

Lower Bounds for Merging on the

Hypercube

eh. Rüb

MPI-I-93-148 October 1993

Lower Bounds for Merging on the Hypercube
or

Why is Optimal Deterministic Sorting on the Hypercube Difficult?

Chxistine Rüb

Max-Planck Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany

Abstract We show lower bounds for the problems of merging two sorted lists of equallength

and sorting by repeatedly merging pairs of sorted sequences on the hypercube. These lower

bounds hold on the average for any ordering of the processors of the hypercube.

Key Words Hypercube, Merging, Sorting, Lower bounds.

1. Motivation and Introduction

The development of a deterministic algorithm for sorting on the hypercube . that is work­

optimall . and runs in polylogarithmic time is a long-standing open problem and has attracted

considerable interest (see, e.g. [AB88], [CyP90], [CyS92], [LP90], [P89], [P92]). There are,

however, several work-optimal deterministic algorithms for sorting on the PRAM-model that

run in polylogarithmic time (see, e.g. [BN89], [C88], [HR89], [K83]). All of these algorithms

have in common that they sort by repeatedly merging pairs of sorted sequences. Thus a

question to ask is: is the same possible for the hypercube, i.e. is it possible to merge two

sorted lists of altogether n elements using O(n) work and polylog(n) time? In this paper we

show that this is not the case.

In particular we show the following: Let 'H be an n-node hypercube with processors Po, ... ,Pn - 1 •

Let A and B be two. sorted sequences of iength n/2 each such that the elements of A (B,

resp.,) are stored in a sorted order at the first (last, resp.,) n/2 processors of 'H. Assume that

we want to merge A and B, i.e. we want to rearrange the elements in AuB such that the i-th

largest element in this sequence is stored at the i-th processor of 'H. Then there are instances

of A and B such that the number of traversed edges, summed over all elements in AuB, is at

least (nlogn)/2. Since in each step a maximum of n edges can be used (one per processor),

this means that (log-n)/2 steps are necessary to merge the two sequences. Thus sorting n

elements by repeatedly using ("standard") two-way merging requires work n(n{logp)2) on a

p-node hypercube, and cannot be optimal unless p = O(2v'lOgn) and t = n«nlogn)/2v'logn).

This also rules out a pipelined merge-sort as inthe PRAM algorithm of [C88].

However, does this really show that sorting by (two-way) merging cannot be optimal'! Above

we required that the i-th element of A resides initially at the i-th processor of 'H and the

1 A parallel algorithm is work-optimal ü the product of the number of processors used and the running

time is of the same order as the running time of the best sequential algorithm for the same problem.

This work was supported by the DFG, SFB 124, TP B2, VLSI Entwutfsmethoden und Parallelität.

1

i-th element of B at the (n/2 + i)-th processor of 1i, and that at the end the i-th element

of Au B resides at the i-th processor of 1i, i.e. we assuined that the processors are ordered

by their indices. So, what happens if we use a different ordering of the processors? Can we

find an ordering of them such that tw~way merging of n elements on an n-node hypercube

can be done in o(nlogn) work? (In this paper work means the total number of executed

steps; idle time of processors is not counted.) If this were the case, we could, perhaps, use

this ordering to sort the given elements in 0 (n log n) + o(n(log n)2) work and then rearrange

the elements according to the standard ordering of processors in additional 0 (n log n) work,

see, e.g. [192]; pp. 451 ff. Alas, it is of no use to change the ordering of the processors:

we will show that tw~way merging of n elements on an n-node · hypercube needs at least

work (nlogn)/4 in the worst case and n(nlogn) on the average (over all possible out comes

of the merging) regardless of the ordering of the processors, and that sorting n elements

by tw~way merging needs work n(n(logp)2) on a p-node hypercube if p ;::: nO.5+~ for every

E > o. The latter holds even if the ordering of the processors changes in each step of the

recursion, as long as these orderings are independent of the input.

Note that the almost optimal algorithm in [CyP90] that sorts n elements on an n-node

hypercube in time 0 (log n log log n) does this by merging ..;n sorted lists of Vn elements

each.

To prove the above lower bounds we make use of the fact that we want to compute the

elements in A u B in a certain order, i.e. that we want to rearrange the input elements.

