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We show non-triviallower bounds for several prefix problems in the CReW PRAM model. 
Our main result is an O( a( n)) lower bound for the chaining problem, matching the previously 
known upper bound. We give a reduction to show that the same lower bound applies to a 
parenthesis matching problem, again matching the previously known upper bound. We also 
give reductions to show that similar lower bounds hold for the prefix maxima and the range 
maxima problems. 

1 Introduction 

Lower bounds in parallel computation often depend critically on the domain size of the problem 
that is being solved. Typically these lower bounds use Ramsey theoretic arguments to force the 
aJgorithms to behave in a structured manner on some subset of the inputs. Then it is shown that 
these structured aJgorithms cannot solve the problem quickly. Examples of lower bounds that 
use this method can be found in [27,23, 2, 3]. However, applying R~sey theoretic arguments 
necessitates assuming an unreaJistically large domain size, often an iterated exponentiaJ in the 
sizeof the problem. These lower bounds become invalid when considering sm aller domains. 
Thus, a major thrust of parallel complexity is to prove lower bounds for problems defined on 
smalle;r domains. 

The need for small domain lower bounds is further emphasized by the fact that in recent 
years, aJgorithms have been presented that, on small domains, actually beat the lower bounds 
proven for large domains. A good example is the problem of finding the maximum of nintegers 
using a CReW PRAM with n processors. For a sufficiently large domain, the problem has a 
lower bound of o (log log n) [23] .. However, if all the integers are drawn from {1, ... , nC

} thenit 
is possible to find the maximum in O(c) time [16]. 

In this paper, we investigate the complexity of some related problems defined on small 
domai~s. Each problem is to be solved on a a PRIORITY CReW PRAM with n processors 
(see JaJei's book [20] for information on the various models of PRAMs). 

Unordered Chaining. Given (al, a2, .. . , an) E {O, 1}n, compute vaJues (bI, b2, .. . , bn), 
such that there exist integers i l , i2 , ••• ,iq satisfying 

1. ai = 1 iffi = ij for some jj 

2. bil = Oj 

3. bij = ij_I, for j = 2,3, ... , q. 
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In other words, we link the non zeros into achain. The stronger ordered version 
requires linking the non-zeros into achain in the order in which they appear. 

Ordered chaining. 'Given values (aI, a2, ... , an) E {O, l}n,compute (bI, b2, ... , bn , 
such that ai = 0 --T bi = 0 and bi = max{j I aj = 1, j < i} otherwise (define 
max{} = 0). 

Prefix maxima. Given (al! a2, ... , an) E Dn, for some ordered domain D, compute, 
for i = 1,2, . .. ,n, the value bi = max{aj: 1::; j::; i} . 

Range maxima. Given (al , a2, ... ,an) E Dn, for some ordered domain D, preprocess 
the data so that one processor can quickly ans wer any quest ion of the form "What 
is the maximum of {ai, ai+l! ... , aj}?", for 1 ::; i ::; j ::; n. 

Parenthesis matching with nesting level. Given a legal sequence of matched paren­
theses and the nesting level of each, find the match of each parenthesis. 

Results. Our main result is an fl(a(n)) lower bound on the running time of every CRCW 
PRAM algorithm with n processors solving the unordered chainin~ problem. (a( n) is the inverse 
of Ackerman's function , and is a very slowly growing function. See section 3.1.) This implies 
thesame lower "ound for ordered chaining, solving an open problem in [6, 25, 26]. 

Using reductions, we show similar lower bounds for the other problems. By reducing the 
ordered chaining proble~to the prefix maxima problem, we obtain a lower bound of fl( a( n) 
even when the domain is {1, 2, ... , n}. Consequently, finding prefix maxima is strictly harder 
than just finding the maximum. This aspect is discussed further in section 6. Prefix maxima 
can, in turn, be reduced to range maxima. This shows that there exists a constant c > 0 such 
that· any algorithm that preprocesses aver the domain {1, 2, ... , n} with n processors so that 
a single processor can answer a query in ca( n) steps, requires fl( a( n)) time. By reducing the 
ordered chaining problem to the parenthesis matching problem, we obtain a lower bound of 
fl( a( n)) even w hen the depth of nestIng is at most 2. 

1.1 Relation to previous work 

The problems consid'ered in this paper appear frequently as subproblems in parallel algorithms, 
for example, in)nteger sorting, merging, lowest common ancestor and compaction (see [4, 22, 6, 
18, 25]). Hence , these problems have received considerable attention, and, in recent years, there 
has emerged a body of literature, on very fast parallel algorithms [8, 17, 19]. 

For the chaining problem, Berkman and Vishkin [8] and, independently, Ragde [25] gave 
ingenious parallel algorithms that run in O( a( n)) time. For a restricted classof algorithms 
called oblivious algorithms, Chaudhuri [11] proved that ordered chaining requires fl( a( n)) time. 
However, in the general case, no lower bound was previously known. Our bound is one of very 
few lower bounds that hold for constant size domains. In fact, it appears that the only other 
such bound for CReW PRAMs is the fl(log n/log log n) lower bound for PARITY shown by 
Beame and Hastad [5]. Also, the oilly other lower bound we are aware of for a problem that can 
be solved in o(log log n) time is a lower bound of fl(1og* n) for a load balancing problem, due to 
MacKenzie [21]. 

