
Maintaining dynamic sequences under
equality–tests in polylogarithmic time∗

K. Mehlhorn† R. Sundar‡ C. Uhrig†

January 16, 1996

Abstract

We present a randomized and a deterministic data structure for maintaining
a dynamic family of sequences under equality–tests of pairs of sequences and
creations of new sequences by joining or splitting existing sequences. Both
data structures support equality–tests in O(1) time. The randomized version
supports new sequence creations in O(log2 n) expected time where n is the
length of the sequence created. The deterministic solution supports sequence
creations in O(log n(logm log∗m+ log n)) time for the m–th operation.

1 Introduction

We present a data structure for maintaining dynamically a family F of sequences over
a universe U . The data structure supports the following operations on an initially
empty family of sequences; let s1, s2 be sequences, aj ∈ U for j = 1, .., n and i an
integer.

• Equal(s1, s2): Test if s1 = s2.

• Makesequence(s, a1): Create the sequence s1 = a1.

• Concatenate(s1, s2, s3): Create the sequence s3 = s1s2 without destroying the
sequences s1 and s2.

• Split(s1, s2, s3, i): Create the two new sequences s2 = a1 . . . ai and s3 =
ai+1 . . . an without destroying s1 = a1 . . . an.

∗This work was supported by the ESPRIT Basic Research Actions Program, under contract No.
7141 (project ALCOM II).

†Max-Planck-Institut für Informatik, Im Stadtwald, 6600 Saarbrücken, Germany
‡Department of Computer Science and Automation, Indian Institute of Science, Bangalore

560012, India

1

2

Operation randomized deterministic

Equal 1 1
Makesequence 1 logm

Concatenate O(log2 n) O(log n(logm log∗ m+ log n))

Split O(log2 n) O(log n(logm log∗ m+ log n))

Table 1: Time bounds

randomized deterministic

O(log2 n) O(log n log∗m)

Table 2: Incremental space cost

We present two solutions: one randomized and one deterministic. The determin-
istic solution is essentially a derandomization of the randomized solution. Table 1
lists the time bounds for the m–th operation in a sequence of operations. We use n
to denote the total length of the sequences involved in the m–th operation.

The problem of maintaining dynamic sequences with equality test arises mainly in
the implementation of high–level programming languages like SETL, where sets and
sequences are basic data types and equality tests are permitted. The best previous
deterministic solution is due to Sundar and Tarjan [ST90]. They achieve a constant
time equality test and amortized update time O(

√
n logm + logm). The amortized

space required per update is O(
√
n). Our solution is exponentially better. Pugh and

Teitelbaum [PT89] gave a randomized solution for the special case of repetition–free
sequences. It has logarithmic expected running time per operation.

We use the standard RAM model of computation. In particular, we assume that
the word size w is at least logmax(n,m), that arithmetic on words of length w takes
constant time, and that a random bitstring of length w can be chosen in constant
time.

We now give a brief account of our randomized solution. We compute for each
sequence s a unique signature sig(s) in [0..m3]. This signature is used to perform
equality tests. The signature of a sequence s = a1a2 . . . an with ai ̸= ai+1 is computed
as follows (the extension to general sequences is described in section 3): Firstly,
s is broken into blocks (subsequences) of length at least 2 and expected length at
most log n. Secondly, each block, say b = ai . . . aj, is replaced by a single integer
which is computed in a Horner–like scheme by means of a pairing function p, i.e., b
is replaced by p(ai, p(ai+1, . . . , p(aj−1, aj)) . . .). Thirdly, the same rules are applied
to the shrunken sequence until the shrunken sequence has length one. The depth
of nesting in this recursion is O(log n). Randomization is used to break a sequence

3

into blocks. Each element of the sequence chooses a random real number and blocks
begin at local minima. In this way blocks (except maybe the first) have length at
least 2. Also the expected length of the longest block is O(log n) (since the probability
that a sequence of k random real numbers is increasing or decreasing is 2/k!). The
update algorithms need to manipulate a bounded number of blocks in each level of
the recursion and hence spend time O(log n) in each level. The O(log2 n) time bound
results.

In our deterministic solution we replace the randomized strategy for breaking
a sequence into blocks by a deterministic one which we exhibit in section 2. This
strategy is based on the algorithm for three–coloring rooted trees (we consider a
sequence to be a rooted tree) by Goldberg, Plotkin and Shannon [GPS88], which is a
generalization of the so–called deterministic coin tossing technique of Cole and Vishkin
[CV86]. It generates blocks of length at most 4 and decides for each index i whether ai
starts a new block by looking only at ai+l for 0 ≤ |l| = O(log∗ m3) = O(log∗ m). The
update algorithms have a recursion depth of O(log n). On each level they spend time
O(log n) to manipulate the balanced tree imposed on the level and handle O(log∗ m)
blocks. For each block time O(logm) is needed.

This paper is structured as follows. In section 2 we give randomized and determin-
istic rules for decomposing a sequence into blocks, in section 3 we define a hierarchical
representation of sequences based on the block decomposition, and in section 4 we
show how to realize the various operations.

