
MAX -PLANCK -INSTITUT ..
FUR

INFORMATIK

The Complexity of Parallel . Prefix

Problems on Small Domains

s. Chaudhuri J . Radhakrishnan

MPI-I-93-147 Oktober 1993·

o

rnpu
_________ IN F 0 R M AT I K ________ _

Im Stadtwald

66123 Saarbrücken

Germany

The Complexity of Parallel Prefix

Problems on Small Domains

s. Chaudhuri J.Radha.kri.shna.n

MPI-I-93-147 Oktober 1993

The Complexity of Parallel Prefix Problems on Small Domains

Shiva P. Chaudhuri
Max-Plack-Institut für Informatik

Im Stadtwald
6600 Saarbrücken

Germany
shiva~mpi-sb.mpg.de

J aikumar Radhakrishnan
Tata Institute of Fundamental Research

Homi Bhabha Road, Colaba
Bombay 400005

Abstract

India
jaikumar~tcs.tifr.res.in

We show non-triviallower bounds for several prefix problems in the CReW PRAM model.
Our main result is an O(a(n)) lower bound for the chaining problem, matching the previously
known upper bound. We give a reduction to show that the same lower bound applies to a
parenthesis matching problem, again matching the previously known upper bound. We also
give reductions to show that similar lower bounds hold for the prefix maxima and the range
maxima problems.

1 Introduction

Lower bounds in parallel computation often depend critically on the domain size of the problem
that is being solved. Typically these lower bounds use Ramsey theoretic arguments to force the
aJgorithms to behave in a structured manner on some subset of the inputs. Then it is shown that
these structured aJgorithms cannot solve the problem quickly. Examples of lower bounds that
use this method can be found in [27,23, 2, 3]. However, applying R~sey theoretic arguments
necessitates assuming an unreaJistically large domain size, often an iterated exponentiaJ in the
sizeof the problem. These lower bounds become invalid when considering sm aller domains.
Thus, a major thrust of parallel complexity is to prove lower bounds for problems defined on
smalle;r domains.

The need for small domain lower bounds is further emphasized by the fact that in recent
years, aJgorithms have been presented that, on small domains, actually beat the lower bounds
proven for large domains. A good example is the problem of finding the maximum of nintegers
using a CReW PRAM with n processors. For a sufficiently large domain, the problem has a
lower bound of o (log log n) [23] .. However, if all the integers are drawn from {1, ... , nC

} thenit
is possible to find the maximum in O(c) time [16].

In this paper, we investigate the complexity of some related problems defined on small
domai~s. Each problem is to be solved on a a PRIORITY CReW PRAM with n processors
(see JaJei's book [20] for information on the various models of PRAMs).

Unordered Chaining. Given (al, a2, .. . , an) E {O, 1}n, compute vaJues (bI, b2, .. . , bn),
such that there exist integers i l , i2 , ••• ,iq satisfying

1. ai = 1 iffi = ij for some jj

2. bil = Oj

3. bij = ij_I, for j = 2,3, ... , q.

1

In other words, we link the non zeros into achain. The stronger ordered version
requires linking the non-zeros into achain in the order in which they appear.

Ordered chaining. 'Given values (aI, a2, ... , an) E {O, l}n,compute (bI, b2, ... , bn ,
such that ai = 0 --T bi = 0 and bi = max{j I aj = 1, j < i} otherwise (define
max{} = 0).

Prefix maxima. Given (al! a2, ... , an) E Dn, for some ordered domain D, compute,
for i = 1,2, . .. ,n, the value bi = max{aj: 1::; j::; i} .

Range maxima. Given (al , a2, ... ,an) E Dn, for some ordered domain D, preprocess
the data so that one processor can quickly ans wer any quest ion of the form "What
is the maximum of {ai, ai+l! ... , aj}?", for 1 ::; i ::; j ::; n.

Parenthesis matching with nesting level. Given a legal sequence of matched paren­
theses and the nesting level of each, find the match of each parenthesis.

Results. Our main result is an fl(a(n)) lower bound on the running time of every CRCW
PRAM algorithm with n processors solving the unordered chainin~ problem. (a(n) is the inverse
of Ackerman's function , and is a very slowly growing function. See section 3.1.) This implies
thesame lower "ound for ordered chaining, solving an open problem in [6, 25, 26].

Using reductions, we show similar lower bounds for the other problems. By reducing the
ordered chaining proble~to the prefix maxima problem, we obtain a lower bound of fl(a(n)
even when the domain is {1, 2, ... , n}. Consequently, finding prefix maxima is strictly harder
than just finding the maximum. This aspect is discussed further in section 6. Prefix maxima
can, in turn, be reduced to range maxima. This shows that there exists a constant c > 0 such
that· any algorithm that preprocesses aver the domain {1, 2, ... , n} with n processors so that
a single processor can answer a query in ca(n) steps, requires fl(a(n)) time. By reducing the
ordered chaining problem to the parenthesis matching problem, we obtain a lower bound of
fl(a(n)) even w hen the depth of nestIng is at most 2.

1.1 Relation to previous work

The problems consid'ered in this paper appear frequently as subproblems in parallel algorithms,
for example, in)nteger sorting, merging, lowest common ancestor and compaction (see [4, 22, 6,
18, 25]). Hence , these problems have received considerable attention, and, in recent years, there
has emerged a body of literature, on very fast parallel algorithms [8, 17, 19].

For the chaining problem, Berkman and Vishkin [8] and, independently, Ragde [25] gave
ingenious parallel algorithms that run in O(a(n)) time. For a restricted classof algorithms
called oblivious algorithms, Chaudhuri [11] proved that ordered chaining requires fl(a(n)) time.
However, in the general case, no lower bound was previously known. Our bound is one of very
few lower bounds that hold for constant size domains. In fact, it appears that the only other
such bound for CReW PRAMs is the fl(log n/log log n) lower bound for PARITY shown by
Beame and Hastad [5]. Also, the oilly other lower bound we are aware of for a problem that can
be solved in o(log log n) time is a lower bound of fl(1og* n) for a load balancing problem, due to
MacKenzie [21].

