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Abstract 

We investigate properties offunctions that are good 
measures of the CRCW PRAM complexity of comput­
ing them. While the block sensitivity is known to be 
a good measure of the CREW PRAM complexity, no 
such measure is known for CRCW PRAMs. We show 
that the complexity of computing a function is related 
to its everywhere ·sepsitivity, introduced by 'Vishkin 
and Wigderson. Specijically we show thatthe time 
required to compute a function f. : Dn - R of ev­
erywhere sensitivity es(f) with P ~ n processors and 
unbounded memory is O(logpoges(f)j(log 4PIDI -
loges(f))]). This improves previous results of Azar, 
and Vishkin and Wigderson. We US'e this lower bound 
to derive new lower bounds for some approximate 
problems. These problems can often besolved faster 
than their exacf counterparts and for many applica­
tions, it is sufficient to solve the approximate prob­
lem. We ,show that approximate selection requires 
timeO(logpognjlogk]) with kn processors and ap­
proximate counting with accuracy >. ~ 2 requires time 
O(logpognj(logk+log>.)1) with kn processors. In par­
ticular, for constant accuracy, no lower bounds were 
known for these problems. 

1 Introduction 

The computation of Boolean functions . by circuits 
leads naturally to their study in all models of par­
allel computation. Much work has been ~one on in­
vestigating properties of Boolean functions which are 
measures of the difficulty of computing the function. 
One such measure is the sensitivity of a function. 
Let f : {O,l}n - {O, l}be a Boolean function, let 
i E {O,I}n and let i(r) E {O, l}n denote the bit vec­
tor that differs from i exactly on the rth co-ordinate. 
Then the sensitivity of f on i, written s j (i) ·is the num­
ber of distinct co-ordinates r , such that f(i) # f(i(r»). 
Th~ sensitivity of f, written s j, iso the maximum, 
over all inputs i, of sj(i) . The sensitivity of Boolean 
functions has been extensively studied [15,16, 6, 14]. 
Cook, Dwork and Reishuk [6] show that the complex­
ity of computing a function f on a CREW PRAM 
is related to the sensitivity of f . They prove a lower 
bound of o (log s j ) on the time required to compute f. 
Nisan considered a generalization of sensitivity, called 
the block sensitivity [14]. He showed that the time r.e­
quired to compute a function f on a CREW PRAM 
is e(logbsj), where bSj is the block sensitivity of f. 
Thus, the complexi.ty of computing Boolean functions 
on CREW PRAMs is weH characterized. 

The AND function has sensitivity n and therefore 
takes e(logn) time on a CREW PRAM. However, 
AND can be computed in constant time on a CRCW 
PRAM. Thus, sensitivity arid block sensitivity are not 
appropriate measures of CRCW PRAM complexity. 
The reason is that both measures can critically de­
pend on the value of the function on a single input. A 
CRCW PRAM can use its concurrent writing property 
to check, in a single step, if its input is special. Thus 
any measure whose value depends on a small number 
of inputs is doomed to failure. 

A measure that avoids dependence on a small set 



on inputs is everywhere sensitivity, defined as follows, 
Let D and R be finite sets and let 1 : Dn -+ R be a 
function. An input i E Dn is q - sensitive iffor every 
subset J S;;; {l, .. . ,n}, IJI = q-1, there exists an 
input I, which agrees with i on the co-ordinates in J 
and for which 1(i) ::j:. 1(1) . The everywhere sensitivity 
of i is the largest integer q such that i is q - sensitive. 
The everywhere sensitivity of f is the minimum, over 
all inputs i, of the everywhere sensitivity of i . An al­
ternative way of thinking of the everywhere sensitivity 
of a function is the maximum number of co-ordinates 
whose values .can be safely revealed Without reveal­
ing the value of the function. Vishkin and Wigder­
son showed that a eReW PRAM with m memory 
cells requires time O( Jq/m) to compute a function 
of everywhere sensitivity q [17]. For a special dass 
of functions, Azar improved this bound to O(q/m) 
[1] . However, this does not yield nontrivial bounds 
for m = O(n). 