2 The Block Decomposition

2.1 The Randomized Block Decomposition

Let U be a universe and s = a1 . . . an with ai ∈ U and ai ̸= ai+1 for 1 ≤ i ≤ n − 1.
Each element a ∈ U is assigned a random priority prio(a) ∈ [0, 1]. We represent these
priorities with sufficiently large finite precision that guarantees that all priorities are
distinct. In section 4 we show that the expected number of bits in the representation
of a priority is small and that this will not affect the complexity of the operations.

An element ai of s is a local minimum of s if it has a successor in s and its priority
is a local minimum in the sequence prio(a1) . . . prio(an) of priorities corresponding to
s.

Randomized marking rule: Every local minimum is marked.

Now a block starts at position 1 and at every marked element.

2.2 The Deterministic Block Decomposition

In this section we give a deterministic construction to divide a sequence into suitable
blocks. The algorithm is essentially a sequential version of the so–called three–coloring

4

technique for rooted trees of Goldberg, Plotkin and Shannon [GPS88] (which in turn
is a generalization of the deterministic coin tossing technique of Cole and Vishkin
[CV86]) and can be considered as a constructive proof of the following lemma.

Lemma 1 For every integer N there is a function
f : ([0..N − 1] ∪ {−1})log∗ N+11 → {0, 1} such that for every sequence a1 . . . an ∈
[0..N − 1]∗ with ai ̸= ai+1 the sequence d1 . . . dn ∈ {0, 1}∗ defined by
di := f(ãi−log∗ N−6, . . . , ãi+4) where ãj = aj for 1 ≤ j ≤ n and ãj = −1 otherwise,
satisfies:

1) di + di+1 ≤ 1 for 1 ≤ i < n
2) di + di+1 + di+2 + di+3 ≥ 1 for 1 ≤ i < n− 3

The sequence d1 . . . dn is used to decompose the sequence a1 . . . an into blocks
according to the following rule: Start a new block at index i = 1 and at every index
i with di = 1. It is clear that no block has length exceeding four and that all but the
first and last block have length at least two.

In the following subsection we will review the three–coloring technique. After-
wards we explain the decomposition rule and finally we show how one can derive
lemma 1 from the coloring algorithm.

2.2.1 The Three–coloring Algorithm

Let s = a1 . . . an with ai ∈ [0..N − 1] and ai ̸= ai+1. Let’s consider s as a linked
list (which is a special form of rooted tree). A coloring of a list is an assignment C :
{a1, .., an} → N. A valid coloring is a coloring such that no two adjacent elements have
the same color. In this section we review the three–coloring algorithm of Goldberg,
Plotkin, and Shannon ([GPS88]). Lemmas 2 and 3 are due to them but lemma 4 of
the next section is new.

Informally it is done as follows. We first compute a valid ⌈logN⌉– coloring.
Afterwards we replace the elements in the list by their colors, consider the set of
colors to be the new universe and iterate the coloring procedure. After O(log∗N)
iteration steps we will get a valid six–coloring which we then reduce by a different
procedure to a three–coloring (of course it is easy to compute a valid two–coloring
for a list in time O(n), but for our purpose the decisions have to be made ’locally’).
The details are as follows:

Identify each ai with its binary representation (which has ⌈logN⌉ bits). The bits
are numbered from zero and the j-th bit of the representation of a color of element ai
is denoted by Ci(j). The following procedure has as input the sequence s = a1 . . . an
and computes a six–coloring for s. In each iteration every element ai is assigned a
new color by concatenating the number of the bit, where the old color differs from
the old color of ai−1 and the value of this bit.

(1) Procedure Six-colors(a1 . . . an : sequence) ;

5

(2) begin
(3) NC ← N ;

(4) forall i ∈ {1, .., n} do
(5) Ci ← ai ;

(6) od ;
(7) while NC > 6 do
(8) j1 ← 0 ;

(9) b1 ← C1(0) ;

(10) C1 ← 2j1 + b1 ;

(11) forall i ∈ {2, .., n} do
(12) ji ← min{j|Ci(j) ̸= Ci−1(j)} ;
(13) bi ← Ci(ji) ;

(14) Ci ← 2ji + bi ;

(15) od ;
(16) NC ← max{Ci|i ∈ {1, .., n}}+ 1 ;

(17) od ;
(18) end ;

Lemma 2 The procedure Six–colors produces a valid six–coloring of a list a1 . . . an where
ai ∈ {0, .., N − 1} for 1 ≤ i ≤ n in time O(n log∗ N).

Proof. First we show that the procedure computes a valid coloring. Note that
C is valid at the beginning, since ai ̸= ai+1 for 1 ≤ i ≤ n − 1. Now suppose,
C is valid when we enter the loop of the while–statement. Consider two adjacent
elements ai and ai+1 for some i > 1. In line (12), ai+1 chooses some index j1 such
that Ci+1(j1) ̸= Ci(j1) and ai chooses some index j2 such that Ci(j2) ̸= Ci−1(j2). The
new color of ai+1 is 2j1 + Ci+1(j1) and the new color of ai is 2j2 + Ci(j2) (note that
line (14) means to concatenate the number of the least significant bit, where the old
color differs from the old color of ai−1 and the value of this bit). If j1 ̸= j2 the new
colors are different and we are done. Otherwise j1 = j2 and Ci(j1) ̸= Ci+1(j1) by the
definition of j1 and again the new colors are different. Thus at the end of the loop
the new coloring is also valid.

