

Fast Parallel Space Allocation,

Estimation and Integer Sorting (revised.)

Holger Bast and Torben Hagerup

MPI-I-93-123 June 1993

Abstract

Fast Parallel Space Allocation, Estimation

and Integer Sorting (revised) •

HOLGER BAST

TORBEN HAGERUP

Max-Planck-Institut für Informatik

D-66123 Saarbrücken, Germany

The following problems are shown tö be solvable in O(log*n) time with optimal

speedup with high prob ability on a randomized CRCW PRAM using O(n) space:

• Space allocation: Given n nonnegative integers Zl, ... , Zn, allocate n nonoverlapping

blocks of consecutive memory cells of sizes Zl, ... , Zn from a base segment of

O(L:j=l Zj) consecutive memory cells;

• Estimation: Given n integers in the range 1 .. n, compute "good" estimates of the

number of occurrences of each value in the range 1 .. n;

• Semisorting: Given n integers Zl, .. . , Zn in the range 1.·. n, store the integers

1, ... ,n in an array of O(n) cells such that for all i E {1, .. . ,n}, all elements of

{j : 1 ~ j ~ n and Zj = i} occur together, separated only by empty cells;

• Integer chain-sorting: Given n integers Zl, . .. , Zn in the range 1 .. n, construct a

linked list· containing the integers 1, ... , n such that for all i, j E {1, ... , n}, if i

precedes j in the list, then Zi ~ Z j.

Moreover, given slightly superlinear processor and space bounds, these problems or

variations of them can be solved in constant time with high probability.

As a corollary of the integer chain-sorting result, it follows that n integers in the

range 1 .. n can be sorted in O(lognjloglogn) time with optimal speedup with high

prob ability.

* Supported by the ESPRlT Basic Research Actions Program of the EC under

contracts No. 3075 and 7141 (projects ALCOM and ALCOM TI). A pre1iminary version of

this paper was presented at the 23rd Annual ACM Symposium on Theory of Computing

(STOC 91) under the title "Constant-Time Parallel Integer Sorting".

1

1 mtroduction

This paper studies a number of problems that are of fundamental importance in

parallel computing. Most of these have traditional, "exact" variants that are known not

to possess fast parallel solutions. More precisely, computing the parity of n bits reduces

to instances of these problems of s~ze n, which, therefore, by the lower bound of Beame

and Hastad (1989), cannot be solved faster than in 0(lognjloglogn) time on a PRAM

with any polynomial number of processors. Relaxing the problem definitions to allow

approximate solutions, however, we are able to obtain very fast algorithms that run with

optimal speedup on a randomized CRCW PRAM.

The first problem studied is that of space allocation, which we formalize as the

interval allocation problem. Imagine that we are presented with n simultaneous requests,

each of which is for a certain number of consecutive memory cells. Note that arequest is

not for specific memory cells, but merely indicates the number of cells needed. Abstractly

speaking, such requests might originate with a collection of concurrently executing tasks,

each of which needs a certain amount of working space for its computation. The

present paper provides several concrete examples of situations where such requests arise

naturallYi many more can be found in the papers cited below. Given the set of requests,

the goal is to satisfy each request, i.e., to supply the requesting agent with a private

block of memory of the requested size.

We may view the allocated blocks as nonoverlapping subarrays of a single base array.

The exact version of the interval allocation problem requires the size of the base array

to exactly equal the sum of all requested sizes, and is clearly subject to the lower bound

mentioned above. We must therefore relax this requirement, but still want to insist that

not too much space be wasted. For reasons similar to those that motivate the use of

the O-notation, we require the size of the base array to be at most a constant factor

larger than the sum of the requested sizes. With this convention, we are able to solve

interval allocation problems of size n in O(log*n) time with optimal speedup with high

prob ability. As shown by MacKenzie (1992), this is as fast as possible for any algorithm

that uses no more than n processors. A variant of interval allocation called interval

marking is a natural formalization of the (vaguely defined) processor allocation problem,

which adds to the importance of the interval allocation problem.

The second problem studied is that of profiling. We are here given an array of n

keys, and the task is to determine the multiplicity (i.e., the number of occurrences) of

each value represented among the keys. The exact version of the problem asks for the

exact multiplicities and,again, is clearly subject to the lower bound of n(lognjloglogn).

We therefore content ourselves with appro.xim.ate counts. We assume that the values

represented among the keys are integers in a range 1 .. m, where m is at most linear in n.

2

H this is not the case initially, static hashing can frequently be used to map the original

values injectively to a sufliciently small range of integers, after which approximate counts

can be computed using our algorithms and associated with the original values (see (Bast

andHagerup, 1991) and (Bast ei al., 1992) for the best known results on static hashing).

The output hence takes the form of m nonnegative integers b1 , ••. , bm , where bi is an

estimate of the number bi of occurrences of the value i, for i = 1, ... , m.

We study three different variants of the profiling problem. In the first of these,

the number of different values is assumed to be much smaller than the number of keys;

specifically, m = O(nl - 6), for some fixed 6 > o. In these circumstances, constant time

and n processors suffice, with high prob ability, to compute what we call a fine-profile, Le.,

a sequence b1 , • •• , bm with bi ~ bi ~ Kbi , for some constant K ;::: 1 and for i = 1, ... , m.

This simple result furnishes abasie tool used in many of our other algorithms.

The second and third variant of the profiling problem are concerned with the case

m = n, which is of special interest and importance (see below). The second variant

requires the estimates b1 , . • • , bn to be independent random variables (note that b1 , .•• , ~
are random variables because the execution of one of our (randomized) algorithms

constitutes a random experiment; the input is considered to be fixed). Given the difficulty

of analysis often caused by a lack of independence, this is a reasonable property for which

to ask. As concems the accuracy of the estimates, we · require on the one hand that

L:~=1 bi = O(n), a natural condition, andon the other hand that Pr(bi > abi) ~ 2-a
,

for i = 1, ... , n and for all a ;::: 1 (Le., the prob ability of an estimate being a times too

small decreases exponentially in a), a less natural condition that represents a compromise

between what we would ideally like and what we can easily compute. We show that

estimates b1 , ••• , bn with this property, called a coarse-profile, can be computed in

O((log"n)2) time with optimal speedup with high prob ability. In the third variant of

profiling, we give up on the independence of 61 , ... ,6n and instead try to compute the

estimates faster and to obtain more accurate estimates.

The third problem studied is that of semisorting (the term was taken from (Valiant,

1990)). To semisort a sequence of objects 1 each with a distinguished key, is to rearrange

the objects so that all objects with a common key occur together. We assume that the

keys are integers in the range 1 .. nj as above, static hashing can often be used to enforce

this condition if it is not satisfied initially. The lower bound of n(log n flog log n) applies

to semisorting, as defined so far, so we relax the definition by allowing the output to be

given in the form of a padded sequence of size O(n), Le.; O(n) special null objects are

allowed to intervene in arbitrary positions between the n objects that form the actual

semisorted sequence. Our result is that semisorting problems of size n can be solved in

O(log"n) time with optimal speedup with high prob ability. The proof is quite involved

and makes crucial use of the results obtained for the third variant of profiling - the

3

condition Pr(bi > abi) ::; 2-a or, rather, a variation of it tums out to be exactly what is

needed. We extend the semisorting result to strong semisorting, which requires that all

occurrences of a key of multiplicity b appear in a subarray of the output array of size

O(b).

Semisorting has many and diverse uses. Our result on strong semisorting directly

provides one of our best profiling results, namely a fine-profile for the case m = n.

Another immediate application is to integer chain-sorting. General chain-sorting takes as

input n keys drawn from a totally ordered universe and makes each key point to the next

larger key, if any (with an arbitrary total order imposed by the algorithm on each set of

keys of a common value), Le., the keys are stored in sorted order in a linked list. We

consider the chain-sorting problem with integer input keys drawn from the range 1 .. n.

In contrast with what is the case for profiling and semisorting, a preptocessing based on

hashing, which is a nonmonotonic operation, does not enable our integer chain-sorting

algorithm to cope with more general input keysj allowing only keys in the range 1 . . n

therefore is a true restriction. In recognition of this fact, we continue to use the term

"integer chain-sorting", rather than simply "chain-sorting". Note also that the lower

bound of Beame and Hastad does not apply to chain-sorting, even with no restriction on

key values. On the other hand, the well-known lower bound of!l(nlogn) for (randomized)

comparison-based sequential sorting, which holds also for chain-sorting, implies that our

result, O(log*n) time with optimal speedup with high prob ability, does not extend from

integer chain-sorting to general chain-sorting. As a rather trivial by-product of our fast

chain-sorting algorithm, we are able to improve the best previous result on (standard)

randomized sorting of n integers in the range 1 .. n: We show that this problem can be

solved in O(lognjloglogn) time with optimal speedup with high probability.

More substantial applications of our semisorting result were reported elsewhere.

Semisorting is used in (Hagerup, 1992a, 1992b) to simulate stronger PRAM variants

on the weaker TOLERANT PRAM; semisorting there serves to bring together all write

requests pertaining to a common memory cello Hagerup and Katajainen (1993) employ

semisorting in the construction of the Voronoi diagram of n random sites drawn

independently from the uniform distribution over the unit square; a grid divides the unit

square into approximately n cells, and the set of sites in each cell is computed by means

of semisorting. Our result also allows a significant simplification of the hashing scheme of

(Bast and Hagerup, 1991). In (Hagerup and Raman, 1992), finally, semisorting is used

for a variety of different purposes.

From a different point of view, the present paper explores the power flowing from

a combination of three new techniques in algoritbm design and analysis: First, the

"log-star" technique introduced by Raman (1990) and developed further by Matias and

Vishkin (1991). Second, randomized "scattering" procedures for estimating various

4

quantities crudely, but rapidly, And third, the analysis of randomized algorithms using

martingale theory, which is not new, but which in the past has not been used as often as

it deserves . A less detailed and more accessible account of most of the material in this

paper can be found in (Hagerup, -1992b); the reader may want to study that paper before

taking on the present one.

The structure of the paper is as follows: After some preliminaries in Section 2,

Section 3 intro duces various concepts under the general heading of "scattering" and lists

some of their basic properties. Section 4 deals with a special case of interval allocation

called compaction, and Section 6 extends this to so-called colored compaction. Section 5

presents first results for the fine-profiling problem, and Section 7 uses the results of

Sections 5 and 6 to solve the interval allocation problem. Sections 8 and 9 are devoted

to coarse-profiling and semisorting, respectively, and Section 10 describes applications of

semisorting. Section 11, finally, studies the consequences of allowing slightly superlinear

processor and space bounds. Every section uses essentially all sections before it, so that

it is difficult to read sections out of context.

2 Preliminaries

A CRCW P RAM (concurrent-read concurrent-write parallel random access machine)

is a synchronous parallel machine with processors numbered 1,2, ... and with a global

memory that supports concurrent (i.e., simultaneous) access to a single cell by arbitrary

sets of processors. The semantics of concurrent writing can be defined in many ways.

Accordingly, many different variants of the CRCW PRAM, each distinguished by a

different rule for the resolution ofwrite con:ßicts, have been introduced; see, e.g., (Chlebus

et nl., 1989; Hagerup and Radzik, 1990; Hagerup, 1992a) for definitions of many of these

models and for discussion of the relationshipsbetween them. The following two write

confiict resolution rules and corresponding variants are relevant to the present paper:

ARBITRARY (Shiloach and Vishkin, 1982): H two or more processors attempt to write to

a given cell in a given step, then one of them succeeds, but there is no rule assumed

to govem the selection of the successful processor;

TOLERANT (Grolmusz and Ragde, 1987): H two or more processors attempt to write to

a given cell in a given step, then the contents of that cell do not change.