,For the prefix maxima problem, Gil and Rudolph [18] an algorithm that runs in O(1og log n)
time. Berkman, JaJa., Krishnamurthy, Thurimella and Vishkin [6], give an algorithm for prefix
maxima that is sensitive to the size of the domain. On the domain {1, ... , s}, their algorithm
runs in o (log log log s) time with n processors. If s is small, this beats the lower bound for large
domains. .

2

For the range maxima problem, Berkman, Breslauer, Galil, Scheiber and Vishkin [3] give
a preprocessing algorithm for range maxima that runs in O(1og log n) time; answering a query
then takes constant time. Berkman and Vishkin [8] give a preprocessing algorithm that runs in
O(a(n)) time for a restricted class ofinputsin which the difference between two adjacent num­
bers is at most a constant. This implies aprefix maxima algorithm with the same performance
for this class of inputs.

Berkman and Vishkin [8], give an O(a(n)) algorithm for parenthesis matching with nesting
level. Without the nesting level given·, PARITY can be reduced to this problem; hence it requires
n(lognjloglogn) time [5].

Our lower bound argument for chaining is based on the work of Dolev, Dwork, Pippenger
and Wigderson [15], who used a clever and versatile averaging argument to show that a weak
superconeentrator with a linear number of edges must have n(a(n)) depth. Chaudhuri [11]
adapted their method to obtain the lower bound in the oblivious case. Our proof is a furt her
extension of this method.

1.2 Organization of the paper

In our lower bound argument, we fix parts of the input to curtail the ability of the algorithm
to gather information. The eomputation graph, described in section 2, enables us to express
these restrictions in graph theoretic terms; in particular, the degrees ofthe vertices in the graph
re:fl.ect the power ofthe algorithm. In the regularized computation graph, described in section 2.1,
the degrees of the vertices are maintained below certain bounds, thereby limiting the power of
the algorithm. To get the desired result, we need to select these bounds carefully. This is
accomplished using special sequences, called Ackerman sequenees; these sequences are described
in section 3. Using the properties of these sequences, our main result, the lower bound for
chaining; is derived in section 4. Theredudions leading to lower bounds for the other problems
are described in section 5. Finally, in section 6, the consequences of the results in this paper
and the problems left open arediscussed.

2 Partial Inputs and the Computation Graph

In the following, A will~be an algorithm solving the unordered chaining problem. For inputs of
size n, let A use P = P(n) processors and take k = k(n) steps. (A step is defined as one round
of reads followed by writes.)

A partial input is an element of {O, 1, * }n. For a partial input b, we denote by X(b) the set
of inputs .consistent with b. That is, X(b) = {x E {O, l}n : for i = 1, .. . ,n, bi # * - bi = Xi}.
The positions with value 1 in b will be called the blockers of band the positions with value 0
will be called the passers of of b. Let

BI(b) = l{j : bj = 1}1; Pa(b) = IV: bj = O}I·

For partial inputs a and b, wesay dis a refinement of b, and write a::; b, if X(a) ~ X(b).
We shall find it convenient . to model the computation of A on a graph. Let b be a partial

input ofsize n. The eomputation graph of A on b, G(b), is defined as follows.

V(G(b)) = ({e, i) : cis a cell of memory and 0 ~ i ~ k}.

That is, we have (k + 1) levels; in each level we have one vertex for each cell in the memory.
The set of vertices in level i will be called Vi. The directed edges go from vertices at one level to
the vertices at the next level. Every edge is labelled by a processor. If on some input in X(b),

3

processor p reads cell c and writes to cell d in step i + 1, then we have the edge ((c, i), (d, i + 1))
with label p. We use fv(b) to denote the indegree of vertex v in the graph G(b). Initially, bit i
of the input is assumed to be in cell i; finally, bit i of the output is assumed to be in cell i. We
refer' to vertex (i,O) as Qi (the inputvertices) and vertex (i,k) as ßi (the output vertices).

Let a E {O,l}n. We shall associate with each vertex of G(a) a content. The cont.ent
associated with (c, i) is the content of the cell c after step i (that is, just before the write of step
i + 1 changes it) in the computation of A on the input a. We call this content eontent(a, (e, i)).
Similarly, for a processor pand an input a E {O, l}n, state(a, (p, i)) is the state of processor p
just before the write of step i + 1 in the computation of A on input a. For a partial input b, let

eontents(b, (c, i)) = {eontent(x, (c, i)): x E X (b)};

states(b, (p,i)) = {state(x, (p, i)): xE X(b)}.

We say that (e,i) is a fixed vertex if leontents(b,(e,i))1 = 1; otherwise we say (e,i) is afree
vertex. Similarly, if Istates(b, (e, i))1 = 1, we say the state ofp is fixed. Note that the above
definitions depend on the algorithm A and the size of input n. These parameters will be dear
from the context where they are used.

For an input x E {O,l}n, we denote by x(j) the input that differs from x only in the j-th
coordinate. We shall need the following fact, which we state without proof.

Fact 1 Let f : {O,l}n -+ {O, I} and b E {O, 1, * }n. Then, if for all j and all x,x{j) E X(b)
fex) = f(xU)), then f is eonstant over X(b) . .

Let
ajJeet(b, (p, i)) = {j : 3 x,x(j) E X(b) state(x, (p, i)) -:f= state(x{j) , (p, i))}.

By Fact 1, we condude that if in addition to the blockers and passers of b, all positions in
ajJeet(b, (p, i)) are fixed (at any value whatsoever), then the state of processor p after the read
of step i + 1 is fixed. s'imilarly, we define

ajJect(b,(e,i)) = {j: 3x,x(j) E X(b) eontent(x,(p,i))-:f=.eontent(x(j),(p,i))}.