If we are content with computing the rank of each element in A u B, this is no longer the

case. N evertheless, we will show similar lower bounds for computing only the ranks of the

elements.

We are not aware of any other work on this subject. For lower bounds on the size of

comparator networks for merging we refer to [MPT92].

This paper is organized as follows. Section 2 explains the general. idea, Section 3 shows that

there are inputs that cause high running times, Section 4 shows that the average runn;ng

time for merging is high, and Section 5 considers the problem of computing the ranks.

2. The General Idea

Consider the problem of merging two lists of n/2 elements each on an n-node hypercube

such that each processor holds one element. The ordering of the processors is arbitrary.

Then there are clearly two input sequences such that for at least one element in them the

hamming distance between the processors that hold it before and after the merging, say

processors Pi and Pj, is n(logn). Thus this element has to travel across n(logn) edges and

it will take n(logn) time till the last element has reached its destination. Next consider the

case where each processor holds m > 1 elements and the elements at each processor form a

consecutive subsequence. We can construct two input sequences such that all elements stored

at Pi have to travei to Pj • But that does not necessarily mean that merging these two

sequences needs time n(mlogn); rather, by pipelining the movement of the elements at Pi,

2

it could be possible to acbieve a running time of O(m+logn). Thus the above argument is

too weak.

Instead we will use arguments of the following kind: Let 11. be an n-node hrPercube. Consider

the problem of merging two sorted sequences of n/2 elements each, one per pro cessor , using

any ordering of the processors. Then for a constant fraction of the input elements the average

distance (over all possible out comes of the merging) this element has to travel is n(logn).

Thus the average number of edges crossed by all elements together is n(n log n) and for a

constant fraction of all possible inputs the total number of crossed edges is n(nlogn). Since

in each step at most n edges can be used, the roDDiDg time for these inputs is n(logn). A

similar argument shows that merging mn, m ~ 1, elements on an n-node hypercube needs

time n(mlogn) and that pipe1jDiDg cannot improve this. Since the lower bound on the

average number of crossed edges still holds if n', n' ~ n, elements reside at n' nodes of

an n-node hypercube, n = O((n')C) for a constant c, this means that sorting n elements

on a p-node hypercube by repeated two-way merging needs time n((n/p)(logp)2) and work

n(n(logp)2) if p ~ nO.s+~ for any constant E> O.

3. Expensive Inputs

In this section we consider the problem of merging n elements on an n-node hypercube and

show that there are inputs that cause a high rllDDiDg time. N amely we show that for every

ordering ofthe processors there is an input with a roDDiDg time of at least (logn+v'logn/2)/4,

and for the standard ordering we give an input with a roDDjDg time of at least (logn)/2.

First we consider arbitrary orderings. Let A[O .. n/2-1] and B[O .. n/2-1] be the two sequences

to be merged, and let C[O .. n - 1] be the output of the merging. At the begiDDing (the

end, resp.) each of the n processors holds exa.ctly one element of Au B (of C, resp.). We

consider the following n/2 inputs 10, ... ,1"11./2-1: In li the element A[j] is moved to C(j + ~1,

o ~ j ~ n/2 - 1. We will show that for every possible ordering of the processors one of these

inputs needs at least (logn + Jlogn/2)/4 time.

Let d = log n. Consider a fixed input element A(j] and let A(j] reside at pi at the begiDnjng.

In 10, ... ,1"11./21 there are n/2 different positions for A[j] in C, Le. n/2 different processors

A[j] has to be moved to. Assume that these processors are chosen such that the costs for

A[j] are rniDirnized, Le they are the processors with the n/2 smallest harnrning distances to

P;. Thus the total costs for A[j] in the n/2 inputs are

Ld/2J (d)
~ L i i if d is odd, and

i=O

d/2-1 (d'\ 1 (d)
~ t; i i) + 4d d/2 if d is even.

