematical discipline. Propositional logic is a logic and also a (Boolean) algebra. For

a theorem prover to be useful in practice it should not just implement search in uninterpreted

spaces of formulas; it should apply mathematics wherever possible, whereas search should be

con�ned to the uninterpreted symbols of a more ad hoc nature as they correspond to entities

of data, programs or hardware that one is specifying. On the level of programming, the CLP

approach explicitly applies this principle by o�ering a well-de�ned interface between constraint

solvers and general execution principles such as resolution or reduction.

Let us brie
y survey the major results in our main research areas.

Non-Classical Logics (Hans J�urgen Ohlbach)

In this area we investigate non-monotonic logics, in particular default reasoning or probabilistic

reasoning, we look at modal logics as a compromise between e�ciency and expressibility, and

we study the relation between logics and algebras.

Hans J�urgen Ohlbach has proved a representation theorem for distributive lattices with

(extra) function symbols. He has shown how to obtain from the axiomatic speci�cation of such

a logic a second-order formula that completely describes all its representations. A wide class

of logics can be treated in this way. From the second-order formulation it is often possible to

obtain an equivalent �rst-order presentation automatically by applying the quanti�er elimina-

tion procedure SCAN that has now been implemented and provided with various interfaces.

The �rst-order formulation may then serve as a basis for proving theorems in the given logic

by applying standard methods.

103

The Programming Logics Group

Renate Schmidt has improved de Rijke's representation theorem for Peirce algebras. She

has shown that one of his two pre-conditions for the theorem is, in fact, unnecessary.

Andreas Nonnengart has investigated strategies for the �nite saturation of �rst-order trans-

lations of certain modal logics. If such a presentation can be �nitely saturated, theorem proving

within that modal logic becomes much more e�cient as inferences between logical axioms are

no longer needed. His semi-functional translation method seems to be quite e�ective in this

respect. In some cases, saturated presentations of a logic can be obtained mechanically with

the Saturate system.

Manfred Jaeger is pursuing an approach for probabilistic reasoning in which both statistical

and subjective probabilities are modelled by probability measures on the domain. He proposes

to use cross-entropy as a measure for the dissimilarity of two probability measures, and has

been able to justify this choice not only with respect to desired logical behaviour but also from

statistical considerations. From an epistemological analysis of default reasoning principles he

derives a statistical model that in fact validates the cross-entropy minimization principle for

default reasoning about probabilities.

Logic Programming (Alexander Bockmayr, Michael Hanus)

We have continued our research on CLP(PB) and on the e�cient integration of functions in

logic programming by suitably designed program analysis and narrowing strategies.

Michael Hanus, in cooperation with Antoy and Echahed, has exhibited an optimal narrowing

strategy for inductively sequential rewrite systems. The approach extends the concept of needed

redexes (Huet and L�evy) to narrowing derivations. The result has then been further generalized

to other classes of rewrite systems.

LSE narrowing, which is an optimal strategy for a di�erent class of rewrite systems, has

been further investigated by Alexander Bockmayr, in cooperation with Andreas Werner. They

have generalized LSE Narrowing to conditional term rewriting and shown how implementations

can be designed so that repeated tests for irreducibility of substitutions are to a large extent

avoided.

In CLP(PB) one allows for pseudo-Boolean constraints in logic programs. CLP(PB) ad-

mits a high-level, natural formulation of optimization problems. 0-1 constraint satisfaction is

NP-complete and poses a di�cult practical problem. Peter Barth and Alexander Bockmayr

have made considerable progress in �nding a complete, yet practically useful constraint solving

method. To that end they have succeeded in combining polyhedral methods from mathematical

programming with simpli�cation techniques from automated deduction. They propose solv-

ing constraints by successively computing certain consequences, called cutting planes, thereby

eventually converging to certain solved forms of the constraint. Inferences which are at the

same time simpli�cations are preferred. The result is a logic-based and/or polyhedral branch-

and-cut algorithm for pseudo-Boolean constraint solving. The method can also be applied with

success to certain di�cult classes of propositional satis�ability problems.

Higher-Order Logic (David Basin, Se�an Matthews)

Under this rather general headline we study at present program synthesis calculi, formalized

metatheory and realizations of labelled deductive systems.

FS

0

, a logic which is intended for doing metatheory, has been implemented in Isabelle by

Se�an Matthews. The implementation demonstrates that FS

0

is a usable theory and may be

regarded as a successful case study in implementing an unusual logic in a logical framework.

David Basin, Se�an Matthews and Luca Vigan�o have looked at the problem of formalizing

\badly behaved" logics in natural deduction-style type theories such as Isabelle or the Ed-

104

The Programming Logics Group

inburgh LF. Labelled deductive systems have been proposed as a mechanism in which \bad

behaviour" of a logic can be quite elegantly coded as computation with labels. Our experience

with implementing modal logics with the LDS methodology in the Isabelle framework has been

very positive. The implementation is modular in the sense that it is independent of the speci�c

properties of the accessibility relations and we expect that this modularity will allow us to

de�ne speci�c e�cient tactics for proof search.

David Basin has continued his work on using logical frameworks for formalizing program

development calculi. In his formalizations program synthesis and program veri�cations are just

two sides of the same coin. A correctness proof may start with a metavariable for the program

in question, and, upon its completion, will then return a correct program as an instantiation for

this variable. Higher-order resolution which e�ects such instantiation remains implicit. Hence

he arrives at very simple reformulations of previously proposed calculi in which one is able to

also formally prove the correctness of more advanced methods of program development from

�rst principles.

David Basin, in cooperation with Nils Klarlund, has shown how to apply the second-order

monadic logic of strings to specifying (and verifying) hardware modules in a way that is in-

dependent of their word length, thereby making the regular structure of such devices explicit.

Veri�cation is in this case fully automatic and practical because of the use of state-of-the-art

OBBD technology inside an implementation of a �nite version of S1S, called MONA, that they

have done at Aarhus. For instance they have been able to identify and to correct certain errors

in a previous speci�cation of a D-type
ip-
op.

Automated Theorem Proving for Predicate Logic (H. Ganzinger)

Leo Bachmair and Harald Ganzinger have extended their framework for saturation-based the-

orem proving for �rst-order logic with equality to arbitrary transitive relations, in particular

partial equivalences, orderings and accessibility relations in modal logics. Superposition was

generalized to ordered chaining, an ordered, clausal version of transitivity. They have been

able to improve previous theoretical results by Bledsoe, Hines, Shostak, and others consid-

erably. One of the main improvements is that one can now treat several transitive relations

simultaneously, even if their additional logical properties are di�erent. In addition, questions of

completeness in the presence of simpli�cation techniques have been analysed. The problem of

chaining through variables has been explored and positively solved for many interesting cases of

transitive relations. These results have been implemented in a theorem prover, Saturate, that

has been developed in cooperation with Pilar Nivela and Robert Nieuwenhuis. Initial practical

experience that has been obtained with this implementation is very promising.

Leo Bachmair, Harald Ganzinger and J�urgen Stuber have started to combine algebraic

methods such as Buchberger's algorithm into their calculi. The goal is to avoid the naive

computation with the axioms of an algebraic theory, e.g., the axioms of a commutative ring, but

rather compile their e�ect into speci�c inference and simpli�cation techniques. Simpli�cation

plays a major role in this respect since algebra is mainly a theory of normal forms. As a �rst step

they have extended superposition to the AC-case and proved a stronger form of redundancy

to be compatible than other authors. In a second paper they have presented an AC-calculus

that is specialized to rings. Top-level superposition inferences and AC-uni�cation are shown

to produce much fewer inferences compared to the naive approach. A new problem of chaining

through variables appears here, which needs to be further investigated.

Christoph Weidenbach has continued his work on sorted variants of resolution and tableau

calculi. He has show that methods that treat type information speci�cally also contribute to

e�cient satis�ability checking for certain classes of propositional formulae.

105

The Programming Logics Group

As a primitive basis for implementation of theorem provers, Peter Graf has improved and

supplemented his library of data structures for the e�cient storing and retrieval of sets of

�rst-order terms with given matching and uni�ability properties. His latest idea is a data

structure called substitution trees which is the common generalization of discrimination trees

and abstraction trees which combines their advantages, while avoiding their disadvantages.

David Plaisted has obtained results on a variety of subjects. For example he has mathemat-

ically analysed the search e�ciency of a number of commonly used theorem proving strategies.

He has introduced a notion of search space complexity and has shown that most strategies have

exponential search behaviour, even on simple clause sets. He has also proposed a concept of

using orderings that re
ect the search complexity of branches in a search within his semantic

hyperlinking method. The use of orderings, in addition, provides one with a uni�cation-based

way of enumerating ground instances of formulas instead of more naive enumeration that is

adopted in pure semantic clause linking otherwise.

106

The Programming Logics Group

4 Journal and Conference Activities

4.1 Editorial positions

The following sta� of the programming logics group are editors of various technical journals:

Harald Ganzinger has been an editor of Information Processing Letters since November 1990,

and an editor of Mathematical Systems Theory since June 1992.

Michael Hanus became an editor of the Journal of Functional and Logic Programming , pub-

lished electronically by MIT Press, in 1993.

Hans J�urgen Ohlbach is an editor of Methods of Logic in Computer Science, and together with

Dov Gabbay (London) and Ruy de Queiroz (Recife, Brasil) founding editor of a new electronic

journal, the `Bulletin of the Interest Group in Pure and Applied Logic'. The �rst three volumes

are accessible via WWW:

http://www.mpi-sb.mpg.de/guide/staff/ohlbach/igpl/Bulletin.html

4.2 Conference Positions

4.2.1 Memberships in Organizing Committees

D. Basin Workshop on Correctness and Metatheoretic Extensibility of Automated Reasoning

Systems on the 12th International Conference on Automated Deduction, Nancy, 1994.

A. Bockmayr Session on Constraint Programming on the 14th European Conference on

Operational Research, Jerusalem, 1995

H. Ganzinger Workshop on Construction of Computational Logics, Rottach-Egern, 1995

M. Hanus Workshop on Integration of Declarative Paradigms, at the International Confer-

ence on Logic Programming, Santa Margherita Ligure, 1994

H. J. Ohlbach First international conference on Temporal Logic, Bonn, 1994.

European Summer School in Language, Logic and Information (ESSLI'95), Barcelona.

C. Weidenbach 18th Deutsche Jahrestagung f�ur K�unstliche Intelligenz, Saarbr�ucken, 1994

4.2.2 Memberships in Program Committees

P. Barth Workshop on Computational Propositional Logic, 19th German Conference on

Arti�cial Intelligence, Bielefeld, 1995

D. Basin 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods,

Abingdon, 1994

5th International Conference on Logic Programming and Automated Reasoning, Crimea, 1994.

12th International Conference on Automated Deduction, Nancy, France, 1994

Theoretical Aspects of Software, Colloquium on Formal Aspects of Software Engineering,

Aarhus, 1995.

International Joint Conference on Theory and Practice of Software Development, Aarhus, 1995

107

The Programming Logics Group

H. Ganzinger 10th International Conference on Automated Deduction, Nancy, 1994

10th Annual IEEE Symposium, Logic in Computer Science, Paris, 1994

International Conference on Algebraic and Logic Programming, 1994

1st International Conference on Contraints in Computational Logics, 1994

12th Symposium on Theoretical Aspects of Computer Science, M�unchen, 1995

M. Hanus International Logic Programming Symposium, Ithaca, 1994

5th International Conference on Logic Programming and Automated Reasoning, Crimea, 1994

6th International Logic Programming Symposium, Portland, Oregon, USA, 1995.

International Symposium on Programming Languages, Implementation, Logics and Programs,

Utrecht, 1995

11th Workshop on Logic Programming, Vienna, 1995.

H. J. Ohlbach 12th International Conference on Automated Deduction, Nancy, 1994

European Conference on Arti�cial Intelligence, Amsterdam, 1994

1st International Conference on Temporal Logic, Bonn, Germany, 1994

4th Conference on Principles of Knowledge Representation and Reasoning, 1994

C. Weidenbach Workshop on Computational Propositional Logic, 19th German Conference

on Arti�cial Intelligence, Bielefeld, 1995

4.3 Organization of Workshops and Conferences

Hans J�urgen Ohlbach together with Dov Gabbay (London) organized the �rst International

Conference on Temporal Logic (ICTL), the �rst in a new conference series. It took place in

July 11-14, 1994 in the Gustav Stresemann Institute (GSI) in Bonn. There were about 100

participants from more than 20 countries. The proceedings with 34 papers appeared in the

Springer Lecture Notes in Arti�cial Intelligence series, vol 827. The next ICTL will be in 1996

in Manchester, England.

David Basin, with Fausto Giunchiglia (IRST, Italy) and Matt Kaufmann (CLINC, USA)

organized the workshop on \Correctness and Metatheoretic Extensibility of Automated Reason-

ing Systems" held in conjunction with CADE 12, June 1994. The workshop brought together

researchers examining the question of how one builds correct theorem proving systems and how

one can extend these systems in correctness preserving ways. Over thirty participants attended

from within Europe and the United States. Abstracts of the talks can be found in the technical

report 9405-10 of the Instituto Per La Ricerca Scienti�ca E Tecnologica, Trento, Italy.

J�orn Hopf, with Hans-J�urgen Appelrath (University of Oldenburg), Wolfgang Banzhaf (Uni-

versity of Dortmund), Volker Claus (University of Stuttgart), Heinz M�uhlenbein (GMD, St.

Augustin) and Lothar Thiele (ETH Z�urich) organized the workshop `Genetic Algorithms within

the Framework of Evolutionary Computation' held during the conference KI-94, September

1994. More than 20 researchers, mostly from Europe and the United States, met to consider

theoretical foundations as well as practical applications of Evolutionary Programming, Evo-

lution Strategies, Arti�cial Life and Genetic Algorithms. Invited talks were given concerning

biological principles and other foundations. All papers and invited talks can be found in the

technical report MPI-I-94-241, of our Institute. The abstracts also appeared in `KI-94 Work-

shops' by Gesellschaft f�ur Informatik, Bonn.

108

The Programming Logics Group

Michael Hanus, together with Hassan A��t-Kaci (Vancouver) and Juan Jos�e Moreno Navarro

(Madrid), organized the workshop on `Integration of Declarative Paradigms' held in conjunc-

tion with ICLP'94 in Santa Margherita Ligure, Italy, June 1994. The workshop brought to-

gether researchers from the functional and logic programming communities with presentations

on various aspects on the integration of logic programming with other declarative paradigms

(functions, types, constraints, concurrency etc.). The proceedings are available as an MPI

Technical Report (94-224). A special issue with papers from this workshop will appear in the

journal `Computer Languages' in 1995.

109

The Programming Logics Group

5 Teaching Activities

Apart from the core Computer Science course on programming languages, the group also

contributes a wide range of general and specialist lectures and seminars to to the logic and

computation curriculum organised together with DFKI and the Computer Science Department.

(Unless speci�ed, courses were taught at the Universit�at des Saarlandes.)

Key: L { Lectures, LE { Lectures and exercises, E { Exercises, S { Seminar,

FoPra { Project class.

Winter Semester 1993/1994

Foundations of Program Veri�cation Calculi

D. Basin, S. Matthews { LE

Constraintl�osungstechniken A. Bockmayr { LE

Rechnergest�utztes Beweisen H. Ganzinger { LE

Deduktion In klassischen und nichtklassischen Logiken

H. J. Ohlbach { LE (at Univ. Darmstadt)

Synthesis using Higher Order Uni�cation

H. Ganzinger, D. Basin { FoPra

Logic programming M. Hanus { L (University of Tartu, Tartu, Estonia)

Summer Semester 1994

Logik und Optimierung A. Bockmayr { LE

Statische Analyse deklarativer Programme M. Hanus { LE

Formale System Spezi�kation S. Matthews { L

Term rewriting techniques and automated theorem proving

H. Ganzinger with L. Bachmair (CADE-12 tutorial)

Nichtmonotone Logik E. Weydert { L

Inductive Theorem Proving D. Basin { L

2nd International Summer School in Logic for Computer Science,

University of Chamb�ery, France

Genetische Algorithmen H.-J. Ohlbach { FoPra

Winter Semester 1994/1995

Verbandstheorie und algebraische Logik H. J. Ohlbach { LE

Programmiersprachen H. Ganzinger { LE

Summer Semester 1995

Lambda-Kalk�ul und Typtheorie H. Ganzinger, D. Basin { LE

Beweistheorie S. Matthews { L

Logik und Wahrscheinlichkeit E. Weydert { S

110

The Programming Logics Group

6 Dissertations and Habilitations

6.1 Doctorates (to be completed in 1995)

P. Barth Logic-Based 0-1 Constraint Solving in Constraint Logic Programming (submitted

December 94, defense February 95)

M. Jaeger A logic for subjective and objective probabilities (to be submitted July, 95).

A. Nonnengart, A Resolution-Based Calculus for Temporal Logics (to be submitted February,

95)

P. Graf, Term Indexing, (to be submitted August, 95)

6.2 Habilitations

M. Hanus.

D. Basin.

6.3 Masters Theses in Progress

Ayari Abdelwaheb: Program Synthesis with Higher-Order Uni�cation under D. Basin.

Alexander Bach: Lineare Logik als Typsystem f�ur funktionale Programme under D. Basin and

A. T�onne.

Michael Christen: N.N. under H. Ganzinger and J. Stuber.

Thorsten Engel: Quantorenelimination in Pr�adikatenlogik 2. Stufe under H. J. Ohlbach.

Hichem Harakirti: N.N. under P. Graf.

Christoph Meyer: Verteilte Hyperresolution under P. Graf.

Erik Mohr: Resolutionskalk�ule f�ur Modallogiken under A. Nonnengart.

Georg Rock: Transformations of �rst-order formulae for automated reasoning under C. Wei-

denbach.

Stefan Schlobach; N.N. under H. J. Ohlbach.

Jan Smaus: Killer Transformation under H. J. Ohlbach.

Jan Timm: Testing of the satis�ability of ordering constraints under C. Weidenbach.

6.4 Masters Theses

Joachim Becker: E�ziente Subsumption in Deduktionssystemen under P. Graf.

Thomas Schanne: Vier gewinnt, ein Fallbeispiel zur Programmsynthese mit genetischen Algo-

rithmen under H. J. Ohlbach.

111

The Programming Logics Group

7 Grants

CCL: Construction of Computational Logics

Description

The past two decades have seen a proliferation of di�erent programming styles: functional,

logical, constraint-based, object-oriented, among others. More recently, it has been recognized

that these styles complement rather than exclude each other by being suitable for particular

problem domains. As a consequence, combining programming paradigms has emerged as a

signi�cant research direction of its own. Fortunately the modes of computation are in each

case �rmly based on logic. Computation means simplifying or solving problems represented by

logical formulae. Hence combination of programming paradigms means combination of logics

in a common logical framework.

Constraint logic programming has been the �rst entirely successful step towards this am-

bition of combining logics. Constraints are logical systems speci�cally tailored to particular

theories, for example, numbers, trees, orderings. Constraints allow convenient notations for

particular problem domains, e�ciency thanks to dedicated solvers, and modularity by isolat-

ing the solver from the purely logical part of the computation. Besides new ways of exploiting

the above properties, we are also interested in new applications of constraints. Exploiting the

structure of (large) constraint logic programs for automating proofs that would simply fail

otherwise belongs to the �rst category. Investigating the use of new systems of constraints for

type checking purposes or search guiding information belongs to the second.

According to the above two basic lines, the aims of the CCL-project are the following:

� to investigate speci�c instances of combination problems for logics and constraints of

particular interest;

� to investigate new constraints and to design algorithms for combining existing constraint

systems;

� to develop or improve theorem proving techniques for certain logics of special importance

for programming, by taking advantage of constraint systems;

� to contribute to a coherent framework for combining programming paradigms and other

logical theories, thus enabling the programmer to combine elements of each of them in a

uni�ed environment.

Technical Data

Starting date: July 24, 1992

Duration: 3 years

Funding: ESPRIT Basic Research Action

Sta� at MPI f. Informatik: Peter Barth

Alexander Bockmayr

Harald Ganzinger

Michael Hanus

Uwe Waldmann

112

The Programming Logics Group

Partners

Cosytec, Paris; DFKI, Saarbr�ucken; INRIA-Lorraine, Nancy; TU M�unchen; CIS, Univ.

M�unchen; LRI, Universit�e Paris{Sud; RWTH Aachen; Universidad Complutense de Madrid;

Universitat Polit�ecnica de Catalunya.

COMPASS: A Comprehensive Algebraic Approach to System Speci�cation and

Development

Description

In software technology, concepts, methods and development environments for the construction

of data-processing systems from self-contained, generic and reusable components are becoming

increasingly important, if not mandatory. The decomposition of systems supports a breakdown

of the production process into feasible tasks. Generic and reusable components help to avoid

duplications of e�ort, to ease prototyping, testing and veri�cation and to speed up production

processes. The industrial production of generic and reusable software components, however, is

only possible under certain conditions:

� The requirements on a component must be speci�able in a precise way.

� The functional behaviour of a component must be determined in a precise way.

� For each component, especially for a critical one, the correctness (meaning that the

behaviour satis�es the requirements) must be provable.

� The integration of components into large systems must be supported in such a way that

the behaviour and the correctness of the components are preserved.

The state of the art in software technology does not yet allow the systematic development

of system components that meet the four demands above. In particular, tools are missing that

support such a development with strong requirements on the correctness of the components

properly and fully. The algebraic approach to system speci�cation and development is most

promising in this respect, but there is still a broad gap between the state of the art of the

algebraic approach and the practical needs of the speci�cation of system components.

The main objective of the Basic Research Working Group compass is to bridge this gap by

further development and consolidation of the algebraic approach in a comprehensive way. In

spite of more than �fteen years of research in the algebraic approach, there is a considerable need

of clari�cation, uni�cation, extension and integration of other programming and speci�cation

paradigms. Most partners are involved in national and/or European-funded projects, and much

of the work described in the objectives will be done in the context of these other projects. The

purpose of compass is largely to provide opportunities for interaction between the members of

these separate projects.