That is, if b' is obtained from b by fixing all input positions in affect(b, (c, i)), then (c, i) is a
fixed vertex in G(b'). .

We model the computation of the algorithm A on the computation graph as follows. We say
that a processor· p reads from cell (c, i) and writes to cell (d, i + 1) w hen we mean that in the
step i + 1 of the computation ofthe algorithm A, p reads cell c and writes to cell d.

The following lemma shows a lower bound on the number of different values that the output
vertices may have; based on how refined the partial input iso

Lemma 2 Let b be a partial input of size n. Let ßi, i = 1, ... , n, be the output vertiees in the
eomputation graph. G (b). Then

n (n:- Pa(b))2 tr leontents(b, ßi)1 ~ 2(BI(b) + 1)'

Proof. Construct a graph G with n - Pa(b) vertices corresponding to the n - Pa(b) non-zero
positions in the partial input b. Put the directed edge (i, j) in, if bj = * and j E eontents(b, ßi).
For a vertex i of G, the different edges (i,j) going out of i correspond to different contents of
ßi. Note that the content of an output vertex ßj on the input obtained from b by setting all the

4

stars to 0 does not correspond to any edge of G. Suppose G had S edges. Then, accounting for
the n contents not represented by any edge of G, we get

11

I: Icontents(b,ßi)l~ S+ n. (1)
i=l

Suppose G has an independent set of size El(b) + 2. Consider the input fonned by setting these
El(b) + 2 positions to 1 and all other stars to O. When this input is chained by the .algorithm,
there must be at least El(b) + 1 links in the chain. By our construction of G, these links may
point only to blockers of b. But there are only El(b) blockers. Hence G has no independent set
of size El(b) + 2. By Turan's theorem [1, page 81), we get

Le.

Using (1), we get

(n - Pa(b)? <
n - Pa(b) +2S

(n - Pa(b))2
El(b) + 1 ::;

El(b) + 1

n - Pa(b) + 2S.

~ (n - Pa(b))2
~ Icontents(b, ßi)1 ~ 2(BKb) + 1)'

•
The central idea. of the proof is that we think of the quantity Li=1 Icontents(b, ßi)1 as a

. measure of the difficulty of the task that the algorithm has to accomplish. Lemma 2 bounds this
measure from below. When we refine a partial input, we potentially reduce the set of contents
of cells and states of processors, thus restricting the algorithm. We will find a partial input
such that the algorithm is severely restricted, although the difficulty of the remaining task is
still high. This alla.ws us to conclude that if the algorithm runs in few steps, it must use many
processors. We now make the idea of a restricted algorithm. precise by introducing the notion
of a regularized computation graph~ The treatment below is taken from Chaudhuri [14].

2.1 The regulatlzed computation graph

If a cell is written to by a small number of processors, then it can only have a small number
of contents. Simil~rly,. if a pro<::essor reads from a cell whose possible contents are limited, then
the possible states it can attain after the read are also limited. In our analysis, we shall, guided
by this intuition, strive to maintain bounds on the number of processors writing to cells, thus
restricting the power of the algorithm.

Definition 3 Let D = (do, d1 , • • • , dk) be a sequence 01 positive integers and let b be a partial
input. We say that G(b) isD-regularized up to level 1 (l ::; k) il every lree vertex 01 G(b) at
level i, i = 1,2, ... ,1, has indegree less than di. In this case, we say that b is D-regularizing up
to levell. 11 G(b) is D-regularized up to level k then we say that G(b) is D-regularized and call
b a D-regularizing partial input.

For a partial input b, let

}'i(b)

Zi(b)

Mi(b)

Ni(b)

max{jcontents(b, (c, i))1 : cis a memory cell};

= max{lstates(b,(p,i))I: pis a processor};

= max{laffect(b,(c,i))I: eisa memory cell};

= max { I affect(b, (p, i)) I : p is a processor}.

5

Lemma 4 Let D = (da, db ... , dk) satisfy da ~ 4 and, for i = 1,2, ... , k, di ~ dt_l. Let b be a
partial input such that G(b) is D-regularized up to level 1. Then:

(a) Fori=O,l, ... ,I,

(b) If 1 ~ k - 1, then

~ fv(b) ~ df P.
VEV'+l

Proof. We write G, Yi, Zi, Mi, Ni instead of G(b), Yi(b), Zi(b), Mi(b), Ni(b) respectively.
We first obtain bounds for Yi and Zi. Consider a free vertex (c, i) (0< i ~ 1) in the graph

G. Let the indegree of (c, i) bed (note that d < di). Let Pb P2, . .. , Pd be the labels on the edges
coming into (c, i). Let the number of states in which processor Pj writes to (c, i) be Sj. Now,
the content of (c, i) is determinedby the state of the processor that succeeds in writing to (c,i),
or, if no processor writes to (c, i), by the content of (c, i-I). Thus, we have

d

Icontents(b, (c,i))1 ~ L:Sj + Icontents(b,(c,i-1))I·
j=1

From the definition of Zi-I and Yi-I, we have Sj ~ Zi-I and Icontents(b,(c,i-1))1 ~ Yi-I.
Thus, for i = 1,2, ... ,1, we have

(2)

The number of states a processor may assume after the read of step i + 1 is at most the product
of the number of states it had before the read and the number of possible contents of the cel1 it

l

reads. Thus, for i = 1,2, ... ,1, we have

(3)

We have Ya, Zo ~ 2, since a memory cel1 can have at most two contents initially and a processor
after the first read can be in at most two states.