Further , if d is odd,

Ld/2J (d-l)/2 1 1

t; i(J = t; d(: = 1) = 4d2d + ~d((dd __ 1~/2) ~ l(d+ Jd/2)2
d
,

3

and if d is even,

d./2-1 .(d\ ~ (d) _ L(d.-l)/2J (€I - 1) 1 (d)_
~ , i) + 4 d d/2 - ~ d i-I + '4 d d/2 -

(For the inequalities we used Sterling's approximation for n!.)

Thus, the total costs for all n/2 inputs, summed over all A[i], 0 ~ i ~ n/2 - 1, are at least

(n/2)(d + ~n/4, and for at least one of the n/2 inputs the total costs (or work) are

at least (d+ vfd72)n/4. Thus the rllnnjng time for this input is at least (d+ Jd/2)/4 =
(logn+ Jlogn/2)/4. Note that this lower bound also holds if the orderings of the processors

used at the beginn;ng and at the end may differ.

If we use the standard ordering of the processors we can improve upon the constants in the

above lower bound. Let A, B, and C be de:6ned as above. At the beginning A[i} resides at

processor Pi and B[i] at processor Pn / 2+i , 0 ~ i ~ n/2 - 1, and at the end C[i} resides at

processor Pi, 0 ~ i ~ n -1. If the input elements move as follows, at least (nlogn)/2 edges

have to be crossed altogether:

A[i}- C[2i] , 0 ~ i ~ n/2 - 1, and

B[i]- C[2i + 1],0 ~ i ~ n/2-1.

By induction on logn we can show that the performed work is at least (nlogn)/2. Applying

this lower bound on each level of a two-way merge sort shows that such a sort algorithm

performs a work of at least nlogn(logn + 1)/4.

4. Merging is expensive on the average

In this sectionwe will show that merging two sorted sequences (of equal length) , using

an arbitrary ordering of the processors, is expensive on the average. (We average over all

possible out comes of the merging). This is the case even if the orderings of the processors

used before and after the merging may differ .

. First we consider the case where there is at most one element per processor; later we will

extend this to the case where the number of processors is smaller than the number of elements.

Thus, let 'H. be a p-node hypercube, and let A and B be two sorted sequences of size n/2

each, p = n C for a constant c ~ 1, and n apower of 2. Assume that A and B are stored at

the no des of a subset SA (SB, resp.,) of the processors of 'H., ISAI = ISB! = n/2 (one element

per processor), and that we want to merge A and B such that the elements in A u B are

afterwards stored at a subset S of the processors, !S! = n, agam one element per processor.

The elements are stored in S A, SB, and S according to some fixed ordering of the processors

in these sets. Note that SA, SB, and S need not be disjoint. (This corresponds to a merge

step in a 2-way merge sort.)

4

We start offfrom the following idea.. Let M(n) be the number ofpossible outcomes ofmerging

two lists of size n/2 each. For each input element each of these out comes has some costs

assigned to it, namely the hammingdistance between the two processors storing the element

before and after the merging. Consider a fixed input element X, stored at some processor P.

We want to determine the set S of processors and the ordering of these processors such that

the sum of the costs over all possible out comes of the merging is minimjzed for X. Let S x
denote such a choice of S and let Rx : Sx -+ {1, ... , n}, Rx bijective, be the ordering of the

processors in Si. We will show that, for a constant fraction of the input elements, the sum

of the costs is n(M(n)logn) when Sx and Rx are used. Thus for these input elements the

sum of the costs is always n(M(n)logn), regardless of the choice of S and the ordering of

the processors in S. Since this is true for a constant fraction of the input elements, the sum

of the overall (for all input elements) costs is n(M(n)nlogn) and thus the average costs of

merging are n(n log n).

The following bounds on binomial coeffi.cients and sums of binomial coefficients will be needed

later on.

Lemma 1

Let nEIN and let J.'n EIN, 0 < I' < 1. Then

1 ~n () ---r==:==:::;:2nH2(~) < Ln< 2nH2(~) if 0< I' < 1/2
JSnJ.'(1 - 1') - le=O k · -, ,

where Hz(z) = -zlogz - (1- z)log(1- z).

Proof: See, e.g. [WS7S], pp. 30S ff. •
Let us next evaluate the number M(n) of possible out comes of merging two lists of size n/2

each.

