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Abstract

We analyze routing and sorting problems on circular processor arrays with bidirectional connections�
We assume that initially and �nally each PU holds k � � packets� On linear processor arrays the routing
and sorting problem can easily be solved for any k� but for the circular array it is not obvious how to
exploit the wrap�around connection�

We show that on an array with n PUs k�k routing� k � �� can be performed optimally in k �n���pn
steps by a deterministical algorithm� For k 	 �� the routing problem is trivial� For k 	 
 and k 	 ��
we prove lower�bounds and show that these �almost
 can be matched� A very simple algorithm has
good performance for dynamic routing problems�

For the k�k sorting problem we use a powerful algorithm which also can be used for sorting on
higher�dimensional tori and meshes� For the ring the routing time is maxfn� k � n��g �O��k � n
���

steps� For large k we take the computation time into account and show that for n 	 o�log k
 optimal
speed�up can be achieved� For k � �� we give speci�c results� which come close to the routing times�

� Introduction

Machine Model� One of the main problems in the simulation of idealistic parallel computers by realistic
ones is the problem of message routing through the sparse network of connections which connect processing
units� PUs� among each other� We consider this problem for the case that n PUs are connected such that
they form a circular array� In the following such a processor array will be called ring� The PUs are indexed
from � to n� �� Thus� the processor array can be depicted as in Figure ��

� � � � �

n� � � � � � �

Figure �� A ring with n indexed PUs�

Frequently we will refer to the PU with index i as Pi� The connection between Pi and Pi�� is denoted
�i� i � �	� �n � �� �	 is called the wrap�around connection� The one
dimensional network without
wrap
around connection will be called chain�
The connections are bidirectional� In one routing step a PU can send one packet of bounded length to

both its neighbors and also receive packets from both sides� The routing steps are synchronized� The PUs
may store packets in a local queue� The model of computation is the MIMD model� A routing step takes
time Tr � a computation step takes Tc� Tr is larger than Tc by a constant �typically about ��	� Frequently
only the number of routing steps will be stated�

Routing and Sorting� The basic communication problem is that of routing permutations� routing
problems in which every PU holds a packet that must be routed to a destination PU such that every PU
is the destination of precisely one packet� A generalization is the k�k routing problem� the problem of
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transporting k packets from each PU in the processor array to k� not necessarily distinct� destination PUs
such that every PU �nally receives k packets� Such a distribution of source
destination pairs is called a
k�k distribution� Permutations are �
� distributions� k � � arises when the packets are too large to
be transferred in a single routing step� or when every PU has many independent packets to send� This
last situation occurs when on a network consisting of n PUs a network of k � n PUs is simulated� For the
purpose of the routing each packet is equipped with a destination tag�
We also consider the k�k sorting problem� As in the k
k routing problem� each PU is origin and

destination of k packets� Now however� the packets are not equipped with a destination tag� but with a
key from a linearly ordered set on which they have to be sorted� This means that after the sorting� for any
pair of packets p with key l and residing in Pi� and p� with key l

� and residing in Pi� � we must have l � l�

i� i � i�� The k
k sorting problem arises in the same situations as the k
k routing problem�
The considered problems are related to the routing and sorting problems on mesh
connected processor

arrays� In the literature most attention is given to two
dimensional meshes� The permutation routing
problem has been solved optimally with deterministic algorithms requiring queues of constant length
��� ��� ��� For the �
� sorting problem Kaklamanis and Krizanc presented ��� a randomized algorithm with
near
optimal performance� By now� comparable performance has been achieved deterministically ���� The
k
k sorting and routing problems gained attention recently ���� �� �� �� �� ���
The research on routing and sorting algorithms for the ring has contributed a lot to the insight that

was necessary for developing the near
optimal deterministic sorting algorithms for meshes in ���� For the
future� it may be hoped that ideas that where developed for rings inspire progress for routing and sorting
on meshes and tori for small k and for very large k� Apart from this� the problems for one
dimensional
processor arrays have independent interest� one
dimensional architectures are very natural and can be
produced easier than any other parallel architecture from very basic building blocks�
The k
k routing problem on chains is trivial� for all k optimal performance is achieved by routing

packets to their destinations in a greedy way� giving priority to the packets that have to go farthest� For
rings the k
k routing problem is non
trivial for k � �� Makedon and Simvonis were the �rst to perform a
serious study of this problem ����� For the case that all packets sent by a PU have the same destination�
they gave an algorithm which runs in k � n�� �O�n	� Independently it was shown in ��� that the general
k
k routing problem on a ring can be solved in k � n�� �pn routing steps for all k � ��
The k
k sorting problem can be solved on the chain almost optimally by applying �transposition sort�

�see Section ���	 in maxfn� k � n�� � �g routing steps� Using a ring as if it were a chain would be a
pity� on a ring we hope to solve any routing
like problem twice as fast as on a chain� A randomized near

optimal k
k sorting algorithm on a ring follows as a special case of the k
k sorting algorithm for meshes of
arbitrary dimension in ����� Later we showed in ���� that comparable performance can be achieved with a
deterministic algorithm too�

Techniques and Results� This paper collects the key ideas and results from our papers ��� and �����
New results are added� and the precision of some proves is enhanced� We prove lower bounds� and give
algorithms for k
k routing and k
k sorting� Various ranges of values of k are considered� k � �� � � k � n��
k � n��
In our routing algorithms the packets do not have intermediate destinations and are not reversed� Thus�

the routing problem is reduced to directing the packets� determining for every packet the direction in
which it will move� A packet is directed towards its destination if this direction gives the shortest way to
its destination� Otherwise the packet is directed away from its destination� At �rst it seems di�cult to
perform the routing for k � � with less than k � n�� routing steps� The crucial idea is that not all packets
have to be directed towards their destination� This mimics the e�ect of the randomization in the routing
algorithm of ���� Directing some packets away from their destination may bound the maximal number of
packets that is transmitted over any connection�
Generally� it is not realistic to assume that the PUs dispose of global knowledge� An algorithm that

requires that initially the PUs only know the destinations of the packets that reside in them� will be called
a local�knowledge algorithm� This leaves open the possibility that information is gathered during a
prephase �adaptive algorithms may even pro�t from information that becomes available during the routing	�
But� such a prephase might be undesirable or di�cult to perform �e�g�� in dynamic environments	� An
algorithm in which the decision how to route a packet p is solely based on information that is initially
available in the PU where p resides� is called a fully�local�knowledge algorithm� For this class of
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algorithms we can prove higher lower bounds� The routing algorithms of this paper are deterministic�
oblivious and queue optimal� Here oblivious means that the path of a packet is not
in�uenced by other
packets after the packet is sent o��
There are several possible approaches for fully
local
knowledge algorithms� For general k� The fastest

routing is obtained when the number of packets that a PU directs leftwards increases linearly with the sum
of the distances that these packets have to move rightwards� In this way k
k distributions can be routed
in k � n�� � n�� steps� For large k this converges to a lower bound�
The n�� term in the routing time of this algorithm is due to �rounding errors� which are inherent to

fully
local
knowledge algorithms� But� in a local
knowledge algorithm preprocessing can be performed in
subchains of size

p
n� reducing the routing time to k � n�� � p

n for all k � �� Modifying the algorithm
slightly� �
� routing can be performed in ��� � n �pn� and �
� routing in ��� � n �pn� Except for k � �
all these results approximate lower
bounds to within a lower order term�
Of even greater practical value is the algorithm we give for dynamic routing problems� problems in

which packets are generated during the routing� The algorithm is simple� Packets are not hold back� they
are sent away upon their generation� If it would be applied to k
k distributions� these would be routed in
k � n�� � n�� steps�
For the k
k sorting problem� we present an algorithm which runs in maxfn� k �n��g �Tr�O�k��� �n��� �

�Tr � log k � Tc		 time� for all � � k � n�� This is achieved by alternating local sorting operations and
�scattering� operations� The algorithm is a deterministic re�nement of randomized algorithms inspired by
��� and ����� For k � n�� the algorithm becomes extremely simple� the local sorting operations can be
performed internally� or between neighbors� The time consumption is k �n�� �Tr �O�k �Tr � k � log k �Tc	�
For n � o�log k	� the routing time becomes negligible in comparison to the computation time� for these k
optimal speed
up can be achieved over a sequential algorithm�
For k
k sorting with small k it is particularly di�cult to exploit the wrap
around connection and to

construct an algorithm which requires less than n steps� So far packets were not copied� If copying is
allowed then the routing time can be reduced� For k � �� we can use that many connections remain unused
during the sorting� We do not loose time if copies of the packets are spread� If the PUs can hold at most
c packets then the sorting is performed in n�� � n��� � c	 steps� For k � � we need ��� � n steps� for k � �
about ���� � n steps� These results are the �rst to show that sorting on a ring can be performed with less
than the trivial n steps�
Our sorting algorithms can be viewed as routing algorithms� interlaced with some short sorting phases�

In practice such an approach could be superior over an odd
even transposition algorithm even on a chain�
when using odd
even transposition sort� after every step a PU must insert the packets it received at the
correct position among the packets it holds� In our algorithms� in most steps a PU only has to consider
whether a packet must be routed on or that it has reached its destination�

Summary� We resume the most important results of this paper in Table � and Table �� On the
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� � even k�� � ���� � ��k	
odd k�� � ���

k�� � ��� k�� k�� k�� k��

Table �� Lower and upper bounds for routing under various assumptions on the available knowledge� and
for various values of k�

left side of every entry the lower bound is given� on the right side the number of steps taken by an
algorithm� In all results a factor n is omited� and lower order terms are neglected� In Table � the three
main columns correspond to fully
local
knowledge routing� local
knowledge routing and global
knowledge
routing� respectively� In Table � we distinguish sorting without making copies and sorting in which it is
allowed to make copies�

Contents� The remainder of this paper is organized as follows� we start with general notions and basic
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Table �� Results for sorting� assuming that copying is either forbidden or allowed�

results� In Section � we give lower bounds� Then we consider the k
k routing problem� Section � presents
the sorting algorithms�

� Preliminaries

��� E�ciency Criteria

For routing and sorting algorithms certain quality measures are generally accepted� An algorithm is
considered e�cient if it bounds the number of steps as well as the maximal used size of the queues�
Deterministic algorithms are superior over randomized algorithms� Preferably the algorithms should run
without making copies� On
line algorithms are considered much more interesting than o�
line algorithms�
Ideally routing algorithms should allow for dinamization and should be oblivious �for sorting algorithms
this does not appear to make sense	� In an oblivious algorithm the path of a packet can be stamped onto
it at the start� and the packet does not have to be processed anymore during its routing�
Our main algorithms are near
optimal in the following sense�

De�nition � An algorithm is called near�optimal if ��� there is a function f such that for all �consid�
ered� n and an arbitrary input I of size n the time consumption for I� T �I	� satis�es T �I	 � f�n	�o�f�n		�
and �	� for all n there is an input I� for which f�n	 is a lower bound on the time consumption


��� Basic Routing Lemmas

We present basic lemmas for routing on a chain or a ring consisting of n PUs� When several packets are
competing for the use of the same connection the packet that has to go farthest should get priority� This
strategy is called the farthest��rst strategy�
Let for a given distribution of packets hr�i� j	 denote the number of packets that is passing from left

to right through both i and j� For routing on a ring this leaves open the possibility that i � j and that
the packets go through �n � �� �	 before they reach j� Let Tr be the number of steps a distribution of
packets requires for routing the packets that travel rightwards� Tl is de�ned analogously� In ��� and ����
respectively� we proved

Lemma � When the farthest��rst strategy is used for routing a distribution of packets on a chain� then
Tr � maxi�jfj � i� hr�i� j	g � �

Lemma � When the farthest��rst strategy is used for routing a distribution of packets on a ring� then
Tr � maxf maxi�jfj � i � hr�i� j	g � �� maxj�ifn� j � i � hr�i� j	g � � g

For Tl analogous lemmas hold�
In all cases were the sources and destinations are regularly distributed� these lemmas reduce to checking

��	 the maximum distance a packet may have to travel� ��	 the maximum number of packets a connection
may have to transfer�

��� Routing on Chains

For chains both analysis and optimal routing algorithm are trivial� We will shortly show this�
The diameter of the chain with n PUs is n � �� This gives a �rst lower bound of n � � for routing

algorithms on the chain� In k
k distributions in which all packets residing in the left half of the array are
sent to the right half� there are k � n�� packets that have to pass through the connection �n�� � �� n��	�
Thus
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Lemma � Routing on a chain with n PUs requires at least maxfn� �� k � n��g routing steps


The greedy algorithm is the algorithm that routes all packets along the shortest path as soon as possible
to their destination�

Lemma � Using the farthest��rst strategy� the greedy algorithm is optimal� for routing on a chain


Proof	 For k � � this is obvious� no packet is delayed and the last packet reaches its destination
after at most n � � routing steps� Now consider the case k � �� By Lemma � we have to determine
maxi�jfj � i� hr�i� j	g� Initially� there reside at most k � �i� �	 packets in the set of PUs with index i or
smaller� There are at most k � �n � j	 packets with destination in the set of PUs with index j or larger�
Thus� Tr � maxi�jfj� i� k �minfi��� n� jgg� For k � �� the maximal value is attained for i � n��� ��
j � n��� �

��� Sorting on Chains

As a subroutine of some of the sorting algorithms for the ring we apply sorting on subchains�
For the �
� sorting problem on chains it is customary to use odd
even transposition sort� This means

that a PU sends alternatingly a packet left
 and rightwards� such that in one step all PUs with even
index send in one direction and the PUs with odd index in the other� This method only works under the
�unrealistical	 assumption that the connections can compare packets and send the smallest of two passing
packets leftwards and the largest rightwards� In that case odd
even transposition sort requires only n� �
steps and no queues at all� Under the same assumption� k � �� k � n�� steps are su�cient for k
k sorting�
We assume that only PUs are able to compare the packets� In that case PUs must be able to hold

at least two packets� The performance that is achieved with connections that act as comparators can be
matched when a copy is retained for every packet that is sent� After each step one of the two identical
packets is thrown away�
If one assumes that making a copy costs ���	 steps� then it is undesirable to make copies during every

step� Taking some extra steps there is no need for copies� Special care should go to the last step� In ��� it
is shown that

Lemma 
 Without copying packets� ����sorting can be performed in n steps
 A PU holds at most two
packets


We give an algorithm for k � �� A PU� holding at least two packets� performs a rightward transposition�
sort step� if it sends its packet with the largest key rightwards� A leftward transposition�sort step

is de�ned analogously� A PU performs a full transposition�sort step� if it performs a leftward and a
rightward transposition
sort step at the same time� The algorithm consists of transposition
sort steps�

�� All PUs perform k � n��� � full transposition
sort steps�
�� All PUs perform a rightward transposition
sort step�

�� All PUs perform a leftward transposition
sort step�

The PUs at the ends� P� and Pn�� should be treated specially� P� participates only in the rightward steps�
Pn�� only in the leftward steps� Using the �
� principle it is easy to prove that the algorithm is correct�

Lemma � k�k sorting for k � � can be performed in k � n�� � � steps
 This can be achieved without
making copies of the packets
 A PU holds at most k � � packets


Modifying step � and step �� the queue size can be minimalized�

Lemma � k�k sorting for k � � can be performed in k � n�� � � steps and with maximal queue size k


Proof	 Suppose that the packets in the PU are indexed in sorted order from � to k� Let k � �� Now� in
step �� all Pi with i � � send in phase � their packets with index � to Pi��� In step � these packets are
returned again� �
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� Lower Bounds

Most bounds are given for the routing problem� For k
k sorting we can use that a sorting problem requires
at least as many steps as the corresponding routing problem� In Section ��� speci�c bounds for the sorting
problem are given�

��� General Bounds

For the k
k routing problem� the following �standard� lower bounds are available�

Distance bound� A packet travels at most over distance � during a single routing step� Thus� a routing
algorithm takes at least the diameter of the processor array� n�� in our case�

Throughput bound� At most one packet can go over a connection during one routing step� Thus� a
routing algorithm takes at least the maximum number of packets that has to pass through a single
connection�

Connection availability bound� During a single step at most � �n packets are moved� Thus� a routing
algorithm takes at least the maximal sum of the moves of all packets divided by � � n steps�

For k � �� the distance bound gives the strongest result� For k � �� the other bounds are stronger� if
the k � n packets are arranged such that the packets from Pi have destination in Pi�n��modn� then all
packets have to move over a distance n�� which takes at least k � n�� steps by the connection availability
bound� The same result can also be obtained by considering that k � n�� packets have to move over the
two connections ��� n� �	 and �n��� �� n��	�
Lemma 
 Routing k�k distributions on a ring requires at least maxfn��� k � n��g routing steps


��� Global Knowledge

Consider the �
� distribution �
Ln��� the shift over n�� under which a packet from Pi has destination in
P	i�n��
 mod n� �
Ln�� is such that in

n��

�
A B

all packets residing in a PU in A should move to a PU in B� If they are all routed along the shortest path�
the connection � has to transfer ��� �n packets� requiring ��� �n routing steps at least� � may be relieved
by routing a number of packets leftwards� However� the length of this way is ��� � n� Therefore� this does
not decrease the routing time�

Lemma � Routing ��� distributions on a ring requires at least ��� � n routing steps


��� Fully�Local Knowledge

Now we analyze lower bounds for deterministic fully
local
knowledge algorithms� Our main goal is to show
that for this class of algorithms the lower bounds really become higher and to demonstrate some techniques
that can be used for proving this� The maximum over all packet distributions of the required number of
routing steps will be denoted H� More details can be found in �����
The ring is isotropic� so physical intuition tells us that the optimal direction of the packets is obtained

when for even k all PUs apply the same rules� I�e�� there is a global function f � f�� �� � � � � n � �g� �
f�� �� � � � � kg which gives the number of packets that will be directed rightwards� For odd k the direction
should be given by a function f� applied by all PUs with even index� and a function f� for the PUs with
odd index� This intuition is hard to prove though� Therefore� we will call algorithms that are of this type
uniform� and consider lower bounds for uniform algorithms�

The case k � �� Consider a PU P holding packets p� and p� that have to travel d� respectively d� steps
rightwards� In order to give minimal routing time the direction function f � f�� �� � � � � n� �g� � f�� �� �g
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must satisfy some obvious rules�

f�n � d�� n� d�	 � �� f�d�� d�	�

f�d�� d�	 � f�d�� d�	�

f�d� � �� d�	 � f�d�� d�	�

Furthermore� if the number of routing steps must be less than �� � �	 � n� then p� must be directed
rightwards when d� � � �n and leftwards when d� � ����	 �n� For p� we can reason analogously� Also� we
must have f�d�� d�	 � �� when d��d� � ����	 �n� Suppose that for some d�� d� with d��d� � ����	 �n�
both packets are routed leftwards� When all PUs had two packets like this� more than �� � �	 � n packets
would move leftwards through P � Using all these relations� we can draw the following picture� giving the
possible values of f �
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Exploiting the derived properties of f to construct a bad permutation� we �nd

Theorem � Uniform deterministic fully�local�knowledge ��� routing requires at least ����� � n � ���� � n
steps


Proof	 Consider the following subdivision of the ring

�
A B C D E F

x

���� � � x��

� � x�� x�� � � x��

Indicated are the lengths of the sections as fractions of n� F is made as large as necessary� it may partially
overlap with A� � indicates a connection� We now de�ne a �
� distribution as follows� One packet from
every PU in A has a PU in D as destination� the other packet is routed to a PU in F such that the sum
of their distances� d�� d�� satis�es d� � d� � �� � �	 � n� Both packets from a PU in B have a PU in F as
destination� One packet is routed to the �rst free location in F at distance d�� the other packet is routed
as far as possible but not farther than ��� �	 �n� d�� The derived rules imply that from A and B at least
one packet is routed through �� All packets from C are routed through ��
Thus� by counting the number of packets that must cross � we obtain� H � ���� � ��� � � � x��	 � n�

As was to be expected� H becomes larger when x is made smaller� However� x cannot be made too
small� because we must be able to give the packets p�� p� from any PU in B destinations in F such that
d� � d� � �� � �	 � n� Not all destinations in F are available� two packets from PUs in A already go to
every three consecutive PUs in F � Thus� only four packets from PUs in B can have destination in three
consecutive PUs of F �
If the destinations of the packets are constructed as indicated above� then it is di�cult to determine

the minimal value of x� In the next paragraph we show that the packets in B can be given destinations
such that d� � d� � � � � B � C � D � E	 � ��� � B� for all PUs in B� Substituting the lengths of
the sections and solving the equation d� � d� � �� � �	 � n� this gives x � �� � � � �	���� Substituting this
in H � minf�� �� ��� � ��� � � � x��g � n� we �nd H � ����� � n for � � ������
We turn to the construction of the destinations of the packets starting in B� Consider the following

subdivisions of B and F �
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F� F� F� F� F� F�

��� ��� ��� ��� ��� ���

B� B� B� B�

��� ��� ��� ���

The numbers indicate fractions of  B � ���� � � � x��	 � n� From every PU in B� one packet goes to
every PU of F� and one packet to every PU in F�� From every PU in B� one packet goes to every third
PU in F� and one packet to every third PU in F� � F�� From every PU in B� one packet goes to every
third PU in F� and one packet to every third PU in F� � F�� From every PU in B� one packet goes to
every PU in F� and one packet to every PU in F� �F�� It is easy to check that this just ��ts� and that for
all PUs d� � d� � � � � B � C � D � E	 � ��� � B� �

The case k � �� When two direction functions are used� f� for PUs with even index and f� for PUs
with odd index� we can �nd an interesting result for the case k � �� For i 	 f�� �g� i denotes �i��	 mod ��
The optimal f�� f� must satisfy

fi�d� d� d	 � �� fi�n� d� n� d� n� d	� ��	

Let �i� i � �� �� be the largest numbers such that fi��i� �i� �i	 � �� With these �i�

Lemma �� If d � n � �i� then fi�d� d� d	 � �

Proof	 We prove the lemma for i � �� Suppose that for certain d f��d� � � � � d	 � �� By ��	� this is
equivalent to f��n � d� d� n � d	 � �� By de�nition of ��� this implies that n � d � �� and thus that
d � n� ��� �

Lemma �� Uniform deterministic fully�local�knowledge ��� routing requires at least n steps


Proof	 Exploiting Lemma �� we can construct a distribution of packets requiring at least n routing steps�
Consider

PUs with
even index A� B� C� D�

n� �� � � � �� �� � �� n� �� � � � ��

PUs with
odd index A� B� C� D�

n� �� � � � �� �� � �� n� �� � � � ��

The packets from the PUs in A� are routed to PUs in D�� the packets from the PUs in B� are routed
to PUs in C�� Each PU in A� routes at least � packet through �� From each PUs in B� � packets are
routed through �� The packets from the PUs with odd index are routed analogously� For this distribution�
H � �� � n� � � �� � � � ��	�� � �� � �� � � � ��	��� �

General k� For general k we use that always an integral number of packets must be directed in both
directions� Even and odd k are considered separately�

Lemma �� Uniform deterministic fully�local�knowledge k�k routing� k even� requires at least k�� � �k �
�	��k � �	 � �n� �	 steps


Proof	 Let f � f�� �� � � � � n��gk � f�� �� � � � � kg be the direction function� Let �l � � � l � k� be the largest
numbers such that f��l � � � � � �l	 � l �if there is no such number then �l � �	� For H we get

H � maxfl � �l � �k� l � �	 � �n� �l � �	g�

The second bound follows from the number of packets that must be routed over a distance n � �l � ��
Equating and solving� shows that in any case H � �k� l � �	��k� �	 � l � �n� �	� l � k�� gives the stated
result� �

�



For k � �� Lemma �� gives a bound of ��� � �n��	 steps� For large k the bound converges to k �n���n���
For odd k we have the following analogue of Lemma ���

Lemma �� Uniform deterministic fully�local�knowledge k�k routing� k odd� requires at least k �n���n��
steps


Proof	 let f� and f � � be the direction functions for PUs with even and for PUs with odd index�
respectively� Let �il� i � �� �� � � l � k� be the largest numbers such that fi��il � � � � � �il	 � l� For H we
get

H � maxfl � ���l � ��l 	��� �k� l � �	 � �� � n� ��l � ��l	��g�
Equating and solving gives H � �k � l � �	��k � �	 � l � �n� �	� l � k�� � ��� gives the stated result� �

Lemma �� gives a beautiful generalization of Lemma ���

��� Local Knowledge

In Section � we will see that k
k distributions can be routed faster than given by Lemma �� with a
local
knowledge algorithm that starts by gathering some information� However� the information spreads
slowly and must be encoded within a packet of standard length� Furthermore� for oblivious algorithms� the
information cannot be obtained �for free� by analysis of the packets that �ow by� For them the gathering of
information must be performed in a prephase� These considerations give that local
knowledge algorithms
will always require some ��

p
n	 routing steps more than global knowledge algorithms�

For the case k � � we can show that sometimes local
knowledge algorithms require more steps than
global
knowledge algorithms by a factor larger than one� In the proof we use an interesting joker
zone
like
argument�

Lemma �� An oblivious local�knowledge algorithm for ��� routing requires at least ����n � �����n routing
steps


Proof	 We will consider two distributions of packets that are the same in a large fraction of the ring but
for which the packets should be directed di�erently� We demand that the routing time is bounded by
��� x	 � n� Consider

�

A B C D E

���� ��� � x x ���� ��� � x x x

where the numbers indicate fractions of n� In the �rst distribution the packets from A �B have to move
as a block to C �D� If the routing time must be less than ���x	 �n� then at least ��� of the packets must
be routed leftwards and thus through �� In the second distribution� the packets from A still have to go to
C� but now the packets from E go to D� These packets all have to move through �� Some of the packets
from A that were directed leftwards may be informed that now they should better move rightwards� As
there are permutations that require ��� � n routing steps with global knowledge� at most ��� x� ���	 � n
routing steps may be spent on gathering information� Thus� at best the outmost �����x	 �n PUs at both
sides of A will not send packets through � anymore� The other x�� � n PUs continue to send one packet
each� Hence� at least ���� � x � n will go through �� This gives the condition ���� � x � �� x� which leads to
the result� �

��� Lower Bounds for Sorting

We show that �
� sorting without making copies requires at least ��� �n steps� �
� sorting requires at least
��� � n steps� As in Section ��� we use joker arguments� For these arguments it is essential to consider
sorting without copying� In fact� in Section ��� we show that by making copies �
� sorting can be performed
faster than the here proven lower bounds�

Lemma �
 If copying is not allowed� then ��� sorting takes at least ��� � n steps


Proof	 We give two packet distributions with help of the following subdivision of the ring�

�



A � � � � � � � � � � �
n�� n�� � n��� �

The values � and � indicate the keys of the packets in these sections� In distribution D� the packets in A
have key �� in distribution D� these packets have key �� Let p be the packet in P����n with key ��
In D� p must move n�� steps leftwards� in D� p must move n�� steps rightwards� If p does not move

then it takes at least n�� steps until it knows which of the two distributions it is in� If p moves m steps
rightwards� then it may get to know already after n���m steps the distribution� but if this turns out to
be D�� then it must move n�� �m steps leftwards to reach its destination� If p moves leftwards it needs
even one step more� �

Lemma �� If copying is not allowed� then ��� sorting takes at least ��� � n � ���� � n steps


Proof	 We give two packet distributions with help of the following subdivision of the ring�

A � � � � � C

��� � n ��� � n ��� � n

In distribution D� the packets in A have key �� in distribution D� these packets have key �� In the second
section the packets all have key �� The packets in C have keys that gradually increase from left to right
from ��� to ����
In D� all packets in C must move ��� �n steps leftwards� in D� they must move ��� �n steps rightwards�

If a packet moves along the wrong path towards its destination then the sorting takes at least ��� �n steps�
Thus� in a imaginary algorithm sorting with less than ��� �n steps all packets must take the shortest path�
However� it takes ��� � n steps until it is know in P � P����n which direction is the right one� Suppose
that at that moment there are l packets from C to the left of P and r packets to the right� l� r � ��� �n�
Under D� it takes at least r steps to �nish the sorting� under D� at least l � ��� � n �use Lemma �	� The
best distribution is l � n��� r � ��� � n� but even then the sorting takes ��� � n steps� �

For larger k� most notably k � �� we could not show that sorting requires more steps than routing�

� Routing Algorithms

On the chain the greedy algorithm performs optimal for all values of k �Lemma ��	� For rings this is
still true for k � �� in this case the packets move without delay to their destination� However� for k � �
the greedy algorithm may take twice as many routing steps as necessary� The worst
case example is
the k
k distribution k
Ln�� under which all packets residing in Pi must be routed to P	i�n��
modn� The
greedy algorithm routes all packets from left to right through �n�� � �� n��	� and takes k � n�� routing
steps� Routing half of the packets rightwards and the other half leftwards takes exactly maxfn��� k �n��g�
However� it is not a good idea to route always half of the packets in either direction� doing this� the
permutation k
L�� under which Pi routes its packets to P	i��
 mod n� would require k�� � �n � �	 routing
steps�

��� Fully�Local Knowledge

In oblivious routing algorithms the routing problem is reduced to the problem of directing the packets
suitably� In this section we give a simple fully
local
knowledge algorithm which has near
optimal perfor

mance� In this algorithm the packets are directed in a weighted way� the farther the packets in a PU
have to travel rightwards� the more packets are directed leftwards� This approach can be viewed as a
deterministic version of the randomized algorithm in which a packet that has to travel d steps rightwards
is directed leftwards with probability d�n�
For the direction all PUs perform the following algorithm�

�� Sort the packets on the distance di� � � i � k� they have to go rightwards� Store them in a�� � � � � ak�

��



�� Let j � k � round�
Pk

i�� di�n	�

�� Direct a�� � � � � aj rightwards� direct aj��� � � � � ak leftwards�

Call this algorithm flkdirect� an acronym for fully
local
knowledge direct� Notice that flkdirect can
be applied for all k� For k � �� it directs all packets towards their destinations� for k � � the algorithm is
non
trivial�
By its generality flkdirect is a very attractive algorithm� by its simplicity it can be implemented

easily� The analysis is a bit tricky though� Because the following lemma is of central importance� implying
the near
optimality of flkdirect� its long proof is rendered completely� The reader may want to skip at
least part of it�

Lemma �� When a k�k distribution is directed with flkdirect� then no connection has to transfer more
than k � n�� � n�� packets


Proof	 Consider a k
k distribution� Let ai�j be the number of packets that has to go from Pi to Pj� By

de�nition of a k
k distribution� ui �
Pn��

j�� ai�j � k� and vj �
Pn��

j�� ai�j � k� for all � � i� j � n � ��
We analyze the number H of packets that has to go over �n � �� �	� First we consider H� the �not

necessarilly integral	 number of packets that would go over ��� n��	 if in step � the numbers would not be
rounded� H also equals the expected number of packets that would go over �n��� �	 in the above sketched
randomized algorithm� The packets coming from Pn�� contribute �n� �	 � an������n� �	 � an����� � � ��
� � an���n��� an���n�� to n �H� Summing over all origins we �nd

n �H �
n��X

i��

i��X

j��

�i � j	 � ai�j�n� ��	

Let ���� � �i � ��� be the e�ect of the rounding for Hi� the contribution of Pi to H� Then�

H � H �
n��X

i��

�i� ��	

Combining ��	 and ��	� we prove that H � k �n���n��� Then we will re�ne the proof to obtain the stated
result�
From the sum in ��	 we can split o� terms ui and vj such that

Pn��
i��

Pi��
j���i � j	 � ai�j �

Pn��
l�� l �

un�����l�
Pn����

l�� l � vn���l� Once this is shown it follows that n �H � k � �Pn��
l�� l�

Pn����
l�� l	 � k �n����

And so� by ��	� H � k � n�� � �n� �	 � ����
The estimate for ��	 in terms of ui and vj can be proven in a standard way� using induction on n� For

a more instructive proof we consider the case n � �� with help of the following matrix A�

� � � � � � � � 
 �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �


 
 � � � � � � � � �

� � 
 � � � � � � � �

Ai�j is the coe�cient of ai�j in ��	� Subtracting one from all entries in a row or column corresponds to
splitting of a term ui or vj� respectively� A��� can be eliminated by taking � times u� and � times v�� Then
A��� and A��� are eliminated� and so on� For n � �� this gives n �H � �� � u� � � � v�	 � �� � u
 � � � v�	 �
�� � u� � � � v�	 � �� � u� � v�	 � u�� For higher n the process of elimination goes analogously�
In order to show that actually H � k �n��� n��� we re�ne our estimates� Consider the matrix A� that

is obtained after subtracting � from the entries in row � of A� � from the entries in column � of A� etc��

��



� � � � � � � � 
 �

� �������� � � � � � �

� �������� � � � � � �

� �������� � � � � � �

� �������� � � � � � �

� � � � � � � � � � �

� � � � � � ����������

� � � � � � ����������

� � � � � � ����������


 � � � � � ����������

� � � � � � ����������

The generalization of A� for larger n will be clear from the example� An accurate expression for H can be
given in terms of the entries A�

i�j �

H � k � n���
n��X

i��

n��X

j��

A�

i�j � ai�j�n�
n��X

i��

�i�

A k
k distribution is given by �placing� k packets in every row and column� Now suppose that we have a
placement such that


 �i � �� for all i � n��� �i � ���� for all i � n���


 ai�j � �� for all i� j � n��� ai�j � �� for all i� j � n���

For such a placement H � k � n�� � n��� A placement with larger H value might be obtained only by

increasing
Pn��

i�� �i beyond n��� The packets can be rearranged such that indeed
Pn��

i�� �i � n��� but the

induced increase of
Pn��

i��

Pn��
j�� A

�

i�j � ai�j�n is larger� �

Theorem � A k�k distribution directed by flkdirect can be routed in k � n��� n�� steps� for all k � �


Proof	 From Lemma �� we know that no connection has to transfer more than k � n��� n�� packets� As
no packet has to travel more than n steps� this proves the theorem for k � �� Consider for k � � a PU
P holding packets p� and p�� going d� and d� steps rightwards� Suppose that p� is directed rightwards�
Then d� � d� and �� �d� � d�	�n � ���� Hence� �� � � d��n � ���� and thus d� � ��� � n� �

Lemma �
 The bound given in Theorem 	 is sharp


Proof	 For odd k� an example is provided by the k
k distribution k
Ln��� under which all packets must be
routed n�� positions to the right� Every PU wants to direct k�� packets rightwards� This may be rounded
to k�� � ���� Indirectly it also follows from Lemma ���
For even k we �rst consider the case k � �� and use the following subdivision of the ring�

�

A� A� A� A� A� A� A� A�

n�


Suppose that all packets from A� are shifted to A�� all packets from A� to A�� all packets from A� to A��
and all packets from A� to A�� Let Hi be the not
rounded number of packets that Pi directs rightwards�
Then Hi � ���� for � � i � n��� � � � � Hi � ��� for ��� � n � i � n��� After rounding it may happen that
from Ai� i � �� �� �� �� �i� �	 � n�� packets are routed rightwards through �� Thus� in total ��� � n packets
may pass through �� The given example can be generalized easily for larger k� �

��



��� Large k

In flkdirect� the packets in every PU are �rst sorted� For large k� the computation time � O�k � log k	 �Tc�
may become substantial� One might hope that the following simple algorithm performs well�

Algorithm onebyonedirect�
� �� ��
for all packets p do
let d be the distance p has to travel rightwards�
if � � �� d�n � ��� then direct p rightwards� � �� � � d�n
else direct p leftwards� � �� � � �� d�n�

By the variable �� ���� � � � ���� every PU keeps track of its history� Unfortunately� this algorithm
performs poorly if all PUs get a sequence of packets with d values n��� n� �� �� n� �� �� � � �� the routing
would take almost k � n�� steps�
For large k it is much better to divide the packets in each PU in subsets of n packets and to direct

these subsets with flkroute�

Theorem � For arbitrary k� the k�k routing problem can be solved in k � n�� � Tr �O�k � logn	 � Tc time�
with a fully�local�knowledge algorithm


Proof	 The computation time becomes k�n � O�n � log n	 � Tc � O�k � log n	 � Tc� The routing time is
bounded by k�n � �n��� � n��	 � Tr � �k � n�� � k��	 � Tr � k � n�� � Tr � O�k	 � Tc� �

Notice that a local
knowledge algorithm can not perform better� we did not even use all information
that is available in the PUs themselves� sorting subsets of n packets gives a good balance between the loss
of routing steps and the time required for the direction�

��� Dynamic Routing

Because in dynamic routing problems packets may be generated at irregular intervals� and because the
routing is going on� fully
local
knowledge algorithms are the �rst to be considered for dynamic routing�
When a packet is generated by a PU it should be sent away as soon as possible� Hence� a direction algorithm
for dynamic routing must direct the packets one
by
one� and without knowing how many packets there are
to come� The above algorithm onebyonedirect would have been a good candidate for dynamic routing�
There is no canonical way to measure the performance of dynamic routing algorithms� To make a

choice� we consider how much time it takes an algorithm to route k
k distributions� For the direction this
means that a PU holding packets p�� � � � � pk� must direct pi independently of pj for j � i� and independently
of k� the future is unknown�
The following algorithm �ts perfectly into the model� and has better performance than onebyonedi�

rect�

Algorithm dynamicdirect�
� �� ��
for all packets p do
let d be the distance p has to travel rightwards�
if d � n�� or d � ��� � n then direct p towards its destination
else if � � � then direct p leftwards else direct p rightwards� � �� ���

The packets for which n�� � d � ��� � n are directed alternatingly left
 and rightwards� No packet has to
travel more than ��� � n steps�
Theorem � A k�k distribution directed by dynamicdirect can be routed in k � n�� � n�� steps


Proof	 We use the standard argument that in some form or other is used in all routing time analyses of
this paper� In this case we show that at most k � n�� packets have to go over a connection� Consider the
following subdivision of the ring�

�

A B C

n�� n�� n��

��



Let aA�C be the number of packets going from A to C� aB�C and aB�A are de�ned analogously� The number
of packets moving through � equals H � aA�C�� � aB�C � aB�A�� � �aA�C � aB�C	�� � �aB�C � aB�A	���
Using aA�C � aB�C � k � n�� and aB�C � aB�A � k � n��� we �nd H � k � n��� By the rounding� every of
the ��� � n PUs that may send packets over � can send half a packet more� �

How good is k � n��! Trying examples one feels that this might be optimal� However� we did not
succeed in proving any non
trivial lower bound for routing k
k distributions with a dynamic algorithm�

��� Local Knowledge

We turn back to routing k
k distributions� The term n�� in Theorem � is a result of the rounding� It can
be reduced by dividing the ring in subchains consisting of

p
n adjacent PUs each� Within these subchains

the rounding can be performed such that the sum of the numbers of packets that are directed rightwards
is at most ��� away from the sum of the numbers of packets the PUs in this subchain want to directed
rightwards� Call the modi�ed algorithm lkdirect

Theorem 
 A k�k distribution directed by lkdirect can be routed in k � n�� �pn steps� for all k � �

Proof	 The rounding can be performed in

p
n�� steps� After this the term n�� is reduced to

p
n��� �

For k � � and k � � the above approach does not give useful results� packets may be sent almost
around the ring� Let Si be the �not necessarily integral	 number of packets that Pi directs rightwards�

The Case k � �� For k � �� Si equals the number of packets that have to travel less than n�� steps
rightwards � half the number of packets that have to travel between n�� and � �n�� steps rightwards� This
is an alternative formulation of the rule of dynamicdirect� No packet has to travel more than ��� � n
steps� The rounding of the Si can be performed again in subchains of

p
n PUs� We get

Theorem � ��� routing can be performed in ��� � n �pn steps� by a local�knowledge algorithm


Proof	 As in the proof of Theorem �� we can show that H � ��� � n� By the rounding in subchains the
additional term is only

p
n� �

The Case k � �� For k � �� ��� � n is a lower bound for routing with local knowledge �see Lemma ��	�
This bound we cannot match� but we can come quite close to it�
Consider Pi� Let aj be the number of packets in Pi that have to travel between �j��	�� �n and j�� �n�

j � �� �� � � � � �� Then Si � ��� � �� � a�� � � a�� � � �� a�	� The rounding of the Si is performed in subchain
of length

p
n�

Theorem � ��� routing can be performed in ��� � n �pn steps� by a local�knowledge algorithm


Proof	 The proof is analogous to the proof of Theorem �� Using a subdivision in � sections it can be
shown that for a k
k distribution H � k � n��� � �	 � �� � ��� � k � n� For k � � this gives H � ��� � n� �

��� Concluding Remarks on Routing

Makedon and Simvonis ���� considered the case that all k packets from a PU have the same destination�
This is a special case of ours� Their main result is an algorithm that requires k �n������ �n routing steps�
They conjecture that k � n�� � ��� � n is a lower bound� Our results show that this conjecture does not
hold� even the fully
local
knowledge algorithm requires less steps�
Comparing with the lower bound of Lemma �� we see that fully
local
knowledge routing can be per


formed near
optimally for all odd k and for k � �� For even k �� � the routing time� as expressed by
Theorem �� converges to the lower bound of Lemma �� for k going to in�nity� Actually we believe that
also for even k� k � n�� � n�� is a lower bound for fully
local
knowledge routing� but we were not able to
prove this convincingly� For local
knowledge routing our algorithm is near optimal for all k �� �� This
follows by comparing the results of Lemma � and Lemma � with the results of Theorem � and Theorem ��
respectively�

��



�
� routing and �
� routing with local knowledge take n�� and ����n�pn steps� respectively� Lemma ��
and Lemma ��� give lower bounds for the corresponding sorting problems� ��� �n steps for �
� sorting and
��� �n steps for �
� sorting� We see that here sorting takes more steps than routing by a factor larger than
one� We do not know other examples of this on mesh
like architectures�
Global knowledge is not worth a lot� Except for k � �� the lower bounds for routing with global

knowledge are matched by local
knowledge algorithms�
In ��� two more algorithms for directing the packets were given� In the �rst algorithm� every PU directs

at least 	 �k packets in either direction� In the other algorithm all packets that have to travel less than � �n
or more than ����	 �n steps rightwards are directed towards their destination� A detailed description and
thorough analysis of these algorithms can be found in ����� Though the ideas are natural and interesting�
the results of the previous two sections show that flkdirect and lkdirect are superior�

� Sorting Algorithms

After the extensive analysis of the routing problem in Section �� we now turn to k
k sorting� We start
with a randomized algorithm� Then we show how the features of this algorithm can be maintained in
a deterministic algorithm� At the end of this section we consider k
k sorting for very large and for the
smallest k�

��� Randomized Sorting

In ���� it is shown that k
k sorting can be performed with k � n�� � o�k � n	 steps on meshes of arbitrary
dimension d for all k � � �d� The algorithm is randomized� Particularly this implies that by a randomized
algorithm near
optimal sorting on the ring is possible for all k � ��
The central ideas of the algorithm are the following�

�� Route all packets to a randomly selected intermediate destination�

�� Divide the ring in subchains of appropriate size m � o�n	� Sort the packets within the subchains�

�� Let brp � n��k �m	c be the preliminary destination for a packet p with rank rp within its subchain�
�� Route the packets to their preliminary destinations�


� Bring the packets to their �nal destination by performing transposition
sort steps�

Call this algorithm randsort� Originally the algorithm used an involved construction with presplitters
and splitters from which the preliminary destination could be estimated� However� after a complete
randomization of the packets there is no need for all this� we can just as well use the packets themselves�

Theorem 
 randsort performs k�k sorting on a ring in maxfn� k � n��g� o�k � n	 steps