We investigate the role of everywhere sensitivity 
in determining the eReW PRAM complexity of a 
function. Our main result is that computing a func­
tion 1 : D -- R of everywhere sensitivity es(J) re­
quires time O(log~og es'(J)/(log 4PIDI - log es(J))]) 
on a CReW PRAMwith P ;::: n processors and un­
bounded memory. The lower bound holds for nonuni­
form algorithms as weIl. For computing, with n pro­
cessors, a Boolea.n function of everywhere sensitivity 
n, for instance, PARITY, this gives a lowerbound 
of O(1oglogn). This is weaker than the bound of 
O(log n/ log log n) obtained by Beame and Hästad [3]. 
However, surprisingly, for n processors and everywher:e 
sensitivity O(n), the bound is tight for nonuniform 

. algorithms. InSection 5.1we give an example of a 
function with everywhere sensitivity O(n) which can 
be computed in O(1oglogn) time with n processors. 

As applications of the above bound we derive new 
lower bounds for other problems. These problems have 
the common feature that they are all approximate ver­
sions of problems. For some applications, it is enough 
to solve the approximate version, ·which can often be 
solved faster than the exact version [9, 10, 5, 13]. For 
each approximate problem, there is an accuracy pa­
rameter A ;::: l/(n + 1). In approximate selection, the . 
task is to find , from n elements, an element whose 
rank differs from a specified rank by at most An. In 
approximate counting, given a bit vector, the goal is 
to compute an integer that lies between S/(A + 1) 
and S(A + 1), where S is the number of l's in the 
input vector. We prove the following bounds: ap­
proximate selection with accuracy A ~ 1/4 with Gn 

processors requires O(1og~og n/ log C]) time. Approx­
imate counting with accuracy A ;::: 2 using Cn proces­
sors requires O(1og~ogn/(1ogA + log G)]) time. These 
bounds are easily seen to imply lower bounds for other 
approximate problems such as interval allocation and 
approximate prefix summation [7, 10] . In particular, 
the bound for approximate counting directly implies 
the bound for approximate compaction proved in [4]. 

Padded sorting is the problem of placing n elements 
in sorted order in an output array of size at most 
(A + l)n. The unused locations should contain a spe­
cial null value. We mention here that our bounds for 
everywhere sensitive functions can also be used to de­
rive a lower bound ofO(log(logn/(log A+log G) logA)) 
for padded sorting with accuracy A ~ 2 using Gn pro­
cessors. 

When A = l/(n + 1) each of the above three pr~ 
lems reduces to its exact version, which is known to 
require O(log n/ log log n) time. It has been shown 
that if one can solve anyof the approximate prob­
lems with an accuracy of A using p processors in 
time t, then one can, with the same resources, solve 
a MAJORITY problem on l/A elements [11] . The 
lower bound of Beame arid Hastad then implies an 
o (1og( 1 / A) / loglog n) time lower bound for solving 
any of these problems with a polynomial number 
of processors. While this is good for small val­
ues of A, it does not give a nontrivial bound when 
A = O(l/(logn)C), for constant c. Our bounds im­
prove the above for this range of 'A, where, in fact, 
fast algorithms are known for each of the problems. 
In particular, for A = 1/4, with n processors, al­
gorithms for approximate selection and approximate 
counting are known that. run in time 0((1oglogn)4) 
and 0((1oglogn)3) respectively [5, 7). With n2 pro- . 
cessors padded sorting can be solved in 0((1oglogn)4) 
time [10]. 

The methods used to prove the lower bounds are 
of independent interest. In Section 3 we prove some 
lemmas applicable to any PRAM algorithm. Roughly 
speaking, these lemmas state that it is possible to 
bound the number of possible states of an algorithm by 
carefully setting a small number of inputs. This makes 
it possible to prove a lower bound for any problem, 
merely by showing that if a small number of inputs 
is set, a large number of output possibilities still re­
main. The method of bounding the number of states 
is general enough to have applications to other com­
putational models. 



2Preliminaries 

2.1 The Model 

We prove the lower bound on a strong model 
of the PRlORlTY CReW PRAM (see [12]). This 
model is sometimes referred to as the "Ideal" or "Full­
Information" PRAM [2]. In this model, each processor 
is assumed to keep track of the entire history of its own 
computation. Each processor hais an initial state, and 
its state at step i is definedby its initial state and it 
history through step i-I. We consider deterministic 
algorithms, so the action of a processor is completely 
determined by its state. We make no other assump­
tions about the algorithm, in particular, nonuniform 
algorithms are allowed. 

