

Sensitive Functions and Approximate

Problems

s. Chaudhuri

MPI-I-93-145 Oktober 1993

Sensitive Functions and Approximate Problems

Shiva Chaudhuri
Max-Planck-Institut für Informatik

Im Stadtwald
6600 Saarbrücken

Germany
E-mail: shiva@mpi-sb.mpg.de

Abstract

We investigate properties offunctions that are good
measures of the CRCW PRAM complexity of comput­
ing them. While the block sensitivity is known to be
a good measure of the CREW PRAM complexity, no
such measure is known for CRCW PRAMs. We show
that the complexity of computing a function is related
to its everywhere ·sepsitivity, introduced by 'Vishkin
and Wigderson. Specijically we show thatthe time
required to compute a function f. : Dn - R of ev­
erywhere sensitivity es(f) with P ~ n processors and
unbounded memory is O(logpoges(f)j(log 4PIDI -
loges(f))]). This improves previous results of Azar,
and Vishkin and Wigderson. We US'e this lower bound
to derive new lower bounds for some approximate
problems. These problems can often besolved faster
than their exacf counterparts and for many applica­
tions, it is sufficient to solve the approximate prob­
lem. We ,show that approximate selection requires
timeO(logpognjlogk]) with kn processors and ap­
proximate counting with accuracy >. ~ 2 requires time
O(logpognj(logk+log>.)1) with kn processors. In par­
ticular, for constant accuracy, no lower bounds were
known for these problems.

1 Introduction

The computation of Boolean functions . by circuits
leads naturally to their study in all models of par­
allel computation. Much work has been ~one on in­
vestigating properties of Boolean functions which are
measures of the difficulty of computing the function.
One such measure is the sensitivity of a function.
Let f : {O,l}n - {O, l}be a Boolean function, let
i E {O,I}n and let i(r) E {O, l}n denote the bit vec­
tor that differs from i exactly on the rth co-ordinate.
Then the sensitivity of f on i, written s j (i) ·is the num­
ber of distinct co-ordinates r , such that f(i) # f(i(r»).
Th~ sensitivity of f, written s j, iso the maximum,
over all inputs i, of sj(i) . The sensitivity of Boolean
functions has been extensively studied [15,16, 6, 14].
Cook, Dwork and Reishuk [6] show that the complex­
ity of computing a function f on a CREW PRAM
is related to the sensitivity of f . They prove a lower
bound of o (log s j) on the time required to compute f.
Nisan considered a generalization of sensitivity, called
the block sensitivity [14]. He showed that the time r.e­
quired to compute a function f on a CREW PRAM
is e(logbsj), where bSj is the block sensitivity of f.
Thus, the complexi.ty of computing Boolean functions
on CREW PRAMs is weH characterized.

The AND function has sensitivity n and therefore
takes e(logn) time on a CREW PRAM. However,
AND can be computed in constant time on a CRCW
PRAM. Thus, sensitivity arid block sensitivity are not
appropriate measures of CRCW PRAM complexity.
The reason is that both measures can critically de­
pend on the value of the function on a single input. A
CRCW PRAM can use its concurrent writing property
to check, in a single step, if its input is special. Thus
any measure whose value depends on a small number
of inputs is doomed to failure.

A measure that avoids dependence on a small set

on inputs is everywhere sensitivity, defined as follows,
Let D and R be finite sets and let 1 : Dn -+ R be a
function. An input i E Dn is q - sensitive iffor every
subset J S;;; {l, .. . ,n}, IJI = q-1, there exists an
input I, which agrees with i on the co-ordinates in J
and for which 1(i) ::j:. 1(1) . The everywhere sensitivity
of i is the largest integer q such that i is q - sensitive.
The everywhere sensitivity of f is the minimum, over
all inputs i, of the everywhere sensitivity of i . An al­
ternative way of thinking of the everywhere sensitivity
of a function is the maximum number of co-ordinates
whose values .can be safely revealed Without reveal­
ing the value of the function. Vishkin and Wigder­
son showed that a eReW PRAM with m memory
cells requires time O(Jq/m) to compute a function
of everywhere sensitivity q [17]. For a special dass
of functions, Azar improved this bound to O(q/m)
[1] . However, this does not yield nontrivial bounds
for m = O(n).