Now we derive the number of iterations. Let L denote ⌈logN⌉ and Lk denote the
number of bits in the longest representation of a color after k iterations. We will show
that Lk ≤ ⌈logk L⌉+ 2, if ⌈logk L⌉ ≥ 2.

For k = 1 we have L1 = ⌈logL⌉+ 1.
Now suppose ⌈logk−1 L⌉ ≥ 4, Lk−1 ≤ 2⌈logk−1 L⌉+ 2 and ⌈logk L⌉ ≥ 2. Then

Lk = ⌈logLk−1⌉+ 1

≤ ⌈log(2 logk−1 L)⌉+ 1

≤ ⌈logk L⌉+ 2.

6

After log∗N + 1 iterations ⌈logk L⌉ becomes one and Lk becomes three. Then
there are three possible values for the index j and two possible values of the bit bi.
Therefore another iteration produces a valid six–coloring and the time bound follows.
Lemma 2
We can easily transform the six–coloring into a three–coloring, which is done by

the following procedure.

(1) Procedure Three–colors(a1 . . . an : sequence) ;

(2) begin
(3) Six–colors(a1 . . . an) ;

(4) C0 ←∞ ;

(5) Cn+1 ←∞ ;

(6) for c = 3 to 5 do
(7) forall i ∈ {1, .., n} do
(8) if Ci = c then
(9) Ci ← min{{0, 1, 2} − {Ci−1, Ci+1}} ;
(10) fi ;
(11) od ;
(12) od ;
(13) end ;

Lemma 3 The procedure Three–colors produces a valid three–coloring of a list a1 . . . an
where ai ∈ {0, .., N − 1} for 1 ≤ i ≤ n in time O(n log∗ N).

Proof. In line (3) the procedure computes a valid six–coloring. Then each of
the three iterations of the for–statement (line (5)) removes one color and preserves
the validity of the coloring, since every list element whose color is replaced gets a
new color different from the (unchanged) colors of its two neighbors. Therefore the
three–coloring at the end of the third iteration is still valid. The running time of lines
(4) – (12) is obviously O(n) and the time bound follows. Lemma 3

2.2.2 The Decomposition Rule

For any sequence a1 . . . an the sequence d1 . . . dn is defined in the following way. We
first compute a valid three–coloring by the procedure above and then set di = 1 iff the
color of ai which now is considered to be an integer in {0, 1, 2} is a local maximum
and di = 0 otherwise.

For convenience, let’s define the elements ai with i < 1 or i > n to be empty
elements that take no influence on the computation (in Lemma 1 these elements are
written as −1).

7

Lemma 4 Given a sequence a1 . . . an, the values d1 . . . dn defined as given above have
the following properties:

1) di + di+1 ≤ 1 for 1 ≤ i < n
2) di + di+1 + di+2 + di+3 ≥ 1 for 1 ≤ i < n− 3
3) The value of di only depends on the subsequence ai−log∗ N−6 . . . ai+4

Proof. Property 1 follows of the fact, that in a valid coloring any two consecutive
colors (colors of consecutive elements) are different and thus there are no neighboring
local maxima.

For property 2 note that any sequence of four consecutive elements either contains
the color 2 which is always a local maximum or it contains the subsequence 010 where
1 is a local maximum.

Property 3 will be proven in several steps. First we prove by induction on the
number of iterations of the while–statement in the procedure Six–colors that for each
ai the color of the valid six–coloring computed by the procedure only depends on
the subsequence ai−log∗ N−2 . . . ai. More precisely we argue that the color of ai after
the k-th iteration depends on the subsequence ai−k . . . ai. But this is easy to see.
Before the first iteration the color of ai is given by ai directly and does not depend
on another element. Now suppose that for each 1 ≤ i ≤ n the color of ai after
the (k − 1)-th iteration depends on the subsequence ai−k+1 . . . ai. During the next
iteration each element ai for 1 < i ≤ n is assigned a new color by concatenating
the binary string representation of the lowest index of the bit where the old color
(its binary representation) differs from the old color of ai−1, and the value of this
bit. Therefore the new color of ai only depends on its old color Ci and the old color
Ci−1 of element ai−1. Since the Ci depended on ai−k+1 . . . ai and Ci−1 depended on
ai−k . . . ai−1, the new color depends on ai−k . . . ai and the induction step is completed.
Now note that in the proof of lemma 2 we have shown that the procedure Six–colors
performs at most log∗N + 2 iterations. We are done by setting k = log∗ N + 2.