Technical Data

Starting date: 1992

Duration: 3 years

Funding: ESPRIT Basic Research Working Group

Sta� at MPI f. Informatik: Harald Ganzinger

Hubert Baumeister

113

The Programming Logics Group

Partners

�

Arhus Universitet; Universitat Polit�ecnica de Catalunya, Barcelona; Technische Universit�at

Berlin; Technische Universit�at Braunschweig; Universit�at Bremen; Technische Universit�at

Dresden; University of Edinburgh; Universit�a di Genova; Universit�a degli Studi de L'Aquila;

INESC, Lisboa; Technische Universit�at M�unchen; CRIN, Nancy; University of Nijmegen;

University of Oslo; Oxford University; CNRS - Universit�e de Paris-Sud; Ecole Normale

Sup�erieure/CNRS, Paris; Ludwig-Maximilians-Universit�at, M�unchen.

MEDLAR II: MEchanizing Deduction in the Logics of prActical Reasoning

Description

MEDLAR II builds on the success of the original MEDLAR project in mechanizing logics of

practical reasoning to handle time, action, belief, knowledge and intent. In MEDLAR II the

concept of a practical reasoner will be developed, an agent capable of acting autonomously and

interacting
exibly with its real world environment. Speci�c reasoning capabilities are being

synthesised for combinations of logics within a general framework for knowledge representation,

so that examples of reasoning in natural language dialogue and the planning of robots can be

demonstrated.

Technical Data

Starting date: 24 July 1992

Duration: 3 years

Funding: ESPRIT Basic Research Action 6471

Sta� at MPI f. Informatik: Hans J�urgen Ohlbach

Christoph Weidenbach

Partners

RISC-Linz; Technische Hochschule Darmstadt; Universit�at M�unchen; ONERA-CERT,

Toulouse; Institut Nationale Polytechnique de Grenoble; Universite Paul Sabatier, Toulouse;

Universita di Torino; University of Oslo; The Imperial College of Science, Technology and

Medicine, London; International Computers Limited.

Detecting Redundancy of Clauses and Inferences

Description

Saturation transforms a set of �rst-order formulae (with equality) into a representation of the

theory that makes further theorem proving much more e�cient. Saturated sets of axioms may

be used both in a purely goal-oriented way and with ordering restrictions, without loosing com-

pleteness. However, saturation terminates only if the overwhelming majority of inferences can

be proved to be redundant, such that they do not give rise to new formulae. It is the goal of this

project to derive practically useful criteria for the redundance of clauses and inferences and to

investigate the degree to which powerful redundancy criteria can turn ordered paramodulation

into an e�cient decision procedure.

114

The Programming Logics Group

Technical Data

Starting date: 1.7.1992

Duration: 2 years (ended: 30.06.94)

Funding: DFG Schwerpunkt Deduktion

Sta� at MPI f. Informatik: Harald Ganzinger

Uwe Waldmann

Partners

The project is a part of the `Schwerpunktprogramm Deduktion', the partners of which include:

Universit�at Kaiserslautern; Technische Hochschule Darmstadt; Technische Universit�at

M�unchen; Universit�at Koblenz-Landau; Humboldt-Universit�at Berlin; Technische Hochschule

Darmstadt; Technische Universit�at Berlin; Technische Universit�at M�unchen; Universit�at-GH

Paderborn; Technische Hochschule Darmstadt; Universit�at T�ubingen; Ludwigs-Maximilians-

Universit�at M�unchen; Universit�at Karlsruhe; Universit�at Leipzig; Universit�at des Saarlandes;

Technische Universit�at Braunschweig; Universit�at Karlsruhe; Universit�at T�ubingen; Univer-

sit�at M�unchen; Technische Hochschule Darmstadt.

LOGO: Logic Engineering

Description

The subject of the Logo project is the development of techniques for developing, investigating

and automating application oriented logics.

There are several workpackages. In the �rst workpackage we develop methods for synthesis-

ing from a Hilbert calculus speci�cation a model theoretic semantics, and from this semantics

a translation method can be derived which translates formulae of the new logic into predicate

logic. Certain optimizations of the semantics can be performed such that the resulting trans-

lation into predicate logic allows for the application of special theory resolution rules which

represent the characteristics of the logic.

In the second workpackage we investigate higher order type theory and higher order logics

as meta systems for implementing `object logics' as well as complex software systems.

In another workpackage a hybrid system is to be developed which allows for the combination

of various inference and control techniques.

Technical Data

Starting date: 1.9.1991

Duration: �nished 31.12.1994

Funding: BMFT

Sta� at MPI f. Informatik: David Basin

Harald Ganzinger

Ullrich Hustadt

Hans J�urgen Ohlbach

Se�an Matthews

Andreas T�onne

115

The Programming Logics Group

Automation of Proof by Mathematical Induction

Description

Mathematical induction is required for reasoning about objects or events containing repetition,

e.g. computer programs with recursion or iteration, electronic circuits with feedback loops or

parameterised components. Thus mathematical induction is a key enabling technology for the

use of formal methods in information technology. The goal of this collaboration is to permit

an exchange of ideas and cross-fertilization between the leading research groups in this �eld.

The collaboration takes the form of research visits between individuals working on similar or

identical problems and more generally annual project seminars. The collaboration is addressing

research topics including synthesis of induction rules, generalization, conjecturing of lemmata,

strategic search guidance, and applications.

Technical Data

Starting date: August 1993

Duration: 2 years (1 year extension applied for)

Grant: DAAD/British Council Academic Research

Collaboration Grant

Sta� at MPI f. Informatik: David Basin

Se�an Matthews

Luca Vigan�o

Partners

University of Edinburgh; Universit�at des Saarlandes; Universit�at Darmstadt.

ACCLAIM: Advanced Concurrent Constraint Languages: Application, Implemen-

tation, and Methodology

Description

The purpose of this project is to further the conceptual, mathematical and practical foun-

dations for concurrent constraint programming, and in so doing, provide a framework for,

design and implement advanced computational tools for the development of complex, symbolic

computational tasks. The objectives of the four work-packages are:

� To extend the foundations of concurrent constraint programming to account for a sub-

stantially richer class of computational phenomena, and to establish connections with

graph-grammars.

� To develop e�cient constraint techniques to tackle new application areas and to produce

extensible general-purpose constraint systems, reactive (incremental) constraint solving,

and hypothetical reasoning.

� To develop frameworks and techniques for compile-time analysis and optimization of

concurrent constraint programs, to allow e�cient execution of programs on a wide variety

of target architectures.

� To improve the implementation technology of concurrent constraint languages to be com-

petitive with imperative languages, such as C, on single-processor architectures; and to

116

The Programming Logics Group

achieve a high degree of parallel execution on a wide variety of multi-processor architec-

tures.

Technical Data

Starting date: 1 September 1992

Duration: 3 years

Foundation: ESPRIT Basic Research Action 7195

Sta� at MPI f. Informatik: Peter Barth

Alexander Bockmayr

Andreas Podelski

Partners

Swedish Institute of Computer Science; Deutsches Forschungsinstitut f�ur K�unstliche Intelligenz;

INRIA; Katholieke Universiteit Leuven; Universitat Polit�ecnica de Madrid; Universit�a di Pisa;

Universit�e d'Aix-Marseille II; RISC-Linz.

PROCOPE: Construction of Non-Classical Logics

Description

In computer science and in particular in the area of arti�cial intelligence there is an increasing

need for logics which allow to reason with knowledge, time and in fact any kind of modality

and conditional.

The aim of this project is to develop logic engineering systems which support the examina-

tion of such logics and which allow to �nd suitable and e�cient corresponding calculi.

Technical Data

Starting date: January 1993

Duration: 3 years

Funding: PROCOPE Programme,

Deutscher Akademischer Austauschdienst

Sta� at MPI f. Informatik: Hans J�urgen Ohlbach

Andreas Nonnengart

Ullrich Hustadt

Christoph Weidenbach

Renate Schmidt

Emil Weydert

Partners

Universit�e Paul Sabatier; Institut de Recherche CNRS.

EDDS: E�cient Data Structures for Deduction Systems

Description

All operations in deduction systems (inference rules, deletion rules, simpli�cations, and so on)

are de�ned as operations on single objects. Therefore, the performance of a theorem prover

crucially depends upon the speed of the basic retrieval operations, such as �nding terms that

117

The Programming Logics Group

are uni�able with (instances of, or more general than) some query term. In order to �nd

resolution partners for a given literal, for example, a theorem prover has to �nd uni�able

literals. Subsumption of clauses can be detected by the retrieval of generalizations or instances

of literals of clauses. Even the retrieval of rewrite rules, demodulators, and paramodulants can

be accelerated by indexing if the indexing mechanism also supports retrieval in the subterms

of the indexed term set.

The importance of the usage of indexing has been shown by the OTTER theorem prover.

Due to the consequent usage of Path{Indexing and Discrimination Tree Indexing, this prover

became one of the most powerful and fastest deduction systems.

We are developing and implementing new methods such as extended Path{Indexing and

Abstraction Tree Indexing in order to speed up term retrieval. Our software is currently being

used in the deduction systems STOP (MPI Saarbr�ucken) and SETHEO (TU M�unchen). Very

soon we will also embed it into the provers KEIM (Universit�at des Saarlandes) and DISCOUNT

(Uni Kaiserslautern).

Technical Data

Starting date: 1 June 1992

Duration: 3 years (possibly 1 year more)

Funding: DFG Schwerpunkt Deduktion

Sta� at MPI f. Informatik: Hans J�urgen Ohlbach

Peter Graf

Partners

The project is a part of the `Schwerpunktprogramm Deduktion' (Az. 322698). Partners are the

same as for the grant `Detecting Redundancy of Clauses and Inferences.

SOFTI II: Logic of Programming

Description

This project addresses the development of methods and techniques for the e�cient construction

of reliable software, that is programs that meet their speci�cations. Reliability is di�cult to

ensure in practice, especially when large programs comprising di�erent application areas are

integrated. Our research investigates the modular combination of various logics and program-

ming paradigms where problems and programs are abstractly stated. Modularity means that

the complexity of large systems can be decomposed into manageable pieces and moreover these

components may be reused in other domains. This task is especially complex as we do not

wish to restrict the kinds of logics and programming languages that may be used. A high-level

abstraction during the formalization of functional speci�cations allows a better control over

the `logic complexity in the small' at the level of the individual system components.

118

The Programming Logics Group

Technical Data

Starting date: September 1, 1991

Duration: 3 years (ended: 31.012.94)

Funding: German Ministry for Research

and Technology (BMFT)

Sta� at MPI f. Informatik: Peter Barth

Hubert Baumeister

Alexander Bockmayr

Harald Ganzinger

Michael Hanus

Rolf Socher

J�urgen Stuber

TRALOS - Transformation of Logical Systems

Description

We want to investigate methods for �nding more or less automatically transformations of axiom

systems such that theorems are provable from the original axioms if and only if the transformed

theorems are provable from the transformed axioms. Of course the transformations should be

such that proving transformed theorems is easier than proving the original theorems. One class

of transformations we are investigating are based on representation theorems for algebras.

Technical Data

Starting date: March 1995

Duration: 2 years

Funding: DFG

Sta� at MPI f. Informatik: Hans J�urgen Ohlbach

Renate Schmidt

CONSOLE: Constraint Solving in Europe

Description

Constraint solving has become more and more important in automated theorem proving, logic

programming and algebraic speci�cations, as well as for industrial applications like constraint

programming in CHIP.

The goal of this project is to facilitate the interactions between European research teams in

the �eld of constraint solving, especially concerning visits and exchanges of young researchers.

The work is mainly focused on symbolic constraints (i.e. logic formulae interpreted in some tree

structure) and on the application of constraints to constraint logic programming languages. We

are thereby particularly interested in equality constraints, ordering constraints, membership

constraints, set constraints, and combinations of constraint solvers.

The MPI-part in this project is mainly concerned with

� Paramodulation and Superposition Calculi

� Set Constraints and the Monadic Class

� Non-Linear Constraints in CLP(R)

119

The Programming Logics Group

� 0-1 Constraints in CLP(PB)

Technical Data

Starting date: Contract has been signed in December 1994

Duration: 2 years

Funding: Human Capital and Mobility

Sta� at MPI f. Informatik: Peter Barth

Alexander Bockmayr

Harald Ganzinger

Andreas Podelski

Partners

University of Barcelona; University of Lille; ECRC, M�unchen; INRIA Lorraine; University of

Orsay; Cosytec, Orsay; University of Padova.

120

The Programming Logics Group

8 Research Areas

In the following section we describe the work of the group over the last year. In the bibliogra-

phies that accompany each part, entries marked with a bullet `�' in the margin are papers of

some kind (o�cial or uno�cial) that have been produced by members of the group in the last

year.

8.1 Automated Theorem Proving for Predicate Logic

A major goal in this area has been to extend our previous work on saturation-based the-

orem proving into various directions, the main emphasis being on the e�cient support for

basic mathematical structures such as equality, orderings, abelian monoids, groups and rings

(cf. Sections 8.1 and 8.1). Besides this, and among others, we have continued to work on

e�cient indexing data structures for terms (cf. Section 8.1.5), on exploiting type structure in

�rst-order theories (cf. Section 8.1.3), and on constraint solvers for certain classes of symbolic

constraints (cf. Section 8.1.4). In addition to our practical work on term indexing many of our

theoretical results that are described below in more detail have been implemented and to some

extent experimentally veri�ed in the form of several prototype provers, cf. Section 8.6.6.

8.1.1 Saturation-Based Theorem Proving

Investigators: Leo Bachmair, Harald Ganzinger, Georg Struth, J�urgen Stuber, Uwe Waldmann

Saturation-based methods compute the closure of a set of formulas under a given inference

system. The inference systems are designed in a way such that a saturated set is either obviously

inconsistent (e.g. contains ?) or is satis�able. Saturation-based methods are believed to be

not as goal-oriented as other methods, e.g. semantic tableau; however they seem to provide

better means for integrating procedures speci�c to particular mathematical theories. In most

applications of theorem proving one has to deal with function symbols such as + or < that

have a �xed interpretation with respect to some structure (e.g. the integers) or a speci�c

mathematical theory (e.g. ordered groups) in addition to arbitrary other uninterpreted symbols.

A non-na��ve treatment of the interpreted symbols is crucial to the performance of the prover,

and to this end mathematical and meta-mathematical techniques have to be combined.

Our method may be characterized as follows. First, we apply techniques from term rewrit-

ing, thereby freely varying the notion of a rewrite proof, depending on the mathematical theory

we want to support. The search for a rewrite proof is a strongly restricted form of goal-oriented

backward reasoning. To make it complete, it has to be accompanied by a controlled forward

reasoning which changes the presentation of the theory. Saturation proof techniques, based on

the notion of a rewrite proof, form a compromise between the purely goal-oriented methods on

one side and blind forward reasoning on the other side.

So as to be able to control forward reasoning further, our inference systems are designed

to be compatible with some abstract notion of redundancy for formulas and inferences. Only

non-redundant inferences and formulas need to be considered. In contrast with side-conditions

attached to inferences, redundancy is a non-local property depending on the complete set of

formulae at hand. The major application of redundancy is for checking the compatibility of

simpli�cation techniques such as reduction by equations, removal of tautologies (modulo the

supported theory), subsumption, or quanti�er elimination with the given inference system.

Compatibility is meant in the sense that the eager or don't-care nondeterministic application

of a simpli�cation step does not a�ect the refutational completeness of the inference system.

121

The Programming Logics Group

Then, and in contrast to constraint logic programming, decision procedures for decidable

theories such as abelian groups, dense total orderings, or real closed �elds cannot simply be

linked to a prover as black boxes [1]. In fact, in the presence of arbitrary uninterpreted functions

and predicates the theory usually becomes undecidable. Integration has to be achieved on

the level of the inference system and simpli�cation techniques. Speci�c inference systems

and simpli�cation techniques have to be designed to incorporate the basic ideas in a decision

procedure. Our general methodology for model-theoretic completeness proofs based on rewrite

proofs for atoms greatly helps in the design of these systems.

References

[1] R. S. Boyer and J. S. Moore. Integrating decision procedures into heuristic theorem provers: A

case study of linear arithmetic. In J. E. Hayes, D. Michie, and J. Richards, editors, Machine

Intelligence 11, chapter 5, pages 83{124. Clarendon Press, Oxford, 1988.

Transitive Relations

Transitive relations are ubiquitous. In logical terms, a transitive relation is the most primitive

form of a replacement (rewriting) system. It is surprising that in the context of automated

deduction, rewrite techniques have almost exclusively been applied only to congruences (equal-

ity). The �rst notable exception is the bi-rewriting of Levy and Agust�� [5] conceived as the

basis of a Knuth/Bendix-like completion procedure for presentations of lattices by inequalities.

In [1] and [2] we apply related ideas to refutational theorem proving for arbitrary �rst-order

theories that include one or more, possibly interacting, transitive relations. Transitivity is a

particular form of a composition law of the form R � S � T for binary relations R, S, and

T , and our techniques allow us to deal with a large class of families of such laws e�ciently.

An appropriate notion of a rewrite proof for inequalities provides an ordering-restricted form

of chaining inference in which a chain T (s; t) from R(s; u) and S(u; t) is computed only if u

is strictly maximal among the three terms with respect to a given syntactic ordering. As a

consequence, chaining through a variable, the most proli�c form of chaining, is not required

if the variable is shielded , i.e. also occurs as an argument to a function or predicate within

the same clause. A shielded variable cannot be maximal. In [2] we present ordered-chaining

inference systems for (arbitrary) transitive relations, partial equivalences, and congruences and

point out the relations between them. These systems mainly di�er in the way they handle dis-

junctions and in the extent to which chainings through variables can be avoided. The systems

are refutationally complete and compatible with redundancy. In [1] we concentrate on partial

and total orderings. We improve previously obtained theoretical results by Bledsoe, Hines,

and Shostak [3, 4] in many respects: For instance we have succeeded in combining chaining

for orderings with superposition for equality. (In the presence of a non-strict ordering, equa-

tions arise naturally as conjunctions of inequations.) Moreover we have been able to prove

the compatibility not only of the usual simpli�cation techniques, but also of quanti�er elimi-

nation techniques for dense total orderings without endpoints. As a result chainings through

variables can be avoided completely, a property which is also satis�ed by our systems with

explicit equality and in the presence of arbitrary uninterpreted functions and predicates. This

is our �rst result about the integration of a decision procedure into an in general undecidable

context. Not only can we decide the decidable subcases, but in the undecidable case we manage

a considerable restriction of the search space.

122

The Programming Logics Group

References

[1] L. Bachmair and H. Ganzinger. Ordered chaining for total orderings. In Proc. 12th International�

Conference on Automated Deduction, LNAI, pages 435{450. Springer, 1994. Full version available

as MPI-I-93-250.

[2] L. Bachmair and H. Ganzinger. Rewrite techniques for transitive relations. In Proc. 9th IEEE�

Symposium on Logic in Computer Science, pages 384{393. IEEE Computer Society Press, 1994.

Full version available as Technical Report MPI-I-93-249.

[3] W. Bledsoe, K. Kunen, and R. Shostak. Completeness results for inequality provers. Arti�cial

Intelligence, 27:255{288, 1985.

[4] L. M. Hines. Completeness of a prover for dense linear logics. Journal of Automated Reasoning,

8:45{75, 1992.

[5] J. Levy and J. Agust��. Bi-rewriting, a term rewriting technique for monotonic order relations.

In C. Kirchner, editor, Rewriting Techniques and Applications, volume 690 of Lecture Notes in

Computer Science, pages 17{31, Berlin, 1993. Springer.

Integrating Algebra and Universal Algebra

The associativity and commutativity of binary operations such as + and � is often built into

the notation that mathematicians use. Therefore, as the �rst step towards an integration of

computer algebra methods into �rst-order theorem proving one has to extend the techniques

we have just mentioned to deduction with formulae modulo AC. In [1] we have extended the

superposition calculus to the AC-case. The main contribution of this paper compared with

related work (e.g. [13, 11, 12]) is the relatively simple proof of completeness in the presence of

a speci�c notion of redundancy for clauses and inferences. This seems more appropriate than

similar notions of redundancy, such as provided by [13, 11] in that head reduction of terms in

clauses modulo AC by equations is among the simpli�cations that one can prove admissible

with our notion. This simpli�cation is an essential ingredient when specializing the calculus to

algebraic theories such as groups and rings.

In [2] we investigate the relation between AC-completion and Buchberger's algorithm for

constructing the Gr�obner basis for a polynomial ideal. The similarity between Buchberger's

algorithm and completion appears to have been �rst observed by Buchberger and Loos [9, 6].

Since then a number of researchers have attempted to clarify, and formalize, the connection

between the two methods; see [5] for a discussion of the fundamental issues and further ref-

erences. The typical approach has been to generalize rewrite-based procedures so that both

Buchberger's algorithm and (certain variants of) completion can be derived as special cases.

Most of these results apply only to variants of Buchberger's algorithm for polynomials over

a commutative ring though, and not to the original algorithm, with a �eld as the coe�cient

domain. Only recently has B�undgen [7] shown how to simulate polynomial computations over

�nite �elds by associative-commutative completion. We observe that Buchberger's algorithm is

not based only on rewriting; in particular, many operations on the coe�cients of a polynomial

typically do not involve rewriting and should hence be modeled by constraint solving in the

context of a hierachical approach to theorem proving, as we have studied it in [4]. We have

shown that Buchberger's algorithm is a speci�c instance of the latter method and hence can,

and should, be viewed as a completion procedure for hierarchical equational theories. Unlike

previous methods, our results apply also to coe�cient �elds.

Buchberger's algorithm may be used to decide the word problem in commutative rings.