We investigate the role of everywhere sensitivity
in determining the eReW PRAM complexity of a
function. Our main result is that computing a func­
tion 1 : D -- R of everywhere sensitivity es(J) re­
quires time O(log~og es'(J)/(log 4PIDI - log es(J))])
on a CReW PRAMwith P ;::: n processors and un­
bounded memory. The lower bound holds for nonuni­
form algorithms as weIl. For computing, with n pro­
cessors, a Boolea.n function of everywhere sensitivity
n, for instance, PARITY, this gives a lowerbound
of O(1oglogn). This is weaker than the bound of
O(log n/ log log n) obtained by Beame and Hästad [3].
However, surprisingly, for n processors and everywher:e
sensitivity O(n), the bound is tight for nonuniform

. algorithms. InSection 5.1we give an example of a
function with everywhere sensitivity O(n) which can
be computed in O(1oglogn) time with n processors.

As applications of the above bound we derive new
lower bounds for other problems. These problems have
the common feature that they are all approximate ver­
sions of problems. For some applications, it is enough
to solve the approximate version, ·which can often be
solved faster than the exact version [9, 10, 5, 13]. For
each approximate problem, there is an accuracy pa­
rameter A ;::: l/(n + 1). In approximate selection, the .
task is to find , from n elements, an element whose
rank differs from a specified rank by at most An. In
approximate counting, given a bit vector, the goal is
to compute an integer that lies between S/(A + 1)
and S(A + 1), where S is the number of l's in the
input vector. We prove the following bounds: ap­
proximate selection with accuracy A ~ 1/4 with Gn

processors requires O(1og~og n/ log C]) time. Approx­
imate counting with accuracy A ;::: 2 using Cn proces­
sors requires O(1og~ogn/(1ogA + log G)]) time. These
bounds are easily seen to imply lower bounds for other
approximate problems such as interval allocation and
approximate prefix summation [7, 10] . In particular,
the bound for approximate counting directly implies
the bound for approximate compaction proved in [4].

Padded sorting is the problem of placing n elements
in sorted order in an output array of size at most
(A + l)n. The unused locations should contain a spe­
cial null value. We mention here that our bounds for
everywhere sensitive functions can also be used to de­
rive a lower bound ofO(log(logn/(log A+log G) logA))
for padded sorting with accuracy A ~ 2 using Gn pro­
cessors.

When A = l/(n + 1) each of the above three pr~
lems reduces to its exact version, which is known to
require O(log n/ log log n) time. It has been shown
that if one can solve anyof the approximate prob­
lems with an accuracy of A using p processors in
time t, then one can, with the same resources, solve
a MAJORITY problem on l/A elements [11] . The
lower bound of Beame arid Hastad then implies an
o (1og(1 / A) / loglog n) time lower bound for solving
any of these problems with a polynomial number
of processors. While this is good for small val­
ues of A, it does not give a nontrivial bound when
A = O(l/(logn)C), for constant c. Our bounds im­
prove the above for this range of 'A, where, in fact,
fast algorithms are known for each of the problems.
In particular, for A = 1/4, with n processors, al­
gorithms for approximate selection and approximate
counting are known that. run in time 0((1oglogn)4)
and 0((1oglogn)3) respectively [5, 7). With n2 pro- .
cessors padded sorting can be solved in 0((1oglogn)4)
time [10].

The methods used to prove the lower bounds are
of independent interest. In Section 3 we prove some
lemmas applicable to any PRAM algorithm. Roughly
speaking, these lemmas state that it is possible to
bound the number of possible states of an algorithm by
carefully setting a small number of inputs. This makes
it possible to prove a lower bound for any problem,
merely by showing that if a small number of inputs
is set, a large number of output possibilities still re­
main. The method of bounding the number of states
is general enough to have applications to other com­
putational models.

2Preliminaries

2.1 The Model

We prove the lower bound on a strong model
of the PRlORlTY CReW PRAM (see [12]). This
model is sometimes referred to as the "Ideal" or "Full­
Information" PRAM [2]. In this model, each processor
is assumed to keep track of the entire history of its own
computation. Each processor hais an initial state, and
its state at step i is definedby its initial state and it
history through step i-I. We consider deterministic
algorithms, so the action of a processor is completely
determined by its state. We make no other assump­
tions about the algorithm, in particular, nonuniform
algorithms are allowed.