Next we argue that for each ai the color given by the execution of the proce-
dure Three–colors only depends on the subsequence ai−log∗ N−5 . . . ai+3. This again
can be seen by induction on the number of iterations of the procedure. Before the
first iteration each color Ci depends on the subsequence ai−log∗ N−2 . . . ai (see above).
In each iteration the new color of an element depends on the old colors of its two
neighbors and since there are only three iterations the color of ai in the six–coloring
depends on the six–coloring of the elements ai−3 . . . ai+3 and therefore on the ele-
ments ai−log∗ N−5 . . . ai+3. Finally to complete the prove for property 3 note that the
value of di is set in dependence of the colors Ci−1, Ci and Ci+1 and therefore of the
subsequence ai−log∗ N−6 . . . ai+4. Lemma 4

Proof of Lemma 1. Now note that by the definition of the di’s the existence of
the functions as demanded in lemma 1 is proven. Lemma 1

Deterministic marking rule: Every position i with di = 1 is marked.

8

As mentioned before, we now decompose the sequence into blocks by starting a
new block at position 1 and at every marked position.

3 A Hierarchical Representation of Sequences

As mentioned in section 1 we support efficient equality tests by assigning unique
signatures to sequences. In this section we explain how this is done and how sequences
are represented. The maintenance of the data structure does not require that we
always compute the signature for an arising sequence from scratch. A signature is a
small integer. More precisely, after m operations there is no signature exceeding m3.
We need more than m signatures since signatures are also assigned to subsequences
of and sequences derived from the original sequences built by the user.

Informally a signature is assigned to a sequence s = al11 . . . alnn with ai ̸= ai+1 for
1 ≤ i < n in the following way. Each element ai ∈ U gets a signature. Furthermore
to each power alii for 1 ≤ i ≤ n a signature is assigned. Then we compute a block
decomposition of the sequence sig(al11) . . . sig(a

ln
n) according to the methods given in

section 2. Note that all neighboring elements in this sequence are different. Then for
each block a signature is computed by repeated application of a pairing function, i.e.
pairs of signatures are encoded by a new signature. Afterwards the whole procedure is
applied on the sequence of block encodings (instead of the original sequence) and this
is repeated until the original sequence is reduced to a single integer – its signature.
We now give the details.

Let S be the current set of signatures, S = [0..max sig]. Each element in S
encodes either an element of U or a pair in S × S or a power in S × N≥2, i.e., S
is the disjoint union SU ∪ SP ∪ SR and there are injections u : SU → U , p : SP →
{(a, b); a, b ∈ S and a ̸= b} and r : SR → {(a, i); a ∈ S and i ∈ N, i ≥ 2}. The inverses
of the functions u, p, and r are maintained in dictionaries (in the randomized case
based on dynamic perfect hashing and in the deterministic case based on balanced
binary trees). In the randomized scheme every element s ∈ S that encodes a power,
also has a random real priority prio(s) ∈ [0, 1] associated with it. For each such s
we only store a finite approximation of prio(s); the approximations are long enough
to be pairwise distinct. They are chosen in a piece–meal fashion, i.e., whenever two
priorities need to be compared and are found to be equal they are extended by a
random word. Lemma 9 shows that only approximations of logarithmic length are
needed on average.

We now define the signature sig(s) of a sequence s = al11 . . . alnn with ai ̸= ai+1 for
all i, 1 ≤ i ≤ n and n ≥ 1, and also the related functions g, shrink and Sig.

The function sig is defined recursively. If n = 1 and l1 = 1 then sig(s) = Sig(s),
if n = 1 and l1 > 1 then sig(s) = r−1((a1, l1)) (if (a1, l1) /∈ range(r) then increment
max sig and extend r by (max sig, (a1, l1)) and if n > 1 then sig(s) = sig(shrink(s)).

So assume n > 1. Let g(s) = sig(al11) . . . sig(a
ln
n), i.e., every power is replaced by its

signature. Then g(s) = c1 . . . cm with ci ̸= ci+1 for all i, 1 ≤ i < m, and some m ≥ 1.

9

Let b1 . . . bk be the block decomposition of g(s). Set shrink(s) = Sig(b1) . . . Sig(bk).
The function Sig is only defined for sequences with l1 = . . . = ln = 1 (note that’s

all that is needed). If n = 1 and a1 ∈ S then Sig(s) = a1, if n = 1 and a1 ∈ U then
Sig(s) = u−1(a1) (if a1 /∈ range(u) then we also increment max sig and extend u
by (max sig, a1)). If n = 2 then Sig(s) = p−1((Sig(a1), Sig(a2))) (again, extend p if
necessary), and if n > 2, then Sig(s) = Sig(a1, Sig(a2, . . . Sig(an−1, an) . . .)).

Of course, in order to show the correct support of the operation Equal(s1, s2) we
have to prove

Lemma 5 Let s1, s2 ∈ F . Then s1 = s2 ⇔ sig(s1) = sig(s2)

Proof. Each s ∈ S encodes a unique sequence in U∗. Simply run the encoding
process backwards. Lemma 5

Let’s next explain how sequences are stored. As above, let s = al11 . . . alnn , let
g(s) = sig(al11) . . . sig(a

ln
n), let g(s) = b1 . . . bk be the sequence of blocks of g(s) and

finally let shrink(s) = Sig(b1) . . . Sig(bk).