Proof	 We indicate the main points� More details can be found in ����� With Lemma � it can be
shown that step � and step � each can be performed in k � n�� � o�k � n	 steps� This is achieved by
sending the packets with probability ��� in either direction along the ring� How far a packet can be away
from its destination after step �! Consider a packet p with rank r � �� There are r packets with key
smaller than p� These packets are routed with probability m�n to the subchain to which p is randomized
independently of each other� Hence� we may use Cherno� bounds �see ���	 to conclude that at most
r �m�n � O��r �m�n � logn	���	 of them are routed to the subchain of p� Hence� the maximum for the
estimate of the rank of p is r � O��r � n�m � log n	���	� For r � ��k � n	 this is worst� Then we �nd an
�error� O��k � n��m � log n	���	� If m � k��� � log��� n � n���� then the preliminary destination of a packet
lies at most a constant number of subchains away from its �nal destination� �

��� Deterministic Sorting

We present a near
optimal deterministic sorting algorithm� which can be viewed as a deterministic version
of randsort�
The randomization in randsort serves several purposes� It is used for

��




 Making available locally information from which the preliminary destinations can be determined�

 Redistributing the packets in k�n���o�k�n	 steps such that they can be routed from their intermediate
destinations to their preliminary destinations with only k � n�� � o�k � n	 steps�

Both e�ects can be realized by scattering the packets� dividing the ring in subchains� and handing out the
packets of the subchains in a fair way over the subchains� This idea goes back on ����� For e�ciently routing
the packets to their preliminary destination we could use the deterministical algorithm of ���� However�
the routing of the packets is very regular� and the packets can be routed simply along the shortest path
to their destinations� These ideas give us the following algorithm�

�� Divide the ring in k��� � n��� subchains consisting of n����k��� adjacent PUs each� Sort the packets
in every subchain�

�� Send the packet with rank i � j � k��� � n���� within subchain m� � � i� j�m � k��� � n��� � �� to
PU b�m � j � k��� � n���	�kc in subchain i�
�� Sort the packets in every subchain�

�� Send the packet with rank i� � � i � k��� � n��� � � in subchain m� � � m � k��� � n��� � �� to
PU b�i � k��� � n��� �m	�kc�

� Sort all pairs of subchains ��� �	� ��� �	� � � �� sort all pairs of subchains ��� �	� ��� �	� � � ��

Call this algorithm detsort�
We have to settle correctness and time consumption of detsort� Clearly� by Lemma ��

Lemma �� Step � and step � each take less than k��� � n��� steps


An important observation in the analysis of the time consumption of step � and step � is that from every
subchain precisely k��� � n��� packets are routed to any subchain�
Lemma �� Step 	 and step � each take less than maxfn��� k � n��g� k��� � n��� steps


Proof	 The smallest routing time is obtained by routing the packets along the shortest paths to their
destinations using the farthest �rst strategy� In order to facilitate the analysis� we can �rst rearrange
the packets within the subchains such that the packets that have to go farthest stand ahead� Then the
departure times of the packets can be �xed such that no con�icts over the use of a connection arise� Packets
have to travel at most over a distance n��� The number of packets that has to go over a connection between

two subchains is k��� � n��� �Pk����n�������
i�� �i � ���	 � k��� � n��� � �k��� � n�����	��� � k � n��� After the

rearrangement of the packets the number of packets that has to go over a connection within a subchain is
smaller� �

Lemma �� Step 
 takes less than � � k��� � n��� steps


The packets that originated in subchain i that reside in subchain i� after step � were precisely k��� �n���
apart in subchain i� Hence� after the sorting of step �� a packet p in subchain i� can �nd from its rank ri
among the packets that originated in subchain i an estimate of its rank within subchain i� This estimate is
accurate up to k����n���� Thus p can estimate its global rank up to k����n���� which is precisely the number
of packets in a subchain� It is not necessary to know where the packets originated� the total estimate is
obtained by multiplying the number of packets in subchain i� that are smaller than p by k��� � n���� This
shows that step � brings all packets to their destinations and that the algorithm is correct� Summing the
time consumptions of the steps� we �nd

Theorem � detsort performs k�k sorting on the ring in maxfn� k � n��g � O�k��� � n���	 steps
 Only
during O�k��� � n���	 steps the algorithm runs in a mode in which packets have to be compared� the other
steps the algorithm runs in a routing mode


We conclude that deterministic near
optimal sorting is possible for all k � ��
Until now we neglected the time for the computations within the PUs� Any step involving comparison

can be performed in Tr � O�log k	 � Tc� by using priority queues for the k elements a PU holds� Now we
can reformulate Theorem ��

Corollary � detsort performs k�k sorting on the ring in k � n�� � Tr � O�k��� � n��� � �Tr � log k � Tc		
time� for all � � k � n�


��



��� Large k

In real
live we may �nd k which are very large in comparison to n� For example� we want to sort a million
entries on a ring consisting of �� PUs� In this section we consider the cases k � n� and k � �n�

The Case k � n�� If k � n�� then the size of the subchains in detsort becomes less than � PU� This
does not make the algorithm incorrect �though the computation time in Corollary � must be adapted	�
but it is easier to replace subchains by PUs in this case� The algorithm becomes

�� Sort the packets in every PU�

�� Send the packets with rank i� � � i � k � �� to PU i mod n�

�� Sort the packets in every PU�

�� Send the packets with rank i� � � i � k� to PU bi � n�kc�

� Sort all pairs of PUs �P�� P�	� �P�� P�	� � � � � sort all pairs of PUs �P�� P�	� �P�� P�	� � � � �

Call this algorithm highksort� The correctness and time analysis of highksort is analogous to the
analysis of detsort� We get

Theorem �� For k � n�� highksort performs k�k sorting in �k �n���O�k		 �Tr �O�k � log k	 �Tc time


The Case k � �n� If n � o�log k	� then the �rst term of the time in Theorem �� becomes negligible� with
n PUs highksort sorts k � n keys in O�k � log k	 time� A single RAM would have used ��k �n � log�k �n		
time� Hence� the speed
up is "�n	� In the remainder of this section we show that the speed
up is not just
"�n	� but even n� o�n	� The idea is that after the sorting of step �� we can apply merging in step � and
step ��
Suppose that the best RAM algorithm for sorting m keys requires 	 �m � logm � Tc time�

Lemma �� highksort can be implemented to run in 	 � k � log k � Tc � O�k � n	 � Tr time


Proof	 In step � the optimal sorting algorithm is applied� taking 	 � k � log k � Tc time� The routing of
step � and step � take O�k � n	 � Tr time� In step � a PU receives from every PU k�n packets� They were
sorted and it is easy to store them again in sorted order� Hence� step � can be implemented as merging n
sorted sequences of length k�n to one sorted sequence of length k� Because two sorted sequences of length
m each can be merged in O�m	 �Tc time� this can be done in O�k � logn	 �Tc time� Step � can be performed
in the same time order by �rst forming sorted sequences within the PUs and then merging these sequences
with the neighbors� �

This gives

Theorem �� Applying highksort on a ring consisting of n PUs for sorting N keys gives a speed�up of
n� O�n�� logN 	

Proof	 Suppose that the term O�k � n	 � Tr in Lemma �� is at most � � k � n � Tc� Then� the performance
ratio is at least 	 �N � logN��	 � k � log k � � � k � n	 � n��� � ��	 � n� logN 	 � n � ��� ��	 � n� logN 	� �

Corollary � For n � o�logN 	 the speed�up of highksort is n� o�n	


We have� so to say� a near
optimal speed
up�

��� Small k

detsort performs almost as good as we could hope for all k � �� but for k � � we would like to �nd
algorithms that require less than n steps� In this section we �rst give an easy algorithm for k � � and
k � �� Then we give a somewhat more involved algorithm for k � ��

The Cases k � � and k � �� For k � � we can use an algorithm that is very similar to detroute� The
idea is that it takes n�� steps to spread information about all packets over the ring� as is done in step ��
During these n�� steps� the connections are not fully used� we can send a copy of every packet to each
half of the ring� This means that in step � the packets have to travel at most n�� steps instead of n���
We give the details�

��



�� Divide the ring in n��� subchains consisting of n��� adjacent PUs each� Sort the packets in every
subchain�

�� Send the packet p with rank i � j � n���� within subchain m� � � i� j�m � n��� � �� to PU b�m � j �
n���	�kc in subchain i� and send a copy of p to PU b�m� j �n���	�kc in subchain �i�n�����	 mod n����
�� Sort the packets in every subchain�

�� Let p have rank i� � � i � � �n����� in subchain m� � � m � n������ The preliminary destination
of p is rp � i � n����� �m� mod �n�����	� If p is farther than n�� positions away from its preliminary
destination� then discard p� else route p to its preliminary destination�


� Sort all pairs of subchains ��� �	� ��� �	� � � �� sort all pairs of subchains ��� �	� ��� �	� � � ��

Call this algorithm ��sort

In step � each subchain receives � �n��� regularly interspaced packets from every subchain� If a packet p
is routed in step � to some PU Pi� then its copy p� is routed to P	i�n��
modn� The packets in the subchains
in which p and p� reside are identical� Hence� after step � p and p� still reside precisely n�� positions apart�
have the same rank� and get in step � the same preliminary destination� So� precisely one of them has
distance n�� or less to its preliminary destination� The preliminary destination is accurate up to n�����
positions� This settles the correctness of ��sort�

Lemma �� ��sort performs ��� sorting in ��� � n� O�n���	 steps

Proof	 We only have to show that step � can be performed in n�� steps� This is easy� no packets travels
farther than n�� steps� no connection transfers more than n�� packets �every second packet within a
distance n�� has to pass through a connection	� �

Of course we do not have to limit the algorithm to making one copy of a packet� If the PUs may hold
up to c packets� then c copies can be made of every packet� In that case one of the copies is at most
n��� � c	 positions away from its destination in step �� Thus� we get
Theorem �� If the PUs have storage capacity c � �� then ��� sorting can be performed in n�� � n��� �
c	 �O��c � n	���	 steps

Proof	 In step � one instance of each packet is routed rightwards� one instance of it is routed leftwards�
Copies are dropped of when the packets reach a destination� The size of the subchains should be taken
n����c���� Then the local operations take O��c � n	���	 steps� According to Lemma � the queue size is
bounded to c� �

Theorem �� shows that for c � 
��	 �larger order than constant	 �
� sorting can be performed with
n�� � o�n	 steps� This illustrates that one has to be very precise about the model when trying to prove
lower bounds for the sorting problem�
With minimal modi�cations to step � and step �� ��sort can also be used for �
� sorting� We get

Theorem �� ��� sorting can be performed in ��� � n� O�n���	 steps

For k � � it is not possible to use more than two instances of packets� the time required for step � would
increase faster than the time for step � would decrease� ��� �n is not bad compared to the lower bound of
��� � n for �
� routing given in Lemma ��
The Case k � �� For k � � we cannot apply a step like step � of ��sort� such a step would take ��� �n
steps� The algorithm is obtained by modifying step �� step � and step � of detsort�

��� If we apply step �� then every connection has to transfer ��� � n packets in n�� steps� This shows
that there is some slack� We cannot send two instance of each packet n�� apart� but a reduction of the
routing time of step � by 	 �n can be obtained when for each packet two instances reside � �	 �n apart for
some 	 � �� We clarify the idea by considering a packet p residing in P� which would be routed in step �
of detsort to Pi� Now one instance of p goes to P 	�
 � Pi���n and one instance to P 	�
 � Pi���n �all
indices modulo n	� If 	 � n � i � n��� 	� then p is routed to P 	�
� Here a copy of p is made and sent on
to P 	�
� This combining trick is only possible when the shortest path to P 	�
 goes through P 	�
 or vice
versa�

��



��� After step ��� every subchain has received a complete picture of the packets that virtually reside in
a subchain 	 � n positions to the right and of those 	 � n positions to the left� These packets are sorted
separately� as in step ��

��� Now the preliminary destination of each packet is computed exactly as in step �� The instance of
a packet that is farthest from its preliminary destination is discarded� the other instance moves to its
preliminary destination along the shortest path�

Call this algorithm detsort
�� The correctness of detsort� follows from the correctness of detsort�

The only point to consider is the time required for step �� and step �� as a function of 	� We get

Theorem �� Taking 	 � �� �
p
���	�� � ������ detsort� performs ��� sort in �� � 		 � n � O�n���	

steps


Proof	 In step �� no packet has to move further than n�� steps� What is the maximum number of packets
a connection may have to transfer! Consider a connection � which transfers packets from left to right�
From the subchain immediately to the left of � for a fraction ���� � �	 of the packets an instance is sent
through �� for ���� � � � 		 � n destinations one of the instances of a packet has to move through �� The
fraction of the packets for which an instance is sent through � decreases linearly with the distance of a
subchain to �� From the subchain at distance ����� � �		 �n from �� the fraction equals � �	� From there
the fraction decreases linearly to � for the subchain at distance n��� Computing the number of packets
moving through � �accurate up to O�n���		� gives � � n � ���� � 	 � � � 	�	� For 	 � �� �

p
���	�� this

equals n��� In step �� packets have to move at most over ���� � 		 � n steps� and connections surely do
not have to transfer more than this many packets� �

��� Concluding Remarks on Sorting

We have given a k
k sorting algorithm which works without making copies� The algorithm is near
optimal
for all k � �� For k � �� the sorting time can be reduced if it is allowed to make copies� For k � �� near
optimal performance can be reached when the PUs can hold 
��	 packets� For k � � or �� one copy is the
most that can be used e�ectively� For very large k� we gave an algorithm with speed
up n � o�n	�

� Conclusion

We considered k
k routing and k
k sorting on rings� and found deterministical algorithms with near
optimal
performance� k � n�� � o�k � n	� for all k � �� This means that k
k sorting is not substantially harder than
k
k routing� Yet the algorithms are completely di�erent and there is also a small di�erence in performance�
In this respect the ring distinguishes itself from higher dimensional meshes and tori� there the best k
k
routing algorithm known is actually a k
k sorting algorithm ���� For k � �� � and �� we gave alternative
algorithms taking less than n steps� coming close to derived lower bounds� An algorithm that can be
applied to dynamic routing problems routes k
k distributions in k � n�� � n�� steps�
Future research might show that the lower bounds for uniform fully
local
knowledge algorithms gener


ally hold for fully
local
knowledge algorithms� Secondly� it is interesting to consider whether with global
knowledge �
� routing can be performed in ��� �n steps� this would show that sometimes global knowledge
can speed
up routing on rings� Of greater practical importance is a more thorough analysis of the dynamic
routing problem� It is not certain that the given algorithm is optimal� non
trivial lower bounds fail� For
sorting without copies it is desirable to bring lower
 and upper bounds closer together for k � �� For
applications of the ideas of this paper to other networks� we suggest that it might be possible to reduce
the k
k routing time on meshes and tori below the sorting time� Finally we hope that the observation that
the sorting algorithm requires only one local sorting operation� can be used to extend the class of networks
to which the underlying sorting algorithm can be applied�
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