We assume an infinite number of memory cells with 
infinite wordsize. Since there is no restriction on the 
wordsize, whenever 'a processor writes, it mayas well 
write the entire history of its computation; hencethe 
name F\ill-Information PRAM. Lower bounds on this 
model depend crucially on limiting the amount of in­
formation that processors can communicate to each 
other through the shared memory. Lower bounds 
proved on this model carry over to more realistic mod­
els and give insight into the intrinsic difficulty of solv­
ing problems .in parallel. 

2.2 Partial Inputs and the Computation 
Graph 

Inthe following, A will be an aIgorithm computing 
a function f : Dn 

- R~. For inputs of size n, let A 
use P(n) processors and take k(n) steps. We will use 
P andk for P(n) and k(n) respectively, from nowon. 

A partial input is an element of (D U { * } t. For a 
partial input b, we denote by X(b) the set of inputs 
consistent with b. That is, X(b) = {z E Dn : for i = 
1, ... , n, bi "# * - bi = zd. For partial inputs a and 
b, we say a is a refinement of b, and write a $ b, if 
X(a) ~ X(b). 

For a given partial input b, consider a processor p at 
time t. The set of inputs consistent" with b defines a set 
of states that p may be in, on inputs consistent with b. 
This set of states, in turn, defines the possible actions 
of p at time t, in particul.ar, it defines the set of mem­
ory locations that p may read from, or write to. This 
gives us a way to identify (and consequently, limit) 
the amount of information that pmay read from, or 
write to, the shared memory. We formalize this by 
modelling the computation of A on a graph. Let b be 

a partial input of size n. The computation graph of A 
on b, G(b), is defined as folJows . 

V(G(b)) = {(c,i): cis a memory cell and 0 $ i $ k}. 

That is, we have (k + 1) levels; in each level we have 
one vertex for each cell in the memory. The set of ' 
vertices in level i will be called Vi. The directed edges 
go from vertices at one level to the vertices of the next 
level. Every edge is labelied by a processor. E( G( b)) 
contains the edge « c, i), (d, i+ 1)) labelled p if on some 
input in X(b) , processor p reads cell c and writes to 
cell d in step (i + 1). Initially, variable i of the input 
is assumed to be in cell ij finally, output value i lS 
assumed to be in cell i. We refer to vertex (i,O) as (ti 

for 1 $ i $ n (the input vertices), and vertex (i, k) as 
ßi for 1 $ i $ s (the output vertices). 

Let a E Dn • We shall associate with each ver­
tex of G(a) a content. The content associated with 
(c, i) is the content of the cell c after step i (that is, 
just before the write of step (i + 1) changes it) in 
the computation of A on the input a. We call this 
content content(a, (c, i)). Similarly, for a processor p, 
state( a, (p, i)) is the state of processor p just before 
the write of step (i + 1) in the computation of A on 
input a. For a partial input b, let 

contents(b, (c, i)) = {content(z, (c, i)) : z E X(b)}; 

states(b,(p,j)) = {state(z,(p,i)): z E X(b)}. 

We say that (c, i) «p, i)) is a :/ized vertex (processor) 
if Icontents(li, (c, i))1 = 1 (Istates(b, (p, inl = 1); oth­
erwise we say (c, i) is a free vertex (processor). Note 
that the above definitions depend on the algorithm A 
and the size of input n. These parameters will be dear 
from the context where theyare used. 

We model the computation of the algorithm A on 
the computation graph as follows. We say that a pro­
cessor p reads from cell (c, i) and ~"rites to cell (d, i+1) 
when we mean that in the. step (i + 1) of the compu­
tation of the algorithm A, p reads cell c and writes to 
cell d. 

Let b be a partial input and consider a processor 
p. Let a, aU) E Dn be inputs such that a, aU) $ b 
and they differ only on the jth co-ordinate. We say 
that input variable zjaffects p on b at step i if 
there exist a, aU) as above such that state(a, (p, i)) "# 
state( aU), (p, i)). We write affect(b, (p, i» for the set 
of variables that affect p on b at the ith step. In an 
analogous way we define affect(b, (c, i)) for a cell c. 

We make a straightforward observation about vari­
ables that may affect a processor or cello On a given 
partial input, b, states(b,'(p, i)) is the set of possible 



states that I' may be in at step i, on b. The state ofa 
processor determines which ceH it reads, thus this set 
defines a set of memory ceHs that I' may read at step 
i, on b. 