It is easy to see that the ARBITRARY PRAM is (not necessarily strictly) stronger than the

TOLERANT PRAM in the sense that one step of a TOLERANT PRAM can be simulated by

a constant number of steps on an ARBITRARY PRAM with the same number of processors

and memory cells. In fact, most CRCW PRAM models commonly considered are stronger

than the TOLERANT PRAM in this sense. We employ the TOLERANT model throughout

5

the paper, with the sole exception ofLemmas 3.4(b) and 3.5 and Theorem 11.6 and their

proofs, which use the ARBITRARY model. The most direct imp1ementation of some of

our other a.1gorithms, however, assumes the ARBITRARY model, and we have to put in

an extra effort in order to derive a solution for the weaker TOLERANT PRAM. Since

we expect the distinction between different variants of the CRCW PRAM to be of little

concern to many readers, we try to make it possib1e to skip materia.1 that dea.1s only with

the translation between models.

Consider the following assertion: "Every problem that can be solved in T time

steps with p processors can a.1so, for every given kEIN, be solved in O(kT) time with

r p / k 1 processors". A simple but important simulation shows the assertion to hold for

the ARBITRARY PRAM: Each physica.1 processor simulates up to k virtua.1 processors

in a step-by-step fashion. We express this by saying that the ARBITRARY PRAM is

self-simulating and sometimes use the word "processor" to denote a virtua.1 processor in

the sense of this simulation. The number of operations executed by a para.llel a.1gorithm

that uses T time steps and p processors is defined to be its time-processor product pT. By

the above simulation, we a.1ways have PT = n(T), where T is the sequentia.1 comp1exity of

the problem solved by the a.1gorithm. According1y, the para.lle1 a.1gorithm is said to have

optimal speedup or to be op#mal if PT = O(T). Because of the self-simulating property, if

a problem can be solved on an ARBITRARY PRAM using t time steps and q operations,

then it can a.1so, for every given T 2: t, be solved in E>(T) time using O(q + T) operations,

Le., the aigorithm can be slowed down without 10ss. This makes.it convenient to express

the performance of the a.1gorithm by giving the pair (t, q) of minimum computation

time and number of operations. In contrast with a.ll other commonly considered PRAM

variants, the TOLERANT PRAM is not known to be self-simulating. Since it is still

important to know the extent to which a particular a.1gorithm can be slowed down (see

below), we are forced to indicate this explicitly, typica.lly in a statement of the form

"For a.ll T 2: log"n, O(T) time and rn/Tl processors suffice to ... " . We advise the reader

to interpret such a statement as "The time is O(log*n), and the a.1gorithm is optima.1

and can be slowed down". Note that if an a.1gorithm consists of 1 parts with (minima.1

time, number ofoperations) performance pairs (tl,ql), ... ,(t"q,) and ifeach part can

be slowed down, in the above sense, then the who1e a.1gorithm has a performance pair

(t, q), where t = 00::!=l ti) and q = 0CE!=l qi). It is a.1so easy to see that when

kEIN isa constant, we can a.1ways reduce the number of processors from p to IP/kl,

even on the TOLERANT PRAM, without increasing the processing time by more than a

constant factor and the space requirements by more than O(p). We sha.ll free1y use this

observation, which was also made in (Gil, 1990).

The majority of our a.1gorithms are randomized. Randomized a.lgorithms are

customarily divided into Monte Carlo a.1gorithms, which may occasiona.lly err, and Las

6

Vegas algorithms, which never err, but which may either take a long time to produce a

(correct) result, or finish on time without producing any result - it is easy to transform

any Las Vegas algorithm from one of these modes of operation to the other. In all cases,

the analysis of a randomized algorithm bounds the prob ability of the relevant undesirable

behavior, which we call the failure probability (for a Las Vegas algorithm, this is a slight

misnomer).

A Las Vegas algorithm is clearly more desirable than a Monte Carlo algorithm, since

it is trivial to run a Las Vegas algorithm as a Monte Carlo algorithm: H the algorithm

has not produced any result within a suitable response time, abort it (if it is still running)

and output an arbitrary value. The distinetion between Monte Carlo algorithms and Las

Vegas algorithms will be crucial at one point of our exposition. At any rate, although this

is not always done, be believe that it is important to classify each randomized algorithm

as either Monte Carlo or Las Vegas . We will do so by appeIiding the appropriate one of

"(Monte Carlo)" and "(Las Vegas)" to the bound on the failure prob ability given for each

algorithm.

Informally, a randomized algorithm can be formulated as a Las Vegas algorithm

whenever its output can be verified using negligible resources, either after the fact or

by the algorithm itself - this is because the algorithm can be e.x:ecuted repeatedly

until some output passes the verification. Whenever we classify an algorithm as a Las

Vegas algorithm, it will be easy to see that such verification is possible, and we will not

demonstrate this explicitly.

As usual, E l = O(E2), where E l and E2 are expressions, means that there is a

constant c > 0 such thatEl::S; cE2 • Note that we require this relation to hold for all legal

values of the parameters occurring in E l and E2 , not just for sufficiently large values of

these parameters. The constant c is independent of all other parameters, except that it

may depend on quantities that are explicitly qualified as "fixed" (in the present paper,

such quantities are always denoted by the symbols 5 and J-L). The meaning of E l = n(E2)

is defined analogously.

In order to make many proofs more readable, we make extensive use of the notion of

a negligible probability. What constitutes a negligible probability depends on the conte.x:t.

Is the goal, e.g., to show that some event occurs. with prob ability 2-nfl
(1), then in the

proof we can ignore any polynomial (in n) number of probabilities of the form 2-0 (nt:),

für arbitrary f > 0, since for sufficiently large values of n the sum of such probabilities

will be bounded by 2-n t:' , for suitable f' > 0; we here rely on the fact that all problems

considered in the paper become trivial if the problem size n is bounded by a constant.

An event that occurs with high probability is the complement of an event of negligible

prob ability. We often tacitly assume that such events always occur . Whenever we

speak of "choosing at random", we mean choosing from the uniform distribution and

7

independently of other such choices. We assume processors to be equipped with unit-time

operations for integer addition, subtraction, multiplication and division with remainder ,

for computing 26
, for every given oS EIN, and for choosing a random integer from the

set {1, ... , oS}, for every given sEIN. As a minimum, we assume that the available

operations can be executed in constant time for integer operands and results of absolute

value bounded by n + m + p, where n is the input size, m is the largest absolute value of

an input number, and p is the number of processors of the machine under consideration,

i.e., a (standard) logarithmic word length suffices.

When nothing else is stated, arrays are assumed to be one-dimensional. Given an

array A, we denote by lAI its size, i.e., the number of cells in A. Although, in principle, a

memory cell contains a single integer, we often find it convenient to pretend that a cell

can contain an entire record of an arbitrary, but constant, number of (integer) fields;

achieving this is simply a matter of considering a constant number of cells as a unit,

also called a cello When we state that a problem can be solved by a certain number of

processors or speak of allocating a certain number of processors to some task, we always

assume the processors to be consecutively numbered. Without stating this explicitly, we

also assume that each processor "comes equipped with" a cell indexed by its processor

number in a suitable array shared by all processors, which can be used for coordination

between processors working on a common task. One consequence of this is that our

processor bounds are always dominated by our space bounds.

We use "log" to denote the binary logarithm function. For k = 0,1, ... ,

logek) denotes k-fold application of the function 'z-+ max{logz, 1}, i.e., logeO)z = z

and logen)z = max{logloge k- 1)z,1}, for all z > ° and all kEIN. For nEIN,

log"'n = min{k EIN: logek)n = 1}. Although extracting logarithms is not one of our

standard operations, we will assume that the function z f-+ Llog z j can be evaluated

in constant time by a single processor, for z E {1, ... , n}. This is justified hy an

observation of Hagerup and Radzik (1990), who show that a table realizing this function

on the domain in question can be constructed in constant time with n processors. As a

consequence, Llogek)nj can be computed in O(k) time by a single processor, for arbitrary

given kEIN. It is also easy to see that for any given rational number q, the function

Z""-+ L zq j can be evaluated in constant time with n processors, for z E {1, ... , n} (details

are given in (Hagerup, 1992d)).

Some of the constants appearing in our proofs are very large. This is not evidence

of a true problem, but merely reflects adecision never to add to the complexity of an

argument in order to obtain smaner constants. In particular, we make frequent use of the

very crude estimates 2% ~ z, for all z ~ 0, and r z 1 ::; 2 L z J, for all z ~ 1. We expect that

a less generous analysis would yield reasonable constant factors.

Our probabilistic analysis is based on the two lemmas below. Lemma 2.1 states

8

various inequalities commonly known as Chernoff bounds.

Lemma 2.1: For every binomially distributed random variable S, the following holds:

(a) For all z ~ 2E(S), Pr(S ~ z) :S e-z / 6
;

(b) Pr(S :S E(S)/2) :S e-E (S)/8;

(c) For all z > 0, Pr(S ~ z):S c~Ey)r.

Proof: Part (a) with z = 2E(S) as well as parts (b) and (c) are well-known and

proved, e.g., in (Hagerup and Rüb, 1990). In order to show the general form of

part (a), assume that S is the number of heads in m independent tosses of a coin with

prob ability p of heads and, without loss of generality, that z :S m. Let Zl,"" Zm

be independent random variables with range {O, 1, 2} and with Pr(Zi = 1) = P and

Pr(Zi E {1, 2}) = ~/(2m) (~p), for i = 1, .. . ,m. Then SI = I{i: 1 :S i:S m and Zi = 1}1

is distributed as S, S2 = I{i : 1 :S i :S m and Zi ~ 1}1 is binomially distributed with

E(S2) = z/2, and S2 ~ SI' But then, by the special case ofpart (a) already established,

Pr(S ~ z) = Pr(Sl ~ z) :S Pr(S2 ~ z) = Pr(S2 ~ 2E(S2)) :S C z
/

6
• •

The following fact is implied by Azuma's inequality (see (Bollobas, 1987) or

(McDiarmid, 1989)). Corollary 2.3 expresses the special form of Lemma 2.2(a) that we

shall most often use.

Lemma 2.2: Let mEIN, let Zl,"" Zm be independent random variables with finite

ranges, and let S be an arbitrary real function of Zl, ... ,Zm with E(S) ~ O. Assume

that S changes by at most c in response to an arbitrary change in a single Zi. Then

(a) Forevery z ~ 2E(S), Pr(S ~ z) :S e-z2
/(8c

2
m);

(b) Pr(S :S E(S)/2) :S e-(E(S»2 /(8c
2
m).

Corollary 2.3: Under the assumptions of Lemma 2.2,

for all E > O.

In later applications, we write "by aChernoff bound" instead of "by Lemma 2.1",

and "by a martingale argument" rather than "by Corollary 2.3".

When we state that an algorithm makes at most m random choices, a change in one

of which affects some real quantity S by at most c, what we mean is that S is determined

somehow by an execution of the algorithm, and that the execution is deterministically

given by the input, except that it may also be inftuenced by at most m independent

random quantities computed by the algorithm, a change in one of which (with the other

random quantities kept fixed) causes S to change by an amount of at most c. A statement

9

to the effect that a change in a single random choice affects at most a certain number of

output variables is to be interpreted in a similar manner.