Now let ßi = 22; rr~=a dr- i
. Note that for i = 1,2, ... , k, ßi = diß7_1. We shall show by

induction that, for i = 0,1, ... ,1, Zi ~ ßi and Yi ~ dißi-l. The basis case, i = 0, is trivial. For
i ~ 1, we obtain from (2) and the induction hypothesis that

Yi ~ (di- 1)ßi-l+ di-I ß i-2 ~ (di- 1)ßi-I+ ß i-1 < dißi-l,

and then from the induction hypothesis and (3) that

Next we bound Mi and Ni. Consider the vertex (c, i) (0 < i ~ 1) and let the labels on the
edges coming into it be PbPb .. . ,Pd (d < di). If all the inputs that affect the states of these
processors after the read of step i are fixed, and the, inputs that affect the content of cel1 (c, i-I)
are fixed, then the content of cel1 (c, i) is fixed. Hence, for i =" 1,2, ... ,1, we have

(4)

Similarly, if all inputs that affect the state of the processor P before the read of step i + 1 are
fixed, and all the inputs that affect any of the cel1s that it could read in step i + 1 are fixed,

6

then the state of processor p after the read of step i + 1 is fixed. Since there are at most Zi-l
possible ceils it could read in step i+ 1, we have

(5)

The contents of an input cell and the state of a processor after the first read can be fixed by
setting at most one bit of the input; hence Mo, No ~ 1.

We now show by induction that, fori_= 0,1, ... ,1, Mi ~ 2i-1dißi_l and Ni ~ 2ißi. The
basis case is trivial. For i ~ 1, we obtain from (4) arid the induction hypothesis that

Mi ~ 2i-2di_lßi_2 + (di - 1)2i-1ßi_l ~ 2i-1ßi_l + (di - 1)2i-1ßi_l ~ 2i-1dißi_t.

and then from (5), the induction hypothesis and the bound shown above for Zi-l that

N· < 2i- 1ß·_ + 2i-ld'ß~ < 2i- 1ß· + 2i- 1ß· < 2iß·. t _ t 1 t t-l _ t t _ t

We havethus shown that Yi, Mi, Mi, Ni ~ 2i ßi. To prove part (a) of the lemma, it suffices
to show that 22' ßi ~ d~, for i = 0, 1, ... ,1. We use Induction on i. The basis case is trivial, for
do ~ 4. For i ~ 1, we have, using the iriduction hypothesis and the fact that di ~ dLl' that

To obtain part (b), we observe that a processor in step 1 + 1 can be in at most Z/(b) states,
and can therefore appear as a label in at most Z/(b) edges of G(b). The inequality follows from
this since, by part (a), Z/(b) ~ d;' •

3 The Ackerman sequences

3.1 The Ackerman functions

The Ackerman functions are defined as follows.

Here Af~)(1) is Ai applied x times to 1. That is, A 2(x) = 2x and A3(x) = Tower(x). The k-th
inverse Ackerman function, h, is defined by h(n) = max{i: Ak(i) ~ n}. It can be verified that
Ak(1) = 2 and Ak(2) = 4, for all k; in contrast, Ak(3) is avery fast growing function of k. The
Ackerman inverse of n, a(n), is given by

a(n) = min{k : Ak(3) ~ n}.

3.2 The Ackerman tree

We now construct certain sequences that we refer to as Ackerman sequences. These sequences
playa central role in our analysis of the computation graph. To help picture these sequences we
first introduce a tree called the Ackerman tree. The Ackerman sequences will then be obtained
from the labels on the pathsof this tree.

The tree Ti(x) is an ordered tree defined ind uctively. Each edge of the tree has a label. We
denote by Bi(X) the biggest label appearing in Ti(X).

7

• Tl (x) is a tree of depth 2. The root has one outgoing edge with label x, and the child of
the root has x5 edges, each with label xlO • Thus BI (x) = xlO •

• Ti+! (x) has depth i + 2. The root has one outgoing edge with label x. The child of the
root is formed by collapsing the roots of the following x 5 trees of depth i + 1.

Ti(x lO), Ti(Bi(xIO)), ••• , Ti(BJxS-I) (x lO)).

Thus Bi+I(X) = BJxS)(x IO).

The Ackerman tree r(k, I) has depth k + 1. It is obtained by collapsing the roots of the following
I trees.

Tk(20), Tk(Bk(20)), ... , Tk(Bl1- I)(20)).

The tree r(k, 1) may alternatively be described as follows.

1. Allleaves of the iree are at distance k + 1 from the root.

2. The outdegree of the root is 1.

3. The label on the leftmost edge of the root is 20.

4. If the label on the edge coming into a non-Ieaf node , is d, then , has d5 children.

5. If the label on the edge coming into the node , is d and e is the leftmost edge coming out
of " then the label on e is dlO

•

6. If f = (" ,') is not the leftmost edge coming out of " then its label i50btained as follows.
Let e be the edge coming out of , immediately to the left of f. Then the label of f is the
largest label that appears on an edge of a path starting with e and ending at aleaf.

We denote by ri the set of no des of r(k, I) at distance i from the root. The the set of
children of the node , is denoted by succ(,). T(,) denotes the subtree rooted at ,. Let H be
the set of leaves of the tree r(k,I) and H(J) the leaves in T(J); thus, if, is not a leaf, then
H(,) = U-Y'E6UCC(-y) H(J'). For h EH, and i = 1,2, ... , k + 1, di(h) is the label on the i-th edge
from the root on the path connecting the root with the leaf h; we set do(h) = 4. We define

D(h) = (do(h), dl(h), d2(h), ... , dk(h));
b

E[a, b](h) = II(di(h))5;
t=a

E(h) = E[1,k](h).