In [3] we consider refutational theorem proving for �rst-order theories containing the axioms of

123

The Programming Logics Group

a commutative ring. Our approach is inspired by the Gr�obner basis method, where the essential

inferences are generalized into specialized superposition inferences and/or simpli�cation steps.

Starting out from a particular canonical AC-rewrite system R for rings we analyse the e�ect of

saturating sets of the form R [fCg, where C is an arbitrary ground clause and code that into

certain macro inferences by which clauses are symmetrized [8]. Inferences with symmetrized

clauses include the computation of S-polynomials in the Gr�obner basis algorithm as an essential

ingredient. Essentially, this allows us to replace most explicit inferences between the ring

axioms and other clauses with simpli�cation. Inferences between any two symmetrized non-

ring axioms tend to produce far fewer new clauses and, in particular, do not always need

full AC-uni�cation. Our method is also an extension of work by [10] who considers (possibly

failing) Knuth-Bendix completion procedures for equations that contain a particular theory

represented by a convergent rewrite system. Our results are preliminary in many respects: the

concept of symmetrization and the completeness proofs should be technically simpli�ed, and

there is, again, a severe problem of chaining through, and even below, variables for which one

should try to �nd e�ective restrictions and control strategies.

References

[1] L. Bachmair and H. Ganzinger. Associative-commutative superposition. Technical Report MPI-I-�

93-267, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1993. To appear in Proc. CTRS Work-

shop 1994, LNCS.

[2] L. Bachmair and H. Ganzinger. Buchberger's algorithm: a constraint-based completion procedure.�

In 1st Internal Conference on Constraints in Computational Logics, volume 845 of Lecture Notes

in Computer Science, pages 285{301. Springer-Verlag, 1994.

[3] L. Bachmair, H. Ganzinger, and J. Stuber. Combining algebra and universal algebra in �rst-order�

theorem proving: The case of commutative rings. In Proc. 10th Workshop on Speci�cation of

Abstract Data Types, LNCS. Springer, 1995. To appear.

[4] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierarchic �rst-�

order theories. Applicable Algebra in Engineering, Communication and Computing, 5(3/4):193{212,

Apr. 1994.

[5] B. Buchberger. History and basic features of the critical pair/completion procedure. Journal of

Symbolic Computation, 3:3{38, 1987.

[6] B. Buchberger and R. Loos. Algebraic simpli�cation. In Computer Algebra: Symbolic and Algebraic

Computation, pages 11{43. Springer, 2nd edition, 1983.

[7] R. B�undgen. Simulating Buchberger's algorithm by a Knuth-Bendix completion procedure. In R. V.

Book, editor, Proc. Fourth International Conference on Rewriting Techniques and Applications,

volume 488 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[8] P. Le Chenadec. Canonical forms in �nitely presented algebras. In Proc. 7th Int. Conf. on Auto-

mated Deduction, volume 170 of LNCS, pages 142{165. Springer, 1984. Book version published by

Pitman, London, 1986.

[9] R. Loos. Term reduction systems and algebraic algorithms. In Proc. 5th GI Workshop on Arti�cial

Intelligence, volume 47 of Informatik Fachberichte, pages 214{234. Springer, 1981.

[10] C. March�e. Normalised rewriting and normalised completion. In Proc. 9th Ann. IEEE Symp. on

Logic in Computer Science, pages 394{403. IEEE Computer Society Press, 1994.

124

The Programming Logics Group

[11] R. Nieuwenhuis and A. Rubio. AC-superposition with constraints: No AC-uni�ers needed. In Proc.

12th International Conference on Automated Deduction, volume 814 of Lecture Notes in Computer

Science, pages 545{559, Berlin, 1994. Springer-Verlag.

[12] L. Vigneron. Associative-commutative dedution with constraints. In Proc. 12th International

Conference on Automated Deduction, volume 814 of Lecture Notes in Computer Science, pages

530{544, Berlin, 1994. Springer-Verlag.

[13] U. Wertz. First-order theorem proving modulo equations. Technical Report MPI-I-92-216, Max-

Planck-Institut f�ur Informatik, Saarbr�ucken, 1992.

8.1.2 Con
uent Rewriting Systems

Investigator: M. R. K. Krishna Rao

Con
uence and normalization are two important properties of term rewriting systems. There

can be di�erent notions of con
uence depending on the reduction strategies employed.

Innermost-con
uence and outermost-con
uence are two such notions. Innermost-con
uence

is important in giving call-by-value and denotational semantics and outermost-con
uence en-

sures well-de�nedness of lazy semantics of functional programs. These two restricted notions

do not coincide with the general notion of con
uence, even for terminating systems. Recently,

we proposed a set of su�cient conditions under which the properties of con
uence, innermost-

con
uence and outermost-con
uence coincide. The property of semi-completeness (con
uence

+ weak normalization) is very useful in establishing consistency of equality theories. In a recent

paper, we established a result on modularity of semi-completeness for hierarchical combina-

tions, generalizing all the existing results.

References

[1] M. Krishna Rao. Relating con
uence, innermost-con
uence and outermost-con
uence properties of�

term rewriting systems. Submitted to Acta Informatica, 1994.

[2] M. Krishna Rao. Semi-completeness of hierarchical and super-hierarchi cal combinations of term�

rewriting systems. In M. Nielsen, editor, Trees in Algebra and Programming { CAAP'95. Springer,

1995.

8.1.3 Order-Sorted Logics

Investigator: Christoph Weidenbach

Exploiting sort restrictions is a very e�ective way of improving the performance of an automated

theorem prover. The basic idea is to restrict the instantiation of variables by attaching sorts to

variables. In our approach [6] sorts are sets of unary predicates interpreted as the intersection

of the denotations of the unary predicates. If a variable is instantiated by some term in order to

apply an inference rule, we require the term to respect the sort of the variable. This prevents

redundant inference steps. In addition, clauses with sorted variables can be translated into

standard clauses and vice versa, but a clause with sorted variables corresponds to in�nitely

many standard clauses in the sense that (in general) a refutation using clauses with sorted

variables abbreviates in�nitely many ground refutations of the corresponding standard clauses.

Traditional approaches to sorted reasoning [5, 1, 3, 4, 2] require the a priori presence of

the sort restrictions, assume sorts to be non-empty and do not allow the occurrence of positive

sort literals, called declarations, in the clause set under consideration. In our approach we do

not assume any of these restrictions [6]. An arbitrary standard �rst-order clause set can be

125

The Programming Logics Group

compiled into a clause set with explicit sort restrictions. The sorts may denote empty sets and

declarations may occur arbitrarily in the compiled clause set. We extend the standard resolution

and free variable tableaux calculi by replacing standard uni�cation with sorted uni�cation. The

two calculi generalize their respective standard versions. We have examples which can only be

solved by the extended calculi and not by any other theorem proving technology.

We have obtained new results for the free variable tableaux case [7]. The sorted uni�cation

algorithm sometimes solves the problem of formula copies for declarations. If sorted uni�cation

is decidable for the sort theory of a tableau branch, the branch is closed via sorted uni�cation

where the possibly missing copies of declarations are e�ectively computed and added by tableau

expansion rule applications. If the sort theory of a branch is not known to be decidable, we

have shown that sorted uni�cation can be restricted to rigid sorted uni�cation, which is always

decidable, because only the declarations on the current branch are considered without copies.

Tableaux extended with sorts have one additional nice property: For certain classes of

propositional formulas they provide us with an e�cient decision procedure for satis�ability.

We have experimented with a method by which propositional logic formulae are translated

into �rst-order logic with sorts; we apply our sorted version of tableau construction to the

resulting clauses to decide satis�ablity. We have implemented this method in a prototype [8]

(see 8.6.6) and obtained some promising experimental results.

References

[1] A. Cohn. A more expressive formulation of many sorted logic. Journal of Automated Reasoning,

3(2):113{200, 1987.

[2] A. Frisch. The substitutional framework for sorted deduction: fundamental results on hybrid rea-

soning. Arti�cial Intelligence, 49:161{198, 1991.

[3] M. Schmidt-Schau�. Computational aspects of an order sorted logic with term declarations, volume

395 of LNAI. Springer, 1989.

[4] P. Schmitt and W. Wernecke. Tableau calculus for order sorted logic. In K. Bl�asius, U. Hedtst�uck,

and C. Rollinger, editors, Sorts and Types in Arti�cial Intelligence, volume 418 of LNAI, pages

49{60. Springer, April 1989.

[5] C. Walther. A Many-sorted Calculus based on Resolution and Paramodulation. Research Notes in

Arti�cial Intelligence. Pitman Ltd., 1987.

[6] C. Weidenbach. Uni�cation in sort theories and its applications. Technical Report MPI-I-93-211,

1993.

[7] C. Weidenbach. First-order tableaux with sorts. In K. Broda and M. D. et.al., editors, TABLEAUX-�

'94, 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 247{261.

Imperial College of Science Technology and Medicine, TR-94/5, April 1994.

[8] C. Weidenbach. Sorts, resolution, tableaux and propositional logic. In J. Kunze and H. Stoyan,�

editors, KI-94 Workshops, Extended Abstracts, pages 315{316. GI, Gesellschaft f�ur Informatik, 1994.

126

The Programming Logics Group

8.1.4 Constraint Solving

RPO Ordering Constraints

Investigator: Christoph Weidenbach

Ordering constraints are used to restrict the search space in saturation-based theorem proving.

An ordering that is often used in practice is the recursive path ordering (RPO). It generalizes

both the lexicographic (LPO) and the multiset path ordering by allowing each function symbol

to have a lexicographic or multiset status. The RPO is a total reduction quasi-ordering on

ground terms. Recently, Rubio and Nieuwenhuis [5] have presented an AC-compatible, total

ordering based on the RPO.

Jouannaud and Okada [2] have proved that the satis�ability of RPO constraints is decidable.

We have exhibited a new decision procedure [6] which is a generalization of Rubio's algorithm

for LPO constraint solving [4]. Like this, and the algorithms presented in [1, 3], our procedure

is based on computing successor terms and should therefore be more e�cient in practice.

References

[1] H. Comon. Solving inequations in term algebras. In Proceedings of the Fifth Annual IEEE Sym-

posium on Logic in Computer Science, LICS'90, pages 62{69. IEEE Computer Society Press, Los

Alamitos, CA, USA, 1990.

[2] J. Jouannaud and M. Okada. Satis�ability of systems of ordinal notations with the subterm property

is decidable. In Proc. ICALP 91, volume 510 of LNCS, pages 455{468, Madrid, 1991. Springer.

[3] R. Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters, 47(2):65{

69, August 1993.

[4] A. Rubio. Automated Deduction with Constrained Clauses. PhD thesis, Departament de Llenguatges

i Sistemes Inform�atics de la Universitat Polit�ecnica de Catalunya, Barcelona, April 1994.

[5] A. Rubio and R. Nieuwenhuis. A precedence-based total AC-compatible ordering. In Proc. 5th Int.

Conf. on Rewriting Techniques and Applications, volume 690 of Lecture Notes in Computer Science,

pages 374{388, Berlin, 1993. Springer-Verlag.

[6] C. Weidenbach. An algorithm for testing satis�ability of RPO constraints. Submitted, 1995.�

Negative Set Constraints

Investigators: Witold Charatonik, Leszek Pacholski

The decidability of systems of mixed positive and negative set constrains has been proved

independently by several research groups. Gilleron, Tison, and Tommasi [4] have given a proof

based on the notion of a tree set automaton; the proof of Aiken, Kozen, and Wimmers [1] relies

on a translation to a diophantine reachability problem. Using the translation of set constraints

to monadic formulas that was presented in [2] Charatonik and Pacholski have obtained a third

proof, that also allows restricted projections and diagonalizations [3].

References

[1] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints with negative

constraints. Technical Report 93-1362, Computer Science Department, Cornell University, June

1993.

127

The Programming Logics Group

[2] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In Proc. 8th

IEEE Symposium on Logic in Computer Science, pages 75{85. IEEE Computer Society Press, 1993.

[3] W. Charatonik and L. Pacholski. Negative set constraints. In Proc. 9th IEEE Symposium on Logic�

in Computer Science, pages 128{136. IEEE Computer Society Press, 1994.

[4] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints with negated subset

relationships. In 34th Annual Symposium on Foundations of Computer Science, pages 372{380,

Palo Alto, CA, USA, Nov. 3{5, 1993. IEEE Computer Society Press, Los Alamitos, CA, USA.

8.1.5 E�ciency in Theorem Provers

We have studied both theoretical and practical aspects of this problem.

Search E�ciency of Theorem Proving Strategies

Investigator: David Plaisted

In [1] we analyze the search e�ciency of a number of common refutational theorem proving

strategies for �rst-order logic, including clause linking. Search e�ciency is concerned with the

total number of proofs and partial proofs generated, rather than with the sizes of the proofs.

In general, in the �eld of automated deduction for full �rst-order logic, there has been a great

deal of attention devoted to the completeness of strategies but little to their e�ciency, in the

sense of the total work expended in the search for a proof. The main e�ciency considerations

to date have to do with the times needed by particular implementations to �nd proofs of

particular example theorems, or with the e�ciencies of decision procedures for specialized

theories. Theoretical measures of search space size would also make it easier to weed out

bad strategies early and would stimulate the development of good ones. There is more at

issue than just a quantitative measure of performance|analytical measures reveal something

about how a strategy works, and how it does subgoaling. This gives some insight into the

strategy. A theoretical approach could also help to pinpoint problem areas and weaknesses in

a method and lead to improvements. In general, theory does not replace experiment but it

does supplement it, and provides insights that might otherwise be missed. Theory tends to

make general statements and to be machine-independent, whereas experiment tends to deal in

speci�cs and to be machine-dependent.

We show that most common strategies produce search spaces of exponential size even on

simple sets of clauses, or else are not sensitive to the goal. However, clause linking, which uses

a reduction to propositional calculus, has behaviour that is more favorable in some respects, a

property that it shares with methods that cache subgoals. A strategy which is of interest for

term-rewriting based theorem proving is A-ordering, and we analyse it in some detail. We show

some advantages of A-ordering over other strategies, which may help to explain its e�ciency

in practice. We also point out some of its combinatorial ine�ciencies, especially in relation to

goal-sensitivity and irrelevant clauses.

References

[1] D. A. Plaisted. The search e�ciency of theorem proving strategies: An analytical comparison.�

Technical Report MPI-I-94-233, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1994.

128

The Programming Logics Group

Term Indexing

Investigator: Peter Graf

The formulas which a theorem prover generates must be stored, and then accessed in various

ways. Like in standard database technology, indexing is the key to e�ciently retrieving data

from large databases. The structure of logical data, however, is much more complicated than

the structure of keys to data stored in a dictionary or in a database. As a consequence queries

to a logical database are more complex than queries to a standard database. For instance,

we might want to �nd all its matchers or all terms uni�able with a given term in the current

database.

Among the known indexing methods for term retrieval in deduction systems, Path-

Indexing [1] exhibits good performance in general. However, since Path-Indexing is not a

perfect �lter, the candidates it �nds have to be checked with a uni�cation algorithm to detect

failures resulting from occur-checks or indirect clashes. We have developed the Extended Path-

Indexing technique [2] which provides a perfect �lter for the search of variants, instances, and

more general terms and improves the �lter properties for uni�able terms. We have also intro-

duced a version of path indexing which is able to cope with associative-commutative function

symbols.

Recently we have developed a new indexing technique which combines ideas from the dis-

crimination tree and abstraction tree approaches. In so-called Substitution Tree Indexing [3]

we represent terms in a
attened form, that is, as conjunctions of equations of the form

x

0

= f(x

1

; : : : ; x

n

), with x

i

variables. The conjunctions are organized in a tree structure

so as to exploit sharing (see �gure 1). Substitution trees inherit from abstraction trees better

sharing, avoiding ine�ciencies related to chains of variable renaming. This data-structure has

shown very promising performance in various experiments: in the average case the new index-

ing technique occupied less memory than other known techniques and response was better. As

suggested by its name, with substitution trees we can also store idempotent substitutions and

e�ciently compute simultaneous uni�ers �(x) = �(x) between two substitutions � and � , for

all x in the domain of � and � . This last feature is exploited in a distributed hyperresolution

prover which we are currently implementing. This prover takes uses Substitution Trees to

compute simultaneous uni�ers for literals e�ciently in the electrons and literals of the nuclei.

u 7! f(x

1

; x

2

)

x

1

7! �

1

x

2

7! g(�

1

)

x

2

7! �

1

x

2

7! �

2

x

1

7! a x

1

7! g(x

3

)

x

3

7! �

1

x

3

7! d

u7!f(x;x) u7!f(x;y) u7!f(a;g(z)) u7!f(g(x);g(x)) u7!f(g(d);g(x))

u7!f(z;z)

Figure 1: Substitution tree

References

[1] P. Graf. Path indexing for term retrieval. Technical Report MPI-I-92-237, Max-Planck-Institut f�ur

Informatik, Saarbr�ucken, 1992.

129

The Programming Logics Group

[2] P. Graf. Extended path{indexing. In Proceedings of CADE-12, volume 814 of LNAI, pages 514{528.�

Springer, 1994. Full version available as MPI-I-93-253.

[3] P. Graf. Substitution tree indexing. In Proc. 6th Int. Conf. on Rewriting Techniques and Applica-�

tions. Springer, 1995. Full version available as MPI-I-94-251.

8.1.6 Clause Linking

Investigator: David Plaisted

We combine the semantic hyper-linking theorem proving method, which is a re�nement of

the clause linking method, with theorem proving methods based on orderings [1]. The idea

of semantic hyper-linking is to show that a set S of clauses is unsatis�able by the failure

of a systematic search for a model of S. The search starts with a user-given interpretation,

which provides some guidance for the search. Ordered semantic hyper-linking is similar, but it

organizes the search di�erently. The basic principle behind ordered semantic hyper-linking is

the following: Suppose we have n independent choices to make in a process of examining a set

of possibilities. Thus there are potentially 2

n

combinations of choices altogether. We assume

that there is an ordering on these choices, and we make the simplest choice �rst. For each of

the resulting alternatives, we recursively attempt to solve the problem. The reasoning is that

we may solve the problem before the more complex choices are even seen, thereby saving e�ort.

This seems to be a natural strategy from the standpoint of human problem solving. Applied to

theorem proving, the set of choices is in�nite, and the order in which they are made has other

implications, but the idea is still the same.

Furthermore, a problem with semantic hyper-linking is that sometimes the enumeration of

ground terms is necessary. We would like to have a method that is based on uni�cation instead

of on the enumeration of ground terms. The proposed method incorporates uni�cation in a

natural way, and for certain kinds of semantics we show that the enumeration phase can be

done in polynomial time. There is an additional reason to believe that this new version will

have better performance. The work required by semantic hyper-linking is strongly in
uenced

by the number of eligible literals that are generated. The proposed method should reduce this

number, thereby making the method more e�cient and permitting proofs that require more

rounds of search.

References

[1] D. A. Plaisted. Ordered semantic hyper-linking. Technical Report MPI-I-94-235, 1994.�

8.2 Non-Classical Logics

The investigation of non-classical logics can be seen in at least three ways. First, there is

the `algorithmic' view: classical propositional logic is NP-complete, �rst-order predicate logic

(PL1) is undecidable and higher-order predicate logic is even incomplete. Inference procedures

can therefore be extremely complex, so it is a good idea, for a given application, to try to choose

the simplest logic available and appropriate. In order to re�ne the very coarse classi�cation into

three logical systems given above, and to have a �ner grained spectrum available, various non-

classical logics with expressiveness lying between them have been developed. For example many

modal logics lie somewhere between propositional and �rst-order predicate logic: most of them

are decidable, although the decision problem is usually more complex than for propositional

logic (usually PSPACE complete). Nevertheless given an application where the expressiveness

of such a logic is su�cient, using modal logic gives a better performance than encoding the

130

The Programming Logics Group

problem in predicate logic. Second, there is the `algebraic' view; many non-classical logics

correspond to certain algebras, usually lattices (that Boolean lattices or Boolean Algebras

correspond to propositional logic is the best known example). An investigation of these logics

therefore goes along with an investigation of the corresponding algebras and methods and

results can be easily exchanged between the two. And third, there is what we might call

the `applicational' view; there are a number of phenomena which are basically of a logical

nature, but which are di�cult or even impossible to encode in predicate logic. Examples are

nonmonotonicity, in particular default reasoning, or probabilistic reasoning.

We have investigated various aspects of non-classical logics with respect to these three. Our

ultimate goal is to provide a large spectrum of logics and inference systems from which the

optimal logic for a given application can be chosen, and which is supported with powerful tools.

To this end we have developed a uni�ed framework for presenting a wide range of logics and

their associated algorithms, and using them cooperatively. In particular we have been trying

to integrate these logics into predicate logic in such a way that we can make use of predicate

logic inference systems while keeping the characteristics and advantages of the original systems.

Finally, we are trying to exchange results and methods from related areas, e.g. lattice theory.

Speci�cally, our main areas of research are

� the development of a meta-theory for `engineering' logics, in particular for computing

representations and model theoretic semantics for axiomatically presented systems,

� the investigation of logics and algebras lying between propositional and �rst-order pred-

icate logic,

� the investigation of probabilistic and default reasoning and reason maintenance systems,

� a case study on the combined application of various di�erent logics and inference systems.

We are collaborating with Prof. Dov Gabbay (Imperial College, London). Part of the work

has been done in the Esprit project MEDLAR and in the BMFT funded project Logo. A new

project (TraLoS, Transformation of Logical Systems) has just been granted from the DFG.

8.2.1 Representation Theorems and Model Theoretic Semantics

Investigator: Hans J�urgen Ohlbach

The problem is as follows: Given an axiomatization � of a class of algebras, �nd a representation

�(�) for these algebras. Representations we are interested in consist of a mapping of the

elements of the algebra onto structures, together with a mapping of the functions of the algebra

to operations on the structure. The representation should be presented as a transformation �

of logical formula such that for each formula ' it is guaranteed that �) ' i� �(�)) �(').