The algorithms implied by the results listed below are needed as basic subroutines

m many places. For all nEIN, the integer prefix summation problem of size n is,

given n integers a1,"" an, to compute the prefix sums L~=1 aj, for i = 1, ... , n.

Lemma 2.4 combines many previous results by various authörs by giving the optimal

prefix summation time for any combination of three independent parameters.

Lemma 2.4 (Hagerup, 1992c): For all given integers n, m,p 2: 4, the prefi.x sums of n

integers, each of absolute size at most m, can be computed on a TOLER.ANT PRAM using

(
n logn {logm}) o - + 1 1 + max log -1-' 1 p og ogp ogp

time, p processors and O(n + p) space.

Corollary 2.5: For every fixed 5 > 0 and for all given integers n, r 2: 2, the prefi.x sums

of (logn)O(1) integers, each of absolute size polynomial in n, can be computed on a

TOLER.ANT PRAM using O(r) time, O(f n6 /rl) processors and O(n6
) space.

Lemmas 2.6 and 2.7 provide algorithms for the TOLER.ANT PRAM for problems

that are trivial on certain stronger PRAM variants. Lemma 2.6 is due to Alon and

Megiddo, who describe a constant-time algorithm for the more general problem Qf linear

programming in fixed dimension. Specialized to maximum-finding, their algorithm can

be viewed as a PRAM implementation of an algorithm for the parallel comparison-tree

given by Reischuk (1985).

Lemma 2.6 (Alon and Megiddo, 1990): There is a constant € > 0 such that for all given

n, rEIN, the maximum of n integers can be computed on a TOLER.ANT PRAM using

O(r) time, rn/rl processors and O(n) space with prob ability at least 1 - 2-n~ (Las

Vegas).

Lemma 2.7 (Fich et al., 1988b, Theorem 1): For all given n,r E IN, the following

problem can be solved on a TOLER.ANT PRAM using O(r) time, rn/rl processors and

O(n) space: Given n bits Z1,"" Zn, compute max({j : 1 :$ j :$ n and Zj = I} U {O}).

When dealing with groups of consecutively numbered processors, the nearest

preceding element problem defined below formalizes the task of broadcasting information

from the lowest-numbered processor in each group to the remaining group members.

Definition: For all nEIN, the nearest preceding element problem of size n is, given n

bits Z1, ..• , Zn, to compute Y1, . .. , Yn, where Yi = max({j : 1 :$ j < i and Zj = I} U {O}),

for i = 1, ... , n.

10

Part (a) of Lemma 2.8 below is due to Berkman and Vishkin (1989) and Ragde

(1990), who in fact prove a slightly stronger claim than the one cited here. Part (b) was

essentially shown by Raman (1990). His algoriihm solves only the less general ordered

chaining problem, which requires the computation of Yi only if Zi = 1, and he considers

only the case of constant k, but an extension to the form given here is straightforward.

Lemma 2.8: For all given nEIN, nearest preceding element problems of size n can be

solved on a TOLER.ANT PRAM

(a) in O(T) time using rn/Tl processors and O(n) space, for all given integers T 2: log'"n;

(b) in 0 (T) time using r kn / Tl processors and 0 (n) space, for all given k, TEIN with

T 2: k, provided that the number ofnonzero input bits is O(n/log(k)n).

Lemma 2.9, finally, states that small integers can be sorted fast with optimal

speedup.

Lemma 2.9 (Cole and Vishkin, 1989, Section 3.2): For every fixed 6 > 0 and for all given

integers n,m,T 2: 4 with T 2: log n/log log n + m6 , n integers in the range O .. m can be

sorted on a TOLER.ANT pRAM using O(T) time, rn/Tl processors and O(n) space.

3 Scattering

The fundamental intuitive meaning of a scattering is that each of a number of

objects is placed randomly and independently of other objects in one of a number of ceils

placed. in a row. In this paper we are frequently interested in the resulting fullness of the

row, Le., in the ratio of occupied ceils to the total number of ceils. Since this is clearly

a random variable that tends to take on larger values if more objects are scattered, it

provides a (very crude) basis for estimating the number of scattered objects. By letting

each objett participate in the scattering with some suitable prob ability instead of with

probability 1 as above (a conditional scattering), we can adjust the "region ofsensitivity"

of a scattering according to need. A graduated conditional scattering (GCS) takes this

idea one step furt her by providing a whole sequence of conditional scatterings, each with

a different associated prob ability of participation, which gives us a way to make more

substantial statements about the nllmber of scattered objects. Graduated conditional

scatterings were introduced in (Hagerup and Radzik, 1990), although not for the purpose

of estimation.

Our analysis of the outcome of a GCS is limited to determining the last scattering in

the sequence whose predecessor scatterings all satisfy a certain property. Two properties

are relevant to us: The row of a scattering being full (all ceils are occupied), and the row

11

being roughly half full. It turns out that testing according to full rows is computationally

easier, but leads to less accurate estimates. We now provide the technical details.

Definition: For all sEIN and 0 ~ p ~ 1, a conditional scattering with probability p and

of width s is a random experiment carried out by a set U as follows: Each element u EU,

independently of other elements, chooses a random number Zu with Pr(Zu = 0) = 1 - P

and Pr(Zu ::; i) = pj s, for i = 1, ... , s. An element u E U is said to occupY the value i

if Zu = i, for i = 1, ... , s, and the fullness of the conditional scattering is kj s, where

k = I{Zu : u E U}\{O}I ::; I{i: 1 ~ i ~ s and i is occupied by at least one element of U}I.

Two distinct elements in U collide if they occupy the same (nonzero) value. A scattering

of width s is a conditional scattering with probability 1 and of width s.

Note that the value 0 plays a special role in the above definition. An element of U

that chooses the random value 0, informally, is one that chooses not to participate in the

conditional scattering; p is hence the probability of participating.

Lemma 3.1: Let m, sEIN and 0 ~ p ~ 1, and let N be the number of occupied values

in a conditional scattering with prob ability p and of width s carried out by a set of m

elements. Then

(a) For all k E {O, ... ,s}, Pr(N ~ k) ~ (~) ·2m P(k/.t-1);

(b) Pr(N ~ sj2) ~ 2.t-mp /2;

(c) Pr(N < s) ~ s. 2-mp/.t;

(d) For all z > 0, Pr(N ~ z) ~ (mpejz)z.

Proof: For all k E {O, ... , s}, the probability that a fixed element occupies a value

outside a fixed set D ~ {1, .. . ,s} of size k is p(s - k)js. Hence the prob ability that all

occupied values belong to D is (1 - p(s - k)js)m ~ e-mp(.t-k)/.t ~ 2mP(k/.t-1). Part (a)

now follows by observing that D can be chosen in (~) ways. Parts (b) and (c) are special

cases of(a), and part (d) is implied by Chernoffbound (c) .•

Definition: For all r, sEIN, a graduated conditional scattering (GCS) with parameters

r X s is a sequence S ::; (Sl,' .. , Sr), where Si, called the ith row of S, is a conditional

scattering with probability 2-i and of width s, for i = 1, ... , r. For 0 ~ f ~ 1, define the

f-row of S as 0 if Sl has fullness < f, and otherwise as the largest integer i E {1, ... , r}

such that Sj has fullness ~ f, for j = 1, ... , i.

Lemma 3.2: For every z > 0, min{l, :E:o 2-2; Z} ~ 21- z.

Proof: :E:o 2-2;z ~ :E:o 2-z(i+ 1) = 1:~~.' H z ~ 1, then 1 ~ 21- z • On the other
. 2-· 2-· 1-z

hand, if z > 1, then 1-:-2-. ~ 172 = 2 .•

12

Lemma 3.3: Let m, r, SEIN and a> 0 and let L be the 1-row of a GCS of a set of m

elements with parameters r X s. Then if M = 2L s,

(a) Pr(L = r) ::; (2-"em/s)ß;

(b) Pr(M > max{s,am})::; (2e/aV;

(c) Pr(L < r and m > aM) ::; s· 21- a /2;

(d) Pr(L < r) ::; s. 21 - m /(2ß.2
r

).

Proof: (a) follows immediately from Lemma 3.1(d). If L > 0, row L is full. Hence by

Lemma 3.1(d), for every 1 ~ 0,

(1)

Likewise, if L < r, row L + 1 is not full, and Lemmas 3.1(c) and 3.2 imply that for every

1::; r,
LIJ

Pr(L< 1) ::; min{l, L s. 2-m.2-·-
1
/ß}

i=-oo
00

(2)

::; s . min{l, L 2-2'm.2- LIJ -1 /ß} ::; S • 21 - m.2-
1

-
1 /ß.

i=O

To show (b), apply (1) with 1 = log(max{s,am}/s) ~ o. This yields

(
21

-
lem) ß

Pr(M > max{s,am}) = Pr(L > 1)::; s ::; (2e/a)ß.

To show (c), apply (2) with 1 = min{log(m/(as)),r}::; r to obtain

Pr(L< r and m > aM) = Pr(L < 1) ::; s . 21 - m.2-
1

-
1
/ß ::; S . 21- a /2 .

(d) follows from (c) by taking a = m/(s· 2"). •

The following lemmas investigate the computational aspects of graduated conditional

scattering. Note that part (b) of Lemma 3.4 and Lemma 3.5 are needed only for the

proof of Theorem 11.6, which is not part of the main development .

Lemma 3.4: Let r, sEIN be given and suppose that a processor is associated with each

element of some set U. Then the 1-row of a GCS of U with parameters r X s can be

determined in constant time

(a) on a TOLERANT PRAM using rs additional processors and O(rs) space;

(b) on an ARBITRARY PRAM using one additional processor and O(rs) space.

Proof: (a) Let A be an r X s array. Each processor associated with an element of

U chooses a random cell A[l, J], where Pr(l = i, J = j) = 2- i / s, for i = 1, ... , r and

13

j = 1, ... , s, and distinct processors act independently (with whatever prob ability is left,

processors do nothing). In other words, each processor chooses a random row, row i being

chosen with prob ability 2- i , and then picks a cell at random from the chosen row. Next

. the value 1 is stored in each cell of A that was chosen by at least one processor associated

with an element of U, and the value 0 is stored in each of the remaining cells of A. On

the ARBITRARY PRAM, this would be trivial; on the TOLERANT PRAM, we proceed

as follows: Use the rs additional processors to associate one processor, called a guard,

with each cell of A and let each guard begin by storing the value 1 in its associated cello

Subsequently let each processor associated with an element of U attempt to write (an

arbitrary value) to its chosen cell in A; simultaneously, each guard attempts to change

the value stored in its associated cell from 1 to o. By definition of the TOLERANT PRAM,

this will succeed if and only if the cell was not chosen by any processor associated with an

element of U, i.e., afterwards the cell contams the desired value. This technique, which

we call guarded writing, was first used by Grolmuszand Ragde (1987) and appears to be

a fundamental technique for programming the TOLERANT PRAM. Once the cells of A

have been marked with zeros and ones as described above, it is easy to use the algorithm

of Lemma 2.7 to compute the conjunction Wi of A[i, 1], ... , A[i, s], for i = 1, ... , r. Finally

Lemma 2.7 is used agam to determine the smallest i E {1, ... , r}, if any, with Wi = o.

(b) Our algorithm centers around a solution to a . variant of a problem known as

the leftmost prisoner problem. The leftmost prisoner problem, introduced by Fich et al.