(As usual, E[a, b] = 1 if a > b.) The sequences D(h) playa central role in our analysis. Note
that the label dk+l(h) is ignored in the the definitions of D(h) and E(h). Let dt(h) be the next
bigger value of di after die h), that is,

(minn = 00.)
Observe that if, E ri, then the values do(h),d}(h), ... ,di(h)and dt(h) are the same for

allleaves h E H(,). We refer to thesevalues as do(J),dl(,), ... ,di(J) and dt(J) respectively.
Similarly, if a, b ~ i, then E[a, b](h) is constant over H(J); we refer to this value as E[a, b](J).

We now state the properties of r(k, 1) that we use in the pröof of our lower bound. These
properties will be used when we obtain D(h)-regularizing partial inputs insection 3.3 and prove
the lower bound in section 4.

8

Lemma 5

(a) For hE Hand i = 1,2, ... , k, di(h) ~ (di_l(h))4.

(b) dt(h) ~ (dk(h))lO.

(c) The number olleaves up to h (h and those to the left 01 h) is at most (dk(h))6.

(d) ~-YEri l/dlr) ~ 2-i .

(e) Suppose i ~ 1 and, E rio Then~hEHb)l/E[l,k](h)= 1/E[1,i-1](!).

(I) ~h 1/ E[l, k] = 1.

(g) H(r(k,l)) ~ A(4k,1).

Proof.

(a) For i ~ 2, we have di(h) ~ (d i _ 1(h))10 and the claim follows easily. For i = 1, we have
d1(h) ~ 20 and do(h) = 4, and again the claim holds.

(b) We have, from our definitions, dt(h) ~ dk+l(h) ~ (dk(h))lO.

(c) For, E rk, the number ofleaves in H(!) is exactly (dk(!))5. Let ,'E rk be the parent of
h. By part (b), dt(!) > dk(,); hence the number of the nodes in rk up to,' is at most
dk(,) = dk(h). Thus the total number ofleaves up to his at most dk(h)(dk(h))5 = (dk(h))6.

(d) It follows from part (a) that min{di(!): , E-ri} ~ 2i+1. Then, using part (b), we have

'" _1_ < 2. 1 <2-i.
-y~; dt(!) - min{di(!) : , E rd -

(e) We use reverse induction on i. For i = k + 1, the claim is obvious. For 1~ i ~ k, we split
the sum by " E succ(,) and use induction to obtain

'" '" 1 '" 1 I succ(!) I 1
~ ~ E[l,k](h) - ~ E[l,i](!') - E[l,i](!) - E[l,i~ 1](,),

-y'Esuccb) hEHb') -y'Esuccb)

(f) Using part (e), we have

L E~h) = L L E[l ~](h) == L E[1
1
0](!) = Irll = 1.

hEH -yErl hEHb) , -yErl'

(g) We first show by induction that, for x ~ 5, Bi(X) ~ A 3i(X). For the basis case; we have
B1(x) = x10 and A3(x) = Tower(x), and Tower(x) ~ x10, for x ~ 5.

For the induction step, we have the following routine derivation.

A3(i+l)(X) > A~7t2(1) ~ A3i+2(A~7~i)(1)) ~ A3i+2(Tower(x - 1))

> A3i+2(X5 + x) ~ A~7:ix)(1) ~ A~7;1(X) ~ B~t)(x)
> Bi+l(X).

It follows from part (c) that the number of leaves in r(k,l) is at most the biggest label

appearing in r(k,l). By our definitions, the biggest label in r(k,l) is Bi1)(20). We show

9

that for I ~ 5, B11)(20) :$ A4k(I). For k = 1, we have B~I)(20) = 20201 :$ Tower(l) :$ A4 (1).
For k ~ 2, we haveanother routine derivation.

A (I) (I) () A (AU-I)())
4k ~ A4k- 1 1 ~ 4k-1 4k-1 1

> ~k-I (20 + I)
> A~2_2(20) ~ A~ll(20)
> B11)(20).

3.3 Obtaining a D(h)-regularizing partial input

since I ~ 5

•

We shall now analyze the computation graph of algorithm A. Let h be a leaf of the _ tree
f(k,I), and consider the sequence D(h) defined in section 3. We shall associate with h a D(h)­
regularizing partial input b(h). We next show how such a partial input with a small number of
blockers and passers can be obtained.

The partial input b(h) is produced in stages. The intermediate partial inputs produced will
be called bO(h), bl (h), .. ~,bk(h). The partial input bi(h) will be D(h)-regUlai-izing up to level i.
In the end we shall set b(h) = bk(h). Fromnow on we shall not mention the parameter h when
referring to b(h), the intermediate partial inputs bi(h), or the values diCh), if the value of his
dear from the context.

Initially, we set bO = *n. Observe that bO is D(h)-regularizing up to level O. Now, in the
graph G(bO), there may be free vertices at level .1 that have indegree dl or high-er. In STAGE
1 ofour procedure, we refine bO to obtain bl so that, in G(bl), the indegree of every free ver tex
at level 1 will be less than d}, that is, bl will be D(h)-regUlarizing up to level 1. In general,
when we come to STAGE i, we already have a partial input bi- I that is D(h)-regUlarizing up
to level i - 1. Our task in STAGE i is to obtain a refinemEmt bi of bi- I so that, in G(bi), every
free vertex at level i has indegree less than di.The indegree of a vertex cannot increase when
the partial input is refinedi hence bi- is D(h)-regUlarizing up to level i;

STAGE i. Consider the graph G(bi- I). A free vertex v at level i will be called a high degree
vertex if di :$ fv < dti it will be called a very high degree vertex if fv ~ dt. To obtain bi we
consider these high and very high degree vertices one by one, and, if necessary, refine the partial
input to deal with them. The temporary partial input produced will be denoted by b'j initially
b' == bi-I.

(A) High Degree Vertices. Consider a vertex v that had high degree in G(bi - 1). If v is not high
degree in G(b'), then we do nothing. Otherwise, for each processor p that writes to v, we
fix all variables in affect(b', (p, i-I)) to O. For the resUlting partial input b', if any of these
processors writes to v, then v is fixedi, otherwise, v has indegree 0 in G(b'). Note that we
created only passers in this case.