Then we represent a sequence s by s̄ = (s0 . . . s2t) where s0 = s and for all i,
1 ≤ i ≤ t: s2i−1 = g(s2i−2) and s2i = shrink(s2i−1). Note that t = O(log n) in
both schemes, since blocks (except maybe the first) have length at least two in both
schemes.

In order to support the operations we store each sj as a balanced binary tree Tj,
whose symmetric traversal yields sj. Each node v contains:

• an element a of sj

• the size of the subtree rooted at v

• the length of the block corresponding to a in sj−1

• the sum of the lengths of the blocks corresponding to the elements stored in the
subtree of v

• the mark of the element a if j is odd

Each s̄ is maintained as a linked list of the roots of the trees Tj and F is main-
tained as a linked list of the heads of these lists. In the randomized solution the
dictionaries are implemented by dynamic perfect hashing (see [DKMMRT88]) and in
the deterministic solution they are maintained as balanced binary trees. The opera-
tions are performed in a persistent way such that none of the sequences is destroyed
(see [DSST89] for the details).

10

4 The Operations

The operations Equal and Makesequence are identical in both cases (randomized
and deterministic).

Let s1, s2 be sequences. Then Equal(s1, s2) returns true if sig(s1) = sig(s2) and
false otherwise. This obviously needs time O(1).

For a ∈ U , Makesequence(s, a) creates a single node binary tree representing
s = sig(a). Therefore it retrieves sig(a) if a ∈ range(u); otherwise a new signature
is assigned and u is extended.

This requires O(logm) time in the deterministic and O(1) time in the randomized
case.

The operations Concatenate and Split are more difficult to realize, but the basic
idea is simple. When we concatenate s1 and s2 all but the O(1) last blocks of s1
and all but some few first blocks (O(log∗m) for the deterministic and O(1) for the
randomized case) of s2 will also be blocks of s1s2 since the fact whether an element
starts a new block is only influenced by a small neighborhood of the element (of size
O(log∗ m) in the deterministic and O(1) in the randomized case).

4.1 The Randomized Update Operations

We first discuss the operation Concatenate. We are given the hierarchical represen-
tations of sequences s1 and s2 and need to compute the hierarchical representation
of s3 = s1s2. The following Lemma paves the way. It states that we essentially only
need to concatenate the individual elements of the hierarchical representations.

Lemma 6 Let s1 = a1 . . . al, s2 = al+1 . . . an and s3 = s1s2 be sequences and let j be
a nonnegative integer. Let shrinkj(s3) = c1 . . . co and let i be such that ci encodes the
subsequence of s3 containing al. Then

1. c1 . . . ci−5 is a prefix of shrinkj(s1) and |shrinkj(s1)| ≤ i+ 5

2. ci+4 . . . co is a suffix of shrinkj(s2) and |shrinkj(s2)| ≤ o− i+ 7

Proof. We use induction on j.
For j = 0 there is nothing to prove since shrink0(si) = si for all i, 1 ≤ i ≤ 3. So

assume that the claim holds for some j ≥ 0. We establish the claim for j + 1.
Let’s denote shrinkj+1(s3) by c′1 . . . c

′
m′ , where c′i′ encodes the subsequence of s3

containing al and g(shrinkj(s3)) by g1 . . . gk, where gz encodes the subsequence of
s3 containing al. By induction hypothesis we have shrinkj(s1) = c1 . . . ci−5d1 . . . dp
and shrinkj(s2) = e1 . . . eqci+4 . . . co with p, q ≤ 10. Then the subsequence encoded
by g1 . . . gz−6 is a proper prefix of that encoded by c1 . . . ci−5 and the subsequence
of gz+5 . . . gk is a proper suffix of that encoded by ci+4 . . . co. Since the marks are
influenced by at most one predecessor and one successor (by the definition of ’local

11

minimum’), the marks of the sequences g1 . . . gz−7 and gz+5 . . . gk are identical to those
of the corresponding elements in g(shrinkj(s1)) and g(shrinkj(s2)). Since every block
has size at least 2 it follows that the subsequence c′i′−4 . . . c

′
i′+3 encodes the subsequence

of g(shrinkj(s3)) containing gz−7 . . . gz+6. Thus c′1 . . . c
′
i′−5 exclusively depends on

c1 . . . ci−5 and therefore is a prefix of shrinkj+1(s1) and c′i′+4 . . . c
′
o′ exclusively depends

on ci+4 . . . co and therefore is a suffix of shrinkj+1(s2).
Let’s denote g(shrinkj(s1)) by g1 . . . gz−6g

′
1 . . . g

′
y and shrinkj+1(s1) by

c′1 . . . c
′
i′−5d

′
1 . . . d

′
p′ . Note, that the sequence c′i′−4 . . . c

′
i′ encodes a sequence

gz−x . . . gz−6 . . . gz and the sequence d′1 . . . d
′
p′ encodes a sequence gz−x . . . gz−6g

′
1 . . . g

′
y

where y ≤ p+ 1. gz−x . . . gz−7 is encoded by at most 4 elements (then c′i′−4 . . . c
′
i′−1 =

d′1 . . . d
′
4). gz−6g

′
1 . . . g

′
y is encoded by at most ⌈(y + 1)/2⌉ = ⌈(p + 2)/2⌉ elements.