,For the prefix maxima problem, Gil and Rudolph [18] an algorithm that runs in O(1og log n) 
time. Berkman, JaJa., Krishnamurthy, Thurimella and Vishkin [6], give an algorithm for prefix 
maxima that is sensitive to the size of the domain. On the domain {1, ... , s}, their algorithm 
runs in o (log log log s) time with n processors. If s is small, this beats the lower bound for large 
domains. . 
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For the range maxima problem, Berkman, Breslauer, Galil, Scheiber and Vishkin [3] give 
a preprocessing algorithm for range maxima that runs in O(1og log n) time; answering a query 
then takes constant time. Berkman and Vishkin [8] give a preprocessing algorithm that runs in 
O(a(n)) time for a restricted class ofinputsin which the difference between two adjacent num­
bers is at most a constant. This implies aprefix maxima algorithm with the same performance 
for this class of inputs. 

Berkman and Vishkin [8], give an O( a( n)) algorithm for parenthesis matching with nesting 
level. Without the nesting level given·, PARITY can be reduced to this problem; hence it requires 
n(lognjloglogn) time [5]. 

Our lower bound argument for chaining is based on the work of Dolev, Dwork, Pippenger 
and Wigderson [15], who used a clever and versatile averaging argument to show that a weak 
superconeentrator with a linear number of edges must have n( a( n)) depth. Chaudhuri [11] 
adapted their method to obtain the lower bound in the oblivious case. Our proof is a furt her 
extension of this method. 

1.2 Organization of the paper 

In our lower bound argument, we fix parts of the input to curtail the ability of the algorithm 
to gather information. The eomputation graph, described in section 2, enables us to express 
these restrictions in graph theoretic terms; in particular, the degrees ofthe vertices in the graph 
re:fl.ect the power ofthe algorithm. In the regularized computation graph, described in section 2.1, 
the degrees of the vertices are maintained below certain bounds, thereby limiting the power of 
the algorithm. To get the desired result, we need to select these bounds carefully. This is 
accomplished using special sequences, called Ackerman sequenees; these sequences are described 
in section 3. Using the properties of these sequences, our main result, the lower bound for 
chaining; is derived in section 4. Theredudions leading to lower bounds for the other problems 
are described in section 5. Finally, in section 6, the consequences of the results in this paper 
and the problems left open arediscussed. 

2 Partial Inputs and the Computation Graph 

In the following, A will~be an algorithm solving the unordered chaining problem. For inputs of 
size n, let A use P = P( n) processors and take k = k( n) steps. (A step is defined as one round 
of reads followed by writes.) 

A partial input is an element of {O, 1, * }n. For a partial input b, we denote by X(b) the set 
of inputs .consistent with b. That is, X(b) = {x E {O, l}n : for i = 1, .. . ,n, bi # * - bi = Xi}. 
The positions with value 1 in b will be called the blockers of band the positions with value 0 
will be called the passers of of b. Let 

BI(b) = l{j : bj = 1}1; Pa(b) = IV: bj = O}I· 

For partial inputs a and b, wesay dis a refinement of b, and write a::; b, if X(a) ~ X(b). 
We shall find it convenient . to model the computation of A on a graph. Let b be a partial 

input ofsize n. The eomputation graph of A on b, G(b), is defined as follows. 

V(G(b)) = ({e, i) : cis a cell of memory and 0 ~ i ~ k}. 

That is, we have (k + 1) levels; in each level we have one vertex for each cell in the memory. 
The set of vertices in level i will be called Vi. The directed edges go from vertices at one level to 
the vertices at the next level. Every edge is labelled by a processor. If on some input in X(b), 
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processor p reads cell c and writes to cell d in step i + 1, then we have the edge (( c, i), ( d, i + 1)) 
with label p. We use fv(b) to denote the indegree of vertex v in the graph G(b). Initially, bit i 
of the input is assumed to be in cell i; finally, bit i of the output is assumed to be in cell i. We 
refer' to vertex (i,O) as Qi (the inputvertices) and vertex (i,k) as ßi (the output vertices). 

Let a E {O,l}n. We shall associate with each vertex of G(a) a content. The cont.ent 
associated with (c, i) is the content of the cell c after step i (that is, just before the write of step 
i + 1 changes it) in the computation of A on the input a. We call this content eontent(a, (e, i)). 
Similarly, for a processor pand an input a E {O, l}n, state(a, (p, i)) is the state of processor p 
just before the write of step i + 1 in the computation of A on input a. For a partial input b, let 

eontents(b, (c, i)) = {eontent( x, (c, i)): x E X (b)}; 

states(b, (p,i)) = {state(x, (p, i)): xE X(b)}. 

We say that (e,i) is a fixed vertex if leontents(b,(e,i))1 = 1; otherwise we say (e,i) is afree 
vertex. Similarly, if Istates(b, (e, i))1 = 1, we say the state ofp is fixed. Note that the above 
definitions depend on the algorithm A and the size of input n. These parameters will be dear 
from the context where they are used. 

For an input x E {O,l}n, we denote by x(j) the input that differs from x only in the j-th 
coordinate. We shall need the following fact, which we state without proof. 