(1988a), is unusual in that an instance of the problem is not given by an input in a

traditional sense; rather , the instance is defined by the processors available for its solution

themselves. In more detail, an instance of the leftmost prisoner problem of size n is given

by a set of processors numbered 1, . . . , n, each of which is either active or inactive. At

least one processor is active, and the task is to compute the smallest processor number of

an active processor, whereby inactive processors do not participate in the computation in

any way. The latter restriction is essential- without it, the problem could be solved very

easily using the algorithm of Lemma 2.7. The complexity ofleftmost prisoner problems

of size n ~ 4 on the ARBITRARY PRAM was shown to be 9(loglogn) by Chlebus et

al. (1988) and Grolmusz (1991). Here we are interested in a variant of the problem

called the leftmost empty prison cell problem. The setup is exactly as for the leftmost

prisoner problem, but we want to compute the smallest processor number of an inactive

processor, or an indication of the fact that all processors are active. In Lemma 3.5 below

we show that leftmost empty prison cell problems can be solved in constant time on an

ARBITRARY PRAM. Here we will take this result for granted and describe its application

to graduated conditional scattering.

We use an r X s array A and begin by letting each processor associated with an

element of U choose a random cell in A exactly as in the proof of part (a). For each row

14

of A, we now wish to associate a processor with the row if and only if each cell in the

row was chosen by at least one processor. To this end we view each row as defining

an instance of the leftmost empty prison cell problem. For j = 1, .. . , s, each processor

having chosen the jth cell in the row temporarily adopts j as its processor number and

represents an active processor in the sense of the leftmost empty prison cell problem; the

fact that several processors may have chosen the same cell in A leadsto no problem,

since they will all carry out the same computation. For j = 1, ... , s, if the jth cell in

the row under consideration was not chosen by any processor, we associate with it a

fictitious inactive processor with processor number j. We can now use an algorithm for

the leftmost empty prison cell problem to determine whether any processor is inactive,

i.e., whether some cell in the row was not chosen by any processor. Hand only if all cells

were chosen, we associate one (or all) of the processors having chosen a cell in the row

with the row; note that in the special case in which no processor chose a cell in the row,

no processor will be associated with the row, as desired.

We now view the processors associated with some of the rows of A as defining an

instance of the leftmost empty prison cell problem in a similar way and observe that

solving this problem pro duces the desired result. The special case in which no row of A

has an associated processor can be handled by the single processor dedicated to the GCS .

•
Lemma 3.5: Leftmost empty prison cell problems can be solved in constant time on an

ARBITRARY PRAM.

Proof: In the algorithm described below we shall frequently want to mark cells that

we may not have been able to initialize. This is problematic, because an "undefined"

value present from the outset in a cell that is not marked may happen to coincide with

the value that would have been written there had the cell been marked. We avoid this

clifficulty by means of what we call dynamic marking: A processor marks a cell by first

writing 0 and subsequently 1 (say) to the cello Any processor wishing to know whether

the cell is marked reads its contents both between the two writes and after the second

write and deems the cell marked if and only if it observes a change from 0 to 1. Although,

in this scheme, the writing and reading of a mark takes place in an interleaved fashion, in

the description below we will pretend that the writing precedes the reading.

We can assume that n is apower of 2 and that at least one processor is inactive,

since both requirements can be satisfied by adding a suitable number of fictitious inactive .

processors (an ans wer larger than the number of original processors should then be

interpreted as an indication that the original processors are all active). Assume that the

processors are ordered linearly from left to right by increasing processor numbers. H the

leftmost processor is inactive, all active processors can discover this fact through dynamic

15

marking and output the correct answer (namely 1); assume therefore that this is not the

case.

Starting from the left, divide the processors into groups of sizes 1,1,2,4, ... , n/2 and

call a group complete if all processors in the groupare active, and incomplete otherwise.

A first part of the computation serves to let each active processor know whether its

group is complete. This can be done as follows: Using dynamic marking, each processor

determines whether its left neighbor is active, whereby the left neighbor of the leftmost

processor in a group is taken to be the rightmost processorin the group (i.e., the ordering

within each group is cyc1ic). Then a ce1l associated with each group is initialized to 1 by

all active processors in the group and subsequently set to 0 by all active processors in the

group whose left neighbors are inactive. It is easy to see that if at least one processor in

the group is active, the value of the cell remains 1 if and only if the group is complete.

The processors in incomplete groups do not participate in the remaining computation.

The processors in a complete group of size m, on the other hand, use dynamic marking

and the algorithm. of Lemma 2.7 to solve the leftmost empty prison ce1l problem defined

by the m' = min{ 4m, n} leftmost processors and output the result if and only if at least

one of the m' leftmost processors is inactive.

Any output produced by a complete group c1early is the desired answer. On the

other hand, if the processor number of the leftmost inactive processor P is k, the group

to the left of P's group exists (by assumption) and is complete and of size at least k/4,

so that an output will be produced at least by this complete group. •

Whereas graduated conditional scatterings were introduced for the purpose of

estimation, we also employ a different kind of scattering, called v-scattering or (with

implicit v) multi-scattering, for the task of placing elements in distinct cells of a

destination array. Because of the more operational use, the definition below is formulated

in algorithmic terms.

Definition: For all v, SEIN, to v-scatter a set U over an array A of s cells is to

execute the following algorithm.: If v > s, do nothing. Otherwise divide A into v disjoint

subarrays of size at least L s / v J each and create v copies of each element in U. Then let

the set of ith copies use the ith subarray to carry out a scattering of width L s / v J and

identify the set of noncolliding copies, for i = 1, ... , v. An element in U is said to be

successful if it has at least one noncolliding copy; in particular, if v > s we consider all

elements of U to be unsuccessful. For each successful element u EU, let i and j be,

respectively, the number of a noncolliding copy of u and the value occupied by that copy,

and place u in the jth ce1l of the ithsubarray of A; note that this never places distinct

elements in the same cello The density of the v-scattering is the quantity IUlv / s.

16

Using Lemma 2.7, it is easy to see that if each element of a set U has an associated

group of v processors, then U can be v-scattered over an arbitrary array A in constant

time. Lemma 3.6 quantifies the efficiency of this procedure as a me ans of placing the

elements of U in A. The proof of Lemma 3.6 applies a martingale argument in a situation

where, apriori, the number of random choices made is too large for such an application.

We overcome this difficulty by fixing most of these choices in advance, Le., by considering

a restricted prob ability space. H we can show that some event occurs with prob ability at

most q independently of how the random choices are fixed, then the event occurs with

probability at most q even in the actual experiment, where random choices in fact are

not fixed. The same principle will be used again later.

Lemma 3.6: Let m, s, v E IN, denote by D the set of unsuccessful elements in a

v-scattering of a set U of size m over an array of size s and let p = mv J s be the density

of the v-scattering. Then

(a) For all u E U, Pr(u E D) ::S ptl j

(b) For every fixed subset R of U and for all z ~ 21Rlptl,

Proof: For part (a), it suffices to show for v ::S s that if U carnes out a scattering of

width l s J v J, then the probability that a fixed element u E U collides is at most mv J s. H

m ~ s J v, this is certainly true. Otherwise the probability under consideration is at most

m-l m~1 mv
--< <­
lsJvJ - sJv - 1 - s·

For part (b), let R be a fixed subset of U with IRI = r and consider the random choices

made by copies of elements not in R to be fixed in an arbitrary way. As in the proof

of part (a), a fixed element in R is unsuccessful with prob ability at most ptl, so that

E(IR n DI) ::S rptl. A moment's thought reveals that a change in a single random choice

(namely that of a single copy) can change IR n D I by at most 2. Since there are altogether

rv such choices, an applicationofLemma2.2(a) now shows that for z ~ 2rptl, IRnDI ~ z

with probability at most, e- z2
/(32rtl). •

Section 6 extends the basic multi-scattering algorithm above to colored multi­

scattering, where the set U to be multi-scattered is partitioned into color classes

U1 , ••. , Um and Ui is multi-scattered over aseparate array Ai, for i = 1, ... , m . It

is easy to see that if the density of the multi-scattering of Ui over ~ is bounded by

p, for i = 1, ... , m, then the assertions of Lemma 3.6 carry over to the more general

situation. This agrees weil with intuition, since the coloring of elements only helps the

multi-scattering algorithm to distribute copies evenly and avoid collisions.

17

4 Compaction

This section studies the compaction problem, which occurs as a base case of the

more general interval allocaiion problem considered in Section 7. Roughly speaking, the

compaction problem is to move a number of objects, scattered over a large source array,

to distinct cells in a smaller destination array, possibly with a small number of objects,

said to be unlucky, left behind in the source array. Our formalization of the problem

abstracts away the identities of the objects to be moved and simply takes the input to be

a sequence Zl, ... , Zn of n bits, where n is the size of the source array; Zj = 1 signifies

the presence and Zj = 0 the absence of an object in the jth cell of the source array,

for j = 1, ... , n. The output takes the form of n nonnegative integers Yl,· .. , Yn. H

Zj = 1, the object in the jth cell of the source array can be moved to the Yjth cell of

the destination array, for j = 1, ... , n, except that by convention Yj = 0 signals that the

corresponding object is unlucky. H Zj = 0, the value of Yj is immaterial and mayas well

be set to zero (condition (1) below).

Definition: For all nEIN and s ~ 0, an incomplete placement with bound s for n bits

Zl, ... , Zn is a sequence Yl, ... , Yn of n nonnegative integers such that

(1) For j = 1, .. . ,n, ifZj = 0, then Yj = 0;

(2) For 1 ~ i < j ~ n, if Yi :f. 0, then Yi :f. Yj;

(3) max{yj : 1 ~ j ~ n} ~ s.

The set {j : 1 ~ j ~ n, Zj = 1 and Yj = O} is called the residue set of the incomplete

placement. H the residue set is empty, theplacement is said to be complete.

Condition (2) in the above definition expresses that distinct objects may not be

placed in the same destination cell, and condition (3) states that size l s J suffices for the

destination array. The residue set is the set of indices of objects that are not placed in

the destination array.

Most of the computational problems introduced in this paper take as (part of) their

input a sequence Zl, ... , Zn. Although, formally, Zl, ... , Zn are integers . (sometimes

restricted further to be single bits), informally they represent objects of additional

internal structure. In particular, if i :f. j, the objects represented by Zi and Z j are

distinct, even if it happens that Zi = Zj. This is mirrored closely by what happens

in our algorithms for solving such problems. They typically begin by transforming the

input Zl, ... , Zn to n records Xl, ... , X n that are subsequently manipulated instead of

Zl, ... , Zn. For j = 1, ... , n, fields in the record X j contain the integer Zj, called the

value of X j, the integer j, called its index, as well as any other attributes that the

algorithms may need; Usually we shall not describe our algorithms at the level of

such prograrnming detail; note, however, that the symbols Xl, ... , X n will be used in

18

the above sense throughout the paper. When we speak of the jth input element, for

j = 1, ... , n, we usually mean the re cord Xj, and X = {Xl' ... ' X n } is called the input

set. In particular, for i ::j: j, the ith and jth input elements are distinct .

For reasons of convenience, we will occasionally state that some algorithm is applied

to a subset of X. What we really mean in such a case is that the algorithm is

applied to the corresponding subsequence of Zl, ... ,Zn, usually permuted in some way

and augmented with a number of suitable dummy elements , neither of which affects the

problem in an essential way. Furthermore, we assume that enough additional information

is kept to interpret the output of the algorithm in terms of the original sequence

In the context of compaction, an active element is an input element of nonzero value

that has not yet been placed in the destination array. Once successfully placed, we say

that it has been deactivated or that it has become inactive. The incomplete compaction

problem with parameters dl --+ d2 , defined below, is, given at most dl active elements,
$

to move all except at most d2 of these to a destination array of size at most s.