The axiomatizations � can be equational axiomatizations of, say, a Boolean algebra with extra

functions or an axiomatization of a logic in terms of a binary consequence relation (similar to

the Frege style axiomatizations). Typical representations are for instance, that provided by

Stone's representation theorem for Boolean Algebras, or J�onsson and Tarski's representation

for Boolean Algebras with operators. In logical terms, representations provide classes of models

with which a given logic is complete, e.g. classical characteristic frames for modal logics. This

kind of semantics is the basis for many inference procedures.

We have shown that given an axiomatization � of an extension of a distributive lattice with

extra function symbols, and given a characterization of a representation in a certain way, we

can translate � into formulae of second-order predicate logic (PL2) describing properties of the

131

The Programming Logics Group

representation [6]. By means of a quanti�er elimination method this formula can in many cases

be reduced to a �rst-order predicate logic (PL1) formula giving a direct axiomatic speci�cation

of the properties of the representation.

The representation can for example be a PL1 formula

satis�able(w; f(x)), 8v R(w; v)) satis�able(v; x)

which in this case is a PL1 formulation of the semantics of the modal 2{operator for normal

modal logics in terms of the accessibility relation R (here we use PL1 as the target logic into

which we compile modal logic). In this case the result of the two step transformation �rst into

PL2 and then PL1 is the axiomatic description of the frame classes of the given modal system,

(c.f. the `correspondence problem' for modal logics).

We give simple criteria for checking whether a particular representation is admissible and

have found algorithms for �nding the representation automatically, at least in some cases [9, 5].

Our result generalizes on the theorem proving aspects of well known results, in particular of

J�onsson and Tarski's representation theorem for Boolean Algebras with operators. The most

important aspect of the generalization is that we can compute the representation for instances

of these algebras speci�ed with extra axioms describing properties of the operators.

The precondition that � axiomatizes at least a distributive lattice covers a large class

of extensions of known logics; e.g.if � axiomatises a Boolean (Heyting) algebra with extra

functions, then we get a the algebraic equivalent of a classical (intuitionistic) logic with modal

operators.

We have already investigated the inverse operation of �nding, for a given representation

(i.e. a semantics in the case of a logic) the corresponding axioms [2].

References

[1] F. Baader and H. J. Ohlbach. A multi-dimensional terminological knowledge representation lan-�

guage. Technical Report MPI-I-95-2-005, January 1995.

[2] C. Brink, D. M. Gabbay, and H. J. Ohlbach. Towards automating duality. Journal of Computers�

and Mathematics with Applications, 29(2):73{90, 1994. Special Issue on Automated Reasoning.

Also available as Research Report MPI-I-93-220.

[3] D. Gabbay and H. J. Ohlbach, editors. Temporal Logic: Proceedings of the First International�

Conference on Temporal Logic, volume 827 of Lecture Notes in Arti�cial Intelligence (LNAI).

Springer Verlag, 1994.

[4] H. J. Ohlbach. Computer support for the development and investigation of logics. Technical Report�

MPI-I-94-228, 1994.

[5] H. J. Ohlbach. Synthesizing semantics for extensions of propositional logic. Technical Report�

MPI-I-94-225, June 1994.

[6] H. J. Ohlbach. Boolean algebras with functions { correspondence, completeness and quanti�er�

elimination. Submitted to IJCAI 95, 1995.

[7] H. J. Ohlbach. Clause killer transformations. Submitted to the Journal of Automated Reasoning,�

1995.

[8] H. J. Ohlbach. General representation theorems. Technical Report MPI-I-95-2-006, Max-Plack-�

Institut f�ur Informatik, Saarbr�ucken, 1995. to appear.

132

The Programming Logics Group

[9] H. J. Ohlbach, D. M. Gabbay, and D. A. Plaisted. Killer transformations. Technical Report�

MPI-I-94-226, 1994.

[10] H. J. Ohlbach and C. Weidenbach. A note on assumptions about skolem functions. Journal of�

Automated Reasoning, 1995. Forthcoming.

[11] H. J. Ohlbach (editor). Temporal logic: Proceedings of the ICTL workshop. Technical Report�

MPI-I-94-230, 1994.

8.2.2 Quanti�er Elimination

Investigators: Thorsten Engel, Andreas Nonnengart, Hans J�urgen Ohlbach

The computationally complicated part of the generation of representations is the quanti�er

elimination algorithm that turns PL2 formulae into equivalent PL1 formulae, if possible. This

algorithm (SCAN) [1] has been implemented and provided with various interfaces. Besides

the direct interface for treating second-order formulae, there are interfaces for calculating the

representation from the axioms of the distributive lattice with functions, and �rst-order cir-

cumscription in the McCarthy style. These are accessible via world wide web (WWW) and the

program can be used remotely by just �lling out some HTML forms. The WWW address is

http://www.mpi-sb.mpg.de/guide/staff/ohlbach/scan/scan.html

Quanti�er elimination is incomplete, i.e. there is no algorithm that always �nds a solution

when it exists. In the SCAN algorithm this e�ect manifests itself in nonterminating resolution

loops. Sometimes, however, these resolution loops are unavoidable because the answer consists

of an in�nite conjunction of disjunctions. We have therefore developed an approach (see [2])

which allows to handle also cases in which the corresponding formula without the predicate

quanti�er can only be described by in�nite disjunctions or conjunctions represented by suitable

�xpoint operators. For example, when applied to the induction axiom for Peano arithmetics it

results in the well-known, though non-trivial fact that each number can be obtained from 0 by

a �nite number of applications of the successor relation.

When applied to modal logics the approach turns out to be successful in cases where the

SCAN algorithm does not terminate. As an interesting modal logic example we have examined,

for instance, the system G, characterized by the so-called L�ob axiom

2(2�) �)) 2� :

After application of our second-order quanti�cation elimination algorithm we end up with the

�xpoint formula

8x; y(R(x; y)) �P (y):(R(x; y)^ 8z(R(y; z)) P (z))))

which states that R is transitive and backward well-founded, properties which are di�cult to

�nd by model theoretic examination.

References

[1] D. M. Gabbay and H. J. Ohlbach. Quanti�er elimination in second-order predicate logic. In B. Nebel,

C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and Reasoning (KR92),

pages 425{435. Morgan Kaufmann, 1992.

[2] A. Nonnengart and A. Sza las. On �xpoint characterizations of modal logics. Forthcoming MPI�

report, 1995.

133

The Programming Logics Group

8.2.3 Special Representations

Investigator: Renate Schmidt

There are three levels characterizing a concrete representation for a given axiomatization �

of a logic. The �rst level is determined by the basic lattice structure, whether you have, say

a distributive lattice, a Heyting algebra (intuitionistic logic) or a Boolean algebra or more.

This determines the isomorphism between the elements of the lattice and the elements of the

representation (usually sets). The second level concerns the extra functions (for example the

modal operators). Certain characteristic properties of these functions determine a mapping to

certain relations on the representation. The third level correlates properties of the functions,

i.e. special axioms in � with properties of the relations. The �rst and second level are not

uniquely determined, but usually there is a criterion for assessing whether one representation is

better than another (more axioms in � become tautologies in �(�)). Since we want to automate

as much as possible the process of �nding more suitable representations, we investigated more

complex representations in the area of terminological logics (which are closely related to modal

logics).

Terminological representation languages are fragments of �rst-order languages in which

predicates have at most two arguments. They may be regarded as algebraic languages describ-

ing sets and relations interacting with each other [3, 2, 1, 4, 6]. Concepts (unary predicates) are

interpreted as sets and roles (binary predicates) are interpreted as binary relations. Sets give

rise to Boolean algebras and relations give rise to relation algebras (due to Tarski). Sets can be

combined with relations, and these interactions have an algebraic formalization, for example,

in Peirce algebras [1].

In the �eld of modal logic Peirce algebras and its subreducts provide an algebraic semantics

for dynamic logic, arrow logic and dynamic modal logic. Of particular interest (not only to

multi-modal logic but also to knowledge representation and computational linguistics) is the

class of concrete Peirce algebras and, in particular, the class of full Peirce algebras. The

�rst characterization of full Peirce algebras appears in the PhD Thesis of de Rijke. This is

also the �rst published representation theorem for Peirce algebras. In his characterization de

Rijke uses two conditions (besides simplicity), one on the Boolean set algebra and another on

the relation algebra. These are the algebraic analogues of two irre
exivity laws required for

the completeness proof of the logical analogue of Peirce algebras, dynamic modal logic. We

show [5] that in Peirce algebras, because the Boolean set algebra is determined by the relation

algebra, one condition, on the relation algebra, is su�cient for the representation theorem. In

contrast to the proof of de Rijke which is obtained from the completeness proof of dynamic

modal logic, our proof is algebraic. The class of full Peirce algebras is characterized by the

class of complete and atomic Peirce algebras in which the set of relational atoms is restricted

by two conditions. One requires simplicity. The other requires that each relational element

can be uniquely expressed in terms of Boolean atoms, or equivalently, that each relational

element can be uniquely expressed in terms of relational identity atoms or relational points.

This representation result for Peirce algebras parallels the representation theorems of J�onsson

and Tarski, McKinsey, G. Schmidt and Str�ohlein for full relation algebras.

References

[1] C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal Aspects of Computing, 6:1{20, 1994.�

[2] C. Brink and R. A. Schmidt. Subsumption computed algebraically. Computers and Mathematics with

Applications, 23(2-5):329{342, 1992. Also available as Technical Report TR-ARP-3/90, Automated

134

The Programming Logics Group

Reasoning Project, Research School of Social Sciences, Australian National University, Canberra,

Australia.

[3] R. A. Schmidt. Algebraic terminological representation. Technical Report MPI-I-91-216, Max-

Planck-Institut f�ur Informatik, Saarbr�ucken, 1991. Also available as Thesis-Reprints TR 011, De-

partment of Mathematics, University of Cape Town, South Africa.

[4] R. A. Schmidt. Peirce algebras and their applications in arti�cial intelligence and computational�

linguistics: Abstract. SIGALA Newsletter, 2(1):27, 1994.

[5] R. A. Schmidt. Representations as full Peirce algebras: Extended abstract. Submitted to�

AMAST'95, November 1994.

[6] R. A. Schmidt. Terminological logics and conceptual graphs: An historical perspective. In J. Kunze�

and H. Stoyan, editors, KI-94 Workshops: Extended Abstracts. Gesellschaft f�ur Informatik, Bonn,

1994.

8.2.4 Translation from Modal into Predicate Logic

Investigators: Hans J�urgen Ohlbach, Renate Schmidt

A representation, or a model theoretic semantics, provides a means for translating formulae

from the object logic into predicate logic automatically. Therefore one can apply predicate

logic inference systems, for example resolution, to these translated formulae. The translation

into �rst-order predicate logic is limited to logics with �rst-order representations.

Previously we developed the so called functional translation from modal logic into predicate

logic. Its advantage is that the term structure in the translated formulae corresponds to the

original formula structure. Therefore it is possible to encode the characteristics of the particular

modal logic into theory uni�cation algorithms, thus combining the possibilities of resolution

systems with special algorithms for the given logic. We can now show how, using this functional

translation, one can map certain second-order frame properties into �rst-order axioms and

therefore extend the applicability of resolution systems to these logics [1]. In a forthcoming

paper [2] we apply this idea to modal logic with graded modalities. This logic encodes �nite

sets. This way we can get a much more e�cient way of reasoning with sets of �nite, but

arbitrary large cardinality than was previously possible.

References

[1] H. J. Ohlbach and R. A. Schmidt. Functional translation and second-order frame properties of�

modal logics. Technical Report MPI-I-95-2-002, January 1995.

[2] H. J. Ohlbach, R. A. Schmidt, and U. Hustadt. Translating graded modalities into predicate logic. To�

appear in Knowledge and Belief in Philosophy and Arti�cial Intelligence, Akademie-Verlag, Berlin,

1995, January 1995.

8.2.5 Saturation of Modal Logic Background Theories

Investigator: Andreas Nonnengart

The functional translation of modal logic formulae requires equational reasoning or theory uni-

�cation algorithms. Quite often, it is not possible to integrate this into an existing inference

system. Prolog is such an example. To overcome this problem, we have developed a compro-

mise, the semi-functional translation, which has almost all the advantages of the functional

translation, but does not require equational reasoning.

135

The Programming Logics Group

As a side e�ect of our translation approach we get that the formulae obtained as the trans-

lation result can be very easily distinguished syntactically from the formulae which characterize

the modal logic under consideration (its background theory). Because the translated formulae

and the background theory are strictly separated it is possible to perform all possible reasoning

steps within the background theory, independently of the theorem to be proved. We have called

this procedure saturation of the background theory for a modal logic, and it results in formulae

which are characteristic for a given modal logic in the sense that it has to be performed for a

logic only once, and is then available to be used for any theorem to be checked. The main e�ect

of this saturation (together with some further useful modal logic properties like Segerberg's

connectedness assumption) appears when it is possible to reduce a complex background theory

to a few unit clauses. For instance, the background theory for the modal logic KD45 which is

often used to model consistent belief together with full introspection reduces to a single unit

clause.

We have examined many modal logics this way and it turns out that the saturation of

background theories has a similar e�ect in most cases. Not all reduce to single unit clauses

but nevertheless the procedure has proved to be signi�cant for every logic [1, 2]. (Interestingly,

our saturation theorem proving system (see section 8.6.7) is sometimes able to calculate the

saturation from the semi-functional translation automatically.)

Another interesting aspect of this approach is that it allows us to use modal logic in pro-

gramming (at least for those modal logics with a background theory reducible to one or more

unit clauses) without any changes on the logic programming environment. In fact the method is

not restricted to modal logic applications; it can also be used to extend logic programming with

sorts [3]. The simpli�cation ideas are the same, though the e�ect is usually not as considerable

as for modal logics. Nevertheless, it allows us to use sorts in logic programming languages to

some extent, something hardly possible before.

References

[1] A. Nonnengart. First-order modal logic theorem proving and standard PROLOG. Technical Report

MPI-I-92-228, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1992.

[2] A. Nonnengart. First-order modal logic theorem proving and functional simulation. In R. Bajcsy, ed-

itor, Proc. 13th Intern. Joint Conference on Arti�cial Intelligence (IJCAI '93) (Chambery, France),

volume 1, pages 80{85, San Mateo, CA, 1993. Morgan Kaufmann.

[3] A. Nonnengart. How to Use Modalities and Sorts in Prolog. In Proceedings of the JELIA'94, LNAI�

838, Logics in Arti�cial Intelligence. Springer Verlag, 1994.

8.2.6 Logic and Uncertainty

Investigators: Manfred Jaeger, Emil Weydert

The handling of uncertain, and thus defeasible, knowledge is a major research problem in AI.

Logical approaches to reasoning about uncertainty try to combine the best of both worlds:

the representational power of logic and the practical relevance of probabilistic techniques. An

important subarea of this is default reasoning. In our group, we have been concerned with �rst-

order logics of probability and qualitative probabilistic approaches to defaults and defeasible

inference.

In the �rst research area, we have considered extensions of �rst-order logic that incorporate

representations of probabilistic information. Following work by Halpern [2] and Bacchus [1],

the syntax of �rst-order logic is extended with two syntactic operators allowing us to represent

136

The Programming Logics Group

statements about two types of probabilities: statistical probabilities indicating the relative fre-

quency with which objects of the domain of discourse satisfy certain predicates, and subjective

probabilities expressing a degree of belief of an individual reasoner that a certain proposition

is true.

In the work by Halpern and Bacchus, a semantics is de�ned for the extended language

that interprets statistical and subjective probability expressions respectively by probability

measures on the domain and on a set of possible worlds. This strong conceptual separation

between statistical and subjective probabilities makes it inherently di�cult to model the de-

pendency of subjective beliefs on the available statistical information. We primarily address

the analysis and formalization of this dependency. In order to integrate it into the semantics

of the extended language, both statistical probability expressions and subjective probability

expressions are interpreted by probability measures on the domain. That way it becomes pos-

sible to e�ectively compare the subjective probability measure with the statistical probability

measure, and to require in the semantics that the subjective measure must be as close as pos-

sible to the statistical measure given the partial information about both measures. Jaeger has

proposed using cross-entropy as a measure for the dissimilarity of two probability measures [5].

We show in [4, 3] that the use of this function can be justi�ed both in terms of desired logical

behaviour, and also on statistical grounds.

A further research task has been the development and investigation of new measures of be-

lief. Traditionally, this has been achieved through (subjective) probability valuations. However,

when precise numbers are lacking, irrelevant, computationally expensive or even meaningless,

we may need a di�erent concept. Furthermore, when we try to model plain, i.e. logically closed

belief, the standard probabilistic account turns out to be inappropriate.

In [8], we have investigated what would constitute a minimal `quasi-probabilistic' frame-

work. By enforcing additional conditions, we obtain two notions of generalized measures which

are of particular interest:

� Ranking measures, which take values in ordered commutative semi-groups and satisfy

R(AtB) = maxfR(A); R(B)g. They subsume earlier semi-qualitative measure concepts

and o�er a semantics for default conditionals.

� Cumulative measures, which combine the probabilistic and the ranking philosophy, and

provide a more �ne-grained model of plain belief.

Another possibility is to consider �nitely additive measures taking values in nonstandard

models of the reals, i.e. admitting in�nitesimally small numbers, from which canonical ranking

and cumulative measures can be derived. New results from model-theoretic algebra have paved

the way to extended probability logics, whose valuation algebras are exponential real-closed

�elds extending the reals but carrying an explicit standard part. This framework is expressive

enough for handling all kinds of default knowledge or inference mechanisms based on cross-

entropy [7].

Last but not least, we have explored a new defeasible inference relation, which combines

techniques from belief revision, e.g. Je�rey conditionalization, with strategies from default

reasoning, e.g. normality maximization. By making explicit the abnormality parts of defaults,

we can get both, syntax-independency and inheritance through exceptional subclasses [6].

References

[1] F. Bacchus. Representing and Reasoning With Probabilistic Knowledge. MIT Press, 1990.

137

The Programming Logics Group

[2] J. Halpern. An analysis of �rst-order logics of probability. Arti�cial Intelligence, 46:311{350, 1990.

[3] M. Jaeger. Minimum cross-entropy reasoning: A statistical justi�cation. Submitted to IJCAI-95.�

[4] M. Jaeger. A logic for default reasoning about probabilities. In Proceedings of the Tenth Conference�

on Uncertainty in Arti�cial Intelligence. Morgan Kaufmann, San Mateo, CA, 1994.

[5] M. Jaeger. Probabilistic reasoning in terminological logics. In J. Doyle, E. Sandewall, and P. Torasso,�

editors, Principles of Knowledge Representation an Reasoning: Proceedings of the Fourth Interna-

tional Conference (KR94). Morgan Kaufmann, San Mateo, CA, 1994.

[6] . Weydert. Default entailment. Submitted.�

[7] . Weydert. Numeric defaults. Submitted.�

[8] E. Weydert. General belief measures. In Proceedings of the Tenth Conference on Uncertainty in�

Arti�cial Intelligence. Morgan Kaufmann, San Mateo, CA, 1994.

8.2.7 Reason Maintenance

Investigator: Detlef Fehrer

Reason maintenance is a major problem for inference systems operating in a dynamically

changing environment. Various systems have been developed which keep track of reasoning

chains and locate the parts of a database that need to be revised if new information is added,

or old information is removed. Based on Gabbay's proposed Labelled Deductive Systems [3] we

have developed a uniform method for describing all these systems. Our approach works for

justi�cation based as well as for assumption based methods, thus giving a unifying semantics

to both of them. Unlike other systems, our approach is not restricted to propositional Horn

clauses, but can treat arbitrary logics, e.g. full �rst-order logic. This enables us to characterize

systems as a whole, including both the reason maintenance component and the problem solver,

while nevertheless maintaining a separation between the basic logic and the part that describes

the label propagation [1, 2].

References

[1] D. Fehrer. A unifying framework for reason maintenance. In M. Clarke, R. Kruse, and S. Moral,

editors, Symbolic and Quantitative Approaches to Reasoning and Uncertainty: Proc. Europ. Con-

ference ECSQARU '93 (Granada, Spain), volume 747 of Lecture Notes in Computer Science, pages

113{120, Berlin, 1993. Springer-Verlag.

[2] D. Fehrer. A Unifying Framework for Reason Maintenance. PhD thesis, Max-Planck-Institut,�

Saarbr�ucken, 1995. Forthcoming.

[3] D. Gabbay. Labelled Deductive Systems. Technical Report MPI{I{94-223.�

8.2.8 Case Study: Knowledge Representation using Non-Classical Logics

Investigator: Ullrich Hustadt

In co-operation with a group lead by Prof. Wahlster in Saarbr�ucken we have developed the

knowledge representation system Motel as part of a natural language dialogue system [1].

Speci�cally, we have been developing an extension of terminological logics which is expressive

enough to describe agent models which can maintain and exploit an explicit model of the

dialogue partners' beliefs, goals, and plans and be used for planning the appropriate dialogue

138

The Programming Logics Group

contributions for achieving goals, and determining the e�ects of dialogue contributions on a

dialogue partner. We have sketched these extensions in the previous report. During 1994 we

have concentrated on the problem of `stereotypes'; i.e. how an subject should initially treat an

interlocutor. There are two possibilities:

� We ascribe all or a subset of the system's knowledge, beliefs, goals, and plans to the

dialogue partner, i.e. the initial agent model mirrors the system.

� We use prede�ned collections of knowledge, beliefs, goals and plans. At the beginning of

the dialogue, the system chooses one of these collections and ascribes it to the dialogue

partner.