We assume an infinite number of memory cells with
infinite wordsize. Since there is no restriction on the
wordsize, whenever 'a processor writes, it mayas well
write the entire history of its computation; hencethe
name F\ill-Information PRAM. Lower bounds on this
model depend crucially on limiting the amount of in­
formation that processors can communicate to each
other through the shared memory. Lower bounds
proved on this model carry over to more realistic mod­
els and give insight into the intrinsic difficulty of solv­
ing problems .in parallel.

2.2 Partial Inputs and the Computation
Graph

Inthe following, A will be an aIgorithm computing
a function f : Dn

- R~. For inputs of size n, let A
use P(n) processors and take k(n) steps. We will use
P andk for P(n) and k(n) respectively, from nowon.

A partial input is an element of (D U { * } t. For a
partial input b, we denote by X(b) the set of inputs
consistent with b. That is, X(b) = {z E Dn : for i =
1, ... , n, bi "# * - bi = zd. For partial inputs a and
b, we say a is a refinement of b, and write a $ b, if
X(a) ~ X(b).

For a given partial input b, consider a processor p at
time t. The set of inputs consistent" with b defines a set
of states that p may be in, on inputs consistent with b.
This set of states, in turn, defines the possible actions
of p at time t, in particul.ar, it defines the set of mem­
ory locations that p may read from, or write to. This
gives us a way to identify (and consequently, limit)
the amount of information that pmay read from, or
write to, the shared memory. We formalize this by
modelling the computation of A on a graph. Let b be

a partial input of size n. The computation graph of A
on b, G(b), is defined as folJows .

V(G(b)) = {(c,i): cis a memory cell and 0 $ i $ k}.

That is, we have (k + 1) levels; in each level we have
one vertex for each cell in the memory. The set of '
vertices in level i will be called Vi. The directed edges
go from vertices at one level to the vertices of the next
level. Every edge is labelied by a processor. E(G(b))
contains the edge « c, i), (d, i+ 1)) labelled p if on some
input in X(b) , processor p reads cell c and writes to
cell d in step (i + 1). Initially, variable i of the input
is assumed to be in cell ij finally, output value i lS
assumed to be in cell i. We refer to vertex (i,O) as (ti

for 1 $ i $ n (the input vertices), and vertex (i, k) as
ßi for 1 $ i $ s (the output vertices).

Let a E Dn • We shall associate with each ver­
tex of G(a) a content. The content associated with
(c, i) is the content of the cell c after step i (that is,
just before the write of step (i + 1) changes it) in
the computation of A on the input a. We call this
content content(a, (c, i)). Similarly, for a processor p,
state(a, (p, i)) is the state of processor p just before
the write of step (i + 1) in the computation of A on
input a. For a partial input b, let

contents(b, (c, i)) = {content(z, (c, i)) : z E X(b)};

states(b,(p,j)) = {state(z,(p,i)): z E X(b)}.

We say that (c, i) «p, i)) is a :/ized vertex (processor)
if Icontents(li, (c, i))1 = 1 (Istates(b, (p, inl = 1); oth­
erwise we say (c, i) is a free vertex (processor). Note
that the above definitions depend on the algorithm A
and the size of input n. These parameters will be dear
from the context where theyare used.

We model the computation of the algorithm A on
the computation graph as follows. We say that a pro­
cessor p reads from cell (c, i) and ~"rites to cell (d, i+1)
when we mean that in the. step (i + 1) of the compu­
tation of the algorithm A, p reads cell c and writes to
cell d.

Let b be a partial input and consider a processor
p. Let a, aU) E Dn be inputs such that a, aU) $ b
and they differ only on the jth co-ordinate. We say
that input variable zjaffects p on b at step i if
there exist a, aU) as above such that state(a, (p, i)) "#
state(aU), (p, i)). We write affect(b, (p, i» for the set
of variables that affect p on b at the ith step. In an
analogous way we define affect(b, (c, i)) for a cell c.

We make a straightforward observation about vari­
ables that may affect a processor or cello On a given
partial input, b, states(b,'(p, i)) is the set of possible

states that I' may be in at step i, on b. The state ofa
processor determines which ceH it reads, thus this set
defines a set of memory ceHs that I' may read at step
i, on b.