Fact 1 Let f : {O,l}n -+ {O, I} and b E {O, 1, * }n. Then, if for all j and all x,x{j) E X(b) 
fex) = f(xU)), then f is eonstant over X(b) . . 

Let 
ajJeet(b, (p, i)) = {j : 3 x,x(j) E X(b) state(x, (p, i)) -:f= state(x{j) , (p, i))}. 

By Fact 1, we condude that if in addition to the blockers and passers of b, all positions in 
ajJeet( b, (p, i)) are fixed (at any value whatsoever), then the state of processor p after the read 
of step i + 1 is fixed. s'imilarly, we define 

ajJect(b,(e,i)) = {j: 3x,x(j) E X(b) eontent(x,(p,i))-:f=.eontent(x(j),(p,i))}. 

That is, if b' is obtained from b by fixing all input positions in affect(b, (c, i)), then (c, i) is a 
fixed vertex in G(b'). . 

We model the computation of the algorithm A on the computation graph as follows. We say 
that a processor· p reads from cell (c, i) and writes to cell (d, i + 1) w hen we mean that in the 
step i + 1 of the computation ofthe algorithm A, p reads cell c and writes to cell d. 

The following lemma shows a lower bound on the number of different values that the output 
vertices may have; based on how refined the partial input iso 

Lemma 2 Let b be a partial input of size n. Let ßi, i = 1, ... , n, be the output vertiees in the 
eomputation graph. G (b ). Then 

n (n:- Pa(b))2 tr leontents(b, ßi)1 ~ 2(BI(b) + 1)' 

Proof. Construct a graph G with n - Pa( b) vertices corresponding to the n - Pa( b) non-zero 
positions in the partial input b. Put the directed edge (i, j) in, if bj = * and j E eontents(b, ßi). 
For a vertex i of G, the different edges (i,j) going out of i correspond to different contents of 
ßi. Note that the content of an output vertex ßj on the input obtained from b by setting all the 
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stars to 0 does not correspond to any edge of G. Suppose G had S edges. Then, accounting for 
the n contents not represented by any edge of G, we get 

11 

I: Icontents(b,ßi)l~ S+ n. (1) 
i=l 

Suppose G has an independent set of size El(b) + 2. Consider the input fonned by setting these 
El(b) + 2 positions to 1 and all other stars to O. When this input is chained by the .algorithm, 
there must be at least El( b) + 1 links in the chain. By our construction of G, these links may 
point only to blockers of b. But there are only El(b) blockers. Hence G has no independent set 
of size El(b) + 2. By Turan's theorem [1, page 81), we get 

Le. 

Using (1), we get 

(n - Pa(b)? < 
n - Pa(b) +2S 

(n - Pa(b))2 
El(b) + 1 ::; 

El(b) + 1 

n - Pa(b) + 2S. 

~ (n - Pa(b))2 
~ Icontents(b, ßi)1 ~ 2(BKb) + 1)' 

• 
The central idea. of the proof is that we think of the quantity Li=1 Icontents(b, ßi)1 as a 

. measure of the difficulty of the task that the algorithm has to accomplish. Lemma 2 bounds this 
measure from below. When we refine a partial input, we potentially reduce the set of contents 
of cells and states of processors, thus restricting the algorithm. We will find a partial input 
such that the algorithm is severely restricted, although the difficulty of the remaining task is 
still high. This alla.ws us to conclude that if the algorithm runs in few steps, it must use many 
processors. We now make the idea of a restricted algorithm. precise by introducing the notion 
of a regularized computation graph~ The treatment below is taken from Chaudhuri [14]. 

2.1 The regulatlzed computation graph 

If a cell is written to by a small number of processors, then it can only have a small number 
of contents. Simil~rly,. if a pro<::essor reads from a cell whose possible contents are limited, then 
the possible states it can attain after the read are also limited. In our analysis, we shall, guided 
by this intuition, strive to maintain bounds on the number of processors writing to cells, thus 
restricting the power of the algorithm. 

Definition 3 Let D = (do, d1 , • • • , dk) be a sequence 01 positive integers and let b be a partial 
input. We say that G(b) isD-regularized up to level 1 (l ::; k) il every lree vertex 01 G(b) at 
level i, i = 1,2, ... ,1, has indegree less than di. In this case, we say that b is D-regularizing up 
to levell. 11 G(b) is D-regularized up to level k then we say that G(b) is D-regularized and call 
b a D-regularizing partial input. 