The �rst approach is appropriate if the main use of the agent model is to assure that the

dialogue partner understands all the utterances of the system as in the case of the UMFE

system. But for example in an argument in which the personal attitude towards the topic

of the discussion is important, this is evidently not a good approach. If the system wants to

convince the dialogue partner that his attitude towards a topic is right, it should not start with

the assumption that the dialogue partner already has the same attitude towards this topic.

Using prede�ned assumptions is usually called the stereotype approach to agent model

ascription. In the literature, the term stereotype is used mostly for a collection of knowledge,

beliefs, and goals that are typical for members of a group. That is, the properties contained

in the stereotype can be likely ascribed to members of the group. This is opposed to the view

that de�nes stereotypes as collecting the knowledge, beliefs and goals common to all members

of a group. In both cases we have to �nd a way to select from a collection of stereotypes the

one which we want to ascribe to a dialogue partner.

We have found that a small extension of our logic is already expressive enough to describe

these stereotypes [2, 4]. However, we have also been looking at more expressive query languages

for our logic. Since the semantics of our language obeys the open-world and open-domain

assumptions, queries are answered according to these assumptions too. Hustadt [3] shows

the usefulness of query answering in natural language processing systems which is based on

closed-world and closed-domain assumptions. An integration into our framework is an open

problem.

References

[1] D. Fehrer, U. Hustadt, M. Jaeger, A. Nonnengart, H. J. Ohlbach, R. A. Schmidt, C. Weidenbach,�

and E. Weydert. Description logics for natural language processing. In International Workshop on

Description Logics '94, pages 80{84, Bonn, Germany, 1994. DFKI.

[2] U. Hustadt. Common and mutual belief for agent modeling. To appear in Knowledge and Belief in�

Philosophy and Arti�cial Intelligence, Akademie-Verlag, Berlin, 1995, 1994.

[3] U. Hustadt. Do we need the closed-world assumption in knowledge representation. In F. Baader�

and M. A. Jeusfeld, editors, Reasoning about Structured Objects: Knowledge Representation meets

Databases. Workshop during the 18th German Annual Conference on Arti�cial Intelligence (KI-94),

1994.

[4] U. Hustadt. A multi-modal logic for user modeling. In Proceedings of the Fourth International�

Conference on User Modeling UM94 (Hyannis, MA), pages 87{92, Bedford, MA, 1994. The MITRE

Corporation.

139

The Programming Logics Group

8.2.9 Summary

Our general results about representations of distributive lattices with functions provide an

excellent means for de�ning all kinds of mixed logics, for getting a model theoretic semantics and

for turning the model theoretic semantics into translation functions from the source logic into

PL1. More sophisticated translations such as the semi-functional or the functional translation

allow us to exploit in the general resolution framework the special knowledge about the source

logic. One such resolution based theorem prover for translated formulae is the inference machine

underlying the Motel knowledge representation system.

The quanti�er elimination algorithm we have already developed seems to be useful also in

other areas. Our �rst customer of the WWW accessible variant, from Austin, Texas, uses it

for computing circumscription in action planning applications.

In the area of probabilistic and nonmonotonic reasoning a number of promising new concepts

have been developed.

8.3 Logic and functional programming

Logic programming is based on the idea of using logic on the object level as a programming

language, in contrast to using it on the meta-level to reason about programs. Since e�ciency is

one of the most important requirements of any programming language, the logics used in logic

programming are relatively simple. Classical logic programming is based on non-left recursive

Horn logic, which, among others, has the nice property that there is a much more e�cient

resolution strategy, SLD-resolution, than in full �rst-order logic. The general task, which is

characteristic for most research in logic programming, is to �nd the right balance between

expressive power on the one hand and e�cient operational behaviour on the other.

A fundamental problem in classical logic programming is that it does not support functions

and equality. A user cannot de�ne functions by recursive equations like in other programming

languages, but has to express them as relations, which causes many ine�ciencies. In addi-

tion, even standard domains of computation, like arithmetic or Boolean algebra, are not well

supported.

The integration of logic and functional programming has been a major research theme

in our group. On the theoretical side, we have studied narrowing calculi, which provide the

operational semantics of logic and functional programming languages. On the practical side,

we have developed techniques for the analysis and optimization of declarative programs, which

are based on abstract interpretation. Very recently, we have presented a new approach to

using linear logic for program analysis in functional programming. In the area of constraint

logic programming we have been working on the integration of e�cient constraint solving

techniques for speci�c domains of computations, in our case pseudo-Boolean constraints, into

logic programming languages.

8.3.1 Integration of Functional and Logic Languages

Investigators: Alexander Bockmayr, Michael Hanus

Functional and logic programming are the most important declarative programming paradigms,

and interest in the amalgamation of the two has been growing since the beginning of the last

decade.

An integrated language has advantages from both the functional and the logic program-

ming points of view: against pure functional programming it o�ers features like like function

inversion, partial data structures and logical variables, while against pure logic languages, it

140

The Programming Logics Group

is able to take advantage of the deterministic nature of functions to provide greater e�ciency.

Hence functions integrated into logic programming allows some of the impure control features

of Prolog, like the cut operator to be avoided. These considerations were the motivation for

integrating the two language types. Early research in this area concentrated on the de�nition

and improvement of appropriate execution principles for functional logic languages, while in

recent years e�cient implementations of these execution principles have been developed so

that these languages became relevant for practical applications. In [6] we give a survey on the

theoretical and practical developments in this area.

A common approach to the integration of functions into logic programs is to have functions

de�ned using equations inside the logic program, then the operational semantics is usually

based on narrowing, which is a universal uni�cation procedure for equational theories de�ned

by con
uent term rewrite systems. Since na��ve narrowing is extremely ine�cient, many re�ned

narrowing strategies have been proposed. In [1], we present an optimal narrowing strategy

for inductively sequential rewrite systems. This is based on the extension of the Huet and

L�evy notion of a needed reduction step to narrowing. Our strategy is sound and complete

for a large class of rewrite systems, optimal with respect to the cost measure that counts the

number of distinct steps of a derivation, computes only independent uni�ers, and is e�ciently

implemented by pattern matching. The basic requirement to obtain this optimal strategy is

that the left-hand sides of the rewrite rules do not overlap. In the case of overlapping left-hand

sides, we show in [7] that the inclusion of a simpli�cation process between narrowing steps is

useful even for a lazy narrowing strategy. This simpli�cation process reduces the search space

so that in some cases in�nite search spaces are reduced to �nite ones. In [5] we extend these

results to nonterminating rewrite systems. Here it is necessary to perform the simpli�cation

process in a lazy manner in order to avoid in�nite simpli�cation derivations.

In [3], we have introduced the LSE narrowing strategy, which is complete for arbitrary

canonical rewriting systems and optimal in the sense that two di�erent LSE narrowing deriva-

tions cannot generate the same answer substitution. Moreover, all narrowing substitutions

computed by LSE narrowing are normalized. An initial impression that one might get from

the de�nition of LSE narrowing is that it is very expensive, because a large number of terms

must be checked for reducibility. In [9] we show that many of these terms are identical. We

describe how, using left-to-right basic occurrences, the number of terms that have to be tested

can be reduced drastically. Using these results, we develop an e�cient implementation of LSE

narrowing.

In [4], we extend LSE narrowing to the case of con
uent and decreasing conditional

term rewrite systems. Using the calculus of conditional rewriting without evaluation of the

premise [2], we are able to generalize most of our earlier results. This calculus, which estab-

lishes the connection between ordinary conditional rewriting and conditional narrowing, shows

that some of the results can hold only for successful derivations. In practice, however, this is

not a restriction. The methods developed in [9] for an e�cient realization of LSE narrowing

can also be used in the conditional case.

In [8], we discuss the in
uence of extra variables on the completeness of various narrowing

strategies for conditional rewrite systems. It is well known that narrowing may become incom-

plete in the presence of extra variables. We show that this is not the case in weakly orthogonal

normal conditional rewrite systems. We prove that each narrowing strategy which is complete

for such rewrite systems without extra variables can be transformed into a strategy which is

complete in the presence of extra variables. Using this technique, we can derive a number

of new completeness results; in particular, our method does not require terminating rewrite

systems and also permits extra variables in right-hand sides.

141

The Programming Logics Group

References

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. of the 21st ACM�

Symposium on Principles of Programming Languages (POPL'94 (Portland)), pages 268{279, New

York, 1994. ACM Press. Extended version available as Technical Report MPI-I-93-243.

[2] A. Bockmayr. Conditional narrowing modulo a set of equations. Applicable Algebra in Engineering,

Communication and Computing, 4(3):147{168, 1993.

[3] A. Bockmayr, S. Krischer, and A. Werner. Narrowing strategies for arbitrary canonical systems.�

Fundamenta Informaticae, 1994. To appear.

[4] A. Bockmayr and A. Werner. LSE narrowing for decreasing conditional term rewrite systems. In�

Conditional Term Rewriting Systems CTRS'94, Jerusalem, 1994.

[5] M. Hanus. Combining lazy narrowing and simpli�cation. In M. Hermenegildo and J. Penjam,�

editors, Proc. 6th International Symposium on Programming Language Implementation and Logic

Programming (Madrid, Spain), volume 844 of Lecture Notes in Computer Science, pages 370{384,

Berlin, 1994. Springer-Verlag.

[6] M. Hanus. The integration of functions into logic programming: From theory to practice. Journal�

of Logic Programming, 19&20:583{628, 1994.

[7] M. Hanus. Lazy uni�cation with simpli�cation. In D. Sannella, editor, Proc. 5th European Sympo-�

sium on Programming, volume 788 of Lecture Notes in Computer Science, pages 272{286, Berlin,

1994. Springer-Verlag.

[8] M. Hanus. On extra variables in (equational) logic programming. Technical Report MPI-I-94-�

246, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1994. to appear in Proc. of the

International Conference on Logic Programming, Tokyo, 1995.

[9] A. Werner, A. Bockmayr, and S. Krischer. How to realize LSE narrowing. In Algebraic and Logic�

Programming, ALP'94, Madrid, pages 59 { 76. Springer, LNCS 850, 1994.

8.3.2 Analysis and Optimization of Declarative Programs

Investigators: Michael Hanus, Frank Zartmann

The functional and logic programming paradigms have been shown to be useful for solving a

wide range of problems by allowing us to state these problems declaratively at a high level

of abstraction. Because of this high level of programming, e�cient implementations of such

languages require sophisticated compilation techniques. Although various new compilation

techniques based on abstract machines have been developed, high-performance implementations

require knowledge about the possible use of the high-level constructs of the language. Therefore,

global analysis at compile time and abstract interpretation are widely believed to play an

essential rôle in the development e�cient implementations of these languages, that are able

to bridge the large gap between the language and the machine. Abstract interpretation was

developed as a formal analysis technique for imperative languages by the Cousots, and has

subsequently been adopted in the context of functional and logic programming. The basic idea

of abstract interpretation is to approximate the concrete run-time behaviour of the program

by executing the program with abstract values. The execution is guaranteed to terminate as

long as there are only �nitely many abstract values. If the abstract values have a properly

de�ned relationship to the concrete values, the result of the abstract interpretation correctly

approximates the concrete run-time behavior of the program and the results can be used to

compile the programs into a specialized and hence more e�cient code.

142

The Programming Logics Group

We have used abstract interpretation techniques to analyze and optimize functional logic

programs. The usefulness of the availability of run-time information for the e�cient implemen-

tation of functional logic programs is shown in [1]. In this paper we propose code optimizations

for the implementation of normalizing narrowing which depend on run-time information. If

it is known at compile time that some arguments of functions are de�nitely free at run-time,

we can infer that particular normalization steps can never be performed and thus we do not

need to generate code for them. If some arguments are de�nitely ground at run time, these

function calls are completely evaluable by normalization and again we avoid having to generate

code for narrowing. The in
uence of these optimizations to the run time and space of example

programs is also discussed in this paper.

In order to integrate these code optimizations into existing compilers, we need techniques

for automatically approximating run-time properties at compile time. For this purpose we

present in [4] an abstract interpretation framework for the analysis of functional logic pro-

grams. The concrete operational semantics considered in this paper is normalizing innermost

narrowing, which combines the deterministic reduction principle of functional languages with

the nondeterministic search principle of logic languages. Due to the normalization process be-

tween narrowing steps, standard analysis frameworks for logic programming cannot be applied.

Therefore, we develop new techniques for correctly approximating the e�ect of the intermediate

normalization process.

Residuation is an alternative method for executing functional logic programs which tries to

avoid nondeterministic computation steps when evaluating functions. The residuation princi-

ple delays the evaluation of functions during the uni�cation process until the arguments are

su�ciently instantiated. This has the advantage that the deterministic nature of functions is

preserved, but may be incomplete: if the variables in a delayed function call are not instantiated

by the logic program, this function is never evaluated and some answers may be lost. In [2]

we improve our previous work on the analysis of programs based on the residuation principle.

The abstract interpretation algorithm approximates the possible residuations and instantiation

states of variables during program execution. If the algorithm computes an empty residuation

set for a goal, then the concrete execution of the goal does not end with a nonempty set of

residuations, i.e. the residuation is complete in the sense that it computes only fully evaluated

answers.

In 1993 we applied similar ideas to analyze logic programs with nonlinear arithmetic con-

straints. In the constraint logic programming language CLP(R) only linear constraints are

solved during the execution of such programs, while nonlinear constraints are delayed until

they become linear. This method has the disadvantage that sometimes computed answers are

unsatis�able, or in�nite loops occur because of the unsatis�ability of delayed nonlinear con-

straints. We characterized a class of CLP(R) programs for which all nonlinear constraints

become linear at run time. In [3] we present a revised and detailed description of our program

analysis technique.

References

[1] M. Hanus. Towards the global optimization of functional logic programs. In P. Fritzson, editor,�

Proc. 5th International Conference on Compiler Construction (Edinburgh), volume 786 of Lecture

Notes in Computer Science, pages 68{82, Berlin, 1994. Springer-Verlag.

[2] M. Hanus. Analysis of residuating logic programs. Journal of Logic Programming, 1995. (to appear).�

[3] M. Hanus. Compile-time analysis of nonlinear constraints in CLP(R). New Generation Computing,�

1995. (to appear).

143

The Programming Logics Group

[4] M. Hanus and F. Zartmann. Mode analysis of functional logic programs. In B. L. Charlier, editor,�

Proceedings of the First International Static Analysis Symposium (Namur, Belgium), volume 864 of

Lecture Notes in Computer Science, pages 26{42, Berlin, 1994. Springer-Verlag.

8.3.3 Linear Logic Based Program Analysis

Investigator: Andreas T�onne

Linear logic distinguishes linear (use-once) and non-linear (use-repeatedly) formula. This can

be used in a typed �-calculus to reason about variable usage. Our work presents a uniform

approach to applying linear logic to traditional functional programming to obtain optimization

information.

We have continued our work on the application of intuitionistic linear logic to functional

programming [1, 2] and have succeeded in providing a much better characterization of our

previous results; we gave an e�cient, redundancy-free type-inference algorithm and we propose

a general and uniform approach to using linear �-calculi to obtain optimization information

about the operational behaviour of functional programs as it relates to storage.

The overall approach is based on a dual �-calculus: one calculus serves as the programming

calculus while the other models execution. The translation between these two calculi uses

linear typing proofs based on linear logic; these proofs carry operational information about the

translated programs, and can be used for optimization purposes. This method is, however,

computationally complex, There are exponentially many distinct proofs that all contribute to

the optimization information. This typing ambiguity essentially describes all the di�erent ways

in which, in the course of the evaluation of a program, storage operations might be arranged:

each proof describes an optimal translation into the deterministic execution calculus. Optimal

here means that the number of storage operations is minimized with respect to the types of

the variables.

References

[1] A. T�onne. Linear logic meets the Lambda calculus, part I. Technical Report MPI-I-93-258, Max-

Planck-Institut f�ur Informatik, Saarbr�ucken, 1993. Revised version to appear.

[2] A. T�onne. An approach to linear logic based program analysis. PhD thesis, Max-Planck-Institut f�ur�

Informatik, 1995. (to appear).

8.3.4 Constraint Logic Programming

Investigators: Alexander Bockmayr, Peter Barth, Thomas Kasper

Constraint logic programming (CLP) combines the declarative nature of logic programming

with the e�ciency of constraint solving over some particular domain of computation like lin-

ear real arithmetic, CLP(R), Boolean algebra, CLP(B), or �nite domains, CLP(FD). Finite

domain constraints are used to solve complex combinatorial problems, which is one of the

main application areas of CLP. We are working on a constraint logic programming language

CLP(PB) for logic programming which uses pseudo-Boolean constraints , i.e. equations or in-

equalities between integer polynomials in 0-1 variables. This is both a generalization of Boolean

constraints, and a restricted form of �nite domain constraints where all domains are equal to

f0; 1g; i.e. we have B � PB � FD.

One way to solve pseudo-Boolean constraints is to use standard �nite domain techniques,

which are based on local consistency and constraint propagation from arti�cial intelligence.

These methods have the drawback that they do not exploit the special structure of 0-1 problems

144

The Programming Logics Group

and, moreover, �nite domain constraint solvers based on local consistency are not complete:

a set of constraints can be locally consistent even though it does not admit a global solution.

To get completeness, the values in the domains have to be enumerated by some additional

backtracking mechanism (or labeling procedure). The lack of global consistency causes semantic

problems and also means that it is impossible to talk about the failure of constraints in a

program. Moreover in practice pure enumeration may not be e�cient enough to solve hard

combinatorial problems [4].

In order to overcome the problems of local consistency and pure enumeration we have

developed a new approach for 0-1 constraint solving, based on cutting plane techniques from

mathematical programming [1, 2, 5, 6]. The basic idea is to solve a constraint set by computing

strong valid inequalities or cutting planes for its 0-1 solution set S (see Figure 2).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
...

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.
.
.

.

.

.

.
.
.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.
.
.
.

.

..

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
..
..
.
..
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
..
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
..
.
..
..
.
.

.
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.............

.
.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.

.
.
.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.
.

.
.
.

.

.

.
.
.
.

.

.

.
.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.

.......................................

.

.

.

.

.

.
.
.
.

.

.

.
.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.
.
.

r r

r r

rr

r r b b

b b

b

b

b

b

b b

Cutting planes

S

.

..

...

....

.....

......

.......

........

.........

..........

...........

............

.............

..............

...............

................

.................

..................

...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Constraint solving by cutting plane generation

We say that an inequality is valid for S if it is satis�ed by all elements of S. An inequality

� is stronger than another, �

0

, if the solution set of � is a subset of the solution set of �

0

. We

can compare inequalities using either their 0-1 solutions or their solutions in the non-negative

real numbers.

In the �rst case, the set of strongest valid inequalities is the set � of prime inequalities for

S [2], in the second it is the set � of facet-de�ning inequalities for the convex hull of S [5]. The

sets � and � are viewed as ideal solved forms. Constraints are solved by generating cutting

planes which give a better approximation of the ideal solved form. The approximation is done

in a lazy manner, i.e. the generation of cutting planes is driven by the current state of the

logic program. In combination with branch-and-bound, we obtain a logic-based or a polyhedral

branch-and-cut algorithm for pseudo-Boolean constraint solving. Using cutting planes, we can

ensure global consistency and improve e�ciency of the program by pruning the search space.

The logic-based cutting plane approach has also been used to simplify clausal satis�ability

problems in propositional logic [3]. A satis�ability problem is reformulated by adding valid

extended clauses that dominate at least one clause in the problem. The reformulated 0-1

problem contains fewer but usually stronger 0-1 inequalities and is typically solved much more

quickly.

References

[1] P. Barth. Linear 0-1 inequalities and extended clauses. Technical Report MPI-I-94-216, Saarbr�ucken,�

1994.

[2] P. Barth. Logic-based 0-1 constraint solving in constraint logic programming. PhD thesis, Fachbereich�

Informatik, Univ. des Saarlandes, 1994. Forthcoming.

145

The Programming Logics Group

[3] P. Barth. Simplifying clausal satis�ability problems. In First International Conference on Con-�

straints in Computational Logics, Munich, Germany, pages 19{33. Springer, LNCS 845, Sept. 1994.

[4] P. Barth and A. Bockmayr. Finite domain and cutting plane techniques in CLP(PB). Technical�

Report MPI-I-94-261, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1994.

[5] A. Bockmayr. Cutting planes in constraint logic programming. Technical Report MPI-I-94-207,�

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, February 1994.

[6] A. Bockmayr. Solving pseudo-Boolean constraints. In Constraint Programming: Basics and Trends.�

Springer, LNCS, 1995. To appear.

8.4 Higher order logic

One research direction in our group concerns higher-order logics and their applications. In

particular, we are interested in using logic as tool to study, implement, and automate other

logics and to explore their relationship to programming. Our reasons for this are both theoret-

ical and pragmatic. Theoretically, we are interested in how extensions e�ect the expressivity

of logics; practically, we are looking for methods for making logics more usable (e.g. for inter-

active theorem proving and theory development) by extending them with new rules or proof

procedures. Research closely related to this work addresses logic encodings based on labelled

deductive systems; this has a theoretical component, which concerns how natural deduction

presentations of modal logics can be embedded within higher-order logical frameworks, but is

motivated by the practical concerns of using and automating reasoning in these logics.

Our research also looks at the relationship between higher-order logic and programming.

Part of this investigates using logic to develop theories of programs and program synthesis based

on higher-order theorem proving. Another aspect concerns logics which serve as programming

type systems. In particular we are studying of the second-order �-calculus with subtyping,

and its application to the development of expressive decidable variants suitable for typing

object-oriented program languages.

8.4.1 Metatheory in a logical framework

Investigator: Se�an Matthews

The initial reason for developing logical frameworks was to provide a system that could be used

to implement range of logics in a unform way and make it possible for a user to reuse tools

across logics and even to combine di�erent logics together. However we get a bonus: since the

implementation is in a well-de�ned formal theory, we can use that theory to proving, along side

the usual theorems of the implemented theory, facts about the theory itself; i.e. metatheory.