(B) Very High Degree Vertices. Assume that all the high degree vertices of bi- 1 have been
processed in Step A, and the resUlting partial input is b'. Next consider a vertex v tha:t
had very high degree in G(bi- I). If the indegree of v in G(b') is less than di, then we do
nothing. Otherwise, let p be the processor of highest priority that writes to ceU v. There
is some input x E X(b') on which p writes to v.We set all inputs in affect(b', (p, i-I)) to
the value they have in x. This fixes the state of processor p in step i so. that it writes to
Vi consequently, v is a fixed vertex in the graph of the resUlting partial input. Note that
we may create both passers and blockers in this case.

10

At the end of this process, all the free vertices at level i have indegree less than di. We call the
resulting partial input bio Let the number ofinputs set in step A of STAGE i be S~(h), and the
number ofinputs in step B of STAGE i be S1(h). Thiscompletes the description of STAGEi.

For brevity, we write Mi(h), Ni(h), }'iCh), and Zieh) instead of Mi(b(h», Ni(b(h», }'i(b(h»,
and Zi(b(h»j when the parameter h is clear from the context, we shall further simplify the
notation by dropping it.

Lemma 6

(a)

(b)

f (bi-l)d~ v t-l'

d2 .
i-I'

Proof. First observe, using Lemma 5 (a), that the sequence D(h) satisfies the conditions in
Lemma 4. Now consider the processing of a· high degree vertex V. Let the partial input when
v is processed be b' . Since b' ~ bi-\ we have that G(b') is D(h)-regularized up tolevel i-I,
fv(b') ::::; fv(bi':" l) and, for all processors p, affect(b', (p, i-I» ~ affect(bi- 1 , (p, i-I ». It follows
that

Part (a) of the lemma follows from this because Ni-I::::; dLI by Lemma 4 (a) .
. Part (b) can be obtained similarly. •

We shall make use of the following observation: The partial inputbi(h) constructed by the
above p1'ocedure depends only on d1 (h), d2(h), .. ;, di(h) .. Therefore, if, E ri, then for allleaves
h E H(!), bi(h) is the same. We denote this common value of bi by bi(!). Similarly, Mi (h)·,
Ni(h), }'iCh) and Zieh) are constant over H(,); we denote the respective valuesby Mi(!), Ni(,),
}'i(!) and Zi(!) ..

4 The lower bottnd

In this section, we shall show that no algorithm can solve the unordered chaining problem in .
constant time using a linear number of processors. We shall make use of the partial input b(h)
described in the previous section. In our calculations the number of passers and blockers in b(h)
will play an important rolej for brevity, we denote them by Pa(h) and BI(h) instead of Pa(b(h»
and BI(b(h».

Theorem 1 Let Abe an algorithm that solves the unordered chaining problem for inputs of
length n in k steps using P processors. Suppose A4k(5) ::::; n. Then P = n(nI4k(n».

Proof. Consider the tree r(k,l) with 1= 14k(n). We have I ~ 5, and by Lemma 5, the number
ofleaves in r(k;l) is at most A4k(I(4k,n»::::; n.

11

Consider the partial input b(h) associated with the leaf h. By Lemma 4, for each output
vertex ßi, Icontents(b(h),ßi)1 ~ (dk(h)? Using Lemma 2 and E(h) ~ (dk(h)?, we then get

nE(h) > (n - Pa(h)?
- 2(BI(h) + 1)'

implying
, Pa(h) n

2(B1(h) + E(h) + 1) ~ E(h)"

Summing over allleaves h ,and usingLemma 5 (f), we get

Pa(h)
2(~(BI(h) + E(h) + 1)) ~ n14k(n).

We shall show (Lemma 8 (b) and Lemma 9) that

Therefore, we have

that is, P = fl(n14k(n)).

LB1(h) < P;
h

and L Pa(h) < 2P;
h

•
Corollary 7 1f A is an algorithm solving the unordered chaining problem with a linear number
of processors, then A '!leeds!2(a(n)) time..

Lemma 8

(a) Fori = 1,2, ... ,k,

L S1(h) ~ P/2i.
h

(b)

LBl(h) ~ P.
h

ProoJ, , As observed earlier, blockers are created only in step B of the procedure described in
section 3.3. Hence

k k

LB1(h) ~ LL S1(h) = LL S1(h).
h 'h i=l i=l h

Thus part(b) of the lemma follows easily from part (a).
We now show part (a). By Lemma 6,

LS1(h)~L L dLl~L L
h h VeVi; dt $ftJ(bi- 1) VeVi h:q $ftJ(bi - 1)

(To simplify the notation, we writedt for dt(h) and Jv(b i - 1) for Jv(bi- 1(h)).)

12

As observed in seetion 3.3, for , E ri-l, bi - 1 is constant over H(,). Therefore, we may
group the h by the value of , and obtain

Since d~_l is constant for the innermost sum, it can be moved out. The sum then reduces to

L L (di_l(f))2IS(v,,)I,
VEVi "YEri-l

where S(v,,) = {h E H(f): dt(h) ~ !v(bi-1(h))}. Let h' be the rightmost leaf in S(v,,), then
by Lemma 5 (c)

Then, using Lemma 5 (b), we have

!v(bi-1(h')) ~ dt(h') ~ (dk(h'))lO ~ ~(di_l(,))40IS(v,,)1 > (di_l(f))5IS(v,,)I.