Lemma 2

~2n $ (n~2) $ ~2n
Proof: This follows from Lemma 1. •
Let A = A[0 .. n/2 -1] and B = B[O .. n/2 - 1] and let C[O .. n - 1] be the result of the merging.

We want to derive a lower bound on the average costs caused by the elements in A and

B. To do this, we concentrate on the elements in A, since the situation for A and B is

symmetrieal. For each element A[~l, 0 $ i $ n/2 -1, there are n/2 possibilities for its location

in C: it can move between 0 (when no element in B is smaller than A[iD and n/2 (when

a11 elements in B are smaller than A[i]) positions to the right. Each of these moves has

5

some costs associated with it: costs(i, b), 0 ~ b ~ ./2, is the harnrning distance between the

processor that stores A[i] and the processor that stores C[i + b]. Each of these costs arises

in several out comes of the merging: costs(i, b) wes in all out comes where A[i] moves b

positions to the right. Let the number of these out comes be Z(i, b). Then the overall costs,

in all possible out comes of the merging, caused by A[i] are

L costs(i, b)Z(i, b).
O~b~n/2

(costs(i, b) of course depends on the chosen orderings on the processors, whereas Z(i, b) is

independent of them.)

We want to derive a lower bound on

F { L costs(i,b)Z(i,b)} =: Min(i),
,us O~b~n/2

where lls denotes the ordering of the processors in S . Note that this value is independent

of the index of the processor that holds A['1. To be able to derive a lower bound, we next

examine Z(i, b).

Lemma 3

(1) Z(i) = (i ~ b) (n -(i + .b) - 1)
, n/2 - t-1

(2) Z(i,b) = Z(n/2 - i -1,n/2 - b), 0 ~ i ~ n/2, 0 ~ b ~ n/2

(3) For a :fi.xed i, Z(i, b) first increases monotonically and then decreases monotonically,with

a maximum at Z(i,i) if i ~ n/4 -1 and at Z(i,i+ 1) else.

Proof: We omit the proof. •
Because of Lemma 3.2 we can concentrate on the i where 0 ~ i ~ n/4 - 1. Next we will

estimate how large a fraction of all possible out comes the largest "weight", Z(i, i), comprises.

Lemma 4

1I"..(i M(n) < 16 Vi if -,<-- -, n>4
2 - Z(i, i) -..ji' _.

Proof: This follows from Lemmas 1 through 3. •
That means that the largest existing weight is proportional to M(n)/Vi. To achieve Min(i)
for a fixed i we should choose S and the ordering of the processors in S such that the

largest weights are assigned to the smallest hamrning distances, e.g. A[i] and C[2i] should

be stored at the same processor. Assume that we assign the L = 1I"Vi/(2c) largest weights

(c > 1 a constant) to the L cheapest movements. The size of each of these weights is at

most 2M(n)/(1I"0) , and the sum of their sizes is at most M(n)/c. Thus the sum of the

sizes of the remaining weights, i.e. the number of possible movements that have not yet been

6

assigned costs, is at least (1-I/c)M(n). These remaining weights are all assigned to costs of

at least m(i,c), where m(i,c) are the costs of the L+l cheapest movement. Thus the sum of

all costs is at least m(i, c)(l- l/c)M(n), and the average costs are at least m(i, c)(I- l/c).
Thus, if m(i, c) = n(logn), the average costs are n(logn). The following lemma shows that

this is indeed the case if i = n(n).

Lemma 5

Let i = n(n) and let p = n Q for a constant Q > 1. Then for every constant c > 1 there

is a constant p. such that the number of movements with costs less than p.logp is at most

7r-/i/(2c), if n is sufficiently large.

Proof: We have to show that

~Io,p (1) r: "" ogp 7rV~
~ < -- ·-z
;=0 j - 2c .- .

Since

it is sufficient that

H2 (p) ~ logz/logp.

However,

logz/logp = log ;c/logp + (1/2)logi/logp ~ c'

for a constant c' > 0 if n is suf6.ciently large. Thus the constant p ensts. •

From Lemma 5 it follows that, for each constant c, m(i, c) = n(logn), if i = n(n).

Thus we have proven the following theorem.