Observation 2.1 Let b be a partial input and let
Cl, ... , Cr be the teils that processor I' may read at step
i, on b. Then the set 0/ input variables that may affect
I' at step i, affect(b,(p,i» ~ [Uj=laffect(b,(cj,i))]U
affect(b, (p, i-I ». Similarly let 1'1. ... , pq be the pro­
cessors that may write . to cell c in step i, on b. Then
the set 0/ input variables that may affect c at step i,
affect(b, (c, i» ~ [U1=laffect(b, (Pj, i»]Uaffect(b, (c, i-
1)).

Proof. Let ~l be a variable that is in affect(b, (1', i»
but not in [Uj=laffect(b,(cj,i»]Uaffect(b,(p,i-l».
By definition, there exist inputs a, a(l) ~ b such
~hat they differ· on exactly the variable ~" and
state(a, (p, i» #: state(a(l) , (1', i». On the other hand,
since ~I ~ [Uj=·l affect(b, (Cj, i»] U affect(b, (p, i-I»,
contents{a, (Cj, i» ~ contents(a(I), (ci' i» ~or each cell
cjand state(a,(p,% -1» = state(a(IJ, (I', a -1». On
both inputs, pis in the same state after i-I steps, and
will hence read the same cell, which has the same con­
tents. Thus the history of P on both inputs is identical
and hence state(a, (1', i» = state(a(l), (1', i», a contra-
diction. .

The statement ab out variables that may affect a
cell may be proved similarly: •

3 Regularized Computation Graphs

Intuitively,if a cell is written to by a small number
of processors, then it can only be affected be a small
number of input variables, namely those that affect
the processors that write to it. Similarly, it can only
have a small number of contents, namely the ones that
each processor may write. Thus 'computation graphs
in which no cel1 is written to by many processors are
of special interest, whichmotivates the following defi­
nition.

Definition: Let S be a sequence of positive inte­
gers (da, d1 , d2 , •• •). For a partial input b, we say G(b)
is S-regularized upto level j if every free vertex in G(b)
at level i,1 :5 i ~ j has indegree less than d;. If G(b)
has k levels and is S-regularized upto level k, we sim­
ply say G(b) is S-regularized. If G(b) is S-regularized,
then we call b an S-regu/arizing input.

The above definition implies that at level i, at most
di - 1 processors may write to any free vertex. We

would expect that this property ensures abound (de­
pendent o~ i) on the number of contents that a cell at
level i may have. This is indeed true, as shown by the
following lemma.

In a computation graph G(b), define:

Yi = max{lc~ntents(b, (c, i»1 : cis a memory celI}

Zi = max{lstates(b,(p,i»l: pis a processor}

M; = max{laffect(b, (c, i»1 : cis a memory cdI};
Ni = max{laffect(b, (p, i»1 : pisa processor}.

Lemma 3.1 Let S = (do,d1,d2 , .••) be a sequence 0/

positive integers. Let ~i = 22in}=odj'-j. Let G be a
computation graph /or an algorithm which takes inputs
/rom Dn

, where IDI ~ da. Suppose G is S-regularized
upto levelj. Then, /oreach i, 1 ~ i ~ j,

Yi ~ d;Äi-l,
Mi $ 2i

-
1diÄi_l,

Zi ~ ~i,
Ni $ 2i a;.

If, in addition, S satisjies da ~ 4 and di+l ~ d1 /or
i ~ 0, then Y;, Zi, Mi, Ni :5t1f.
Proof. . Consider a vertex (c, i) (i > 0) in the graph
G(b). Let d < di be the indegree of (c, i). Let PI, . · ~,Pd
be the processors that label the d edges. Let the num­
ber of states in which processor Pj writes ~o (c, i) be
Sj. The content of (c, i) is determinedby the state of
the processor that succeeds in writing to (c, i), or, if
no processor writes to (c, i), by the content of (c, i --1)~
Thus, we have

d

lcontents(b, (c, i»1 ~ E Sj + Icontents(b, (c, i"':' 1»1.
j=l

By definition, Sj ~ Zi-l,Vj and lcontents(b,(c,i-
1»1:5 Yi - 1 • Thus, for i ~ 1,

Y; ~ (di - I)Z'_l + Yi-l

The number of states of a processor after the ith
read is at most the product of the number of states it
had after the i-I th read and the number of contents
of the cell it read at the ith read. Thus

We have that Ya = IDI and Zo = IDI, since, ini­
tially, each cell has a value in D and each processor,
after the first read, can be in at most IDI states. It
can then be shown by induction on i that Z, ~ Äi and
Y; ~ di Ä i-l.