For a partial input b, let 

}'i(b) 

Zi(b) 

Mi(b) 

Ni(b) 

max{jcontents(b, (c, i))1 : cis a memory cell}; 

= max{lstates(b,(p,i))I: pis a processor}; 

= max{laffect(b,(c,i))I: eisa memory cell}; 

= max { I affect( b, (p, i)) I : p is a processor}. 
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Lemma 4 Let D = (da, db ... , dk ) satisfy da ~ 4 and, for i = 1,2, ... , k, di ~ dt_l. Let b be a 
partial input such that G(b) is D-regularized up to level 1. Then: 

(a) Fori=O,l, ... ,I, 

(b) If 1 ~ k - 1, then 

~ fv(b) ~ df P. 
VEV'+l 

Proof. We write G, Yi, Zi, Mi, Ni instead of G(b), Yi(b), Zi(b), Mi(b), Ni(b) respectively. 
We first obtain bounds for Yi and Zi. Consider a free vertex (c, i) (0< i ~ 1) in the graph 

G. Let the indegree of (c, i) bed (note that d < di ). Let Pb P2, . .. , Pd be the labels on the edges 
coming into (c, i). Let the number of states in which processor Pj writes to (c, i) be Sj. Now, 
the content of (c, i) is determinedby the state of the processor that succeeds in writing to (c,i), 
or, if no processor writes to (c, i), by the content of ( c, i-I). Thus, we have 

d 

Icontents(b, (c,i))1 ~ L:Sj + Icontents(b,(c,i-1))I· 
j=1 

From the definition of Zi-I and Yi-I, we have Sj ~ Zi-I and Icontents(b,(c,i-1))1 ~ Yi-I. 
Thus, for i = 1,2, ... ,1, we have 

(2) 

The number of states a processor may assume after the read of step i + 1 is at most the product 
of the number of states it had before the read and the number of possible contents of the cel1 it 

l 

reads. Thus, for i = 1,2, ... ,1, we have 

(3) 

We have Ya, Zo ~ 2, since a memory cel1 can have at most two contents initially and a processor 
after the first read can be in at most two states. 

Now let ßi = 22; rr~=a dr- i
. Note that for i = 1,2, ... , k, ßi = diß7_1. We shall show by 

induction that, for i = 0,1, ... ,1, Zi ~ ßi and Yi ~ dißi-l. The basis case, i = 0, is trivial. For 
i ~ 1, we obtain from (2) and the induction hypothesis that 

Yi ~ (di- 1)ßi-l+ di-I ß i-2 ~ (di- 1)ßi-I+ ß i-1 < dißi-l, 

and then from the induction hypothesis and (3) that 

Next we bound Mi and Ni. Consider the vertex (c, i) (0 < i ~ 1) and let the labels on the 
edges coming into it be PbPb .. . ,Pd (d < di). If all the inputs that affect the states of these 
processors after the read of step i are fixed, and the, inputs that affect the content of cel1 (c, i-I) 
are fixed, then the content of cel1 (c, i) is fixed. Hence, for i =" 1,2, ... ,1, we have 

(4) 

Similarly, if all inputs that affect the state of the processor P before the read of step i + 1 are 
fixed, and all the inputs that affect any of the cel1s that it could read in step i + 1 are fixed, 
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then the state of processor p after the read of step i + 1 is fixed. Since there are at most Zi-l 
possible ceils it could read in step i+ 1, we have 

(5) 

The contents of an input cell and the state of a processor after the first read can be fixed by 
setting at most one bit of the input; hence Mo, No ~ 1. 

We now show by induction that, fori_= 0,1, ... ,1, Mi ~ 2i-1dißi_l and Ni ~ 2ißi. The 
basis case is trivial. For i ~ 1, we obtain from (4) arid the induction hypothesis that 

Mi ~ 2i-2di_lßi_2 + (di - 1)2i-1ßi_l ~ 2i-1ßi_l + (di - 1)2i-1ßi_l ~ 2i-1dißi_t. 

and then from (5), the induction hypothesis and the bound shown above for Zi-l that 

N· < 2i- 1ß·_ + 2i-ld'ß~ < 2i- 1ß· + 2i- 1ß· < 2iß·. t _ t 1 t t-l _ t t _ t 

We havethus shown that Yi, Mi, Mi, Ni ~ 2i ßi. To prove part (a) of the lemma, it suffices 
to show that 22' ßi ~ d~, for i = 0, 1, ... ,1. We use Induction on i. The basis case is trivial, for 
do ~ 4. For i ~ 1, we have, using the iriduction hypothesis and the fact that di ~ dLl' that 

To obtain part (b), we observe that a processor in step 1 + 1 can be in at most Z/(b) states, 
and can therefore appear as a label in at most Z/(b) edges of G(b). The inequality follows from 
this since, by part (a), Z/( b) ~ d;' • 

3 The Ackerman sequences 

3.1 The Ackerman functions 

The Ackerman functions are defined as follows. 

Here Af~)(1) is Ai applied x times to 1. That is, A 2(x) = 2x and A3(x) = Tower(x). The k-th 
inverse Ackerman function, h, is defined by h(n) = max{i: Ak(i) ~ n}. It can be verified that 
Ak(1) = 2 and Ak(2) = 4, for all k; in contrast, Ak(3) is avery fast growing function of k. The 
Ackerman inverse of n, a( n), is given by 

a(n) = min{k : Ak(3) ~ n}. 

3.2 The Ackerman tree 

We now construct certain sequences that we refer to as Ackerman sequences. These sequences 
playa central role in our analysis of the computation graph. To help picture these sequences we 
first introduce a tree called the Ackerman tree. The Ackerman sequences will then be obtained 
from the labels on the pathsof this tree. 