Since p ≤ 10, p′ ≤ 4 + 6 = 10. A similar argument shows that q′ ≤ 10 and we are
done.

Lemma 6

Lemma 6 tells that all but a small middle part of shrinkj(s3) can be copied
from either shrinkj(s1) or shrink

j(s2). The proof of Lemma 6 also gives the recipe
for computing the missing part from shrinkj(s1), shrink

j(s2) and g(shrinkj−1(s3)):
Again, let gz be the element of g(shrinkj−1(s3)) encoding the subsequence of s3
containing al. Compute the marks for the elements gz−6 . . . gz+5 and then compute the
middle part ci−4 . . . ci+3 (by retrieving or assigning signatures). To get shrinkj(s3)
combine this middle part with the parts c1 . . . ci−5 of shrinkj(s1) and ci+4 . . . co of
shrinkj(s2) (which we easily get with the help of the information stored in the nodes
of the trees).

Now the computation of the hierarchical representation s̄3 of s3 is easy to under-
stand. Generally all operations are performed persistently. This is essentially done
by copying all nodes that are to be changed and then changing these copies. The
details of this technique can be seen in [DSST89].

In the following s1 = a1 . . . al, s2 = al+1 . . . an, s denotes a sequence, g(s) is
denoted by g1 . . . gm and Ts denotes the balanced binary tree for a sequence s.

Procedure RanConcatenate(s1, s2, s3 : sequence);

1. Compute Ts3 by joining Ts1 and Ts2 .

2. Compute Tg(s3) by joining Tg(s1) and Tg(s2) (in the case that al = al+1 recompute
the corresponding element of gs3).

3. Let s = s3, let z be such that gz encodes the subsequence of s3 containing al
and let s̄3 be an empty list.

4. while |s| > 1 do steps (5) to (8).

5. Append s and g(s) at the end of the list s̄3.

12

6. Choose (or retrieve) the priorities of the subsequence gz−5 . . . gz+4 of g(s). Then
compute the marks of gz−6 . . . gz+4 in Tg(s).

7. Let s = shrink(s), where shrink(s) is computed as described above.

8. Compute Ts from the corresponding trees of s1 and s2 and the new middle part.
If |s| > 1 then compute Tg(s) and update z.

9. Append s at the end of s̄3.

The complexity of the operation RanConcatenate is given by

Lemma 7 ARanConcatenate operation requires expected timeO(log2 n) and expected
space O(log2 n).

Proof. Lines (1) and (2) require time O(log n). Lines (7) and (8) can also be
done in O(log n) by use of the informations stored in the nodes of the trees (see
section 3). Let L be the number of bits of precision needed to represent a random
priority so that all of the random priorities will be distinct and let l̄ = ⌈L/w⌉ be
the maximal number of memory words needed to represent a priority. Then line (6)
needs time O(l̄). In line (7) we have to recompute the signatures of O(1) blocks. Let
l be the maximal length of a block in s̄3. Then line (7) needs time O(l) to retrieve or
create the signatures. Note that priorities are only assigned to those signatures being
element of a sequence g(s) (see line (6)). Line (8) again needs time O(log n). Thus
we spend time O(log n + l + l̄) per level of the hierarchy. Since there are O(log n)
recursion steps we need time O(log n(log n+ l + l̄)).

Now we want to compute the expected size of the largest block.

Lemma 8 E[l] ≤ 2 log n+ 2

Proof. Let l′ be the length of the longest subsequence of increasing priorities in
a sequence s. Since every block of s is a sequence of elements of increasing priorities
followed by a sequence of elements of decreasing priorities it follows that E[l] ≤ 2E[l′].
Let us estimate E[l′]. Suppose that s = a1 . . . ak and let j and t be positive integers.

Pr[[prio(aj) < prio(aj+1) < . . . < prio(aj+t−1)] = 1/t! and so

Pr[∃j : prio(aj) < prio(aj+1) < . . . prio(aj+t−1) ≤ k/t!

Hence E[l′] ≤ ⌈log k⌉+
k∑

t=⌈log k⌉+1

k/t!

≤ ⌈log k⌉+ 1.

E[l′] ≤ 2⌈log k⌉+ 2 ≤ 2⌈log |s|⌉+ 2

Lemma 8

13

Note that the expected number of signatures (and therefore the incremental space
cost) produced by a Concatenate operation is log2 n. Furthermore since n is bounded
by 2m, the expected value of max sig is at most m3.

Next we compute the expected number of bits for the priorities. Let m be the
number of sequences in the family and Prio the set of priorities. Note that on each
level of Concatenate at most 10 priorities are chosen (line (6)). Since there are log n
levels and n is bounded by 2m there are at most 10m2 priorities assigned.