Theorem 1

Let 11. be a p-node hypercube, let A and B be two sorted sequences of size n /2 each, p = nC

for a constant c> 1, and n apower of 2. Let A and B be stored at the nodes of a subset

SA (SB, resp.,) of the processors of 11., 15A I = 15BI = n/2 (one element per processor), and

let the result of the merging be stored at a subset S of the processors, 151 = n, agam one

element per processor. The elements are stored according to some fixed ordering of the used

processors.

Then the average costs for merging A and B are n(n log n).

We are also ready to prove a lower bound for sorting n elements by two-way merging on an

n-processor hypercube.

Theorem 2

Sorting n elements on an n-node hypercube by repeated two-way merging needs time n((logn)2)

on the average. This is true for all possible orderings of the processors in the levels of the

recursion and even if the ordering may change from one level to the next as long as these

orderings are independent of the input.

7

Proof: This follows directly from Theorem 1 by considering the upp er , say, 1/2logn levels

of the recursion. •
Next we want to examine the case where each processor may hold more than one element.

First we consider the situation where we want to merge mn elements on a p-node hypercube,

p = nQ: for a constant a;::: 1, and where, before and after the merging, each of n processors

of the hypercube holds m elements. We will show that the average costs for doing this are

n(mnlogp) if m =s; nß for a constant ß< 1.

To do this, we reconsider the proof of Theorem 1. Lemmas 2, 3, and 4 hold if we replace

n by n' = mn. Again we assign the cheapest movements to the largest weights. Instead of

Lemma 5 we now have to show:

Lemma 6

Let i = n(mn), m =s; nß for a constant ß< 1, and p = nQ: for a constant a> 1.

Then for every constant e> 1, there exists a constant p. such that the number of movements

with costs less than p.logp is smaUer than 7rVf,/(2e), if n is sufliciently large.

Proof: Let i;::: e'mn. Since each movement is now assigned to m weights, we have to show

that

#'~P .(lOgp) < 7rVf, ._
L- m . - 2 .-:z:.
;=0 1 e

It is suflicient that

H2 (p.) =s; log(:z:/m)jlogp.

However,

log(:z:/m)jlogp ;::: log ;e j logp + 1/2log(e'n/m)/ logp ;::: eil

for a constant eil > 0 since m =s; nß and if n sufliciently large. Thus the constant p. exists .

•
Again the lower bound for merging can be used to prove a corresponding lower bound for

sorting.

Theorem 3

Sorting n elements on a p-node hypercube using repeated two-way merging needs work

n(n(logp)2) if p > nG.S+O! for any constant e> o.
Proof: Consider once again the upper (1/2) logn levels of the recursion. To apply Lemma

6 on these levels the condition n/p < p'Y for a constant I< 1 must hold. This is equivalent

to P > nO.5+1! for a constant e > o. •

5. Computing the rank

In Section 4 we showed that merging two sorted sequences A and B is, under certain

conditions, expensive on the average. To prove these lower bounds we made use of the fact

8

that we wanted to rearrange the input elements according to their rank in A merged with

B. Thus, if we only want to compute the rank of each input element in A u B, we cannot

apply these lower bounds immediately. In this section we sketch how to change the claims

and the proofs to obtain similar lower bounds if we only want to compute the ranks.

We make use of the following observation: Let A = a[O .. n/2 - 1] and B = B[O .. n/2 - 1] be

the two input sequences and let C = C[O .. n-1] be the result of merging A with B. Assume

that an A[i] has rank j in G, Le. A[i] is equal to G[j], and that C[j - 1] = B[j - i - 1],

0::; i::; n/2 - 1, 0.:$ j ::; n - 1. Let k = j - i - 1. Then A[i] and B[k] have to be compared

to determine the rank of A[i] in G.