We have been investigating frameworks where this metatheoretic reasoning can be done, as

well as the way that it might make working with a logic easier. The problem with the best

known of the proposed logical frameworks (e.g. Isabelle or the LF) is that they are not really

designed with metatheory in mind, and allow only very weak reasoning of this sort. We have

been considering a very di�erent system, FS

0

, proposed by Feferman [2], which is intended

for doing metatheory. However, FS

0

is in some ways still a very primitive theory, and it is

not clear that it can really be used for development work. Thus we have been developing an

implementation of the theory, and regard that implementation as a substantial contribution in

itself.

FS

0

has two problems in practice: �rst, while a user is encouraged to think of classes as the

extensions of predicates, there is no axiom schema with which we can produce these extensions

146

The Programming Logics Group

directly, and they are very di�cult to build by hand out of the components provided; second

is that, even though FS

0

is designed for encoding logics, it has no built-in facility for dealing

with binding and substitution (unlike type-theoretic frameworks).

We have built our implementation (described in [4]) on top of the Isabelle system. The initial

decision to use Isabelle has strongly in
uenced (for the better, we believe) the system we have

produced. Our implementation deals with the �rst problem, of constructing classes, by making

extensive use of the techniques described in section 8.4.3 to automate a metatheorem saying

what instances of comprehension are provable. The second problem, that there is no binding

mechanism available, is not dealt with as part of the implementation, but as a development

inside it: we have developed a a very general binding mechanism proposed by Talcott, which is

su�ciently �rst order to be de�nable. We say `su�ciently' because it makes uses of higher-order

avoured ideas like homomorphism schemata. However using our system we have found it quite

easy to develop such a theory with the `higher order' facilities provided at the metalevel of the

Isabelle logic, instead of being part of the object logic, and this works very well. The theory we

have implemented provides a very general binding facility that can be used for implementing

arbitrary theories in much the same way as in a type-theoretic framework. Thus, once done,

the work of building a binding mechanism need never be repeated.

We have found the combination of Isabelle and FS

0

to be very successful: we have taken

FS

0

, a theory that seems to be unusably primitive, and build a powerful development system

for it, implementing exactly the theory that Feferman describes. We have made elaborate

use of the facilities that Isabelle provides, to the extent that we believe it would be di�cult

to produce a custom built system that was anywhere near as e�ective. Our implementation

makes several contributions: �rst, it is the �rst convincing demonstration that FS

0

is a usable

theory, so long as the right machine support is provided, as proof of this we have been able

to develop a complex theory of binding in the system. and impose e�ectively a very clean

structure on the development;

3

second, our implementation can be regarded as a substantial

case study implementation of an unusual logic in a framework theorem proving system.

We have also been investigating the sort of metatheorems one can prove with FS

0

. Since

the original motivation of FS

0

was proof-theoretic, we have been looking there for possible

applications, and in [7] we outline how a formal proof of one of the central results of proof

theory, cut elimination, for a sequent calculus presentation of propositional logic could be

carried out in FS

0

. This presentation does not deal with the issues of binding in the encoded

language, but rather with how one can formulate a sequent calculus style system in the theory,

and how to prove for it a result that uses a complicated nonstructural induction.

Re
ection

A special case of metatheoretic reasoning is where a logic is used to encode and reason about

itself, then the information produced by this is used to extend the meta level (instead of the

object level, like in the approach discussed above) with new results, by adding an axiom to the

meta-level version of the theory saying essentially that if something is provable in the encoding,

then it is true. The result of adding a statement like this (so long as we are careful) can be a

theory that has been dramatically proof-theoretically strengthened. This o�ers an interesting

way to increase the strength of a logic in a reliable manner and provides insights into issues of

self-reference [1]. However, while for a specially designed framework theory, encoding the logic

in itself is easy, in general it is not, and thus we have proposed, in earlier work [5, 6], a way to

avoid the e�ort involved in a full encoding. The abstract properties of an encoding of a logic

3

We do not believe the implementation in [5] counts as such, being a `hack' developed for a speci�c purpose.

147

The Programming Logics Group

are very well known [9], and we have proposed adding these properties to a theory directly,

rather than deriving them as theorems. This is a weaker extension than if we go to the e�ort of

building a complete encoding, but it is also much simpler. The question is, how much weaker

is it? In [8] we show that this approach works for exactly those theories that have induction

over at least what are known as �

0

1

formulae, but not over arbitrary �rst order formulae.

References

[1] S. Feferman. Trans�nite recursive progressions of axiomatic theories. J. Symbolic Logic, 27:259{316,

1962.

[2] S. Feferman. Finitary inductive systems. In Gabbay [3]. (also appeared in Logic Colloquium '88).

[3] D. Gabbay, editor. What is a Logical System? Oxford University Press, Oxford, 1994.

[4] S. Matthews. Implementing FS

0

in Isabelle: adding structure at the metalevel. Unpublished paper�

in preparation.

[5] S. Matthews. Metatheoretic and Re
exive Reasoning in Mechanical Theorem Proving. PhD thesis,

University of Edinburgh, 1992.

[6] S. Matthews. Re
ection in a logical system. In A. Yonezawa and B. C. Smith, editors, Proc. IMSA

'92 Workshop on Re
ection and Meta-Level Architecture, pages 178{183, 1992. Also available as

Technical Report MPI-I-92-250.

[7] S. Matthews. A theory and its metatheory in FS

0

. In Gabbay [3], chapter 13, pages 329{354.�

[8] S. Matthews and A. Simpson. Re
ection using the derivability conditions. To appear as a chapter�

in the volume in memoriam Roberto Magari.

[9] R. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics, 25:287{304,

1976.

8.4.2 Labelled deductive systems

Investigators: David Basin, Se�an Matthews, Luca Vigan�o

In the face of the enormous range of logics that has been proposed for use in computer science,

the notion of a logical framework has beed developed, as a foundation for systems that can

be used to produce uniform implementations of a wide range of di�erent logics, combine them

together, and share tools and interfaces across them. The proposed frameworks however are,

for all their aspirations to universality, quite limited in their applications. For instance type

theoretic systems like the Edinburgh LF or Isabelle really only work well with logics that can

be given a standard natural deduction style presentation; FS

0

su�ers from a similar bias, only

towards Hilbert presentations of logics. So long as we are interested only in implementing

classical or intuitionistic, �rst-order or higher-order logic, we should have no problems, but

there are many `badly behaved' logics that we might want to implement. For instance if

we are interested in modal logic we �nd that because the deduction theorem fails, a na��ve

natural deduction presentation is impossible; if we are interested in substructural logics, then

thinning or contraction fail, so we have to modify the nature of natural deduction substantially.

We might even be interested in non-monotonic logic. The standard logical frameworks have

di�culty dealing with all these.

Gabbay, in [4] has proposed a systematic solution to this problem with what he calls Labelled

deductive systems (LDS). He proposes that, for the purposes of proof theory, formulae be

148

The Programming Logics Group

associated with labels generated by some algebra, then formal deductions are performed on the

pair of the formula and the label together. The information in the labels can be used in the

application of rules, and turns out to be enough to enforce good behaviour on previously badly

behaved logics, which can now be implemented in standard frameworks like Isabelle (the `bad'

behaviour of the logic is captured in the algebra de�ned over the labels, but derivations in the

algebra itself are carried out using ordinary logic, which there is no problem implementing).

Gabbay has also considered how this approach can be used to combine in a reasonable way,

di�erent logics, to build hybrid logics.

We have been looking at how practical it is to use LDS to implement various logics, and

have so far been concentrating in particular on modal logics in the Isabelle framework [2].

Our experience has been very positive: we have been able to implement many standard modal

logics in uniform manner, parametrised only over the properties of the labelling algebra, which

captures the accessibility relation that corresponds to the logic. This allows us to present a

large class of propositional modal logics in a structured manner where logics naturally inherit

theorems from their ancestors. Equally importantly we have found that LDS implementations

of logics are very intuitive to use. While we are not the �rst to provide a modal logic presen-

tation in a logical framework (Avron [1] and Coen [3], among others, precede us) ours is the

�rst to provide and implement a general system, rather than a few special cases.

We are currently investigating how well the LDS approach applies to other, larger, classes

of modal logics, and how it transfers to other logics, such as sub-structural logics. We are also

looking at the issues in the second part of Gabbay's proposal: that the LDS approach is an

e�ective foundation for developing technology for combining di�erent logics together.

References

[1] A. Avron, F. Honsell, I. Mason, and R. Pollack. Using typed lambda calculus to implement formal

systems on a machine. J. Automated Reasoning, 9:309{352, 1992.

[2] D. Basin, S. Matthews, and L. Vigano. LDS implementations of modal logics in a natural deduction�

logical framework. Unpublished paper in preparation.

[3] M. Coen. A sequent calculus implementation of S4 for Isabelle. Undocumented package distributed

with the Isabelle system, 1991.

[4] D. Gabbay. Labelled Deductive Systems. Technical Report MPI{I{94-223.�

8.4.3 Program synthesis

Investigator: David Basin

An important problem in computer science is program correctness: showing that a program

meets a speci�cation or deriving a program to meet a speci�cation. There have been many logics

and approaches proposed for these problems and implementing them is a considerable task, as

is understanding their correctness and automating derivations in them. Our work is motivated

by these practical concerns: we seek to develop a common framework for formalizing calculi

with the aim of synthesizing programs (e.g. functional programs like ML or logic programs

such as Prolog) from speci�cations of their behavior.

We have shown how logical frameworks can be used to formalize program development

calculi. This is a two level approach: we embed a development logic, like �rst-order logic or

type theory, within a framework logic (a higher-order logic), and then use the framework logic

149

The Programming Logics Group

to extend the development logic with new, proven correct proof rules which may be used for

program development.

After deriving development calculi, we use them not only to verify programs, but also

to calculate programs during correctness proofs. The �rst activity, veri�cation, consists of

showing that a program is correct by specifying in the development calculus the relationship

between the program and its speci�cation, then building a proof that the program, in some

technical sense, realizes the speci�cation. Our approach to synthesis is similar, but, rather than

verifying a speci�c program, in essence we use higher-order metavariables as `placeholders' and

instantiate these with programs during the course of the correctness proof. This approach can

be seen as carrying out a correctness proof where we do not, at �rst, commit to the program

we are verifying, and it becomes constrained to a particular concrete program during proof.

Concrete details such as how metavariables are instantiated and substitutions are propagated

are handled by the logical framework.

This can be understood by analogy with Prolog, where one proves a predicate like r(t) by

building a proof in a Horn clause theory. Alternatively, if we pose a query r(X) the same

proof will be built through uni�cation, with t as the satisfying term. The �rst is veri�cation,

the second synthesis. Our setting is a bit more complex since we use not Horn clauses but

arbitrary derived rules in a programming logic, and proofs are constructed not automatically

by SLD resolution, like in Prolog, but interactively using a more complicated form of resolution.

The problems we tackle are also complicated by the fact that we are trying to build recursive

programs and therefore require mathematical induction.

Our use of logical frameworks to formalize and derive programming calculi is new. So is

the use of higher-order resolution as a means of recasting and simplifying previously proposed

calculi. Currently we are using Paulson's Isabelle framework to derive calculi for logic program

synthesis and combinational circuit synthesis (based on Hanna's Formal Synthesis calculus) [9,

1, 4, 3]. Our work has not only resulted in a machine checked account of the correctness of

these calculi but also simpli�cations and extensions. We have used these calculi to synthesize

formally veri�ed logic programs and circuit descriptions. We have also addressed automation of

proof in this setting. In particular, we have been able to incorporate strategies from inductive

theorem proving (Bundy's rippling calculus) to automate induction and simpli�cation during

program synthesis [8, 7, 5].

References

[1] D. Basin. Logic frameworks for logic programs. In 4th International Workshop on Logic Program�

Synthesis and Transformation, (LOPSTR'94), pages 1{16, Pisa, Italy, June 1994. Springer-Verlag,

LNCS 883.

[2] D. Basin and S. Matthews. A conservative extension of �rst-order logic and its applications to�

theorem proving. In R. K. Shyamasundar, editor, 13th Conference on Foundations of Software

Technology and Theoretical Computer Science, volume 761 of Lecture Notes in Computer Science,

Bombay, 1993. Springer, Berlin. also available as MPI-93-235.

[3] D. Basin and S. Matthews. Adding metatheoretic facilities to �rst-order theories. Submitted to�

journal (this is a heavily revised and corrected version of [2]), 1994.

[4] D. Basin and S. Matthews. Algebraic factorisation and ripple-carry iteration. Submitted to confer-�

ence, 1994.

[5] D. Basin and T. Walsh. Termination orderings for rippling. In Proc. of 12th International Conference�

On Automated Deduction (CADE-12). Springer-Verlag, June 1994.

150

The Programming Logics Group

[6] D. Basin and T. Walsh. A calculus for rippling. In Proc. of Workshop on Conditional Term Rewriting�

(CTRS-94). Springer Verlag, 1995. To appear.

[7] D. A. Basin and T. Walsh. Di�erence uni�cation. In R. Bajcsy, editor, Proc. 13th Intern. Joint

Conference on Arti�cial Intelligence (IJCAI '93) (Chambery, France), volume 1, pages 116{122,

San Mateo, CA, 1993. Morgan Kaufmann. Also available as Technical Report MPI-I-92-247.

[8] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induction. Submitted to�

the Journal of Automated Reasoning.

[9] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program synthesis. In Proc. 10th

Intern. Conference on Logic Programing (ICLP '93) (Budapest, Hungary), pages 441{455, Cam-

bridge, MA, 1993. MIT Press. Also available as Technical Report MPI-I-93-214.

8.4.4 Automated Reasoning in Higher-Order Logic

Investigator: David Basin

Higher-order logic is one of the more powerful logics available for formalizing mathematics and

program development. Unfortunately, almost all theorem provers for this logic are interactive

tactic based provers. The few fully automatic systems which have been built (e.g. Andrews'

TPS) have had limited success due to the large proof search-space.

We have been investigating theorem proving in sublogics and their integration with higher-

order theorem provers. In [1], we show how a second-order monadic theory of strings can be

used to specify hardware components and their behavior. This logic admits a decision procedure

and counter-model generator based on canonical automata for formulas. We have used MONA,

a system implementing these procedures, as a tool to analyze such circuits and have veri�ed,

or found errors in a number of circuits proposed in the literature. The techniques we use

make it easier to identify regularity in circuits, including those that are parameterized or have

parameterized behavioral speci�cations. For example, parameterized adders, or synchronized

circuits. Theorem proving with MONA is semantic and does not require lemmas or induction

as would be needed when reasoning about these circuits directly in higher-order logic. The logic

of MONA itself can easily be embedded in higher-order logic, so it is possible to use MONA as

an oracle to solve a large and useful class of decidable higher-order problems.

References

[1] D. Basin and N. Klarlund. Hardware veri�cation using monadic second-order logic. Submitted to�

the Seventh Conference on Computer-Aided Veri�cation (CAV '95).

8.4.5 Investigations on Polymorphic �-Calculi with Subtyping

Investigator: Sergei Vorobyov

The advantages and usefulness of strict typing disciplines in programming with static typing

and rigid compile-time type control have been widely accepted, studied, and advocated in

software engineering since the sixties, and is re
ected in the creation of programming languages

like Algol-68, Pascal, ML, Ada, etc. Typed programming should be based on powerful and,

preferably, decidable type systems.

The system F

�

is the polymorphic second-order typed �-calculus with subtyping, combining

the universal (or parametric) polymorphism of Girard's system F with Cardelli's calculus of

151

The Programming Logics Group

subtyping (inheritance polymorphism). F

�

serves as a core calculus of type systems with sub-

typing and a model for representing polymorphic and object-oriented features in programming

languages.

F

�

extends Girard's system F with: 1) the additional subtype relation on polymorphic

types, 2) the possibility of imposing type bounds in universal type quanti�cation, and 3)o

more general typing rules, that take the subtyping relation into account. The presence of

subtyping means that terms in F

�

can have in�nitely many types, unlike the Church-style

simply typed lambda-calculus or the system F. In 1992 Pierce proved that this subtyping is

undecidable and undecidability of the F

�

subtyping implies the undecidability of typing in F

�

.

Rather than weakening the F

�

subtyping (to get decidability), we show that it possesses

in�nitely many decidable extensions, which we prove by interpreting the F

�

subtyping in

M.Rabin's monadic second-order logic of successor functions [3]. However decidability of sub-

typing does not immediately imply the decidability of the associated typing relation: there

exist systems with decidable subtyping and open decidability problem for typing. Decidability

of typing is closely connected to the possibility of normalizing typing proofs, i.e. transforming

them to unique canonical forms. We show how our extensions of the F

�

subtyping could be

incorporated into decidable typing systems extending F

�

, and prove the typing proof normal-

ization and the subject reduction theorems for these extensions [2]. Our results generalize to

F

�

enriched with recursive types, as shown in [1].

References

[1] S. Vorobyov. F

�

with recursive types: `Types-As-Propositions' interpretations in M.Rabin's S2S.�

In Journ�ees Francophones des Langages Applicatifs (JFLA'95). INRIA, 1995.

[2] S. Vorobyov. Proof normalization and subject reduction in extensions of F

�

. Technical Report�

MPI{I{95{2{001, 1995.

[3] S. Vorobyov. Structural decidable extensions of bounded quanti�cation. In Proceedings of the 22nd�

ACM Symp. on Principles of Programming Languages. ACM, 1995.

8.5 Other work

This section contains descriptions of work done by people in the group that does not �t with

any of the major research headings we give above.

8.5.1 Program Synthesis

Investigator: David Plaisted

In [1] we present a framework for constructing programming meta-logics as enrichments of some

underlying logic. The heart of the system is a systematic method for reasoning about recursion,

composition, and �xpoints. Our logic, like others, represents programs as proofs, and programs

satisfying a certain speci�cation can be extracted from a proof. However, our emphasis is not

on automatically constructing programs using a theorem prover, but on representing them in

as abstract a manner as possible so as to facilitate their reuse in di�erent settings. This seems

to be of practical importance and also more feasible than automatic program derivation, given

the current state of automated reasoning.

The logic is distinguished from others by the way it separates classical and computational

aspects, and also by its independence from the underlying logic. The extended logic introduces

new program-construction variables into the underlying logic and some constructive inference

152

The Programming Logics Group

rules for these variables. No requirements of constructiveness are imposed on the underlying

logic. For instance, �rst-order logic with a sort structure can be used for many applications.

The logic does not specify a particular syntax for the programming language, and permits

considerable freedom in the underlying computational mechanism; whether deterministic or

nondeterministic, functional or relational, terminating or non-terminating, etc. Thus the sys-

tem is to a large degree independent of the syntax and semantics of the programming language

and also from the underlying logic. In this way we obtain a program generation logic with

a high degree of abstractness. This
exibility makes it easy to tailor the logic for speci�c

applications. This also allows for the possibility of translations between di�erent such logics.

References

[1] D. A. Plaisted. An abstract program generation logic. Technical Report MPI-I-94-232, 1994.�

8.5.2 Applying Algebraic Speci�cation Techniques to the Speci�cation of Dy-

namic Systems

Investigator: Hubert Baumeister

The theory of abstract datatypes is well developed and has a rigorous formal basis. However,

trying to apply abstract datatype techniques to the speci�cation of dynamic systems one �nds

that an important aspect of dynamic systems, their changing state, is not well covered by these

techniques.

The state of dynamic systems can be modeled as algebras, operations changing the state of

a dynamic system as relations between algebras. In [1] we have de�ned an institution such that

abstract datatypes in this institution can be interpreted as relations between algebras. This

allows to apply the theory of abstract datatypes to the modeling of the behaviour of dynamic

systems. We shall use the view of relations as abstract datatypes to explore the dynamics of

objects and object systems. We would like to use this approach to give a formal semantics of

the speci�cation language Z within the framework of abstract datatypes.

References

[1] H. Baumeister. Relations as abstract datatypes: An institution to specify relations between alge-�

bras. In TAPSOFT/FASE, Proceedings of the Sixth International Joint Conference on the Theory

and Practice of Software Development, Colloquium on Formal Approaches in Software Engineering,

Aarhus, Denmark, May 1995. Springer.

8.5.3 Data Compression with Genetic Algorithms

Investigator: J�orn Hopf

Genetic algorithms, like evolutionary programming and evolution strategies, is a subarea of

evolutionary algorithms. Evolutionary computation does not replace other methods. For tra-

ditional applications, evolutionary algorithms can not do as good a job as traditional methods.

Rather, evolutionary computation should be considered if other methods either do not exist,

are not applicable, or fail. Today they play a considerable role in Arti�cial Life, a research

area that has emerged from classical Arti�cial Intelligence, control, planning, combinatorial

optimization and many other areas.

We are exploring the use of genetic algorithms for data compression. Our aim is to achieve

a very high compression rate without a loss of information. We consider data as a point set.

A `1' is represented by a black pixel, `0' by a white pixel. Monochrome pictures are already

153

The Programming Logics Group

presented in this way. Using a genetic algorithm we try to �nd fractals representing parts

of this point set. These fractals can be represented by a set of parameters (normalized real

numbers) which needs many fewer bits then the original bitmap.

There are two major problems to solve: First, we have to �nd an appropriate coding of

the solution of our problem, so that we can treat it using a genetic algorithm, and second,

we have to �nd a way to determine distances in arbitrary point sets as an evaluation function

for the genetic algorithm. Since the parameters and the point set represented by them have

a non-linear relation we evaluate the fractals with respect to their parameters through neural

networks. Using this criterion the genetic algorithm selects individuals for the next generation.

This evaluation turns out to be the most important point. Even if the compression process

takes longer than traditional methods, the decompression is extremely fast, and thus useful for

frequently retransmitted data.