Definition: For all nEIN and dl , d2 , S 2: 0, the incomplete compaction problem of

size n and with parameters dl --+ d2 is the following: Given n bits Zl, .. . , Zn with
$

L:j=l Zj ~ dl , compute an incomplete placement for Zl, .. . , Zn with bound s whose

residue set is of size at most d2 • H d2 = 0, we speak of complete rather than incomplete

compaction.

Lemma 4.1: For all given n, dEIN, complete compaction problems of size n and with

parameters d --+ 0 can be solved on a (deterministic) TOLERANT PRAM using constant
d"

time, n processors and O(n) space.

Proof: The result was proved by Ragde for the stronger ARBITRARY PRAM (Ragde,

1990, Theorem 1). Using Lemma 2.7, it is easy to translate Ragde's algorithm to the

TOLERANT PRAM. •

Lemma 4.1 works m constant time, but places the active elements in an array

with many more cells than the number of active elements. The far more important

complete linear compaction problem, with inessential differences also known as the linear

approzimate compaction or LAG problem (Matias and Vishkin, 1991), requires the size

of the destination array to be within a constant factor of the bound on the number of

active elements.

Definition: For all n, dEIN, the complete linear compaction problem of size n and with

limit dis the complete compaction problem of size n and with parameters d --+ o.
O(d)

19

We next show that complete linear compaction problems can be solved in constant

time using· a superlinear number of processors. Our algorithm first multi-scatters the

active elements over an auxiliary array in order to distribute them approximately even1y.

The auxiliary array is then divided into segments of a fixed size chosen so large as to

make it unlikely that any segment contains more than c times the average number of

active elements, for a suitable constant c > 1. H a destination array c times larger

than the number of active elements is now divided even1y among the segments, all

that remains is to distribute the destination cells allocated to each segment within the

segment, i.e., among the active elements stored there. This can be done via brute-force

prefi..x summation (Corollary 2.5) following a "loose" compaction of the active elements

withinthe segment (Lemma 4.1). The details follow.

Lemma 4.2: For every fixed 6 > 0, there is a constant € > 0 such that for all given

n, dEIN, complete linear compaction problems of size n and with limit d can be solved

on a TOLER.ANT PRAM using constant time, O(n1+6) processors and O(n1+6) space with

probability at least 1 - 2-n~ (Las Vegas).

Proof: Let v = rS/6l Without loss of generality we can assume that 6 is rational (so

that we can easily compute with 6, cf. Section 2) and that n ~ 4 and d ~ n/v (since

otherwise the compaction problem is trivial). It suffices to describe an algorithm that uses

constant time, O(n1+6 / 2) processors and O(n1+6/2) space and that fails with probability

at most 1/2, since we can execute such an algorithm nO(l) times in parallel and select

as our output the . outcome of any successful execution. H d < log n, the problem can

be solved by first using the algorithm of Lemma 4.1 to move the active elements to an

array of (logn)O(l) cells and subsequently compacting them exactly, i.e., numbering them

consecutively, using prefix summation (Corollary 2.5). Assume hence that d ~ logn.

Let A be an array of size vs, where s is chosen as a multiple of r = r d/ llog n J 1 with

s ~ n 1+6/4 , but s = O(n1+6/4). Then v-scatter the active elements in the source array

over A; by Lemma 3.6(a), the prob ability that some element cannot be placed in Ais at

most n· (d/ s)1J ~ n· (n-6/ 4)8/6 = l/n.

Divide A into vr disjoint segments of size sir each. The number S of active

elements placed in a fixed segment in the above v-scattering is clearly bounded by the

number S' of copies of elements choosing a cell in the segment in the v-scattering (S

may be smaller than S' because copies choosing a cell in the segment can collide, and

still sm aller because elements with a rioncolliding copy placed in the segment may be

moved tothe position of another noncolliding copy). Since the v-scattering partitions A

into v subarrays of r segments each and at most d copies choose cells in the subarray

containing the segment under consideration, S' is binomially distributed with expected

value dir ~ log nj Chernoffbound (a) therefore implies that S' ~ 1210gn with prob ability

20

at most e-21ogn :S n-2 • It follows that except with prob ability at most n . n-2 = l/n, no

segment contains more than 12 log n active elements.

Since we have nO(l) processors per segment, we can now use the algorithms of

Lemma 4.1 and Corollary 2.5 as in the beginning of the proof to attempt to place the

active elements in each segment in an array of size 12[lognl (the attempt fails only in the

unlikely event that some segment contains more than 12 flog n l elements). Assigning to

each segment a subarray of size 12 [log n l of a common destination array and moving each

active element to the appropriate cell in the destination array completes the compaction.

The total size ofthe destination arrayis 12vr[lognl = O(d), and the prob ability that the

algorithm fails is at most 2/n :S 1/2. •

Corollary 4.3: For every fixed 6 > 0 there is a constant € > 0 such that for all given

n, d, TEIN, complete linear compaction problems of size n and with limit d = 0 (nl - 6)

can be solved on a TOLER.ANT PRAM using O(T) time, rn/Tl processors and O(n) space

with probability at least 1 - 2-nE (Las Vegas) .

Proof: Without loss of generality assume that 6 is rational and that 6 :S 1. Since the

problem is easily solved using standard prefix sununation (Lemma 2.4) if T = nO(l), we

can further assume the availability of at least n l - 6/ 4 processors. Divide the input set X

into O(nl - 6 / 2) clusters of O(n6 / 2) input elements each and call a cluster nonempty if it

contains at least one active element. There are obviously at most d nonempty clusters, so

the algorithm of Lemma 4.2 can be used to place the indices of these in an array of size

O(d). This implicitlyplaces all active elements in an array ofsize O(d·n6 / 2) = O(nl - 6 /
2

),

after which the compaction can be completed via a second application of the algorithm

of Lemma 4.2. •

Matias and Vishkin (1991) showed that complete linear compaction problems of size

n and with limit d can be solved in O(log*d) time with n processors by successively

solving O(log* d) incomplete compaction problems. The basic idea is that the gradual

deactivation of elements frees resources that can be used to speed up the rate of

deactivation, thus leading to the fast convergence of the algorithm. In more detail,

Matias and Vishkin show that if the number of active elements has already dropped to

d/vc , for a suitable constant c> 0 and for some vE IN, then in constant time it can be

decreased further to d/2C1J
• The algorithm of (Matias and Vishkin, 1991) realizing this

claim is teasonably complicated and relies crucially on Lemma 4.1. We give a trivial

algorithm for the same task whose use of Lemma 4.1 is inessential and easy to avoid, and

whose complete analysis is much simpler than what would be required for the algorithm

of Matias and Vishkin. As concerns the claim of simplicity, observe below that the appeal

to Corollary 4.3 is needed only to deal with a special case that was not even considered

in (Matias and Vishkin, 1991).

21

Oux algorithm for incomplete compaction inputs at most d/v3 active elements stored

in a source array of size n and pi aces all except d/23v of these in a destination array

of size O(d/v). The basic idea is to 5v-scatter the active elements over an array of

size 10d/v2. Since, by assumption, the density of this 5v-scattering is at most 1/2,

a fixed active element remains active with prob ability at most 2-5v (Lemma 3.6(a)),

which allows us to conclude that with high prob ability the size of the residue set will be

bounded by d/23v • The only problem with this approach is that we do not know how to

allocate the 5v processors per active element necessary to carry out the 5v-scattering in

constant time. Similarly as in the proof of Corollary 4.3, we therefore divide the input

set X into clusters of size v each and 5v-scatter not the active elements themselves, but

instead (the indices of) the nonempty clusters, i.e., those clusters that contain at least

one active element. Since the number of nonempty clusters is obviously bounded by the

number of active elements, the density of the modified 5v-scattering is also at most 1/2.

Furthermore, the allocation of 5v processors to each cluster is trivial, and placing the

nonempty clusters in an array of size O(d/v2) implicitly places the active elements in an

array ofsize O(d/v).

Lemma 4.4: There is a constant € > 0 such that for all given n, d, v, TEIN with d ~ n,

incomplete compaction problems of size n and with parameters

d d
- ---t -
v3 O(djv) 23v

can be solved on a TOLERANT PRAM using O(T) time, fn/Tl processors and O(n) space

with prob ability at least 1 - 2-n
€ (Monte Carlo).

Proof: We give the proof for T = 1, leaving the easy extension to general values of T to

the reader (informally, the observation needed is that executing a multi-scattering over

several steps rather than in one step can only cause more elements to be successful). We

can obviously assume that v3 ~ d ~ n (otherwise we start with no active elements).

Consider the following algorithm:

Step 1: Divide X into 1 = f n/v 1 clusters Xl, ... , X, of at most v input elements

each and use the algorithm of Lemma 2.7 to compute a bit representation of the set

I = {i : 1 ~ i ~ I and Xi contains at least one active element}.

Step 2: Associate 5v processors with each element of I and 5v-scatter I over an array

of size f10d/v2l; let I' ~ I denote the set of unsuccessful indices. Use the outcome

of the 5v-scattering to place all active elements in UiE1\I' Xi in an array of size

vf10d/v2l = O(d/v).

The . algorithm clea.rly runs on a TOLERANT PRAM within the desired resouxce

bounds. A fixed active element remains active exactly if the index of its cluster is

22

unsuccessful in the 5v-scattering in Step 2. By Lemma 3.6(b), the number of such

unsuccessful cluster indices is bounded by max{2d/25v , n5
/ 9 }, except with prob ability at

most e-(, where (= (n5/ 9)2 /(32(d/v3) . 5v) = S1(n1 / 9) . With high prob ability the number

ofactive elements therefore decreases to at most v·max{d/24v ,n5
/

9
} ~ max{d/23v ,n8

/
9
}.

If this is more than d/23v
, at most n8

/ 9 elements remain active, and these can be

deactivated via an application of the algorithm of Corollary 4.3. •

Corollary 4.5: There is a constant € > 0 such that for all given n, dEIN, complete linear

compaction problems of size n and with limit d can be solved on a TOLER.ANT PRAM

using O(log*d) time, n processors and O(n) space with probability at least 1 - 2-n~ (Las

Vegas) .

. Proof: Assume that d ~ n and apply the algorithm of Lemma 4.4 at most log* d times in

successive stages, starting with v = 1. Each stage after the first attempts to place the

unlucky elements of the previous stage in a new but smaller array. Schematically,

d d d d d
- --+ - --+ - --+ - --+ -- --+ ... --+ 0
13 O(d/l) 23 O(d/2) 43 O(d/4) 163 O(d/16) (216)3 .

The total size of the destination arrays is

As mentioned above, a weaker form of Corollary 4.5 was first proved by Matias

and Vishkin (1991), who also noted that it has applications to processor scheduling as

per Brent 's principle. We next describe an improved algorithm that achieves optimal

speedup. A similar result was derived in a somewhat different way by Goodrich (1991).

Theorem 4.6: There is a constant € > 0 such that for all given n, d, TEIN with

T ~ log* d, complete linear compaction problems of size n and with limit d can be

solved on a TOLER.ANT PRAM using O(T) time, rn/Tl processors and O(n) space with

prob ability at least 1 - 2-n~ (Las Vegas).