The tree Ti( x) is an ordered tree defined ind uctively. Each edge of the tree has a label. We 
denote by Bi(X) the biggest label appearing in Ti(X). 
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• Tl (x) is a tree of depth 2. The root has one outgoing edge with label x, and the child of 
the root has x5 edges, each with label xlO • Thus BI (x) = xlO • 

• Ti+! (x) has depth i + 2. The root has one outgoing edge with label x. The child of the 
root is formed by collapsing the roots of the following x 5 trees of depth i + 1. 

Ti( x lO ), Ti( Bi( xIO )), ••• , Ti( BJxS-I) (x lO )). 

Thus Bi+I(X) = BJxS)(x IO ). 

The Ackerman tree r( k, I) has depth k + 1. It is obtained by collapsing the roots of the following 
I trees. 

Tk(20), Tk(Bk(20)), ... , Tk(Bl1- I )(20)). 

The tree r( k, 1) may alternatively be described as follows. 

1. Allleaves of the iree are at distance k + 1 from the root. 

2. The outdegree of the root is 1. 

3. The label on the leftmost edge of the root is 20. 

4. If the label on the edge coming into a non-Ieaf node , is d, then , has d5 children. 

5. If the label on the edge coming into the node , is d and e is the leftmost edge coming out 
of " then the label on e is dlO

• 

6. If f = (" ,') is not the leftmost edge coming out of " then its label i50btained as follows. 
Let e be the edge coming out of , immediately to the left of f. Then the label of f is the 
largest label that appears on an edge of a path starting with e and ending at aleaf. 

We denote by ri the set of no des of r(k, I) at distance i from the root. The the set of 
children of the node , is denoted by succ(,). T(,) denotes the subtree rooted at ,. Let H be 
the set of leaves of the tree r(k,I) and H(J) the leaves in T(J); thus, if, is not a leaf, then 
H(,) = U-Y'E6UCC(-y) H(J'). For h EH, and i = 1,2, ... , k + 1, di(h) is the label on the i-th edge 
from the root on the path connecting the root with the leaf h; we set do( h) = 4. We define 

D(h) = (do(h), dl(h), d2(h), ... , dk(h)); 
b 

E[a, b](h) = II(di(h))5; 
t=a 

E(h) = E[1,k](h). 

(As usual, E[a, b] = 1 if a > b.) The sequences D(h) playa central role in our analysis. Note 
that the label dk+l(h) is ignored in the the definitions of D(h) and E(h). Let dt(h) be the next 
bigger value of di after die h), that is, 

(minn = 00.) 
Observe that if, E ri, then the values do(h),d}(h), ... ,di(h)and dt(h) are the same for 

allleaves h E H(,). We refer to thesevalues as do(J),dl(,), ... ,di(J) and dt(J) respectively. 
Similarly, if a, b ~ i, then E[a, b](h) is constant over H(J); we refer to this value as E[a, b](J). 

We now state the properties of r(k, 1) that we use in the pröof of our lower bound. These 
properties will be used when we obtain D(h)-regularizing partial inputs insection 3.3 and prove 
the lower bound in section 4. 
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Lemma 5 

(a) For hE Hand i = 1,2, ... , k, di(h) ~ (di_l(h))4. 

(b) dt(h) ~ (dk(h))lO. 

(c) The number olleaves up to h (h and those to the left 01 h) is at most (dk(h))6. 

(d) ~-YEri l/dlr) ~ 2-i . 

(e) Suppose i ~ 1 and, E rio Then~hEHb)l/E[l,k](h)= 1/E[1,i-1](!). 

(I) ~h 1/ E[l, k] = 1. 

(g) H(r(k,l)) ~ A(4k,1). 

Proof. 

(a) For i ~ 2, we have di(h) ~ (d i _ 1(h))10 and the claim follows easily. For i = 1, we have 
d1(h) ~ 20 and do(h) = 4, and again the claim holds. 

(b) We have, from our definitions, dt(h) ~ dk+l(h) ~ (dk(h))lO. 

(c) For, E rk, the number ofleaves in H(!) is exactly (dk(!))5. Let ,'E rk be the parent of 
h. By part (b), dt(!) > dk(,); hence the number of the nodes in rk up to,' is at most 
dk(,) = dk( h). Thus the total number ofleaves up to his at most dk( h)( dk( h))5 = (dk( h))6. 

(d) It follows from part (a) that min{di(!): , E-ri} ~ 2i+1. Then, using part (b), we have 

'" _1_ < 2. 1 <2-i. 
-y~; dt(!) - min{di(!) : , E rd -

(e) We use reverse induction on i. For i = k + 1, the claim is obvious. For 1~ i ~ k, we split 
the sum by " E succ(,) and use induction to obtain 

'" '" 1 '" 1 I succ(!) I 1 
~ ~ E[l,k](h) - ~ E[l,i](!') - E[l,i](!) - E[l,i~ 1](,), 

-y'Esuccb) hEHb') -y'Esuccb) 

(f) Using part (e), we have 

L E~h) = L L E[l ~](h) == L E[1
1
0](!) = Irll = 1. 

hEH -yErl hEHb) , -yErl' 

(g) We first show by induction that, for x ~ 5, Bi(X) ~ A 3i(X). For the basis case; we have 
B1(x) = x10 and A3(x) = Tower(x), and Tower(x) ~ x10, for x ~ 5. 

For the induction step, we have the following routine derivation. 