Since the computation graph is regularized, a ver­
tex at level i haS at most di - 1 processors that can
write to it. Combining thiswith Observation 2.1 we
get

Mi :$ Mi - 1 + (di - I)Ni-l.

Since the nurnber of states of a processor just "before
the read of step i is at most Zi-1, there are at most
Zi-1 possibilities for the cell that a processor reads in
step i. Along with Observation 2.1, this gives

Since Mo = 1 and No = 0, the stated bounds may
be proved by induction.

Ifthe additional conditions are satisfied,itis easy
to show, by induction, that for i 2: 1,

(1)

which proves the stated bounds. •
3.1 Making a Computation Graph Regu­

larized

In this section we show how to regularize a conipu­
tation graph by setting a small nuinber 6f inputs. The
idea is to fix all the vertices at level i, for i = 1, 2, ... ,
that have ~degree " at least di . When we have done
this for levels 1 thr6ugh i - 1, the computation graph
is S-regularized upto level i-I. Then by Lemma 3.1
the number of input variables that can affect a pro­
cessor at level i is small. Lemma 3.2 shows that by
appropriately setting the variables that aft'ect a. pro­
cessor, we can fix a processor to any desired state. Let
p be the highest priority processor that can write to
a cell c" a,t level i. If we fix p to the state in which it
writes to c, then, since all other processorS that may
write j;o c have a lower priority, cwill always have the
contents written by p, and will therefore be fixed.

In this fashion, we may fix every vertex at level i
that has indegree at least i. In Lemma 3.3 we show
that the total nurnber of input variables set is small.

Lemma 3.2 Let b be a partial input and let :c E Dn

be such that :c :$ b. Let G be a computation graph
01 any algorithm that takes inputs from Dn and con­
sider G(b). Let p be a processor and c acelI. Let
b' and b" be partial inputs, :c :$ b', b" :$ b such
that in b', no variable in aft'ect(b, (p, i)) has value
*, and in b", no variable in aft'ect(b, (c, i)) has value
*. Then states(b', (p, i)) = state(:c, (P, i)) . Similarly,
contents(b", (c, i)) = contents(:c, (c, i)) .

Proof If\;f:c':$ b', state(:c',(p,i)) = state(:c,(p,i))
then the lemma holds j so assume 3:c' < b' such that
stqte(:c'(p, i)) ::/; state(:c, (p, i)). -
" Notice that :c and :c' can dift'er only on input vari­

ablesnot in atfed(b, (p, i)), since :c,":c' :$ band in
b' each " variable in atfect(b, (p, i)) is set to a value
in D. Letr be the nurnber of variables on which
:c and :c' dift'er. Let Yo = :C, Yl> ... , Yr = :c' be
inputs such that for each i, 1 :$ i. :$ r , Yi :$ b
and Yi differs from Yi -1 exactly on one variable.
Since state(yo, (p, i)) ::/; state(Yr, (p, i)), 3j such that
state(Yj_l{P,i))::/; state(Yj,(p,i)) . Let:Cj be the vari­
able on which Yj -1 and Yj differ . Then, by definition,
Xj E atfect(b, (p, i)), a contradiction.

A similar proof holds for a cell and its contents on
~ .
Lemma 3.3 Let do = m 2: 4 and di+l = df, lori 2:
O. Define S = (da, d1 , d2," .) . Let G be acomputation
graph 01 an algorithm that uses P processors and takes
inputs from Dn, where IDI :$ m. Then there e:cists a
S-regularizing input in which at most Pfm variables
do not have value *.

ProofWe describe a simple procedure to find such a
S-regularizing input. Our strategy is to proceed level
by level, refining the current partial input at each level.
When we are finished with level i, the current partial
input will be such that at levels j :$ i, all vertices of
indegree 2: dj will be,fixed.