Proof: Assume that T ~ (logn)/32, since otherwise the compaction can be carried out

using prefix summation (Lemma 2.4), and that d ~ n. We describe a preprocessing stage

that reduces the problem size from n to O(n/T). Divide X into rn/Tl clusters of at

most T input elements each and associate a processor with each cluster. Using a global

array A of size 8d, the processors now execute 2T rounds. In each round, each processor

chooses an active element in its cluster, if any are left, and attempts to place the chosen

element in a random cell of A. If the cell is not already occupied and there is no collision,

the element is placed and becomes inactive. It is easy to see that each such trial falls

23

with prob ability at most l/S, even conditionally on any pattern of failures in previous

rounds. As a consequence, all of r fixed trials by a fixed processor fail with prob ability

at most (l/Sr (if the processor runs out of active elements, let it subsequently execute

dummy trials that always succeed). But if a fixed processor has any active elements left

after 2r rounds (call such a processor lnt.sy), at least r of its trials must have failed,

which, by the above, happens with prob ability at most e;) (l/Sr ::s 227" . 2-37" = 2-7".

The expected number of busy processors therefore is O(n/27"). Our intent is to use a

martingale argument to show that with high prob ability, the actual number of busy

processors is O(n/r2
), which requires us to bound the effect on the number of busy

processors of a change in a single random choice. A change in a single random choice

here is the choice by some processor of a different ceil in A in some round. Say that a

processor P is affected (by the change under consideration) in a given round if the change

influences the success of P's trial in the given round or in some earlier round. At most

two processors are affected in the first round, and it is easy to see that the number of

affected processors at most tripies from one round to the next - an affected processor

can "affect" at most two other processors in each later round. Therefore the total number

of affected processors after 2r rounds is at most 327" ::s 247" ::s n l / 8 ; this is an upper

bound on the change in the number of busy processors caused by a change in a single

random choice. Since the algorithm makes a total of O(n) randoni choices, a martingale

argument now shows that with high probability, the actual number of busy processors is

O(n/27" + n l / 8 . n 5
/

8
) = O(n/r2

). But then the algorithm of Corollary 4.5 can be used

to place (the processor numbers of) the busy processors in an array of size O(n/r2).

This implicitly places the remaining active elements in an array of size O(n/r), and the

compaction can be completed via another application of the algorithm of Corollary 4.5 .

•
5 Fine-Profiling

The presemt paper studies several different kinds of profiling probl~s. In general

terms, the task is, given an array containing occurrences of several different values, to

estimate the multiplicity of each value, i.e., the number of occurrences of that value. We

now introduce . convenient notation and terminology that will be used throughout the

remainder of the paper. In the context of an input consisting of n integers Zl, ... , Zn in

the range o .. m, for n, mEIN, we take Bi = {Xj : 1 ::s j ::s n and Zj = i} and bi = IBil,
for i = 1, ... , m. For i = 1, ... , m, the integer i will also be called a color, Bi is a color

dass, and bi is called the multiplicity of the color i. For 1 ::s i < j ::s m, we consider

Bi and Bj to be distinct even if they happen to contain the same elements (this is

possible only if Bi = B j = 0). When a color dass Bi is manipulated as a single object by

24

some algorithm, it is represented by its index i. Note that elements of value 0 are not

considered to belong to any color class. They are just "dummy elements" that represent

the absence of a true element. Whenever we have dealt with certain color classes in some

algorithm, we can "remove" the elements of these color classes by setting their values to

0, which allows us to focus on the remaining color classes. This will be used on several

occasions. Finally let B = U~l Bi be the set of input elements with nonzero values.

Given n integers Zl, ... ,Zn in the range 0 .. m, for n, mEIN, an m-color profile for

Zl, ... , Zn is a sequence bl , ... , bm of m nonnegative integers, the idea being that bi is an

estimate of bi , for i = 1, ... ,m. A fine-profile, defined below, provides estimates that are

correct up to a constant factor; for reasons of convenience we also require each estimate

to be no smaller than the true multiplicity. For our purposes, having such estimates

usually is as good as knowing the exact multiplicities.

Definition: Let n, mEIN and let Zl,"" Zn be n integers in the range 0 .. m. For

i = 1, ... , m, take bi = 1 {j : 1 ::::; j ::::; n and Z j = i} I. An m-color fine-profile for

Zl,' .. , Zn is a sequence bl , ... ,bm of m nonnegative integers such that bi ::::; bi ::::; Kb i , for

i = 1, ... , m and for some constant K ~ 1. If additionally bl , ... , bm are independent,

the sequence bl , ... , bm is called a strong fine-profile for Zl, ... , Zn' The m-color (strong)

fine-profiling problem of size n is, given n and m, to compute an m-color fine-profile

(composed of independent estimates) for n given integers in the range 0 .. m.

Note that the quantity K in the above definition is a "true constant" (such as 10).

In fact, we could fix K at a particular value that can be deduced from the proof of

Theorem 5.3. We define a linear overestimate for a quantity b as a quantity b with

b ::::;b ::::; Kb, for some K ~ 1 that is a true constant in this sense. An m-color fine-profile

for Zl,"" Zn may therefore also be characterized as a sequence of linear overestimates

for bl , .. . ,bm .

A statement quite similar to Lemma 5.1 below can be derived by combining results

of (Stockmeyer, 1983) and (Ajtai and Ben-Or, 1984) with the obvious simulation of

unbounded fan-in circuits by CRCW PRAMs. We give a somewhat different proof, which

in the context of PRAMs seems more direct.

LemJlla 5.1: For every fixed 5 > 0 there is a constant € > 0 such that for all given

nEIN, the following problem can be solved on a TOLER.ANT PRAM using constant time,

O(n6) processors and O(n) space with probability at least 1- 2-n~ (Monte Carlo): Given

n bits Zl, ... ,Zn, compute a bit y such that

(1) ~j=l Zj ~ n/2 :::} y = 1;

(2) ~j=l Zj ::::; n/8 :::} y = o.

25

Proof: The idea of the proof, which the reader may appreciate better after the first

reading, is to "amplify" a constant-factor difference to a "polynomial" difference, which

can then easily be detected using Ragde's lemma (Lemma 4.1).

Ass~e that 6 is rational, that 6 :S 1 and that n 2: 16, take h = 4l n 6 /2 J :S n

and let t = 32 rlog n 1. Begin by determining the number of ones in each of h

random samples of t input bits each, Le., choose ht independent random numbers

Zl,l,.· ., Zl,t, Z2,l, . .. , Z2,t, . .. , Zh,l, .. . , Zh,t from the uniform distribution over {1, ... , n}

and use the algorithm of Corollary 2.5 to compute Si = L~=l Zz •. ;, for i = 1, ... , h. The

random variables Sl, ... , Sh are independent and binomially distributed with expected

value tb/n, where b = :Ei=l zi. Hence by Lemma 2.1, the following holds for i = 1, ... , h:

If b 2: n/2, then Pr(Si :S 8 rlognl) :S n-t, while if b :S n/8, then Pr(Si > 8 rlogn1) :S n- l .

For i = 1, ... , h, take A[i] = 1 if Si > 8 flog n 1, and let A[i] = 0 otherwise. The remaining

problem is, assuming that the vast majority of A[1], ... , A[h] has a common value (0 or

1), to find that value. Do this by attempting, using the algorithm of Lemma 4.1 with

d = l(h/4)1/4J, to move the set of ones in A to an array of size h/4. Set y = 1 if and only

if this falls.

In order to analyze the last part of the algorithm, note that S = :E~=1 A[i] is

binomially distributed, and that the preceding discussion implies that E(S) 2: h/2 if

b 2: n/2, while E(S) :S 1 if b :S n/8. By another application of Lemma 2.1, the following

happens with high prob"a.bility: S > h/4 if b 2: n/2, while S :S (h/4)1/4 if b :S n/8. In

the first case, the compaction using the algorithm of Lemma 4.1 surely falls, while in the

second case it will succeed. In either case y receives the correct value. •

When using the algorithm of Lemma 5.1 to analyze the outcome of a GCS

S = {SI, ... , Sr} below, we apply the algorithm separately to each row of S and define a

row to be almost-full if the algorithm assigns the value 1 to the bit y associated with the

row. The threshold of S is 0 if SI is not almost-full, and otherwise is the largest integer

i E {1, ... , r} such that Si is almost-full, for j = 1, ... , i.

In loose analogy with the definition of the f-row of a GCS and motivated by

Lemma 5.1, define an (11, I2)-row of a GCS S = (Sl, ... , Sr), for 0 :S ft :S 12 :S 1, as 0 if

none of Sl, ... , Sr has fullness > ft, and otherwise as any integer i E {1, ... , r} such that

Si has fullness > ft, while either i = r or Si+l has fullness < 12.

Lemma 5.2: Let m, r, sEIN and let L be a (l, t)-row of a GCS of a set of m elements

with parameters r x s. Let M = 2L s and take Cl = 1/(212e) and C2 = 12. Then

(a) If m 2: CIS, then Pr(m < CIM) :S 2-";

(b) Pr(L > 0 and m < CIM) :S 2-"; .

(c) Ifr 2: l1ogmJ, then Pr(m > C2M):S 2-".

26

Proof: We proceed as in the proof of Lemma 3.3. If L > 0, the fullness of row L is at

least 1/8. Hence by Lemma 3.1(d), for every 1 ~ 0,

00 (8 . 2-.i) r .. /81 (8 .2-1) r .. /81 ~ (24-slem) r .. /81 Pr(L > I) ~ L em ~ 2 _e_m __
S S ,

i= rll
(3)

Likewise, if L < r, the fullness ofrow L + 1 is at most 1/2. Hence by Lemmas 3.1(b) and

3.2, for every 1 ~ r,

LIJ
Pr(L < I) ~ min{l, L 2 .. -m.2-i-~}

i=-oo (4)
00

~ 2" . min{l, L 2-2im'2-lIJ-~} ~ 2"+l-m '2-'-~.

i=O

To verify (a), apply (3) with 1 = log(m/(cls)) ~ 0 to obtain

(
24 - 1) r .. /81

Pr(m< c1M) = Pr(L > I) ~ sem ~ 2-".

(b) follows immediately from (a) and the observation that L > 0 implies m ~ s/8 ~ CIS.

To verify (c), apply (4) with 1 = 10g(m/(c2s)) ~ r to obtain

The algorithm described in the theorem below outputs a sequence of independent

integers, except that it may fail and not produce any output at all. As regards the

independence, the precise statement is that for each input and conditionally on the event

that any output is produced, the integers output by the algorithm are independent .

Similar interpretations should be imposed on other results in the sequel concerning

randomized algorithms that are daimed to output independent random numbers. A

simpler proof of a statement similar to Theorem 5.3 was indicated by Goodrich (1991).

Theorem 5.3: For every fixed 5 > 0 there is a constant € > 0 such that for all given

n,m,T EIN with m = O(nl - 6), m-color strong fine-profiling problems of size n can be

solved on a TOLER.ANT PRAM using O(T) time, rn/Tl processors and O(n) space with

probability at least 1 - 2-nE (Monte Carlo).

Proof: The idea of the algorithm is simple: If the size of a color dass is nO(l), it can be

reliably estimated using a GCS; otherwise the color dass can be blown up by a factor of

n0(1) and its size estimated in the same way. We now provide the details.