8.6 Implementations

8.6.1 ACID

ACID is `A Collection of Indexing Data structures'. As described in Section 8.1.5, it is designed

to provide e�cient support for a variety of di�erent tasks in automated reasoning. For instance,

in order to �nd resolution partners for a given literal, a theorem prover has to search for all

occurrences of literals which are uni�able with a given literal. Subsumption of clauses can

be detected by the retrieval of generalizations (forward subsumption) or instances (backward

subsumption) of literals of clauses. The retrieval of rewrite rules and demodulators can be

accelerated by indexing as well.

Acid is available via anonymous ftp. Connect to ftp.mpi-sb.mpg.de; the current ver-

sion with manual can be found in /pub/tools/deduction/ACID. In case of problems contact

acid@mpi-sb.mpg.de.

ACID is implemented in C. but can also be used from Prolog programs via appropriate

foreign language interfaces. The term indexing methods are implemented on top of an abstract

data type for term construction and access which a user may instantiate by a term module of

his/her choice.

8.6.2 The SAXOPHONE prover

In 1992 Ulrich A�mann [1] proposed an implementation scheme for distributed hyperresolution.

In his approach each clause is represented by a process. The number of processes during a run

of the prover is constant, since new resolvents are represented by substitutions which are sent

to clauses that possibly contain complementary literals. Subsumption is decentralized in the

clause processes in order to avoid bottlenecks.

The SAXOPHONE system is an implementation in C of this approach restricted on horn

clauses. We use the PVM library [2] for the communication protocol.

The main purpose of our work is to achieve maximum speed performance by massive par-

allel distribution and advanced indexing techniques. The most critical parts of distributed

hyperresolution are process communication, subsumption, and most of all the computation of

simultaneous uni�ers.

Process communication is extended on sets of substitutions which are represented by sub-

stitution trees [3]. Substitution tree indexing provides the algorithms for subsumption and the

search for simultaneous uni�ers on sets of substitutions.

154

The Programming Logics Group

References

[1] U. A�mann. Parallele Modelle f�ur Deduktionssysteme. PhD thesis, In�x, K�oln, 1992.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User's

Guide and Reference Manual. Oak Ridge National Laboratory, May 1993. ORNL/TM-12187,

pvm@msr.epm.ornl.gov.

[3] P. Graf. Substitution tree indexing. Technical Report MPI-I-94-251, Max-Planck-Institut fuer�

Informatik, Saarbruecken, October 1994.

8.6.3 The MOTEL system

The MOTEL system [6, 2] is a prototypical implementation of our approach to knowledge

representation for multiple agents (see section 8.2.8 of this report). MOTEL translates modal

terminological logic theories into Prolog logic programs or theories for the theorem prover

SETHEO.

The representation language of MOTEL contains as a kernel the language ALCNR [1] which

is a decidable sublanguage of �rst-order predicate logic. Whereas ALCNR is a single-agent

knowledge representation system, i.e. is only able to represent general world knowledge or the

knowledge of one agent about the world, MOTEL is a multi-agent knowledge representation

system. The MOTEL language allows modal contexts and modal concept forming operators

which allow to represent and reason about the beliefs and desires of multiple agents [4, 5].

For the target language Prolog, it has been easy to implement further inferential facilities:

� Hustadt [3] describes a goal-oriented method for abduction in disjunctive logic programs.

The results have been used to provide abduction for terminological logics in MOTEL.

� Using the revision operators of Prolog, belief revision has been implemented on the level

of axioms.

� Using the correspondence between default theories and general logic programs on the

semantical level, we have been able to integrate default reasoning in MOTEL.

As a result, in terms of expressiveness of the language and variety of inferential operations,

MOTEL is one of the the most advanced systems available, for handling knowledge represen-

tation for multiple agents.

A description of the MOTEL system as well as the sources of the system are accessible via

WWW at the URL

http://www.mpi-sb.mpg.de/guide/staff/hustadt/motel/system.html

References

[1] F. Baader and B. Hollunder. KRIS: Knowledge Representation and Inference System. system de-

scription. Technical Memo DFKI-TM-90-03, Deutsches Forschungszentrum f�ur K�unstliche Intellige

nz, Saarbr�ucken, Germany, 1990.

[2] D. Fehrer, U. Hustadt, M. Jaeger, A. Nonnengart, H. J. Ohlbach, R. A. Schmidt, C. Weidenbach,�

and E. Weydert. Description logics for natural language processing. In International Workshop on

Description Logics '94, pages 80{84, Bonn, Germany, 1994. DFKI.

155

The Programming Logics Group

[3] U. Hustadt. Abductive disjunctive logic programming. In P. Codognet, P. M. Dung, A. C. Kakas,

and P. Mancarella, editors, ICLP '93 Postconference Workshop on Abductive Reasoning (Budapest,

Hungary), Cambridge, MA, 1993. MIT Press.

[4] U. Hustadt. Common and mutual belief for agent modeling. To appear in Knowledge and Belief in�

Philosophy and Arti�cial Intelligence, Akademie-Verlag, Berlin, 1995, 1994.

[5] U. Hustadt. A multi-modal logic for user modeling. In Proceedings of the Fourth International�

Conference on User Modeling UM94 (Hyannis, MA), pages 87{92, Bedford, MA, 1994. The MITRE

Corporation.

[6] U. Hustadt, A. Nonnengart, R. Schmidt, and J. Timm. MOTEL user manual. Technical report

MPI-I-92-236, Max Planck Institute for Computer Science, Saarbr�ucken, Germany, June 1992.

8.6.4 The Quanti�er Elimination Algorithm SCAN

Problems like computing �rst-order circumscription or computing corresponding frame prop-

erties for logical axioms reduce to the problem of �nding for a formula 9p ' with existentially

quanti�ed predicate variables p, a �rst-order formula '

0

which is equivalent to 9p ', if possi-

ble. The algorithm we have developed for this purpose (we called it SCAN) is implemented

and it is provided with di�erent kinds of interfaces. Besides the direct interface for treating

second-order formulae, there is an interface for computing the representation from the axioms

of various algebras and logics with functions, and an interface for computing �rst-order circum-

scription in the McCarthy style. These interfaces are accessible via world wide web (WWW)

and the program can be used remotely (world wide) by just �lling out some HTML forms. The

WWW address is

http://www.mpi-sb.mpg.de/guide/staff/ohlbach/scan/scan.html

This is the �rst implemented algorithm which provides this kind of functionality.

8.6.5 CLP

A fully functional prototype of CLP(PB) based on logic-cut methods has been implemented on

top of Prolog [1] in order to experiment with a CLP-system providing global consistency and

a solved form. An e�cient implementation in C++ of a logic-cut based constraint solver for

pseudo-Boolean constraints, which can be linked into logic programming systems is currently

under development.

An implicit enumeration algorithm for solving linear pseudo-Boolean constraints, which is

part of the logic-cut based pseudo-Boolean constraint solver, has been implemented and ex-

tended to an optimization procedure [2]. The algorithm compares well with linear programming

based methods on a variety of standard benchmarks found in MIPLIB [3].

References

[1] P. Barth. A Short Guide to CLP(PB), 1994. System available by anonymous ftp from�

ftp.mpi-sb.mpg.de in directory pub/tools/CLPPB/clppb.tar.Z.

[2] P. Barth. A Davis-Putnam based enumeration algorithm for linear 0-1 optimization. Technical�

Report MPI-I-95-2-003, 1995.

[3] R. E. Bixby, E. A. Boyd, and R. Indovina. MIPLIB: A Test Set of Mixed-Integer Programming

Problems. SIAM News, 25(16), 1992.

156

The Programming Logics Group

8.6.6 PROP

PROP is the implementation of a decision procedure for SAT, the problem whether a set of

propositional clauses is satis�able. The decision procedure is based on tableau extended with

sorts (see 8.1.3). Our �rst prototype implementation in C produced promising results: It can

compete with the best algorithms for SAT on standard benchmarks, e.g. implementations of

the Davis-Putnam [1, 2] procedure. Currently we are implementing additional redundancy

criteria and we are integrating the procedure into a �rst-order refutation procedure. PROP

will be available via anonymous ftp during April from ftp.mpi-sb.mpg.de in the directory

/pub/tools/deduction/PROP.

References

[1] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of the ACM,

7:201{205, 1960.

[2] D. Loveland. Automated Theorem Proving: A Logical Basis, volume 6 of Fundamental Studies in

Computer Science. North-Holland, 1978.

8.6.7 The Saturate System

The Saturate system is an experimental theorem prover based on saturation. It was originally

been developed as an implementation of the superposition calculus by Pilar Nivela and Robert

Nieuwenhuis from the Technical University of Catalonia, Barcelona, while they were visiting

our institute in 1992. We have extended and modi�ed the system by generalizing superpo-

sition to our chaining techniques for arbitrary transitive relations that we have described in

Section 8.1. The system supports saturation with various strategies for the selection of negative

literals. It contains a complete constraint solver for the LPO, together with a generic (gen-

erally incomplete) constraint solver for arbitrary reduction orderings. Its main strength lies

in its techniques for proving the redundancy of generated clauses and inferences. We provide

complete tautology checking (modulo the built-in theories) by a ground version of saturation.

Some of the more sophisticated techniques are case analysis over the possible orderings on vari-

ables in redundancy proofs and contextual rewriting for reducing clauses with non-unit clauses.

At present the system becomes very slow if more than a few hundreds of clauses are generated.

We are currently rewriting it to make use of the e�cient datastructures provided by ACID.

Using redundancy elimination techniques we have managed to prove a number of `challenge

theorems' while producing fewer than 100{300 clauses in total, meaning that response remained

tolerable. This provides evidence of the e�ectiveness and usefulness of our theoretical results.

The system is written in Prolog and runs under Quintus and SICStus. More information is

available under

http://www.mpi-sb.mpg.de/SATURATE/Saturate.html

9 Publications

9.1 Journals and Book Chapters

The following journal articles or book chapters have been produced by the group in the last

year:

[1] F. Baader and H. J. Ohlbach. A multi-dimensional terminological knowledge representa-

tion language. Journal of Applied Non-Classical Logics, 1995. forthcoming.

157

The Programming Logics Group

[2] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection

and simpli�cation. Journal of Logic and Computation, 4(3):217{247, 1994.

[3] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierar-

chic �rst-order theories. Applicable Algebra in Engineering, Communication and Comput-

ing, 5(3/4):193{212, Apr. 1994.

[4] D. Basin. A term equality problem equivalent to graph isomorphism. Information Pro-

cessing Letters, 51:61 { 66, 1994.

[5] A. Bockmayr, S. Krischer, and A. Werner. Narrowing strategies for arbitrary canonical

systems. Fundamenta Informaticae, 1994. To appear.

[6] C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal Aspects of Computing,

6:1{20, 1994.

[7] C. Brink, D. Gabbay, and H. J. Ohlbach. Towards automating duality. Journal of Com-

puters and Mathematics with Applications, 29(2):73{90, 1994. Full version available as

MPI-I-93-220.

[8] R. Chadha and D. A. Plaisted. Correctness of uni�cation without occur check in prolog.

Journal of Logic Programming, 18:2:99{122, 1994.

[9] Y. Dimopoulos and V. Magirou. A graph theoretic approach to default logic. Information

and Computation, 112(2), 1994.

[10] D. Gabbay and H. J. Ohlbach, editors. Temporal Logic: Proceedings of the First Interna-

tional Conference on Temporal Logic, volume 827 of Lecture Notes in Arti�cial Intelligence

(LNAI). Springer Verlag, 1994.

[11] M. Hanus. The integration of functions into logic programming: From theory to practice.

Journal of Logic Programming, 19&20:583{628, 1994.

[12] M. Hanus. Analysis of residuating logic programs. Journal of Logic Programming, 1995.

(to appear).

[13] M. Hanus. Compile-time analysis of nonlinear constraints in CLP(R). New Generation

Computing, 1995. (to appear).

[14] J. Hopf and F. Klawonn. Learning the rule base of a fuzzy controller by a genetic algorithm.

In R. Kruse, R. Palm, and J. Gebhardt, editors, Fuzzy Systems in Computer Science,

K�unstliche Intelligenz, pages 63{74. Vieweg, Braunschweig, Germany, 1994.

[15] U. Hustadt. Common and mutual belief for agent modeling. To appear in Knowledge and

Belief in Philosophy and Arti�cial Intelligence, Akademie-Verlag, Berlin, 1995, 1994.

[16] P. Madden, A. Bundy, and A. Smaill. Recursive Program Optimization Through Inductive

Synthesis Proof Transformation. Journal of Automated Reasoning, 1995. To appear. Also

available as Technical Report MPI-I-94-239.

[17] S. Matthews. A theory and its metatheory in FS

0

. In D. Gabbay, editor, What is a Logical

System?, chapter 13, pages 329{354. Oxford University Press, Oxford, 1994.

158

The Programming Logics Group

[18] S. Matthews and A. Simpson. Re
ection using the derivability conditions. To appear as

a chapter in the volume in memoriam Roberto Magari.

[19] H. J. Ohlbach, R. A. Schmidt, and U. Hustadt. Translating graded modalities into pred-

icate logic. To appear in Knowledge and Belief in Philosophy and Arti�cial Intelligence,

Akademie-Verlag, Berlin, 1995, January 1995.

[20] H. J. Ohlbach and C. Weidenbach. A note on assumptions about skolem functions. Journal

of Automated Reasoning, 1995. Forthcoming.

[21] A. Podelski, editor. Constraint Programming: Basics and Trends, volume 910 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1995. To

appear.

9.2 Conferences

The following papers have appeared in conference proceedings:

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. of the 21st

ACM Symposium on Principles of Programming Languages (POPL'94 (Portland)), pages

268{279, New York, 1994. ACM Press. Extended version available as Technical Report

MPI-I-93-243.

[2] L. Bachmair and H. Ganzinger. Associative-commutative superposition. Technical Re-

port MPI-I-93-267, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1993. To appear in

Proc. CTRS Workshop 1994, LNCS.

[3] L. Bachmair and H. Ganzinger. Buchberger's algorithm: a constraint-based completion

procedure. In 1st Internal Conference on Constraints in Computational Logics, volume

845 of Lecture Notes in Computer Science, pages 285{301. Springer-Verlag, 1994.

[4] L. Bachmair and H. Ganzinger. Ordered chaining for total orderings. In Proc. 12th

International Conference on Automated Deduction, LNAI, pages 435{450. Springer, 1994.

Full version available as MPI-I-93-250.

[5] L. Bachmair and H. Ganzinger. Rewrite techniques for transitive relations. In Proc. 9th

IEEE Symposium on Logic in Computer Science, pages 384{393. IEEE Computer Society

Press, 1994. Full version available as Technical Report MPI-I-93-249.

[6] L. Bachmair, H. Ganzinger, and J. Stuber. Combining algebra and universal algebra in

�rst-order theorem proving: The case of commutative rings. In Proc. 10th Workshop on

Speci�cation of Abstract Data Types, LNCS. Springer, 1995. To appear.

[7] P. Barth. Simplifying clausal satis�ability problems. In First International Conference

on Constraints in Computational Logics, Munich, Germany, pages 19{33. Springer, LNCS

845, Sept. 1994.

[8] P. Barth and A. Bockmayr. Global consistency in CLP(PB). In 10th Workshop Logic

Programming WLP'94, Zurich, 1994.

[9] P. Barth and A. Bockmayr. Finite domain and cutting plane techniques in CLP(PB). In

International Conference of Logic Programming, ICLP'95, Tokyo, 1995.

159

The Programming Logics Group

[10] D. Basin. IsaWhelk: Whelk interpreted in Isabelle. In 11th International Conference on

Logic Programming (ICLP94), 1994. Paper is extended abstract.

[11] D. Basin. Logic frameworks for logic programs. In 4th International Workshop on Logic

Program Synthesis and Transformation, (LOPSTR'94), pages 1{16, Pisa, Italy, June 1994.

Springer-Verlag, LNCS 883.

[12] D. Basin and S. Matthews. A conservative extension of �rst-order logic and its applications

to theorem proving. In R. K. Shyamasundar, editor, 13th Conference on Foundations of

Software Technology and Theoretical Computer Science, volume 761 of Lecture Notes in

Computer Science, Bombay, 1993. Springer, Berlin. also available as MPI-93-235.

[13] D. Basin and T. Walsh. Termination orderings for rippling. In Proc. of 12th International

Conference On Automated Deduction (CADE-12). Springer-Verlag, June 1994.

[14] D. Basin and T. Walsh. A calculus for rippling. In Proc. of Workshop on Conditional

Term Rewriting (CTRS-94). Springer Verlag, 1995. To appear.

[15] H. Baumeister. Relations as abstract datatypes: An institution to specify relations between

algebras. In TAPSOFT/FASE, Proceedings of the Sixth International Joint Conference

on the Theory and Practice of Software Development, Colloquium on Formal Approaches

in Software Engineering, Aarhus, Denmark, May 1995. Springer.

[16] A. Bockmayr. Cutting planes in constraint logic programming (Abstract). In 3rd Intern.

Symp. Arti�cial Intelligence and Mathematics, Ft. Lauderdale, Florida, 1994.

[17] A. Bockmayr. Using strong cutting planes in constraint logic programming. In Operations

Research '93, 18th Symposium on Operations Research, pages 47 { 49, 1994.

[18] A. Bockmayr. Solving pseudo-Boolean constraints. In Constraint Programming: Basics

and Trends. Springer, LNCS, 1995. To appear.

[19] A. Bockmayr and A. Werner. LSE narrowing for decreasing conditional term rewrite

systems. In Conditional Term Rewriting Systems CTRS'94, Jerusalem, 1994.

[20] W. Charatonik and L. Pacholski. Negative set constraints. In Proc. 9th IEEE Symposium

on Logic in Computer Science, pages 128{136. IEEE Computer Society Press, 1994.

[21] H. Chu and D. A. Plaisted. Semantically guided �rst-order theorem proving using hyper-

linking. In Proceedings of the Twelfth International Conference on Automated Deduction,

pages 192{206, 1994. Lecture Notes in Arti�cial Intelligence 814.

[22] Y. Dimopoulos. Classical methods in nonmonotonic reasoning. In Z. Ras and M. Ze-

mankova, editors, International Symposium on Methodologies for Intelligent Systems,

LNAI, 1994. to appear.

[23] Y. Dimopoulos. The computational value of joint consistency. In D. Pearce and L. Pereira,

editors, European Workshop on Logics in AI, LNAI, 1994.

[24] P. Graf. Extended path{indexing. In Proceedings of CADE-12, volume 814 of LNAI, pages

514{528. Springer, 1994. Full version available as MPI-I-93-253.

160

The Programming Logics Group

[25] P. Graf. Substitution tree indexing. In Proc. 6th Int. Conf. on Rewriting Techniques and

Applications. Springer, 1995. Full version available as MPI-I-94-251.

[26] M. Hanus. Combining lazy narrowing and simpli�cation. In M. Hermenegildo and J. Pen-

jam, editors, Proc. 6th International Symposium on Programming Language Implementa-

tion and Logic Programming (Madrid, Spain), volume 844 of Lecture Notes in Computer

Science, pages 370{384, Berlin, 1994. Springer-Verlag.

[27] M. Hanus. Lazy uni�cation with simpli�cation. In D. Sannella, editor, Proc. 5th European

Symposium on Programming, volume 788 of Lecture Notes in Computer Science, pages

272{286, Berlin, 1994. Springer-Verlag.

[28] M. Hanus. Towards the global optimization of functional logic programs. In P. Fritzson,

editor, Proc. 5th International Conference on Compiler Construction (Edinburgh), volume

786 of Lecture Notes in Computer Science, pages 68{82, Berlin, 1994. Springer-Verlag.

[29] M. Hanus and F. Zartmann. Mode analysis of functional logic programs. In B. L. Char-

lier, editor, Proceedings of the First International Static Analysis Symposium (Namur,

Belgium), volume 864 of Lecture Notes in Computer Science, pages 26{42, Berlin, 1994.

Springer-Verlag.

[30] J. Hopf and F. Klawonn. Learning the rule base of a fuzzy controller by a genetic algorithm.

In R. Kruse, R. Palm, and J. Gebhardt, editors, Fuzzy Systems in Computer Science,

K�unstliche Intelligenz, pages 63{74. Vieweg, Braunschweig, Germany, 1994.

[31] U. Hustadt. Do we need the closed-world assumption in knowledge representation. In

F. Baader and M. A. Jeusfeld, editors, Reasoning about Structured Objects: Knowledge

Representation meets Databases. Workshop during the 18th German Annual Conference

on Arti�cial Intelligence (KI-94), 1994.

[32] U. Hustadt. A multi-modal logic for user modeling. In Proceedings of the Fourth Inter-

national Conference on User Modeling UM94 (Hyannis, MA), pages 87{92, Bedford, MA,

1994. The MITRE Corporation.

[33] M. Jaeger. A logic for default reasoning about probabilities. In Proceedings of the Tenth

Conference on Uncertainty in Arti�cial Intelligence. Morgan Kaufmann, San Mateo, CA,

1994.

[34] M. Jaeger. Probabilistic reasoning in terminological logics. In J. Doyle, E. Sandewall, and

P. Torasso, editors, Principles of Knowledge Representation an Reasoning: Proceedings of

the Fourth International Conference (KR94). Morgan Kaufmann, San Mateo, CA, 1994.

[35] M. Krishna Rao. Semi-completeness of hierarchical and super-hierarchi cal combinations

of term rewriting systems. In M. Nielsen, editor, Trees in Algebra and Programming {

CAAP'95. Springer, 1995.

[36] P. Madden. Formal methods for automated program improvement. In B. Nebel and

L. Dreschler-Fischer, editors, KI-94: Advances in Arti�cial Intelligence. Proceedings of

18th German Annual Conference on Arti�cial Intelligence. Springer, 1994.

161

The Programming Logics Group

[37] P. Madden and I. Green. A general technique for automatic optimization by proof planning.