Lemma 9 E[L] ≤ 40⌈logm⌉+ 11.

Proof. Let agr be a shorthand for ’Some two priorities prio1 and prio2, where
prio1, prio2 ∈ Prio, agree in the first k bits’. Then

Pr[agr] ≤ |Prio|2/2k+1.

Hence E[L] ≤ 2⌈log |Prio|⌉+
∞∑

k=2⌈log |Prio|⌉+1

|Prio|2/2k+1 ≤ 2⌈log |Prio|⌉+ 1.

Since |Prio| ≤ 10m2 it follows that:

E[L] ≤ 40 logm+ 11.

Lemma 9
Thus the expected number of bits needed to represent priorities is small enough

to be represented in O(1) words of memory (l̄ is a constant) and the complexity of
the operations is not affected by more than a constant. It follows that each recursion
step takes expected time O(log n) and the Lemma is proven. Lemma 7

Now let’s turn to the split operation. Let s1 = a1 . . . an, s2 = a1 . . . ai and
s3 = ai+1 . . . an. Lemma 6 also suggests how to compute shrinkj(s2) and shrinkj(s3)
if shrinkj(s1), g(shrinkj−1(s2)) and g(shrinkj−1(s3)) are given: Let shrinkj(s1)
be denoted by c1 . . . ck where cz encodes the subsequence of s1 containing al, let
g(shrinkj−1(s2)) be denoted by g1 . . . gp and let g(shrinkj−1(s3)) be denoted by
h1 . . . hq. Then choose priorities for the elements gp−12 . . . gp and h1 . . . h12; compute
the marks for gp−13 . . . gp and h1 . . . h13. Lemma 6 guarantees that now all informa-
tion required to compute shrinkj(s1) is available. c1 . . . cz−5 is a prefix of shrinkj(s2),
gc−4 . . . ck is a suffix of shrinkj(s3) and the missing parts can easily be computed.

In the following s and s′ denote sequences, g(s) is denoted by g1 . . . gp, and g(s′)
by h1 . . . hq.

Procedure RanSplit(s1, s2, s3: sequence; i: integer);

1. Compute Ts2 , Ts3 , Tg(s2) and Tg(s3).

2. Let s = s2 and s′ = s3; let s̄2 and s̄3 be empty lists.

14

3. while |s| > 1 do steps (4) to (7).

4. Choose the priorities of the sequence gp−12 . . . gp if necessary; compute the marks
of gp−13 . . . gp in Tg(s) according to the randomized marking rule.

5. Append s and g(s) at the end of the list s̄2.

6. Let s = shrink(s), where shrink(s) is computed as explained above.

7. Compute Ts from the corresponding tree of s1 and the new end part; if |s| > 1
compute Tg(s).

8. while |s′| > 1 do steps (9) to (12).

9. Choose the priorities of the sequence h1 . . . h12 if necessary; compute the marks
of h1 . . . h13 in Tg(s′) according to the randomized marking rule.

10. Append s′ and g(s′) at the end of the list s̄3.

11. Let s′ ← shrink(s′), where shrink(s′) is computed as explained above.

12. Compute Ts′ from the corresponding tree of s1 and the new beginning part; if
|s′| > 1 compute Tg(s′).

13. Append s at the end of s̄2 and s′ at the end of s̄3.

Lemma 10 A RanSplit operation requires expected time O(log2 n) and expected space
O(log2 n).

The proof is analogous to that of Lemma 7.

4.2 The Deterministic Update Operations

The deterministic operations are essentially implemented in the same way as the
randomized operations. As pointed out above, the main difference is the computation
of the block decomposition. The analogous Lemma to Lemma 6 is the following:

Lemma 11 Let s1 = a1 . . . al, s2 = al+1 . . . an and s3 = s1s2 be sequences and j ≥ 0
an integer. Let shrinkj(s3) = c1 . . . co and let i be such that ci encodes the subsequence
of s3 containing al. Then

1. c1 . . . ci−8 is a prefix of shrinkj(s1) and |shrinkj(s1)| ≤ i+ 7

2. ci+log∗ m3+10 . . . co is a suffix of shrinkj(s2) and |shrinkj(s2)| ≤ o−i+log∗ m3+11

15

The proof is completely analogous to that of Lemma 6. The computation of
shrink(s3) is done as follows: let’s denote g(shrinkj−1(s3)) by g1 . . . gk and let
gz be the element encoding the subsequence of s3 containing al. The marks of
the elements g1 . . . gz−13 and gz+2 log∗ m3+16 . . . gk are identical to the corresponding
marks in g(shrinkj−1(s1)) and g(shrinkj−1(s2)). To compute new marks for the
elements gz−12 . . . gz+2 log∗ m3+15 we run the algorithm Three − colors on the sub-
sequence gz−log∗ m3−18 . . . gz+2 log∗ m3+19 since all these elements take influence on the
missing marks. Afterwards we can compute shrinkj(s3) by computing the middle part
ci−7 . . . ci+log∗ m3+10 and copying the other parts from shrinkj(s1) and shrinkj(s2).
Now it is easy to formulate the procedure DetConcatenate.