Observation 2.1 Let b be a partial input and let 
Cl, ... , Cr be the teils that processor I' may read at step 
i, on b. Then the set 0/ input variables that may affect 
I' at step i, affect(b,(p,i» ~ [Uj=laffect(b,(cj,i))]U 
affect(b, (p, i-I ». Similarly let 1'1. ... , pq be the pro­
cessors that may write . to cell c in step i, on b. Then 
the set 0/ input variables that may affect c at step i, 
affect(b, (c, i» ~ [U1=laffect(b, (Pj, i»]Uaffect(b, (c, i-
1)). 

Proof. Let ~l be a variable that is in affect(b, (1', i» 
but not in [Uj=laffect(b,(cj,i»]Uaffect(b,(p,i-l». 
By definition, there exist inputs a, a(l) ~ b such 
~hat they differ· on exactly the variable ~" and 
state( a, (p, i» #: state( a(l) , (1', i». On the other hand, 
since ~I ~ [Uj=·l affect(b, (Cj, i»] U affect(b, (p, i-I», 
contents{a, (Cj, i» ~ contents(a(I), (ci' i» ~or each cell 
cjand state(a,(p,% -1» = state(a(IJ, (I', a -1». On 
both inputs, pis in the same state after i-I steps, and 
will hence read the same cell, which has the same con­
tents. Thus the history of P on both inputs is identical 
and hence state(a, (1', i» = state(a(l), (1', i», a contra-
diction. . 

The statement ab out variables that may affect a 
cell may be proved similarly: • 

3 Regularized Computation Graphs 

Intuitively,if a cell is written to by a small number 
of processors, then it can only be affected be a small 
number of input variables, namely those that affect 
the processors that write to it. Similarly, it can only 
have a small number of contents, namely the ones that 
each processor may write. Thus 'computation graphs 
in which no cel1 is written to by many processors are 
of special interest, whichmotivates the following defi­
nition. 

Definition: Let S be a sequence of positive inte­
gers (da, d1 , d2 , •• • ). For a partial input b, we say G(b) 
is S-regularized upto level j if every free vertex in G( b) 
at level i,1 :5 i ~ j has indegree less than d;. If G(b) 
has k levels and is S-regularized upto level k, we sim­
ply say G(b) is S-regularized. If G(b) is S-regularized, 
then we call b an S-regu/arizing input. 

The above definition implies that at level i, at most 
di - 1 processors may write to any free vertex. We 

would expect that this property ensures abound (de­
pendent o~ i) on the number of contents that a cell at 
level i may have. This is indeed true, as shown by the 
following lemma. 

In a computation graph G(b), define: 

Yi = max{lc~ntents(b, (c, i»1 : cis a memory celI} 

Zi = max{lstates(b,(p,i»l: pis a processor} 

M; = max{laffect(b, (c, i»1 : cis a memory cdI}; 
Ni = max{laffect(b, (p, i»1 : pisa processor}. 

Lemma 3.1 Let S = (do,d1,d2 , .•• ) be a sequence 0/ 

positive integers. Let ~i = 22in}=odj'-j. Let G be a 
computation graph /or an algorithm which takes inputs 
/rom Dn

, where IDI ~ da. Suppose G is S-regularized 
upto levelj. Then, /oreach i, 1 ~ i ~ j, 

Yi ~ d;Äi-l, 
Mi $ 2i

-
1diÄi_l, 

Zi ~ ~i, 
Ni $ 2i a;. 

If, in addition, S satisjies da ~ 4 and di+l ~ d1 /or 
i ~ 0, then Y;, Zi, Mi, Ni :5t1f. 
Proof. . Consider a vertex (c, i) (i > 0) in the graph 
G(b). Let d < di be the indegree of (c, i). Let PI, . · ~,Pd 
be the processors that label the d edges. Let the num­
ber of states in which processor Pj writes ~o (c, i) be 
Sj. The content of (c, i) is determinedby the state of 
the processor that succeeds in writing to (c, i), or, if 
no processor writes to (c, i), by the content of (c, i --1)~ 
Thus, we have 

d 

lcontents(b, (c, i»1 ~ E Sj + Icontents(b, (c, i"':' 1»1. 
j=l 

By definition, Sj ~ Zi-l,Vj and lcontents(b,(c,i-
1»1:5 Yi - 1 • Thus, for i ~ 1, 

Y; ~ (di - I)Z'_l + Yi-l 

The number of states of a processor after the ith 
read is at most the product of the number of states it 
had after the i-I th read and the number of contents 
of the cell it read at the ith read. Thus 

We have that Ya = IDI and Zo = IDI, since, ini­
tially, each cell has a value in D and each processor, 
after the first read, can be in at most IDI states. It 
can then be shown by induction on i that Z, ~ Äi and 
Y; ~ di Ä i-l. 