A3(i+l)(X) > A~7t2(1) ~ A3i+2(A~7~i)(1)) ~ A3i+2(Tower(x - 1)) 

> A3i+2(X5 + x) ~ A~7:ix)(1) ~ A~7;1(X) ~ B~t)(x) 
> Bi+l(X). 

It follows from part (c) that the number of leaves in r(k,l) is at most the biggest label 

appearing in r(k,l). By our definitions, the biggest label in r(k,l) is Bi1)(20). We show 
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that for I ~ 5, B11)(20) :$ A4k(I). For k = 1, we have B~I)(20) = 20201 :$ Tower(l) :$ A4 (1). 
For k ~ 2, we haveanother routine derivation. 

A (I) (I) () A (AU-I)()) 
4k ~ A4k- 1 1 ~ 4k-1 4k-1 1 

> ~k-I (20 + I) 
> A~2_2(20) ~ A~ll(20) 
> B11)(20). 

3.3 Obtaining a D( h )-regularizing partial input 

since I ~ 5 

• 

We shall now analyze the computation graph of algorithm A. Let h be a leaf of the _ tree 
f(k,I), and consider the sequence D(h) defined in section 3. We shall associate with h a D(h)­
regularizing partial input b(h). We next show how such a partial input with a small number of 
blockers and passers can be obtained. 

The partial input b(h) is produced in stages. The intermediate partial inputs produced will 
be called bO( h), bl ( h), .. ~,bk( h). The partial input bi( h) will be D( h )-regUlai-izing up to level i. 
In the end we shall set b(h) = bk(h). Fromnow on we shall not mention the parameter h when 
referring to b(h), the intermediate partial inputs bi(h), or the values diCh), if the value of his 
dear from the context. 

Initially, we set bO = *n. Observe that bO is D(h)-regularizing up to level O. Now, in the 
graph G(bO), there may be free vertices at level .1 that have indegree dl or high-er. In STAGE 
1 ofour procedure, we refine bO to obtain bl so that, in G( bl ), the indegree of every free ver tex 
at level 1 will be less than d}, that is, bl will be D( h )-regUlarizing up to level 1. In general, 
when we come to STAGE i, we already have a partial input bi- I that is D(h)-regUlarizing up 
to level i - 1. Our task in STAGE i is to obtain a refinemEmt bi of bi- I so that, in G(bi), every 
free vertex at level i has indegree less than di.The indegree of a vertex cannot increase when 
the partial input is refinedi hence bi- is D( h )-regUlarizing up to level i; 

STAGE i. Consider the graph G(bi- I ). A free vertex v at level i will be called a high degree 
vertex if di :$ fv < dti it will be called a very high degree vertex if fv ~ dt. To obtain bi we 
consider these high and very high degree vertices one by one, and, if necessary, refine the partial 
input to deal with them. The temporary partial input produced will be denoted by b'j initially 
b' == bi-I. 

(A) High Degree Vertices. Consider a vertex v that had high degree in G(bi - 1 ). If v is not high 
degree in G(b'), then we do nothing. Otherwise, for each processor p that writes to v, we 
fix all variables in affect( b', (p, i-I)) to O. For the resUlting partial input b', if any of these 
processors writes to v, then v is fixedi, otherwise, v has indegree 0 in G(b'). Note that we 
created only passers in this case. 

(B) Very High Degree Vertices. Assume that all the high degree vertices of bi- 1 have been 
processed in Step A, and the resUlting partial input is b'. Next consider a vertex v tha:t 
had very high degree in G(bi- I ). If the indegree of v in G(b') is less than di, then we do 
nothing. Otherwise, let p be the processor of highest priority that writes to ceU v. There 
is some input x E X(b') on which p writes to v.We set all inputs in affect(b', (p, i-I)) to 
the value they have in x. This fixes the state of processor p in step i so. that it writes to 
Vi consequently, v is a fixed vertex in the graph of the resUlting partial input. Note that 
we may create both passers and blockers in this case. 
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At the end of this process, all the free vertices at level i have indegree less than di. We call the 
resulting partial input bio Let the number ofinputs set in step A of STAGE i be S~(h), and the 
number ofinputs in step B of STAGE i be S1(h). Thiscompletes the description of STAGEi. 

For brevity, we write Mi(h), Ni(h), }'iCh), and Zieh) instead of Mi(b(h», Ni(b(h», }'i(b(h», 
and Zi(b(h»j when the parameter h is clear from the context, we shall further simplify the 
notation by dropping it. 

Lemma 6 

(a) 

(b) 

f (bi-l)d~ v t-l' 

d2 . 
i-I' 

Proof. First observe, using Lemma 5 (a), that the sequence D(h) satisfies the conditions in 
Lemma 4. Now consider the processing of a· high degree vertex V. Let the partial input when 
v is processed be b' . Since b' ~ bi-\ we have that G(b') is D(h)-regularized up tolevel i-I, 
fv(b') ::::; fv(bi':" l ) and, for all processors p, affect( b', (p, i-I» ~ affect(bi- 1 , (p, i-I ». It follows 
that 

Part (a) of the lemma follows from this because Ni-I::::; dLI by Lemma 4 (a) . 
. Part (b) can be obtained similarly. • 

We shall make use of the following observation: The partial inputbi(h) constructed by the 
above p1'ocedure depends only on d1 (h), d2(h), .. ;, di(h) .. Therefore, if, E ri, then for allleaves 
h E H(!), bi(h) is the same. We denote this common value of bi by bi(!). Similarly, Mi (h)·, 
Ni(h), }'iCh) and Zieh) are constant over H(,); we denote the respective valuesby Mi(!), Ni(,), 
}'i(!) and Zi(!) .. 