In the following let s1 = a1 . . . al and s2 = al+1 . . . an. g(s
′) is denoted by g1 . . . gm

and Ts denotes the balanced binary tree for a sequence s.

Procedure DetConcatenate(s1, s2, s3 : sequence);

1. Compute Ts3 by joining Ts1 and Ts2 .

2. Compute Tg(s3) by joining Tg(s1) and Tg(s2) (in the case that al = al+1 recompute
the corresponding element of gs3).

3. Let s = s3, let z be such that gz encodes the subsequence containing al and let
s̄3 be an empty list.

4. while |s| > 1 do steps (5) to (8).

5. Append s and g(s) at the end of the list s̄3.

6. Run Three–colors(gz−log∗ m3−18 . . . gz+2 log∗ m3+19); then change the marks of
gz−12 . . . gz+2 log∗ m3+15 according to the output of Three–colors and the deter-
ministic marking rule.

7. Assign s to be shrink(s), where shrink(s) is computed as indicated above.

8. Compute Ts. If |s| > 1 then compute Tg(s) and update z.

9. Append s at the end of s̄3.

The complexity of the operation DetConcatenate is given by

Lemma 12 A DetConcatenate operation requires time O(log n(logm log∗ m+log n))
and space O(log n log∗m).

16

Proof. First note that on every level of the hierarchical representation we create at
most O(log∗m) new signatures. Thereby the space bound follows as well as the fact
max sig ≤ m3, since log n is bounded by m.

Furthermore, lines (1) and (2) require time O(log n). Computing the new marks
(line (6)) needs time O((log∗ m)2) (we perform log∗ m3 iterations on a sequence of
length about 2 log∗ m3; see Lemma 3). Note that we only have to redecompose a
subsequence of length O(log∗m) in line (6). For the remaining parts of the sequence
we use the information (and the subtrees) of the hierarchical representations of s1
and s2. Thus when we compute shrink(s) (line (7)) we need time O(logm log∗ m) to
retrieve or create the signatures (time O(logm) per dictionary lookup). The building
of the trees in lines (8) is done by split and join operations and needs time O(log n).
Thus we spend time O(logm log∗ m+log n) per level of the hierarchy. Since there are
O(log n) recursion steps we need time O(log n(logm log∗ m+ log n)) and the Lemma
follows. Lemma 12

Now let s1 = a1 . . . an; g(s) is denoted by g1 . . . gp, and g(s′) by h1 . . . hq.

Procedure DetSplit(s1, s2, s3: sequence; i: integer);

1. Compute Ts2 , Ts3 , Tg(s2) and Tg(s3).

2. Let s = s2 and s′ = s3; let s̄2 and s̄3 be empty lists.

3. while |s| > 1 do steps (4) to (7).

4. Run Three–colors(gp−log∗ m3−26 . . . gp). Then change the marks of gp−20 . . . gp in
Tg(s) according to the output of Three–colors and the deterministic marking
rule.

5. Append s and g(s) at the end of the list s̄2.

6. Let s← shrink(s), where shrink(s) is computed as indicated above.

7. Compute Ts; if |s| > 1 compute Tg(s).

8. while |s′| > 1 do steps (9) through (12).

9. Run Three–colors(h1 . . . h3 log∗ m3+30). Then change the marks of h1 . . . h3 log∗ m3+26

in Tg(s′) according to the output of Three–colors and the deterministic marking
rule.

10. Append s′ and g(s′) at the end of the list s̄3.

11. Let s′ ← shrink(s′), where shrink(s′) is computed as indicated above.

12. Compute Ts′ ; if |s′| > 1 compute Tg(s′).

17

13. Append s at the end of s̄2 and s′ at the end of s̄3.

The complexity of the DetSplit operation is given by

Lemma 13 A DetSplit operation requires time O(log n(logm log∗m + log n)) and
space O(log n log∗m).

The proof is analogous to that of Lemma 12.

References

[CV86] R. Cole, and U. Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information & Control, 70: 32–53, 1986.

[DKMMRT88] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heyde,
H. Rohnert, and R.E. Tarjan. Dynamic perfect hashing: Upper and lower
bounds. Proc. 29th IEEE FOCS, 524–531, 1988.

[DSST89] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data
structures persistent. J. Comp. Sys. Sci., 38: 86–124, 1989.

[GPS88] A.V. Goldberg, S.A. Plotkin, and G.E. Shannon Parallel symmetry–
breaking in sparse graphs. SIAM J. Disc. Math., Vol. 1, No. 4: 434–446,
1988.

[P88] W. Pugh. Incremental computation and the incremental evaluation of func-
tional programming. Ph.D. Thesis, Cornell University, 1988.

[PT89] W. Pugh, and T. Teitelbaum. Incremental computation via function caching.
Proc. 16th ACM POPL, 315–328, 1989.

[ST90] R. Sundar, and R.E. Tarjan. Unique binary search tree representation and
equality–testing of sets and sequences. Proc. 22nd ACM STOC, 18–25, 1990.