Since the computation graph is regularized, a ver­
tex at level i haS at most di - 1 processors that can 
write to it. Combining thiswith Observation 2.1 we 
get 

Mi :$ Mi - 1 + (di - I)Ni-l. 

Since the nurnber of states of a processor just "before 
the read of step i is at most Zi-1, there are at most 
Zi-1 possibilities for the cell that a processor reads in 
step i. Along with Observation 2.1, this gives 

Since Mo = 1 and No = 0, the stated bounds may 
be proved by induction. 

Ifthe additional conditions are satisfied,itis easy 
to show, by induction, that for i 2: 1, 

(1) 

which proves the stated bounds. • 
3.1 Making a Computation Graph Regu­

larized 

In this section we show how to regularize a conipu­
tation graph by setting a small nuinber 6f inputs. The 
idea is to fix all the vertices at level i, for i = 1, 2, ... , 
that have ~degree " at least di . When we have done 
this for levels 1 thr6ugh i - 1, the computation graph 
is S-regularized upto level i-I. Then by Lemma 3.1 
the number of input variables that can affect a pro­
cessor at level i is small. Lemma 3.2 shows that by 
appropriately setting the variables that aft'ect a. pro­
cessor, we can fix a processor to any desired state. Let 
p be the highest priority processor that can write to 
a cell c" a,t level i. If we fix p to the state in which it 
writes to c, then, since all other processorS that may 
write j;o c have a lower priority, cwill always have the 
contents written by p, and will therefore be fixed. 

In this fashion, we may fix every vertex at level i 
that has indegree at least i. In Lemma 3.3 we show 
that the total nurnber of input variables set is small. 

Lemma 3.2 Let b be a partial input and let :c E Dn 

be such that :c :$ b. Let G be a computation graph 
01 any algorithm that takes inputs from Dn and con­
sider G(b). Let p be a processor and c acelI. Let 
b' and b" be partial inputs, :c :$ b', b" :$ b such 
that in b', no variable in aft'ect(b, (p, i)) has value 
*, and in b", no variable in aft'ect(b, (c, i)) has value 
*. Then states(b', (p, i)) = state(:c, (P, i)) . Similarly, 
contents(b", (c, i)) = contents(:c, (c, i)) . 

Proof If\;f:c':$ b', state(:c',(p,i)) = state(:c,(p,i)) 
then the lemma holds j so assume 3:c' < b' such that 
stqte(:c'(p, i)) ::/; state(:c, (p, i)). -
" Notice that :c and :c' can dift'er only on input vari­

ablesnot in atfed(b, (p, i)), since :c,":c' :$ band in 
b' each " variable in atfect(b, (p, i)) is set to a value 
in D. Letr be the nurnber of variables on which 
:c and :c' dift'er. Let Yo = :C, Yl> ... , Yr = :c' be 
inputs such that for each i, 1 :$ i. :$ r , Yi :$ b 
and Yi differs from Yi -1 exactly on one variable. 
Since state(yo, (p, i)) ::/; state(Yr, (p, i)), 3j such that 
state(Yj_l{P,i))::/; state(Yj,(p,i)) . Let:Cj be the vari­
able on which Yj -1 and Yj differ . Then, by definition, 
Xj E atfect(b, (p, i)), a contradiction. 

A similar proof holds for a cell and its contents on 
~ . 
Lemma 3.3 Let do = m 2: 4 and di+l = df, lori 2: 
O. Define S = (da, d1 , d2," .) . Let G be acomputation 
graph 01 an algorithm that uses P processors and takes 
inputs from Dn, where IDI :$ m. Then there e:cists a 
S-regularizing input in which at most Pfm variables 
do not have value *. 

ProofWe describe a simple procedure to find such a 
S-regularizing input. Our strategy is to proceed level 
by level, refining the current partial input at each level. 
When we are finished with level i, the current partial 
input will be such that at levels j :$ i, all vertices of 
indegree 2: dj will be,fixed. 