4 The lower bottnd 

In this section, we shall show that no algorithm can solve the unordered chaining problem in . 
constant time using a linear number of processors. We shall make use of the partial input b(h) 
described in the previous section. In our calculations the number of passers and blockers in b(h) 
will play an important rolej for brevity, we denote them by Pa(h) and BI(h) instead of Pa(b(h» 
and BI(b(h». 

Theorem 1 Let Abe an algorithm that solves the unordered chaining problem for inputs of 
length n in k steps using P processors. Suppose A4k(5) ::::; n. Then P = n(nI4k(n». 

Proof. Consider the tree r(k,l) with 1= 14k(n). We have I ~ 5, and by Lemma 5, the number 
ofleaves in r(k;l) is at most A4k(I(4k,n»::::; n. 
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Consider the partial input b(h) associated with the leaf h. By Lemma 4, for each output 
vertex ßi, Icontents(b(h),ßi)1 ~ (dk(h)? Using Lemma 2 and E(h) ~ (dk(h)?, we then get 

nE(h) > (n - Pa(h)? 
- 2(BI(h) + 1)' 

implying 
, Pa(h) n 

2(B1(h) + E(h) + 1) ~ E(h)" 

Summing over allleaves h ,and usingLemma 5 (f), we get 

Pa(h) 
2(~(BI(h) + E(h) + 1)) ~ n14k(n). 

We shall show (Lemma 8 (b) and Lemma 9) that 

Therefore, we have 

that is, P = fl(n14k(n)). 

LB1(h) < P; 
h 

and L Pa(h) < 2P; 
h 

• 
Corollary 7 1f A is an algorithm solving the unordered chaining problem with a linear number 
of processors, then A '!leeds!2( a( n)) time.. 

Lemma 8 

(a) Fori = 1,2, ... ,k, 

L S1(h) ~ P/2i. 
h 

(b) 

LBl(h) ~ P. 
h 

ProoJ, , As observed earlier, blockers are created only in step B of the procedure described in 
section 3.3. Hence 

k k 

LB1(h) ~ LL S1(h) = LL S1(h). 
h 'h i=l i=l h 

Thus part(b) of the lemma follows easily from part (a). 
We now show part (a). By Lemma 6, 

LS1(h)~L L dLl~L L 
h h VeVi; dt $ftJ(bi- 1) VeVi h:q $ftJ(bi - 1 ) 

(To simplify the notation, we writedt for dt(h) and Jv(b i - 1 ) for Jv(bi- 1(h)).) 
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As observed in seetion 3.3, for , E ri-l, bi - 1 is constant over H(,). Therefore, we may 
group the h by the value of , and obtain 

Since d~_l is constant for the innermost sum, it can be moved out. The sum then reduces to 

L L (di_l(f))2IS(v,,)I, 
VEVi "YEri-l 

where S(v,,) = {h E H(f): dt(h) ~ !v(bi-1(h))}. Let h' be the rightmost leaf in S(v,,), then 
by Lemma 5 (c) 

Then, using Lemma 5 (b), we have 

!v(bi-1(h')) ~ dt(h') ~ (dk(h'))lO ~ ~(di_l(,))40IS(v,,)1 > (di_l(f))5IS(v,,)I. 

Therefore, (di-1(,)?IS(v,,.)1 ~ !(bi-1(f))/(di_l(f)?, and 

'""' i () '""' '""' !v(bi-1(f)) '""' 1. '""' f (bi- 1( )) ~SB h ~ ~ ~ (di_l(f))3 = ~ (di-=1(,))3 ~ v. ,. 
h VEVi "YEri-l "YEri-l VEVi 

Nöw, by Lemma 4 (b), ~vEVi !v(bi-1(f)) ~ P(di_l(f))2. Therefore, 

Then, using Lemma 5 (d), we get the required bound 

Lemma 9 

L S1(h) ~ P/2i
. 

h 

'""' Pa(h) 2P 7' E(h) ~ . 

Proof. Using the observation in section 3.3, we write 

k 

Pa(h) ~ 2)S~(h) + S1(h)). 
i=l 

It follows from Lemma 8 (a) that 
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We shall show that, for i = 1,2, ... , k, 

It follows that 
k S~(h) LL E(h) ~ P. 

h i=I 
The lemma then follows by combining (6) and (8). 