Suppos~ we have finished with levels 1, ... , i :-.1,
and arecurrently at level i . Let b denote the current
partial input. CODsider the computation graph on b
and let (c, i) be a free vertex of indegree 2: ~. Let p be
the highest priority processor that could write to (c, i).
Then 3:c E Dn, :c :$ b, an input on which pwrites
to (c,i). Let b' be the partial input obtained from
b by setting each input variable in atfect(b, (p, i-I))
consistently with:c . By Lemma 3.2, on any partial
input b":$ b, states(b",{p,i-l)) = {state(:c,(p,i))}.
Bence, on all inputs consistent with b', p will write the
same value to (c, i), so this vertex is fixed.We set the
current input to be b' and repeat the process.

Since we are continuously reftning the input, the
degree of a vertex cannot increase. Thus, the proce­
dure will eve~tually fix all the vertices in level i with
indegree 2: di .

1t remains to bound the nurnber of input variables
set. When we are at level i, the current input is such ""
that a11 free vertices at levels j :$ i have indegree
:$ dj - 1. By definition, latfect(b, (p, i - 1))1 :$ Ni-I.

Hence, to fix each vertex,we set at most Ni-l vari­
ables. By definition, each processor writing to a cell
at level i may be in' at most Zi-l states, and hence
may contribute at most this many edges to the graph.
Thus, the number of edges between levels i-I and i is
at most Zi-l P, implying that the number of vertices
with indegree ~ di is at most Zi-1P/di. At leveli ,
therefore, at most Ni-1Zi~1P/di input variables are
set to values in D. By Lemma 3.1 this is at most
dt_1P/di ::5 P/d'f-1 ::5 P/2i +1m, where the last in­
equality holds because for each i ~ 0, di ~ m and
di ~ 2i+l. Summingfor all i, we get the bound on the
total number of variables set. •

4 Everywhere Sensitive and Elusive
Boolean Functions

We give an alternate, but equivalent definition of
everywhere sensitivity.

Recall from Section 2.2 that a partial input b E
D U {*}n and X(b) is the set of all inputs consistent
with b. Define the length of a partial input, written
Ibl to be the number of values in it that are not *'s.
For a function 1 : Dn -- R, and a partial input b,
let R(b) denote the set of possible outp~t values on
inputs in X(b). Thatis, R(b) = {r : r E Rand 3z E
X(b) such that I(z) = r}.

Then we define the everywhere sensitivity of 1 to be
ma.x{k : '</ partial inputs b, Ibl ::5 k => IR(b)1 > I}. It
may be verified that this definition is equivalent to the
one in Section L Thus we may view the everywhere
sensitivity of a function as the maximum number of
input variables that an adversary may reveal, without
revealing the v3Jue of the function. This is precisely
the view that we will use in o.ur proofs. We now obtain
a lower bound through the following simple argument.

Theorem 4.1 Let 1 : ~ -- R be a /unc­
tion with everywhere sensitivity es(f). Let k =
r i log(max{1.1o~~iAe loges(J)})1· Then, any CRCW
PRAM algorithm computing 1 with P processors Te­

quires k steps.

Proof Assume that P ~ n. Thefunction cannot
be computed faster by using less processors, hence the
lower bound for P = n also holds for P < n.

Choose m = 4P/es(f) so that P/m :5 es(f)/4.
Since es(f) ::5 n and P ~ n, note that · m ~ 4.
Let do = m, di+1 = df, i ~ 0, and define S =
(do, d1, d2, ... , dk)' The choice of k in the theorem
ensures that di < es(f)j2.

Suppose there is an algorithm that computes the
function in less than k steps. Consider the computa­
tion graph of the algorithm. By Lemma 3.3 there is an
S-regularizing input with at most P/m variables set
to values in D. Let b be this partial input and con­
sider the output cell of the computation graph, (ß, k).
By Lemma 3.3, laffect(b, (ß, k))1 ::5 d~. Choose any
input z E Dn , z ::5 b. Let b' be the input obtained
from b by setting all the variables in affect(b, (ß, k))
consistently with z. By Lemma 3.2, on any input
z' E Dn , z' ::5 b', the algorithm outputs the same
value, that is, conte nt (z' , (ß, i)).