Suppos~ we have finished with levels 1, ... , i :-.1, 
and arecurrently at level i . Let b denote the current 
partial input. CODsider the computation graph on b 
and let (c, i) be a free vertex of indegree 2: ~. Let p be 
the highest priority processor that could write to (c, i). 
Then 3:c E Dn, :c :$ b, an input on which pwrites 
to (c,i). Let b' be the partial input obtained from 
b by setting each input variable in atfect(b, (p, i-I)) 
consistently with:c . By Lemma 3.2, on any partial 
input b":$ b, states(b",{p,i-l)) = {state(:c,(p,i))}. 
Bence, on all inputs consistent with b', p will write the 
same value to (c, i), so this vertex is fixed.We set the 
current input to be b' and repeat the process. 

Since we are continuously reftning the input, the 
degree of a vertex cannot increase. Thus, the proce­
dure will eve~tually fix all the vertices in level i with 
indegree 2: di . 

1t remains to bound the nurnber of input variables 
set. When we are at level i, the current input is such "" 
that a11 free vertices at levels j :$ i have indegree 
:$ dj - 1. By definition, latfect(b, (p, i - 1))1 :$ Ni-I. 



Hence, to fix each vertex,we set at most Ni-l vari­
ables. By definition, each processor writing to a cell 
at level i may be in' at most Zi-l states, and hence 
may contribute at most this many edges to the graph. 
Thus, the number of edges between levels i-I and i is 
at most Zi-l P, implying that the number of vertices 
with indegree ~ di is at most Zi-1P/di. At leveli , 
therefore, at most Ni-1Zi~1P/di input variables are 
set to values in D. By Lemma 3.1 this is at most 
dt_1P/di ::5 P/d'f-1 ::5 P/2i +1m, where the last in­
equality holds because for each i ~ 0, di ~ m and 
di ~ 2i+l. Summingfor all i, we get the bound on the 
total number of variables set. • 

4 Everywhere Sensitive and Elusive 
Boolean Functions 

We give an alternate, but equivalent definition of 
everywhere sensitivity. 

Recall from Section 2.2 that a partial input b E 
D U {*}n and X(b) is the set of all inputs consistent 
with b. Define the length of a partial input, written 
Ibl to be the number of values in it that are not *'s. 
For a function 1 : Dn -- R, and a partial input b, 
let R(b) denote the set of possible outp~t values on 
inputs in X(b). Thatis, R(b) = {r : r E Rand 3z E 
X(b) such that I(z) = r}. 

Then we define the everywhere sensitivity of 1 to be 
ma.x{k : '</ partial inputs b, Ibl ::5 k => IR(b)1 > I}. It 
may be verified that this definition is equivalent to the 
one in Section L Thus we may view the everywhere 
sensitivity of a function as the maximum number of 
input variables that an adversary may reveal, without 
revealing the v3Jue of the function. This is precisely 
the view that we will use in o.ur proofs. We now obtain 
a lower bound through the following simple argument. 

Theorem 4.1 Let 1 : ~ -- R be a /unc­
tion with everywhere sensitivity es(f). Let k = 
r i log( max{1.1o~~iAe loges(J)} )1· Then, any CRCW 
PRAM algorithm computing 1 with P processors Te­

quires k steps. 

Proof Assume that P ~ n. Thefunction cannot 
be computed faster by using less processors, hence the 
lower bound for P = n also holds for P < n. 

Choose m = 4P/es(f) so that P/m :5 es(f)/4. 
Since es(f) ::5 n and P ~ n, note that · m ~ 4. 
Let do = m, di+1 = df, i ~ 0, and define S = 
(do, d1, d2, ... , dk)' The choice of k in the theorem 
ensures that di < es(f)j2. 

Suppose there is an algorithm that computes the 
function in less than k steps. Consider the computa­
tion graph of the algorithm. By Lemma 3.3 there is an 
S-regularizing input with at most P/m variables set 
to values in D. Let b be this partial input and con­
sider the output cell of the computation graph, (ß, k). 
By Lemma 3.3, laffect(b, (ß, k))1 ::5 d~. Choose any 
input z E Dn , z ::5 b. Let b' be the input obtained 
from b by setting all the variables in affect(b, (ß, k)) 
consistently with z. By Lemma 3.2, on any input 
z' E Dn , z' ::5 b', the algorithm outputs the same 
value, that is, conte nt (z' , (ß, i)). 