Without loss of generality assume that 5 is rational and that n ~ 2. Since computing

exact multiplicities reduces to sorting, the given problem is easily solved using the

27

algorithm of Lemma 2.9 if T = nO(l); we can therefore also assume the availability of at

least n l - 6/3 processors. Let s = fn6/31. For i = 1, ... , m, use guarded writing to set

bi = 0 'if bi = 0, and otherwise carry out the following procedure, where Cl and C2 are as

defined in Lemma 5.2:

Step 1: Using the algorithm of Lemma 5.1, execute a GCS Si of Bi with parameters

Llog nJ x s and compute li as the threshold of Si. Note that we need aguard processor for

each cell of each GCS, and that by assumption sufficiently many processors are available.

Step 2: If li > 0, take bi = C2 ·2z,s. Otherwise use the algorithm of Corollary 4.3 to

allocate s processors to each element of Bi, let these processors execute a GCS S: with

parameters Llog(sn)J x s and take bi = C2 • 2z:, where l~ is the threshold of S:.

It is easy to see that the space needed by the algorithm is O(n). To see that the same

holds for the number of operations, note that by Lemma 5.2(c) and condition (1) of

Lemma 5.1, no processors are allocated to a fixed color dass Bi with bi > C2S, except

with negligible prob ability.

Now fix i E {1, ... , m}. The following happens with high probability: If li > 0,

we have bi S bi S (cdct)bi (by Lemma 5.2, parts (b) and (c)). If li = 0, then
r .-sbi S C2 ·2 's S (cdct}sbi, l.e., bi S bi S (cdct}bi (by Lemma 5.2, parts (a) and (c)). In

either case, bi is a linear overestimate for bio

The estimates produced by the algorithm are dearly independent unless the processor

allocation according to Corollary 4.3 fails, in which case the algorithm can report failure

and refrain from producing anyoutput. •

Remark: The above algorithm for fine-profiling is Monte Carlo, Le., we cannot detect if

the estimates computed are off by more than the allowed constant factor. In Seetion 10

we derivea Las Vegas fine-profiling algorithm (Corollary 10.5).

6 Colored Compaction

It is essential for the application to interval allocation described in Seetion 7 as well

as for other reasons to generalize the compaction problem studied in Section 4 to colored

compaction, where objects of different colors, initially placed in a single source ' array, are

to be moved to distinct destination arrays, one for each color. As before, an object that

cannot be placed is called unlucky, and we will not distinguish between an object and the

input element representing it. In the formal definition below, the value of an element

represents its color, the special value 0 still representing the absence of an object. This is

in agreement with our terminology concerning BI,"" Bm .

28

Definition: Given n, mEIN and d1 , • •. , dm ~ 0 as weil as n integers Z1, ... , Zn in the

range 0 .. m, an incomplete placement for Z1, ... , Zn with bounds d1 , • • . , dm is a sequence

Y1, .. . , Yn of n nonnegative integers such that

(1) For j = 1, ... , n, if Zj = 0, then Yj = 0;

(2) For 1 :S i < j :S n, if Zi = Zj and Yi t= 0, then Yi t= Yj;

(3) For i = 1, .. . ,m, max({yj: 1:S j:S n and Zj = i} U {O}):S di .

The set {j : 1.:S j :S n, Zj t= 0 and Yj = O} is called the residue set of the incomplete

placement. If the residue set is empty, the placement is complete.

Condition (2) ensures that distinct elements of the same color are not placed in the

same destination cell, and condition (3) states that the lucky elements of Bi fit into an

array of size l diJ, for i = 1, ... , m . If there is only a single color, Le., for m = 1, the

above definition reduces to our earlier definition of an incomplete placement.

The compaction problems introduced in Section 4 generalize in a natural way to

colored compaction. Our next goal is to extend the compaction algorithms given for

the special case of a single color to the case of several colors. Recall that in a first

approximation, the algorithm of Lemma 4.4 multi-scatters the active elements over an

array of size s, for suitably chosen s. A straightforward generalization to the case of m

colors would be to multi-scatter the elements of Bi over an array associated with Bi and of

a suitably chosen size Si, for i = 1, ... , m. Attempting this, we are faced with a somewhat

extraneous problem, namely that we do not know how to 'allocate m disjoint arrays of

prescribed sizes S1, ••• , Sm sufficiently fast without wasting too much space. Lemma 6.1

below therefore assumes "pre-allocated" such arrays to be supplied by any "user" of the

lemma; the sizes of these arrays simultaneously serve as the bounds d1 , ..• , dm . As is

rather obvious, the compaction of a particular color dass will not be very successful

unless the size of the array provided for that color dass is considerably larger than the

size of the color dass - we later define such color classes to be well-supplied. Lemma 6.1

therefore identifies the set of (indices of) elements in weIl-supplied color classes, and its

assertions apply only to such elements.

A more interesting complication in the generalization of the algorithm of Lemma 4.4

to the case of several colors lies in the fact that in Step 2 of the algorithm, several

elements forming a cluster are multi-scattered together. While this works fine in the case

of a single color, it is not appropriate ifthe elements in a cluster have different colors, i.e.,

are to be placed in different destination arrays. In order to solve this problem, recall that

the clusterwise scattering was motivated by effi.ciency considerations: multi-scattering

single elements works just as weil, but requires severalprocessors standing by each active

element.The idea now is first to compact the active elements as though they were all

of the same color - we already know how to do that - but to use the outcome of this

compaction exclusively to allocate the necessary processors to each active element, after

29

which the colored compaction can be completed in the simple way described above. As

suggested by this description, an initial part of our algorithm for colored compaction is

quite similar to the corresponding algorithm for(uncolored) compaction. Because of the

slight differences and since we want to extend the analysis of the algorithm given earlier,

however, we essentially reproduce it as Steps 1 and 2 of the algorithm of Lemma 6.1

below.

Before we state the lemma, recall that for c > 0, a real-valued function 5 defined on

a set M equipped with a metric 4> is said to satisfy a Lipschitz condition with constant c if

for all z, y E M, we have 15(z) - 5(y)1 $ c· 4>(z, y). The only metric space relevant to the

present paper, and the one implicitly intended in every reference to a Lipschitz condition,

is the set of subsets of {1, ... , n}, equipped with the metric 4> with 4>(U, V) = IU t::,. VI,

for all U, V ~ {1, .. . ,n}, where U t::,. V denotes the symmetrie difference of U and V, i.e.,

U t::,. V = (U\V) U (V\U).

Lemma 6.1: There is a constant € > 0 such that the following holds: Let n, m, v, 7" E IN

be given, suppose that Zl, ... , Zn are n given integers in the range 0 .. m and let

Al, ... , Am be m given nonoverlapping arrays. Take Bi = {j : 1 $ j $ n and Z j = i} and

bi = IBil, for i.= 1, . . . ,n, and define J = {i: 1 $ i $ m and IAi l2: 6vbi }, B' = UiEJBi

and b = 2::'1 bio Then an incomplete placement for Zl, ... , Zn with bounds lAll,· .. , IAml
can be computed on a TOLER.ANT PRAM using 0(7") time, ren + v 3 b)/7"1 processors and

O(n + v3 b) space with probability at least 1 - 2-ntr (Monte Carlo), such that the residue

set D of the placement satisfies condi tions (a)-(c) below.

(a) For every j E B', Pr(j E D) $ 2-11 ;

(b) For every fixed subset R of B' and for all z 2: IRI/211 ,

Pr(IR n DI2: z) $ 2e-z2/(29IRI113);

(c) For every nonnegative real function 5 of D that satisfies a Lipschitz condition with

constant c,

5 = 0(E(5) + cv3n li
/

8
)

with prob ability at least 1 _ 2-n1
/

8
•

Remark: As anticipated above, a color dass Bi is called well-supplied, in the context

of Lemma 6.1, if IAil 2: 6vbi , so that B' is the set of indices of elements in well-supplied

color dasses. Part (a) of the lemma says that any fixed element of a well-supplied color

dass is unlikely to remain active, part (b) extends this property from single elements

to arbitrary sets of elements in well-supplied color dasses, and part (c) states that any

function of the residue set that satisfies a Lipschitzcondition with a constant that is not

too large with high prob ability does not significantly exceed its expected value.

30

Proof: With the same justification as in the proof of Lemma 4.4, we give the proof only

for T = 1. Start by using the algorithm of Theorem 5.3 to compute an estimate b of b

and assume that b is indeed a linear overestimate for b. Then execute the following:

Step 1: Divide X into 1 = rn/v 1 clusters Xl, .. " Xl of at most v input elements

each and use the algorithm of Lemma 2.7 to compute a bit representation of the set

I = {j : 1 ~ j ~ 1 and Xj contains at least one active element}.

Step 2: Associate 4v processors with eachelement of I and 4v-scatter lover an array A

of size 8vb; let I' ~ I denote the set of unsuccessful indices .

. Step 3: Associate 3v2 processors with each cell of A and use these to 3v-scatter the active

elements in Bi n UjEI\I' X j over Ai, for i = 1, . .. , m.

The algorithm clearly runs in constant time on a TOLER.ANT PRAM using O(n+v3 b)

processors and O(n + v 3 b) memory cells. Since 111 ~ b ~ b, the density of the

multi-scattering in Step 2 is bounded by 1/2 and, by definition, the densities of the

multi-scatterings of well-supplied color classes in Step 3 are also bounded by 1/2. Let us

agree to call a cluster Xi with i E I' (i.e., i was unsuccessful in Step 2) unsuccessful. If

we take DI for the index set of active elements in unsuccessful clusters and denote by D 2

the index set of elements that are unsuccessful in Step 3, clearly D = DI U D 2 •

For the proof of part (a), fix an arbitrary active element X j in a well-supplied color

class (i.e., j E B') and suppose that X j E Xi' As argued above, j E D (i.e., X j is unlucky)

if and only if either i E I' (Le., i is unsuccessful in Step 2) or j E D2 (Le., X j participates

in Step 3, but is unsuccessful). But by Lemma 3.6(a), applied twice with p ~ 1/2,

Pr(i E I') ~ 2-4v and Pr(j E D2) ~ 2-3v ; hence Pr(j E D) ~ 2-4v + 2-3v ~ 2-v.

For part (b), let R be a fixed subset of B', take r = IRI and let Z 2: r /2 v • Clearly

IR n DI 2: Z only if either IR n DII ~ z/2 or IR n D 2 1 2: z/2; we will consider these

events separately and show each to be unlikely. First consider the multi-scattering

in Step 2 and let R' ~ I be the index set of clusters containing at least one active

element whose index belongs to R; obviously IR'I ~ r . If IR n DII 2: z/2, i.e.,

at least z/2 elements of R are indices of elements in unsuccessful clusters, there

must be at least z / (2v) unsuccessful clusters containing elements with indices in R, .

i.e., IR' n 1'1 2: z/(2v). In other words, Pr(IR n Dd 2: z/2) ~ PrOR' n 1'1 2: z/(2v)).

Since z/(2v) ~ 2r . 2-4v , we can apply Lemma 3.6(b) to bound the latter prob ability

by e-C, where (= (z/(2v))2/(32IR'I·4v) 2: z2/(29rv3). Since also z/2 2: 2r· 2-3v ,

another application of Lemma 3.6(b) shows that Pr(IR n D2 1 2: z/2) ~ e-c, where

(= (z/2)2 /(32IRI· 3v) 2: z2/(29rv). It follows that IR n DI 2: z with prob ability at most
e-z2/(29"v3) + e-z2 /(2 9"v) ~ 2e- z2 /(2 9"v3).