To prove (7), we use Lemma 6 and write 

S~(h) < '" '" dLdv(b
i
-

I
) < '" ",d'f_dv(b

i
-

I
) 

E(h) - L..J L..J. E(h) -L..J L..J E(h) , 
h VEVi:di$J,,(b'-1 )<4 VEVi h 

(7) 

(8) 

where, as usual, di, dt, bi- I and di-I stand for diCh), dt(h), bi-ICh) and di-I(h) respectively. As 
in the proof of Lemma 8 we compute the rightmost sum by grouping the leaves by , E fi-I. 
Then 

L S~(h) < 
h E(h) L L L 

VEVi -yEri-l hEH(-y):di$J,,(bi- 1 )<d; 

Fix v E Vi and ,E fi, andconsider the rightmost sum 

d~ f (bi-I) 
~-I v 

E(h) 

(9) 

Note that the condition, di ~ !v(bi- I ) < dt, now depends only on diCh) and dt(h), which are 
constant over Rb'), for each,' E succ(,). Therefore,this time we group theh based on,' and 
obtain 

where 8(v,,') = 1 if die,') ~ !v(bi-Ib')) < dt(,'), and 8(v,,') = Ootherwise. By Lemma 5, 
L:hEH(-y') l/E(h) = l/E[l,i-l]b). Observe that 8(v,,') = 1 for at most one,' E succb). 
Therefore 

·11 
'" - < -=-:--.,...----:-.,.......,.. L..J E(h) - E[l i - 1]( )' 

hEH(-y):di$f" (bi- 1 )<4 " 

Returning to (9), we now have 

'" S~(h) < '" '" (di_Ib))2!v(b
i
-

I
b)) < '" ( (di_Ib))2 ('" f (bi-I( )))]. 7 E(h) - ~i-yTr'i E[l,i-l]b) - -Y~l E[l,i-l]b) ~i v , 

Using Lemma 4 (b), L:vEVi !v(bi-Ib)) ~ (di-Ib))2P. Thus 

'" S~(h) < L (di_~b))4P < 
~ E(h) - -yEfi-l E[l, t - l]b) -

The inequality (9) followsfrom this using Lemma 5 (d). 
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5 Reductions 

Theorem 2 An algorithm . that solves prefix maxima on domain {I, ... , n} with n processors 
requires time n( a( n)). 

Proof. We reduce the chaining problem to aprefix maxima problem on domain {I, ... , n}. On 
input al, .•• , an, compute Cl, ... ,Cn, Ci = 0 if ai = 0 and Ci = i if ai = 1. Then solve prefix 
maxima for Cl, •.. ,Cn. Let dl ,. : • ,dn be the prefix maxima. It is easy to see that bl = 0 and 
bi = di- l , 2 ~ i ~ n, is the required solution to the chaining problem. • 

Theorem 3 There exists a constant C such that an algorithm that preprocesses for range max­
imum on domain {I, ... , n} with n processors so that a single processo~ can answer a query in 
wen) steps requires n(a(n)) time. 

Proof. We reduce the prefix maxima problem to the range maxima problem. On input 
al, ••. ,an, first preprocess for range maxima and then assign n · processors, one to find the 
maximum of [1, i], 1 ~ i ~ n. • 

Theorem 4 Parenthesis matching with nesting level requires n( a( n) ) time, even when the depth 
of nesting is at most 2. 

Proof. Given an input to the chaining problem, replace each 0 with "0" and assign a nesting 
level of 2 toboth parentheses; replace each 1 with ")(" an<l assign a nesting level of 1 to both 
paTentheses. Add a "(" before and a ")" after the whole sequence, both with nesting level 1. 
Note that every ")" -with nesting level 1 corresponds to some 1 in the original input. The "(" 
that matches it corresponds to the 1 preceding it in the original input. Thus, after solving 
the parenthesis matching problein, it is easy to recover the solution to the original problem in 
constant time. • 

6 Concluding re marks 

We have presented lower bounds for chaining, prefix maxima, range maxima and parenthesis 
matchingon small domains. The bounds are tight for the chaining problem and parenthesis 
matching, but we do not know.about the other two problems. Our work extends the techniques 
developed in Dolev, Dwork, Pippenger and Wigderson [15] and Chaudhuri [11]. The techniques 
used in this paper have since been sharpened and applied to several other problems. In Chaud­
huri [13], they have been used to obtain strong lower bounds for the problem of approximate 
compaction. In Chaudhuri [14], these methods have been placed in a general setting and shown 
to be applicable to an entire dass of sensitive functions rather than just isolated cases, as in 
earlier works. 

In the literature, several fast randomized solutions have been proposed for the problems 
considered in this paper. Berkman, Matias and Vishkin [7] give randomized preprocessing 
algorithms for the range maxima problem that run in O(1og* n) time; each query can then be 
answered in constant time. Raman [26], gives a constant time randomized chaining algorithm 
that works if the number of 1 's in the input is not too large. However, no non-trivial lower 
bounds have been reported for any of these problems. Is there an n( a( n)) lower bound for 
chaining, even if randomization is permitted? We have not succeeded in extending OUT methods 
to obtain such a lower bound. 
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We intuitively expect prefix maxima to be harder than just finding the maximum; however, 
the two problems often have the same complex.ity. For example, with one processor the complex­
ity is 9(n), and with n processors and a sufficiently large domain, 9(loglog n). Our lower bound 
is the only instance known to us where the two are shown to have different complexities. This 
suggests that the difference arises because of restricting the domain size. However, if we restrict 
the domain sizefurther, to a constant, then both have complexity 0(1). It is an interesting 
open question to determine when the two problems have different complexities. 
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