However, since at most P/m + d~ ::5 es(f)/4 + 
es(f)/2 < es(f) variables in b' are set to values in 
D, there must be two inputs consistent with b' on 
which the function has different values. This gives us 
a cOntradiction. • 

We now introduce a measure that allows us to quan­
tify the complexity of a function more accurately. Ev­
erywhere sensitivity is more robust than sensitivity in 
thai its value is unaffected by small numbers of in­
puts. · However, it errs in the other direction, that 
is, it is often insensitive to large numbers of vari­
ables. Consider the Boolean function I(Z1, ... ', Zn) = 
Z1 V (Zl t\ PARITY(Z2, ... , Zn)). It is easy to see that 
es(f) = O. Clearly this function has a low everywhere 
sensitivity, but is hard to compute. This motivates 
our definition of another measure. 

For a partial input b and a function 1 : Dn -­
R, Ilb is the function obtained by replacing input vari­
able Zi with the value assigned to it by b, where a value 
* indicates that the variable may assume any value in 
D. 

The elusiveness of a function I, written E(f) is 
ma.x{es(flb) : bis a partial input}. Clearly, E(f) ~ 
es(f). On the other hand, the difference between the 
two may be arbitrarily large. This is demonstrated by 
the function above, which has everywhere sensitivity 
o and elusiveness n ~ 2. 

We may now strengthen the above theorem as fol~ 
lows. If 1 is a function of elusiveness E(f), then there 
is a restriction u such that es(flu) = E(f). Applying 
Theorem 4.1 now yields 

Theorem 4.2 Let 1 : D -- R be a /unction. 

Let k = ri 10g(max{1.1o~~"i~f21ogEU)})1. Then, any 
CRCW P RAM algorithm eomputing 1 with P proces­
sors requires k · steps. 



5 Applications 

The problems of approximate seleetion and approx­
imate eounting are: 
Approximate Seleetion: Given n elements from an or­
dered universe, an integer r E {1, ... , n} and an aeeu­
raey parameter A ~ l/(n + 1), find an element with 
rank between r - An and r + An. 
Approximate ' CouTl,ting: Given an input from {O, l}n , 
and an aeeuraey parameter A ~ 1/(n+1) compute an 
integer b, S/(A + 1) $ ·b $ S(A + 1), where S is the 
number of l's in the input. 

Theorem 5.1 Approximate seleetion problems with 
aeeuraey A $ 1/4using Cn 'proeessors requires time 

0(1 logn ' ) 
og m~{l , 10gC} 

Proof We assume that C ~ 2 and A = 1/4; clearly 
the problem camlot be solved faster by using less pr~ 
eessors or by solving for sm aller A. 

, In order to prove a lower' bound, we consider a re­
-strieted version cif the problem where each element has 
a value infO, 1} and the problem is to approximately 
seleet the median. }uJ.y deterministic algorithm that 
solves this problem with aeeuraey A can be viewed as 
eomputing a Boolean funetion j : {O, l}n ~ {O, 1}. 

We will show that the function f has everywhere 
sensitivity at least n/2 - An - 1.Consider anY partial 
input b of length less than n/2 - An. Let bo and b1 be 
elements of X(b) obtained by setting all the *'s in b to ° and 1 respectively: Clearly, f(bo) =0 and f(b1 ) = 1. 
Thl,ls es(J) ~ n/2-An-1 ~ ~(~-A). Using Theorem 
4.1 with P = Cn and A = 1/4 gives us the claimed 
bound, • 

Theorem 5.2 Approximate eounting with aeeuraey A 
using Cn proeessors requires time 

0(1 ' logn ) 
og max{I,logA + 10gC} . 

Proof We prove the bound for A, k '~ 2; clearly, the 
problem eannot be solved faster by using less proees­
sors or by solving for a smaller A. 

Any deterministie algorithmthat solves the approx­
imate eounting problem ean be viewed as eomputing 
a funetion 9 : {O,l}n - {O, ... , rAnn, where, for 
xE {O, l}ft, g(x) is the value output by the algorithm. 
Note that if x has s l's, S/2A $ g(x) $ 2SA. 