We use the notation of Section 4. Let A[i] be stored at processor pi and B[k] at processor

pk. To compare A[i] and B[k] these two input elements have to meet at some processor

pI. Forther, h(Pi, pI) + h(pk ,pI) 2: h(pi, pie), where the function h denotes the bamming

distance between the indices of the two processors. Thus we can claim costs of h(pi, pk)

for each assignment of the input elements where B[k] is directly before A[i] in C. We will

charge these costs on A[i), i.e. we will consider only the elements in A.
Following this observation we define Z(i, b) as the number of all inputs where A[i) has rank

i + b in C and B[b - 1] has rank i+ b - 1 in G, 0::; i ::; n/2 - 1, 1 ::; b ::; n/2. As in Section

4, we want to derive a lower bound on

F { L costs(i,b)Z(i,b)} =: Min(i),
.ns 0$&$n/2

where costs(i, b) is the bamm;ng distance between the indices of the processors that hold

A[i] (B[b], resp.) in the beginning. Further,

Z(i,b) = (i+~-1)(n-(i+.b)-1) =~Z(i,b).
t n/2 - t - 1 t + b

Thus,

Z(i,b)/3::; Z(i,b)::; Z(i) if b 2: i/2, and

n/2 n/2 . n/2

M(n) 2: L Z(i, b) 2: L Z(i, b)/3 2: ~ L Z(i, b) = M(n)/6.
&=0 &=i/2 i=O

From this we can conclude that the average costs are only decreased by a constant factor

if we merely want to compute the ranks of the input elements. We omit the details.

Summary

In this paper we have shown lower bounds for two-way merging and sorting by two-way

merging on the hypercube. We have shown that such a sorting algorithm cannot be optimal

unless the number of processors is significantly smaller than the number of elements to be

sorted. This is true even if it is not the standard ordering of the processors that is used

but any ordering that may even change !rom one merge to the nen. The same ideas can

be applied to the problem of merging two sorted lists of different lengths.

9

Acknowledgments

I would like to thank Torben Hagerup for helpful discussioDS.

References

[AH88]

[BN89]

A. Aggarwal, M.-D. A. Huang, Network complezity oJ sorting and graph problems

and simulating CRCW PRAMs by interconnection networks, AWOC, LNCS 319,

pp. 339-350, 1988

G. Bilardi, A. Nicolau, Adaptive bitonic sorting: An optimal parallel algorithm Jor

shared-memory machines, SIAM J. Comput. 18, pp. 216-228, 1989.

[C88] R. Cole, Parallel merge sort, SIAM J. Comput. 17, 770-785, 1988.

[CyP90] R. Cypher, G. Plaxton, Deterministic sorting in nearly logarithmic time on the

hyperctLbe and related computers, 20th STOC, pp. 193-203, 1990

[CyS92] R. Cypher, J.L.C. Sanz, Cubesort: A parallel algorithm Jor sorting N data items

with S-sorters, J. of Algorithms 13, pp. 211-234, 1992

[HR89] T. Hagerup, Ch. Rüb, Optimal merging and sorting on the EREW PRAM, Infor­

mation Processing Letters 33 , pp. 181-185, 1989.

[K83] C.P. Kruskal, Searching, merging and sorting in parallel computation, IEEE Trans­

adioDS on Computers, Vol. C-32 t 942-946, 1983.

[L92] F.T. Leighton, Introduction to parallel algorithms and architectures: Arroys, trees,

hypercubes, Morgan Kaufmaun Publishers, San Mate, California, 1992

[LP90]

(WS78]

T. Leighton, C.G. Plaxton, A (fairly) simple circuit that (usually) soTts, 31st

FOCS, Vol. I, pp. 264-274, 1990

F.J. Macwiliiams, N.J. Sloane, The Theory oJ Error Correcting Codes, North­

Holland Mathematical Library,Vol. 16, North-Holland, Amsterdam - New York -

Orlord, 1978

[MPT92] P.B. Miltersen, M. Paterson, J. Tarui, The asymptotic complezity oJ merging

networks, 33rd FOCS, pp. 236-246, 1992

[P89] C.G. Plaxton, Load balancing, selection and sorting on the hypercube, SPAA, pp.

64-73, 1989

[P92] C.G. Plaxton, A hypercubic sorting network with nearly logarithmic depth, 24th

STOC, pp. 405-416, 1992

10

	93-1480001
	93-1480002
	93-1480003
	93-1480004
	93-1480005
	93-1480006
	93-1480007
	93-1480008
	93-1480009
	93-1480010
	93-1480011
	93-1480012
	cover-hinten_2099-2897-300dpi