Therefore, (di-1(,)?IS(v,,.)1 ~ !(bi-1(f))/(di_l(f)?, and

'""' i () '""' '""' !v(bi-1(f)) '""' 1. '""' f (bi- 1()) ~SB h ~ ~ ~ (di_l(f))3 = ~ (di-=1(,))3 ~ v. ,.
h VEVi "YEri-l "YEri-l VEVi

Nöw, by Lemma 4 (b), ~vEVi !v(bi-1(f)) ~ P(di_l(f))2. Therefore,

Then, using Lemma 5 (d), we get the required bound

Lemma 9

L S1(h) ~ P/2i
.

h

'""' Pa(h) 2P 7' E(h) ~ .

Proof. Using the observation in section 3.3, we write

k

Pa(h) ~ 2)S~(h) + S1(h)).
i=l

It follows from Lemma 8 (a) that

13

•

(6)

We shall show that, for i = 1,2, ... , k,

It follows that
k S~(h) LL E(h) ~ P.

h i=I
The lemma then follows by combining (6) and (8).

To prove (7), we use Lemma 6 and write

S~(h) < '" '" dLdv(b
i
-

I
) < '" ",d'f_dv(b

i
-

I
)

E(h) - L..J L..J. E(h) -L..J L..J E(h) ,
h VEVi:di$J,,(b'-1)<4 VEVi h

(7)

(8)

where, as usual, di, dt, bi- I and di-I stand for diCh), dt(h), bi-ICh) and di-I(h) respectively. As
in the proof of Lemma 8 we compute the rightmost sum by grouping the leaves by , E fi-I.
Then

L S~(h) <
h E(h) L L L

VEVi -yEri-l hEH(-y):di$J,,(bi- 1)<d;

Fix v E Vi and ,E fi, andconsider the rightmost sum

d~ f (bi-I)
~-I v

E(h)

(9)

Note that the condition, di ~ !v(bi- I) < dt, now depends only on diCh) and dt(h), which are
constant over Rb'), for each,' E succ(,). Therefore,this time we group theh based on,' and
obtain

where 8(v,,') = 1 if die,') ~ !v(bi-Ib')) < dt(,'), and 8(v,,') = Ootherwise. By Lemma 5,
L:hEH(-y') l/E(h) = l/E[l,i-l]b). Observe that 8(v,,') = 1 for at most one,' E succb).
Therefore

·11
'" - < -=-:--.,...----:-.,.......,.. L..J E(h) - E[l i - 1]()'

hEH(-y):di$f" (bi- 1)<4 "

Returning to (9), we now have

'" S~(h) < '" '" (di_Ib))2!v(b
i
-

I
b)) < '" ((di_Ib))2 ('" f (bi-I()))]. 7 E(h) - ~i-yTr'i E[l,i-l]b) - -Y~l E[l,i-l]b) ~i v ,

Using Lemma 4 (b), L:vEVi !v(bi-Ib)) ~ (di-Ib))2P. Thus

'" S~(h) < L (di_~b))4P <
~ E(h) - -yEfi-l E[l, t - l]b) -

The inequality (9) followsfrom this using Lemma 5 (d).

14

•

5 Reductions

Theorem 2 An algorithm . that solves prefix maxima on domain {I, ... , n} with n processors
requires time n(a(n)).

Proof. We reduce the chaining problem to aprefix maxima problem on domain {I, ... , n}. On
input al, .•• , an, compute Cl, ... ,Cn, Ci = 0 if ai = 0 and Ci = i if ai = 1. Then solve prefix
maxima for Cl, •.. ,Cn. Let dl ,. : • ,dn be the prefix maxima. It is easy to see that bl = 0 and
bi = di- l , 2 ~ i ~ n, is the required solution to the chaining problem. •

Theorem 3 There exists a constant C such that an algorithm that preprocesses for range max­
imum on domain {I, ... , n} with n processors so that a single processo~ can answer a query in
wen) steps requires n(a(n)) time.

Proof. We reduce the prefix maxima problem to the range maxima problem. On input
al, ••. ,an, first preprocess for range maxima and then assign n · processors, one to find the
maximum of [1, i], 1 ~ i ~ n. •

Theorem 4 Parenthesis matching with nesting level requires n(a(n)) time, even when the depth
of nesting is at most 2.

Proof. Given an input to the chaining problem, replace each 0 with "0" and assign a nesting
level of 2 toboth parentheses; replace each 1 with ")(" an<l assign a nesting level of 1 to both
paTentheses. Add a "(" before and a ")" after the whole sequence, both with nesting level 1.
Note that every ")" -with nesting level 1 corresponds to some 1 in the original input. The "("
that matches it corresponds to the 1 preceding it in the original input. Thus, after solving
the parenthesis matching problein, it is easy to recover the solution to the original problem in
constant time. •

6 Concluding re marks

We have presented lower bounds for chaining, prefix maxima, range maxima and parenthesis
matchingon small domains. The bounds are tight for the chaining problem and parenthesis
matching, but we do not know.about the other two problems. Our work extends the techniques
developed in Dolev, Dwork, Pippenger and Wigderson [15] and Chaudhuri [11]. The techniques
used in this paper have since been sharpened and applied to several other problems. In Chaud­
huri [13], they have been used to obtain strong lower bounds for the problem of approximate
compaction. In Chaudhuri [14], these methods have been placed in a general setting and shown
to be applicable to an entire dass of sensitive functions rather than just isolated cases, as in
earlier works.

In the literature, several fast randomized solutions have been proposed for the problems
considered in this paper. Berkman, Matias and Vishkin [7] give randomized preprocessing
algorithms for the range maxima problem that run in O(1og* n) time; each query can then be
answered in constant time. Raman [26], gives a constant time randomized chaining algorithm
that works if the number of 1 's in the input is not too large. However, no non-trivial lower
bounds have been reported for any of these problems. Is there an n(a(n)) lower bound for
chaining, even if randomization is permitted? We have not succeeded in extending OUT methods
to obtain such a lower bound.