We ,will show that the function 9 has everywhere 
sensitivity at least n/2A3 . Consider anY partial input 

b, of length less than nj2A3 : Let bo E X(b) be the 
partial input obtained from b by setting all the *'s in 
b to 0, and let b1 E X(b) be the input obtained by 
setting all the *'s to 1. Clearly, g(bo) < n/A2 , sinee 
bo has less than n/2A3 l's. Similarly, gebt} ~ 3n/8A, 
since b1 has at least 3n/4 1 'so For sufficiently large n, 
g(bo) :ft g(b1 ), so es(g) ~ n/2A2 . Applying Theorem 
4.1 with P = Cn yields the stated bound. ' • 

5.1 Upper Bounds 

Our lower bounds hold for nonuniform algorithms. 
In this seetion we show that for nonuniform alg~ 
rithms, they are the best possible. Consider the prob­
lem of approximate counting with A = 2. It is known 
that there is an algorithm that solves this problem in 
time O(log log n) using n proeessors [8]. Since this is 
equivalent to eomputing a funetion of everywhere sen~ 
sitivityat leastn/16, Theorem 4.1 givesa tight lower 
bound of O(log log n) bound. In contrast, the best uni­
form algorithm for this problem takes O«10glogn)3) 
time. Closing the gap between the two bounds remains 
an open question. 

References 

[1] Y. Azar. Lower bounds for Threshold and 
Symmetrie 'Funetions in Parallel Computation. 
SIAM Journal on Computing, Vol. 21, No. 2, 
(1992), pp. 329-338. 

[2] P. Beame. Lower Bounds in Parallel Ma-
chine Computation. Ph.D. Thesis, University 
of Toronto, (199l). 

[3] P. Beame andJ. T. Hästad. Optimal bounds for 
deeision problems on the CRCW PRAM. Jour­
nal 0/ the ACM, 36 (1989), pp. 643-670. 

[4] S. Chaudhuri. A Lower Bound for Linear Ap­
proximate Compaction. In Proe. 2nd Israel 
Symp. on Theory 0/ Comp. and Sys., (1993), 
pp. 25-32. 

[5] S. Chaudhuri, T. Hagerup and R. Raman. Ap­
proximate and Exact Deterministie Parallel Se­
leetion. In Proe. 18th Math. Fdtns. of Comp. 
Sei., (1993), to appear. 

[6] S. Cook, C. Dwork and R. Reisehuk. Upper and 
Lower Time Bounds for Parallel Random Aeeess 
Machines Without Simultaneous Writes. SIAM 



Jouran on Gomputing, Vol. 15, No. 1, (1986), 
pp. 87-97. 

[7] T. Hagerup. Fast Deterministic Processor Allo­
Cation. In Proc. 4th AGM-SIAM SODA (1993), 
pp. 1-10. 

[8] T. Hagerup. personal communication. 

[9JT. Hagerup and R. Raman. Waste makes haste: 
Tight bounds for loose parallel sorting. In Proc. 
39rd IEEE FOGS (1992), pp. 628-637. 

[10] T. Hagerup and R. Raman. Fast Approximate 
and Exact Parallel Sorting. In Proc. 5th A nnual 
SPAA (1993), pp. 346-355. 

[11] J. Hästad. personal communication. 

[12] J.JaJa. An Introduetion to Parallel Algorithms. 
Addison-Wesley, Reading, Mass., 1992 . 

. [13] Y. Matias and U. Vishkin. Converting High 
Probability into Nearly-Constant Time - with 
Applications to Parallel Hashing. In Proc. 23rd 
Annual STOC, (1991), pp. 307':316. 

[14] N. Nisan. CREW PRAMs and Decision Trees. 
SIAM Journal o.n Gomputing, Vol. 20 (1991). 

[15] H-U. Simon. A tight O(loglogn) bound on 
the time for parallel.RAM's to compute nonde­
genei:ated Boolean functions. In M. K arpinski, . 
ed., Fou~dations of Gomputing Theory, Lecture 
Dates in Comput. Sei., 158 (Springer, Berlin) pp. 
439-444. 

[16] G. Tuxan. The Critical Complexity of Graph 
Properties. Information Processing Letters, 18, 
(1984) pp. 151-153. 

(17] U. Vishkin and A. Wigderson. Trade-offsbe­
tween depth and width in parallel computation. 
SIAM Journal on Gomputing., 14 (1985) pp. 
303-314. 




	93-1450001
	93-1450002
	93-1450003
	93-1450004
	93-1450005
	93-1450006
	93-1450007
	93-1450008
	93-1450009
	93-1450010
	cover-hinten_2099-2897-300dpi