However, since at most P/m + d~ ::5 es(f)/4 +
es(f)/2 < es(f) variables in b' are set to values in
D, there must be two inputs consistent with b' on
which the function has different values. This gives us
a cOntradiction. •

We now introduce a measure that allows us to quan­
tify the complexity of a function more accurately. Ev­
erywhere sensitivity is more robust than sensitivity in
thai its value is unaffected by small numbers of in­
puts. · However, it errs in the other direction, that
is, it is often insensitive to large numbers of vari­
ables. Consider the Boolean function I(Z1, ... ', Zn) =
Z1 V (Zl t\ PARITY(Z2, ... , Zn)). It is easy to see that
es(f) = O. Clearly this function has a low everywhere
sensitivity, but is hard to compute. This motivates
our definition of another measure.

For a partial input b and a function 1 : Dn -­
R, Ilb is the function obtained by replacing input vari­
able Zi with the value assigned to it by b, where a value
* indicates that the variable may assume any value in
D.

The elusiveness of a function I, written E(f) is
ma.x{es(flb) : bis a partial input}. Clearly, E(f) ~
es(f). On the other hand, the difference between the
two may be arbitrarily large. This is demonstrated by
the function above, which has everywhere sensitivity
o and elusiveness n ~ 2.

We may now strengthen the above theorem as fol~
lows. If 1 is a function of elusiveness E(f), then there
is a restriction u such that es(flu) = E(f). Applying
Theorem 4.1 now yields

Theorem 4.2 Let 1 : D -- R be a /unction.

Let k = ri 10g(max{1.1o~~"i~f21ogEU)})1. Then, any
CRCW P RAM algorithm eomputing 1 with P proces­
sors requires k · steps.

5 Applications

The problems of approximate seleetion and approx­
imate eounting are:
Approximate Seleetion: Given n elements from an or­
dered universe, an integer r E {1, ... , n} and an aeeu­
raey parameter A ~ l/(n + 1), find an element with
rank between r - An and r + An.
Approximate ' CouTl,ting: Given an input from {O, l}n ,
and an aeeuraey parameter A ~ 1/(n+1) compute an
integer b, S/(A + 1) $ ·b $ S(A + 1), where S is the
number of l's in the input.

Theorem 5.1 Approximate seleetion problems with
aeeuraey A $ 1/4using Cn 'proeessors requires time

0(1 logn ')
og m~{l , 10gC}

Proof We assume that C ~ 2 and A = 1/4; clearly
the problem camlot be solved faster by using less pr~
eessors or by solving for sm aller A.

, In order to prove a lower' bound, we consider a re­
-strieted version cif the problem where each element has
a value infO, 1} and the problem is to approximately
seleet the median. }uJ.y deterministic algorithm that
solves this problem with aeeuraey A can be viewed as
eomputing a Boolean funetion j : {O, l}n ~ {O, 1}.

We will show that the function f has everywhere
sensitivity at least n/2 - An - 1.Consider anY partial
input b of length less than n/2 - An. Let bo and b1 be
elements of X(b) obtained by setting all the *'s in b to ° and 1 respectively: Clearly, f(bo) =0 and f(b1) = 1.
Thl,ls es(J) ~ n/2-An-1 ~ ~(~-A). Using Theorem
4.1 with P = Cn and A = 1/4 gives us the claimed
bound, •

Theorem 5.2 Approximate eounting with aeeuraey A
using Cn proeessors requires time

0(1 ' logn)
og max{I,logA + 10gC} .

Proof We prove the bound for A, k '~ 2; clearly, the
problem eannot be solved faster by using less proees­
sors or by solving for a smaller A.

Any deterministie algorithmthat solves the approx­
imate eounting problem ean be viewed as eomputing
a funetion 9 : {O,l}n - {O, ... , rAnn, where, for
xE {O, l}ft, g(x) is the value output by the algorithm.
Note that if x has s l's, S/2A $ g(x) $ 2SA.