In Proceedings of Second International Conference on Arti�cial Intelligence and Symbolic

Mathematical Computing (AISMC-2), King's College, Cambridge, England. Springer Ver-

lag.

[38] A. Nonnengart. How to Use Modalities and Sorts in Prolog. In Proceedings of the

JELIA'94, LNAI 838, Logics in Arti�cial Intelligence. Springer Verlag, 1994.

[39] D. A. Plaisted. The search e�ciency of theorem proving strategies. In Proc. 12th Int. Conf.

on Automated Deduction, LNAI, pages 57{71. Springer, 1994. Full verssion available as

MPI{I{94{233.

[40] A. Podelski and G. Smolka. Operational semantics of constraint logic programming with

coroutining. In L. Sterling, editor, Proceedings of the 12th International Conference on

Logic Programming, Kanagawa, Japan, 1995. The MIT Press. To appear.

[41] J. Stuber. Computing stable models by program transformation. In P. Van Hentenryck,

editor, Proc. 11th Int. Conf. on Logic Programming, pages 58{73, Santa Margherita Ligure,

Italy, 1994.

[42] S. Vorobyov. Structural decidable extensions of bounded quanti�cation. In Proceedings of

the 22nd ACM Symp. on Principles of Programming Languages. ACM, 1995.

[43] C. Weidenbach. First-order tableaux with sorts. In K. Broda and M. D. et.al., editors,

TABLEAUX-'94, 3rd Workshop on Theorem Proving with Analytic Tableaux and Related

Methods, pages 247{261. Imperial College of Science Technology and Medicine, TR-94/5,

April 1994.

[44] A. Werner, A. Bockmayr, and S. Krischer. How to realize LSE narrowing. In Algebraic

and Logic Programming, ALP'94, Madrid, pages 59 { 76. Springer, LNCS 850, 1994.

[45] E. Weydert. General belief measures. In Proceedings of the Tenth Conference on Uncer-

tainty in Arti�cial Intelligence. Morgan Kaufmann, San Mateo, CA, 1994.

[46] T. Yoshida, A. Bundy, I. Green, T. Walsh, and D. Basin. Coloured rippling: An extension

of a theorem proving heuristic. In ECAI-94. John Whiley and Sons, 1994.

9.3 Reports

The following papers have appeared as Institute publications or internal reports.

[1] A. Bockmayr, 1994. Cutting planes in constraint logic programming. Technical Report

MPI-I-94-207, Max-Planck-Institut f�ur Informatik, Saarbr�ucken.

Abstract In this paper, we show how recently developed techniques from combinatorial opti-

mization can be embedded into constraint logic programming. We develop a constraint solver

for the constraint logic programming language CLP(PB) for logic programming with pseudo-

Boolean constraints. Our approach is based on the generation of polyhedral cutting planes and

the concept of branch-and-cut. In the case of 0-1 constraints, this can improve or replace the

�nite domain techniques used in existing constraint logic programming systems.

[2] H. A��t-Kaci, M. Hanus, J. J. Moreno Navarro (editors), 1994. Integration of declarative

paradigms: Proceedings of the ICLP'94 post-conference workshop. Technical Report MPI-

I-94-224.

162

The Programming Logics Group

[3] P. Barth, A. Bockmayr, 1994. Finite domain and cutting plane techniques in CLP(PB).

Technical Report MPI-I-94-261, Max-Planck-Institut f�ur Informatik, Saarbr�ucken.

Abstract Finite domain constraints are one of the most important constraint domains in con-

straint logic programming. Usually, they are solved by local consistency techniques combined

with enumeration. We argue that, in many cases, the concept of local consistency is too weak

for both theoretical and practical reasons. We show how to obtain more information from

a given constraint set by computing cutting planes and how to use this information in con-

straint solving and constrained optimization. Focusing on the pseudo-Boolean case CLP(PB),

where all domains are equal to the two-element set f0; 1g, we present specialized cutting plane

techniques and illustrate them on a number of examples.

[4] P. Barth, 1994. Linear 0-1 inequalities and extended clauses. Technical Report MPI-I-94-

216, Saarbr�ucken.

Abstract Extended clauses are the basic formulas of the 0-1 constraint solver for the constraint

logic programming language CLP(PB). We present a method for transforming an arbitrary lin-

ear 0-1 inequality into a set of extended clauses, such that the solution space remains invariant.

After applying well-known linearization techniques on non-linear 0-1 constraints followed by the

presented transformation method, we are able to handle arbitrary 0-1 constraints in CLP(PB).

The transformation method presented relies on cutting planes techniques known from 0-1 in-

teger programming. We develop specialized redundancy criteria and so produce the minimal

number of extended clauses needed for preserving equivalence. The method is enhanced by

using a compact representation of linear 0-1 inequalities and extended clauses. Unit resolution

for classical clauses is generalized to pseudo-Boolean unit resolution for arbitrary linear 0-1

inequalities. We extend the transformation method to constrained transformation when the

inequality to be transformed is part of a larger set of linear 0-1 inequalities. Furthermore the

method can be used to obtain all strongest extended cover inequalities of a knapsack inequality.

[5] P. Barth, 1994. A Short Guide to CLP(PB), 1994. System available by anonymous ftp

from ftp.mpi-sb.mpg.de in directory pub/tools/CLPPB/clppb.tar.Z.

[6] P. Barth, 1995. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean

optimization. Technical Report MPI-I-95-2-003.

[7] D. Basin, F. Giunchiglia, M. Kaufmann (editors), 1994. Proceedings of the workshop

on correctness and metatheoretic extensibility of automated reasoning systems. Techni-

cal Report 9405-10, Instituto Per La Ricerca Scienti�ca E Technologica, Trento. Joint

publication with IRST, appeared as IRST technical report.

[8] Y. Dimopoulos, 1994. Classical methods in nonmonotonic reasoning. Technical Report

MPI-I-94-229, Max-Planck-Institut f�ur Informatik.

[9] D. Fehrer, U. Hustadt, M. Jaeger, A. Nonnengart, H. J. Ohlbach, R. A. Schmidt, C. Wei-

denbach, E. Weydert, 1994. Description logics for natural language processing. In Inter-

national Workshop on Description Logics '94, pp. 80{84. DFKI, Bonn, Germany.

Abstract In this paper we focus on the application of description logics to natural language

processing. In cooperation with the pracma Project (pracma is Agents.') we have been de-

veloping a suitably extended knowledge representation system, called motel. In our approach

to agent modeling and natural language processing we use an extension of the well-known

description language ALC. Our system motel serves on one hand as a knowledge base for

the natural language front-end, and on the other hand, it provides powerful logical represen-

tation and reasoning components. As our approach is logic based we hope that this enhances

the overall capabilities of the natural language processing (NLP) system. We present a brief

163

The Programming Logics Group

overview of motel and the di�erent extensions we are working on, i.e. modal extension of de-

scription logics, a cardinality-based approach to quantitative information, reason maintenance,

probabilistic, non-monotonic, and abductive reasoning.

[10] D. Gabbay. Labelled Deductive Systems. Technical Report MPI{I{94-223.

Abstract Traditional logics manipulate formulas. The message of this book is to manipulate

pairs; formulas and labels. The labels annotate the formulas. This sounds very simple but it

turned out to be a big step, which makes a serious di�erence, like the di�erence between using

one hand only or allowing for the coordinated use of two hands. Of course the idea has to be

made precise, and its advantages and limitations clearly demonstrated. `Precise' means a good

mathematical de�nition and `advantages demonstrated' means case studies and applications.

[11] H. Ganzinger, 1994. The Saturate system. Available on the world-wide web under URL

http://www.mpi-sb.mpg.de/SATURATE/Saturate.html, 1994.

Abstract The Saturate system is an experimental theorem prover based on saturation. It has

originally been developed as an implementation of the superposition calculus by Pilar Nivela

and Robert Nieuwenhuis from the Technical University of Catalonia, Barcelona. The version the

use of which is described in this document now contains extensions by chaining techniques for

arbitrary transitive relations implemented by Harald Ganzinger, MPI Informatik, Saarbr�ucken,

with the help of Robert Nieuwenhuis.

[12] P. Graf, 1994. Substitution tree indexing. Technical Report MPI-I-94-251, Max-Planck-

Institut f�ur Informatik, Saarbr�ucken.

Abstract The performance of a theorem prover crucially depends on the speed of the basic

retrieval operations, such as �nding terms that are uni�able with (instances of, or more general

than) a given query term. In this paper a new indexing method is presented, which outperforms

traditional methods such as path indexing, discrimination tree indexing and abstraction trees.

Additionally, the new index not only supports term indexing but also provides maintenance

and e�cient retrieval of substitutions. As con�rmed in multiple experiments, substitution trees

combine maximal search speed and minimal memory requirements.

[13] M. Hanus, 1994. On extra variables in (equational) logic programming. Technical Report

MPI-I-94-246, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany.

Abstract Extra variables in a clause are variables which occur in the body but not in the

head. It has been argued that extra variables are necessary and contribute to the expressive

power of logic languages. In the �rst part of this paper, we show that this is not true in

general. For this purpose, we provide a simple syntactic transformation of each logic program

into a logic program without extra variables. Moreover, we show a strong correspondence

between the original and the transformed program with respect to the declarative and the

operational semantics. In the second part of this paper, we use a similar technique to provide

new completeness results for equational logic programs with extra variables. In equational

logic programming it is well known that extra variables cause problems since narrowing, the

standard operational semantics for equational logic programming, may become incomplete in

the presence of extra variables. Since extra variables are useful from a programming point

of view, we characterize new classes of equational logic programs with extra variables for

which narrowing and particular narrowing strategies are complete. In particular, we show the

completeness of narrowing strategies in the presence of nonterminating functions and extra

variables in right-hand sides of rewrite rules.

[14] J. Hopf (editor), 1994. Genetic algorithms within the framework of evolutionary compu-

tation. Proceedings of the KI-94 Workshop 241, Max-Planck-Institut f�ur Informatik, Im

Stadtwald, D-66123 Saarbr�ucken.

164

The Programming Logics Group

[15] M. Jaeger, 1994. A probabilistic extension of terminological logics. Technical Report

MPI-I-94-208, Max-Planck-Institut f�ur Informatik.

Abstract In this report we de�ne a probabilistic extension for a basic terminological knowl-

edge representation languages. Two kinds of probabilistic statements are introduced: state-

ments about conditional probabilities between concepts and statements expressing uncertain

knowledge about a speci�c object. The usual model-theoretic semantics for terminological log-

ics are extended to de�ne interpretations for the resulting probabilistic language. It is our main

objective to �nd an adequate modeling of the way the two kinds of probabilistic knowledge are

combined in what we call default reasoning about probabilities. Cross entropy minimization is

a technique that turns out to be a very promising tool towards achieving this end.

[16] H. J. Ohlbach, 1994. Computer support for the development and investigation of logics.

Technical Report MPI-I-94-228.

Abstract Symbolic reasoning in a logical framework becomes more and more important for

computer applications such as Natural Language Processing Systems or Expert Systems. These

applications usually need speci�cally tailored logics. Therefore we are developing methods and

algorithms for supporting the designer of an application system, who is usually not a logician,

to develop his own application oriented logic. This paper gives an overview about our current

state of these investigations. In particular we consider the correspondences between axiomatic

and semantic speci�cations of a logic and the problem of �nding one from the other. Correlated

with this area are translation methods from the object logic into predicate logic, and methods

for optimizing the translation. Other topics are investigations of the expressiveness of a logic

and the axiomatizability of semantic conditions. The basic techniques underlying our approach,

so called K-transformations and quanti�er elimination, are brie
y discussed. They are quite

general mechanisms for manipulating predicate logic formulae, and the investigation of logics

is only one of their applications. For the technical details of the methods and the proofs I refer

to the original papers.

[17] H. J. Ohlbach, 1994. Synthesizing semantics for extensions of propositional logic. Technical

Report MPI-I-94-225.

Abstract Given a Hilbert style speci�cation of a propositional extension of standard propo-

sitional logic, it is shown how the basic model theoretic semantics can be obtained from the

axioms by syntactic transformations. The transformations are designed in such a way that

they eliminate certain derived theorems from the Hilbert axiomatization by turning them

into tautologies. The following transformations are considered. Elimination of the re
exivity

and transitivity of a binary consequence relation yields the basic possible worlds framework.

Elimination of the congruence properties of the connectives yields weak neighbourhood seman-

tics. Elimination of certain monotonicity properties yields a stronger neighbourhood semantics.

Elimination of certain closure properties yields relational possible worlds semantics for the con-

nectives. If propositional logic is the basis of the speci�cation, the translated Hilbert axioms

can be simpli�ed by eliminating the formula variables with a quanti�er elimination algorithm.

This way we obtain the frame conditions for the semantic structures. All transformations work

for arbitrary n-place connectives. The steps can be fully automated by means of PL1 theo-

rem provers and quanti�er elimination algorithms. The meta theory guarantees soundness and

completeness of all transformation steps. As a by{product, translations into multi{modal logic

are developed.

[18] H. J. Ohlbach, 1995. General representation theorems. Technical Report MPI-I-95-2-006,

Max-Planck-Institut f�ur Informatik, Saarbr�ucken. to appear.

Abstract A general methodology for deriving representation theorems for various algebras

and structures is presented. Starting with a very simple representation for a simple structure

we can get more sophisticated representation by means of a almost automated bootstrapping

method. For example one can start with a representation for partial orderings which maps each

element x to the set of upward closed subsets containing x. From this it is possible to derive

165

The Programming Logics Group

in a sequence of steps representations for semilattices with functions, lattices with functions,

distributive lattices with functions, Boolean algebras with functions etc. These representations

correspond to model theoretic semantics for non{classical logics. Therefore we obtain a method

for deriving possible worlds semantics from axiomatically presented logics and for computing

the corresponding frame properties.

[19] H. J. Ohlbach, D. Gabbay, D. Plaisted, 1994. Killer transformations. Technical Report

MPI-I-94-226, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany. To be pub-

lished in Proc. of the 1993 Workshop on Proof Theory in Modal Logic, Hamburg.

Abstract This paper deals with methods of faithful transformations between logical systems.

Several methods for developing transformations of logical formulae are de�ned which eliminate

unwanted properties from axiom systems without losing theorems. The elementary examples

we present are permutation, transitivity, equivalence relation properties of predicates and con-

gruence properties of functions. Various translations between logical systems are shown to

be instances of K-transformations, for example the transition from relational to functional

translation of modal logic into predicate logic, the transition from axiomatic speci�cations of

logics via unary provability relations to a binary consequence relations, and the development

of neighbourhood semantics for nonclassical propositional logics. Furthermore we show how

to eliminate self resolving clauses like the condensed detachment clause, resulting in dramatic

improvements of the performance of automated theorem provers on extremely hard problems.

As by{products we get a method for encoding some axioms in Prolog which normally would

generate loops, and we get a method for parallelizing some closure computation algorithms.

[20] H. J. Ohlbach, R. A. Schmidt, January 1995. Functional translation and second-order

frame properties of modal logics. Technical Report MPI-I-95-2-002, Max-Planck-Institut

f�ur Informatik, Saarbr�ucken. Submitted for publication to the Journal of Logic and Com-

putation.

Abstract Normal modal logics can be de�ned axiomatically as Hilbert systems, or semantically

in terms of Kripke's possible worlds and accessibility relations. Unfortunately there are Hilbert

axioms which do not have corresponding �rst-order properties for the accessibility relation.

For these logics the standard semantics-based theorem proving techniques, in particular, the

relational translation into �rst-order predicate logic, do not work. There is an alternative

translation, the so-called functional translation, in which the accessibility relations are replaced

by certain terms which intuitively can be seen as functions mapping worlds to accessible worlds.

In this paper we show that from a certain point of view this functional language is more

expressive than the relational language, and that certain second-order frame properties can

be mapped to �rst-order formulae expressed in the functional language. Moreover, we show

how these formulae can be computed automatically from the Hilbert axioms. This extends the

applicability of the functional translation method.

[21] H. J. Ohlbach (editor), 1994. Temporal logic: Proceedings of the ICTL workshop. Tech-

nical Report MPI-I-94-230.

[22] D. A. Plaisted, 1994. An abstract program generation logic. Technical Report MPI-I-94-

232.

Abstract We present a system for representing programs as proofs, which combines features

of classical and constructive logic. We present the syntax, semantics, and inference rules of

the system, and establish soundness and consistency. The system is based on an unspeci�ed

underlying logic possessing certain properties. We show how proofs in this system can be sys-

tematically converted to programs in a class of abstract logic programming languages including

term-rewriting systems and Horn clause logic programs. A number of examples of such logic

programming languages and underlying logics are given, as well as some proofs that can be

expressed in this system and the corresponding programs.

[23] D. A. Plaisted, 1994. Ordered semantic hyper-linking. Technical Report MPI-I-94-235.

166

The Programming Logics Group

Abstract We propose a method for combining the clause linking theorem proving method

with theorem proving methods based on orderings. This may be useful for incorporating term-

rewriting based approaches into clause linking. In this way, some of the propositional ine�cien-

cies of ordering-based approaches may be overcome, while at the same time incorporating the

advantages of ordering methods into clause linking. The combination also provides a natural

way to combine resolution on non-ground clauses, with the clause linking method, which is

essentially a ground method. We describe the method, prove completeness, and show that the

enumeration part of clause linking with semantics can be reduced to polynomial time in cer-

tain cases. We analyze the complexity of the proposed method, and also give some plausibility

arguments concerning its expected performance.

[24] S. Vorobyov, 1995. Proof normalization and subject reduction in extensions of F

�

. Tech-

nical Report MPI{I{95{2{001.

Abstract System Fsub, the second-order polymorphic typed lambda-calculus with subtyping,

appeared to be undecidable because of the undecidability of its subtyping component. The

discovery of decidable extensions of the Fsub-subtyping relation put forward a challenging

problem of incorporating these extensions into an Fsub-like typing in a decidable and coherent

manner. In this paper we describe a family of systems combining the standard Fsub-typing rules

with converging hierarchies of decidable extensions of the Fsub-subtyping and give decidable

criteria for successful proof normalization and subject reduction.

[25] C. Weidenbach, 1994. Minimal resolution. Technical Report MPI-I-94-227.

Abstract Minimal resolution restricts the applicability of resolution and factorization to min-

imal literals. Minimality is an abstract criterion. It is shown that if the minimality criterion

satis�es certain properties minimal resolution is sound and complete. Hyper resolution, ordered

resolution and lock resolution are known instances of minimal resolution. We also introduce

new instances of the general completeness result, correct some mistakes in existing literature

and give some general redundancy criteria for minimal resolution calculi.

167

Part IV

Appendix

Appendix

1 Present technical con�guration

1.1 Technical facilities

The Max-Planck-Institut f�ur Informatik is equipped with 5 servers, approx. 120 workstations

(mainly Sun workstations) 2 graphics workstations and some PCs. These facilities are divided

into three systems: one system for research group 1, a second system for research group 2 and

another system for the service groups (i.e. administration, management, library and computer

maintenance).

Network and ftp service (name service, mail etc.) is provided centrally by a Solbourne server

5E/906 that is equipped with 256 MByte main memory, three IPI-2-controllers with 18-GByte-

IPI-disks and 10-GByte-SCSI-disks. A central �le server cluster (Sun network cluster) with

approx. 50 GBytes is responsible for the central data storage/processing.

The division of the three networks takes place via a CISCO box (AGS+).

Further facilities are group-speci�c:

� Facilities of research group 1:

Research associates of group 1 use about 50 Sun workstations (SLC's, ELC's, Sparc2 and

since recently Sparc10 models) as well as two graphics workstations (Silicon Graphics

Crimson and Indigo2).

A Sparc20 Server (two processors and 256 MByte main memory) can be used as an

additional compute server.

� Facilities of research group 2:

Similarily, research associates of group 2 use about 50 Sun workstations (SLC's, ELC's,

LX, Voyagers and Sparc10 models), two Macintoshs, a PC and ten X terminals. A

Solbourne station with 288 MByte main memory and four new 6-series-processors is used

as a compute server. In particular cases this server is also used throughout the institute.

Also a Sparc20 and a Sparc10 is used as additional compute servers.

� Facilities of the service groups:

The network of the service groups comprises 20 workstations (Sun workstations and

applications) that are combined to a Novell network.

Thus - apart from a few exceptions - a homogene SPARC environment is provided. Two

Silicon Graphics mono-power-challenge computers for special
oating point applications are

planned.

1.2 Administration

There is a close cooperation between our institute and other institutions on the university

campus such as the computer science department (Fachbereich Informatik, FBI) of the Univer-

sit�at des Saarlandes and the Deutsche Forschungsinstitut f�ur K�unstliche Intelligenz (DFKI).

The MPI is connected to these institutions via FDDI (the campus backbone). The technical

con�guration of the university computer science department and many other leading computer

science departments (worldwide) is very similar to our con�guration. There are two positive

consequences: The computer maintenance groups of the MPI, the FBI, the DFKI and the

171

Appendix

Rechenzentrum of the Universit�at des Saarlandes support each other with reference to main-

tenance, operation, spare parts etc. This helps to save material and sta� costs.

The working environment at the MPI and other institutions is very similar and this makes it

easy for visitors to share resources.

1.3 External data communication

The MPI and the Rechenzentrum of the Universit�at des Saarlandes maintain the infrastructure

to external data communication.

� National transmission takes place via the Deutsche Wissenschaftsnetz (WIN) at a rate

of 2MBit/s.

� International transmission takes place via an additional �xed-point connection (64 kBit/s)

to our IP-service-provider XLINK in Karlsruhe. Karlsruhe is linked to the EBONE and

the U.S. at a rate of 2MBit/s.

Note: The 64 kBits link is a bottleneck and will be increased by 2 MBit/s in the next

couple of days.

1.4 Future infrastructural steps

The new MPI building will have a communication infrastructure of virtual LANs based on

ATM technology, if the products are available in time. We expect to improve performance and

scaling.

172