15

We intuitively expect prefix maxima to be harder than just finding the maximum; however,
the two problems often have the same complex.ity. For example, with one processor the complex­
ity is 9(n), and with n processors and a sufficiently large domain, 9(loglog n). Our lower bound
is the only instance known to us where the two are shown to have different complexities. This
suggests that the difference arises because of restricting the domain size. However, if we restrict
the domain sizefurther, to a constant, then both have complexity 0(1). It is an interesting
open question to determine when the two problems have different complexities.

Acknowledgment

We are grateful to Vince Grolmusz. for introducing us to the problem of chaining and to Ravi
Boppana for suggesting the approach taken in this paper. This work was reported earlier in the
conference paper [12]. We thank Magnus Halld6rsson for his comments on the presentation in
this paper.

References

{l] N. Alon and J. Spencer, "The Probabilistic Method", John Wiley and Sons Inc., New York,
1992.

[2] R. Boppana, "Optimal Separations Between Concurrent Write Parallel Machines" , Proc. of
the 21st AGM S,TOG, 1989,320-326.

[3] O. Berkman, D. Breslauer, Z. Galil, B. Scheiber and U. Vishkin, "Highly Parallelizable
Problems", Proc. of 21st AGM STOG, 1989,309-319.

[4] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik and S. Saxena, "Improved
Deterministic Parallel Integer Sorting", Information and Gomputation 94, 1991,643-670.

[5] P. Beame and J. Hastad, "Optimal Bounds for D~cision Problems on the CRCW PRAM",
Proc. of the 19th ACM STOG, 1987,83-93.

[6] O. Berkman, J. JaJei, S. Krishnamurthy, R. Thurimella and U. Vishkin, "Some Triply­
Logarithmic Parallel Algorithms", Proc. of 31st FOGS, 1990,871-881.

[7] O. Berkman, Y. Matias and U. Vishkin, "Randomized Range-Maxima in Nearly-Constant
Parallel Time", Gomputational Gomplexity, 2, 1992,350-373.

[8] O. Berkman and U. Vishkin, "Recursive Star-Tree Parallel Data Structure" , Proc. of 30th
IEEE FOGS, 1989, 196-202.

[9] A. K. Chandra, S. Fortune and R. J. Lipton, "Unbounded Fan-in Circuits and Associative
Functions", Proc. of the 15th AGM STOG, 1983.

[10] A. K. Chandra, S. Fortune and R. J. Lipton, "Lower bounds for Constant Depth Circuits
for Prefix Problems", Proc. of the 10th Intl. Golloquium on A utomata, Languages and
Programming, Lecture Notes in 'Computer Science, Springer-Verlag, 1983.

[11] S. Chaudhuri, "Tight Bounds on the Chaining Problem", Proc. of 3rd AGM SPAA, 1991,
62-70.

[12] S. Chaudhuri and J. Radhakrishnan, "The Complexity of Parallel Prefix .Problems on Small
Domains" , Proc. 33rd IEEE FOGS, 1992,638-647.

16

[13] S. Chaudhuri, "A Lower Bound for Linear Approximate Compaction", Proc. of 2nd Israel
Symp. on Theory of Gomp. and Sys., 1993,25-32.

[14] S. Chaudhuri, "Sensitive Functions and Approximate Problems", Proc. of 34th IEEE FOGS,
1993, (to appear).

[15] D. Dolev, C. Dwork, N. Pippenger and A. Wigderson, "Superconcentrators, Generalizers
and Generalized Connectors with Limited Depth", Proc. of the 15th AGM STOG, 1983,
42-51.

[16] F. E. Fich, A. Wigderson and P. Ragde, "Simulations A,mong Concurrent-Write Models of
Parallel Coinputation", Algorithmica 3, 1988, 43-51.

[17} J. Gi!, Y. Matias and U. Vishkin, "Towards a theory of nearly constant time parallel
algorithms", Proc. of32nd IEEE FOGS, 1991,698-710.

[18] J. Gil and L. Rudolph, "Counting and Packing in Parallel", International Gonference on
Parallel Processing, 1986, 1000-1002.

[19] T. Hagerup, "The Log-Star Revolution", Proc. 9th Symposium on Theoretical Aspects of
Gomputer Science (1992), Springer Lecture Notes in Computer Science, Vol. 577,259-278.

[20] J. JaJa. "An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

[21] P. D. MacKenzie, "Load Balancing tequires O(log* n) expected time", Proc. of 3rd AGM­
SIAM SODA, 1992, 94-99.

[22] Y. Matias and U. Vishkin, "On Parallel Hashing and Integer Sorting,Proc. of 17th IGALP,
1990, 729-743.

[23]F. Meyer auf der· Heide and A. Wigderson, "The complexity of parallel sorting", SIAM
Journal on Gomputing, v16, No 1, 1987., 100-107. .

[24] I. Newman, P. Ragde and A. Wigdetson, "Perfeet Hashing, Graph Entropy and Circuit
Complexity", PrOc. of 5th Ann. Gonf. on Structure in Gomplexity Theory, 1990,91-99.

[25] P. Ragde, "The Parallel Simplicity of Compaction and Chaining", Proc. 17th IGALP, 1990,
744-751.

[26] R. Raman, "The Power of Collision: Randomized Parallel Algorithms for Chaining and
Integer Sorting", l-Oth FST (3 TGS Gonf., 1990, LNCS 472, 161-175.

[27] M. Snir, "On Parallel Searching", SIAM J. of Computing, vol. 14, no. 2, 1985,688:-708.

17

	93-1470001
	93-1470002
	93-1470003
	93-1470004
	93-1470005
	93-1470006
	93-1470007
	93-1470008
	93-1470010
	93-1470011
	93-1470012
	93-1470013
	93-1470014
	93-1470015
	93-1470016
	93-1470017
	93-1470018
	93-1470019
	93-1470020
	cover-hinten_2099-2897-300dpi