We ,will show that the function 9 has everywhere
sensitivity at least n/2A3 . Consider anY partial input

b, of length less than nj2A3 : Let bo E X(b) be the
partial input obtained from b by setting all the *'s in
b to 0, and let b1 E X(b) be the input obtained by
setting all the *'s to 1. Clearly, g(bo) < n/A2 , sinee
bo has less than n/2A3 l's. Similarly, gebt} ~ 3n/8A,
since b1 has at least 3n/4 1 'so For sufficiently large n,
g(bo) :ft g(b1), so es(g) ~ n/2A2 . Applying Theorem
4.1 with P = Cn yields the stated bound. ' •

5.1 Upper Bounds

Our lower bounds hold for nonuniform algorithms.
In this seetion we show that for nonuniform alg~
rithms, they are the best possible. Consider the prob­
lem of approximate counting with A = 2. It is known
that there is an algorithm that solves this problem in
time O(log log n) using n proeessors [8]. Since this is
equivalent to eomputing a funetion of everywhere sen~
sitivityat leastn/16, Theorem 4.1 givesa tight lower
bound of O(log log n) bound. In contrast, the best uni­
form algorithm for this problem takes O«10glogn)3)
time. Closing the gap between the two bounds remains
an open question.

References

[1] Y. Azar. Lower bounds for Threshold and
Symmetrie 'Funetions in Parallel Computation.
SIAM Journal on Computing, Vol. 21, No. 2,
(1992), pp. 329-338.

[2] P. Beame. Lower Bounds in Parallel Ma-
chine Computation. Ph.D. Thesis, University
of Toronto, (199l).

[3] P. Beame andJ. T. Hästad. Optimal bounds for
deeision problems on the CRCW PRAM. Jour­
nal 0/ the ACM, 36 (1989), pp. 643-670.

[4] S. Chaudhuri. A Lower Bound for Linear Ap­
proximate Compaction. In Proe. 2nd Israel
Symp. on Theory 0/ Comp. and Sys., (1993),
pp. 25-32.

[5] S. Chaudhuri, T. Hagerup and R. Raman. Ap­
proximate and Exact Deterministie Parallel Se­
leetion. In Proe. 18th Math. Fdtns. of Comp.
Sei., (1993), to appear.

[6] S. Cook, C. Dwork and R. Reisehuk. Upper and
Lower Time Bounds for Parallel Random Aeeess
Machines Without Simultaneous Writes. SIAM

Jouran on Gomputing, Vol. 15, No. 1, (1986),
pp. 87-97.

[7] T. Hagerup. Fast Deterministic Processor Allo­
Cation. In Proc. 4th AGM-SIAM SODA (1993),
pp. 1-10.

[8] T. Hagerup. personal communication.

[9JT. Hagerup and R. Raman. Waste makes haste:
Tight bounds for loose parallel sorting. In Proc.
39rd IEEE FOGS (1992), pp. 628-637.

[10] T. Hagerup and R. Raman. Fast Approximate
and Exact Parallel Sorting. In Proc. 5th A nnual
SPAA (1993), pp. 346-355.

[11] J. Hästad. personal communication.

[12] J.JaJa. An Introduetion to Parallel Algorithms.
Addison-Wesley, Reading, Mass., 1992 .

. [13] Y. Matias and U. Vishkin. Converting High
Probability into Nearly-Constant Time - with
Applications to Parallel Hashing. In Proc. 23rd
Annual STOC, (1991), pp. 307':316.

[14] N. Nisan. CREW PRAMs and Decision Trees.
SIAM Journal o.n Gomputing, Vol. 20 (1991).

[15] H-U. Simon. A tight O(loglogn) bound on
the time for parallel.RAM's to compute nonde­
genei:ated Boolean functions. In M. K arpinski, .
ed., Fou~dations of Gomputing Theory, Lecture
Dates in Comput. Sei., 158 (Springer, Berlin) pp.
439-444.

[16] G. Tuxan. The Critical Complexity of Graph
Properties. Information Processing Letters, 18,
(1984) pp. 151-153.

(17] U. Vishkin and A. Wigderson. Trade-offsbe­
tween depth and width in parallel computation.
SIAM Journal on Gomputing., 14 (1985) pp.
303-314.

	93-1450001
	93-1450002
	93-1450003
	93-1450004
	93-1450005
	93-1450006
	93-1450007
	93-1450008
	93-1450009
	93-1450010
	cover-hinten_2099-2897-300dpi