For part (c), note that S can be considered as a function of all the random choices

made by the algorithm. Now, a change in a single random choice made in Step 2 affects at

31

most 2 clusters. Each of the at most 2v elements in the affected clusters in turn affects at

most 3v other elements in Step 3. Hence altogether at most 2v + 6v2 :s; 8v2 of the output

variables Yl,' .. , Yn are affected, and it is easy to see that no more output variables are

affected by a change in a single random choice in Step 3. In other words, if D changes to

D' in response to a change in a single random choice, we always have that ID 6. D'I :s; 8v2 ;

by the Lipschitz condition imposed on S, this means that S changes by at most 8cv2 •

Since the algorithm makes at most 7vb :s; 7vn random choices altogether, an application

of Corollary 2.3 yields that S :s; max{2E(S), 4· 8cv2 • (7vn)S/8} = O(E(S) + cv3nS/8) with

prob ability at least 1 _ 2-n1 /
1

• •

In order to simplify the applications of Lemma 6.1 in the following, we discuss a

generic application in detail at this point and introduce a convenient shorthand that will

be used in later applications.

Assume that we are given a set B of active elements with colors in {1, ... , m} and

stored in an array Q of size n. For i = 1, ... , m, let Bi be the set of elements in B with

color i. Further assume that we are given m disjoint arrays Al, . .. , Am. Our goal is to

place most of the elements of Bi in Ai, for i = 1, ... , m. To this end let Zj be the color

of the element Xj in the jth cell of Q, for j = 1, ... , n, with Zj = 0 if the jth cell of Q

does not contain any active element, and let v be a suitable positive integer (the choice

of v will depend on our (application-specific) knowledge of the ratios IAiIJIBil). Then

apply the algoritluD. of Lemma 6.1 to compute an incomplete placement Yl,"" Yn for

Zl,,,,,Zn with bounds IAll, ... ,IAml. Finally, for all j E {1, ... ,n} with Zj =/; 0 and

Yj =/; 0, actually place X j in the Yjth cell of A~i (the algorithm of Lemma 6.1 already

places Xj as just described; this is not specified in the statement of the lemma, however,

so we repeat the operation here).

In what follows, an application of Lemma 6.1 as above will be called simply

"v-compacting Bi to Ai, for i = 1, ... , m". Lemma 6.1 gtiarantees that a fixed element of

a well-supplied color class will be unlucky with probability at most 2-V
• Furthermore, if

the number of nonzero input numbers is O(nJv3), as in most applications of Lemma 6.1

in the present paper, then the algorithm uses O(n) operations and O(n) space.

In the remainder of the section we extend the definition of complete linear compaction

to the case of several colors and prove a result corresponding to Theorem 4.6.

Definition: For all n, m, dl , ... , dm EIN, the complete linear colored compaction problem

of size n and with limits dl , ... , dm is, given n integers Zl, ... , Zn in the range O •. m such

that IV : 1 :s; j :s; n and Zj = i}1 :s; di , for i = 1, ... , m, to compute a complete placement

for Zl"",Zn with bounds O(dt), ... ,O(dm).

The problem, discussed before the statement of Lemma 6.1, of allocating m disjoint

arrays Al, ... , Am is easy in a special case, namely when m is so small that the allocation

32

can be done by means of brute-force prefix summation (Corollary 2.5). This leads to the

following result.

Theorem 6.2: There is a constant € > 0 such that for all given n, m, T, d1, ... , dm E IN

with m = (logn)O(l) and T ~ log*n, complete linear colored compaction problems of size

n and with limits d1, ... ,dm can be solved on a TOLER.ANT PRAM using O(T) time,

rn/Tl processors and O(n+ L:~ldi) space withprobability at least 1_2-nE (Las Vegas).

Proof: We fust devise a nonoptimal algorithm that solves the problem in O(log*n) time

using n processors and afterwards show that optimality can be achieved essentially as

in the proof of Theorem 4.6. The basic idea is to place the active elements in log*n

successive stages, similarly as in the algorithm of Corollary 4.5. With a view towards a

future application (Lemma 9.7), we fust consider a more general setting, in which we

ignore the difficulties of space allocation discussed above, but in return show how to

tolerate m = O(n1 - O) different colors, for arbitrary fixed 6 > o.
Without loss of generality assume that 6 is rational and that di ::::; n, for i = 1, ... , n

(otherwise the elements in Bi can be deactivated in a trivial manner). Say that a color

dass Bi is smalZ if bi ::::; n° /2, and Zarge otherwise, and note that the total number of

elements in small color dasses is O(n1 - O . nO/2) = O(n1 - O/ 2). We begin by reducing the

number of active elements in large color dasses to a similar level, but in a balanced way

(Le., each large color dass loses most ofits elements).

Define the active jraction as zero if all color dasses are small, and otherwise

as the maximum, over all large color classes Bi, of the ratio of the number of

(currently) active elements in Bi to bio We aim at decreasing the active fraction

to at most n-o/8 , after which the total number of remaining active elements will be

O(n1- O/2 + n l - O/ 8) = O(n1- O/8). We fust show that if the active fraction has been

reduced to at most v-3 , for some given v EIN, then in constant time it can be reduced

further to at most max{2-3t1 , n-O/8 } with high prob ability. H v ~ nO/24 , there is nothing

to show. Otherwise use the algorithm of Lemma 6.1 to 3v-compact the remaining active

elements in Bi to an array of size r6 . 3~/v2l, for i = 1, ... , m. Assuming that the active

fraction is at most v-3 , Lemma 6.1 shows that the 3v-compaction can be carried out

in constant time using O(n + v3(n1 - O/ 2 + L:~I (bi /V3))) = O(n) processors and that for

each fixed large color dass Bi (which, by assumption, is well-supplied), the number of

active elements in Bi after the 3v-compaction is bounded by max{bd23t1 , b~/4}, except

with probability at most 2e-C, where (= (b:/4)2/(29 (b i /V3). (3v?) = n(b~/2) = n(nO/4).

With high prob ability, the fraction of active elements left in each large color dass Bi

after the 3v-compaction therefore is at most max{2-3t1 , bi"1/4} ::::; max{2-3t1 , n-O/8}, for

i = 1, ... , m, Le., the active fraction has been reduced to the same level. Applying this

procedure at most log*n times with v = 1,2,22,222 , ... with high prob ability reduces the

33

active fraction to at most n -0 /8, as desired. Note that the successive arrays used by a

color dass can be taken as tightly packed subarrays of a single array.

In order to complete the compaction, we first use the algorithm of Corollary 4.3 to

move the remaining O(n1- O/ 8) active elements to an array of size O(n1 - O/ 8), after which

constant time and n processors suffice to l n° /8 J -scatter the active elements of Bi over an

array of size 2 . max{ di , r n30/ 4l}, for i = 1, ... , m. Since the number of active elements

in a large color class Bi is at most bi /nO/ 8 ~ di /nO/ 8 , the density of each of these multi­

scatterings is bounded by 1/2, so that Lemma 3.6(a) ensures that with high prob ability all

elements are successful. At this point, for i = 1, ... , m, the elements of Bi are stored in an

array of size r18di /1 2l + r18di/22l + r18di/42l + ... + 2 'max{di, rn30
/
4l} = 0(di + n36

/
4

).

For all color dass es Bi with di 2: n30/ 4 , this compaction is sufficiently tight, while

the remaining color classes can be compacted into linear space using the algorithm of

Corollary 4.3 (recall that we have 0(nO) processors for each color dass).

Under the restriction m = (log n)0(1) of the theorem, the allocation of an array to

. each color class, which was ignored above, can clearly be done in constant time using the

algorithm of Corollary 2.5.

The algorithm described so far can be excuted in O(log*n) time with n processors.

To achieve optimal speedup, it suffices, in the light of Theorem 4.6, to show that the

number of active elements can be reduced to O(n/T) in O(T) time. To this end assume

that T ~n1/8 (otherwise sort the input numbers using the algorithm of Lemma 2.9),

divide X into rn/Tl clusters of at most T input elements each and associate a processor

with each cluster. Then use the algorithm of Corollary 2.5 to allocate an array Ai of size

8di to Bi, for i = 1, ... , m. Similarly as in the proof of Theorem 4.6, each processor

now attempts in 2T rounds to place the active elements of its duster in the arrays

corresponding to their colors. The argument in the proof of Theorem 4.6 shows that with

high prob ability the number of active elements left after the last round is O(n/T). •

7 Interval Allocation

While the compaction problem asks that unit intervals be placed in a base segment,

the interval allocation problem, defined below, specifies intervals of varying length to be

placed. Viewed another way, each input element is arequest for a block of consecutive

indices of a size given by the value of the request. Informally, condition (2) means that

blocks do not overlap, and (3) means that the allocated blocks are optimally packed,

except for a constant factor. Another difference between complete linear compaction and

interval allocation is that in the case of compaction, an upper bound on the number

of elements present (the limit d) is provided as part of the input, while in the case of

interval allocation the choice of an appropriate size for the base segment is left to the

34

algorithm. Since a suitable value for d could actually be computed using the algorithm of

Theorem 5.3 as in the proof of Lemma 6.1, this difference is of no particular significance,

but merely convenient for the exposition.

Definition: For all nEIN, the (complete) interval allocation problem of size n is the

following: Given n nonnegative integers Zl, . .. , Zn, compute n nonnegative integers

Yl , . . . ,Yn such that

(1) For j = 1, .. . ,n, Zj = 0 {:} Yj = Oj

(2) For 1 :S i< j :S n, ifO rt {Zi, Zj}, then {Yi, ... ,Yi+Zi -1}n {yj' ... , Yj +Zj -1} = 0j

(3) mU{yj : 1 :S j :S n} = On:j=l Zj).

A natural extension of the interval allocation problem would augment the

solution by an appropriate size for the base segment, i.e., by an integer s with

s ~ mU{yj + Zj - 1 : 1 :S j :S n}, but s = 0CEj=l Zj) . Such a quantity is usually

needed in applications of interval allocation, and our algorithm for interval allocation

essentially generates it internally. By Lemma 2.6, however, a suitable choice for s

(namely, mU{yj + Zj - 1 : 1 :S j :S n}) can be computed from the output of interval

allocation, as defined here, for which reasonwe have refrained from including it in the

problem definition.

While interval allocation is a generalization of compaction, we will now show that

interval allocation reduces to colored compaction. First note that if all nonzero requests

(i.e., requests of nonzero value) are of value 1, Le., if Z j E {O, 1}, for j = 1, ... ,n, then we

can indeed first use the algorithm of Theorem 5.3 to compute a linear overestimate b for

the number b of nonzero requests, and subsequently solve the complete linear compaction

problem with input Zl, ... , Zn and limit b. Informally, what happens is that nonzero

requests are interpreted as active elements in the usual sense; once the correct size of the

destination array A has been established, a unit block (i.e., a single index) is associated

with each cell of A, the active elements are placed in A by the compaction algorithm,

and the block associated with a ceil in A is allocated to the element, if any, placed in

that ceil (i.e., the requests are satisfied) . The same approach works as long as all nonzero

requests are of a common value I - we simply associate a block of I consecutive indices

with each ceil of A, rather than a single index.

If there are nonzero requests of m distinct values, we clearly have to use m distinct

destination arrays Al' ... ' Am, each associated with blocks of a different size, Le., we

have to resort to colored compaction. A number of difficulties have to be tackled in this

generalization. First, we need to estimate the sizes of several color classes simultaneouslyj

this can still be done by the algorithm of Theorem 5.3 if m = O(nl - 6), for some fixed

5 > o. Second, the colored compaction can be carried out using the algorithm of

Theorem 6.2, but only under the (more stringent) restriction m = (logn)O(l). Third,

35

the blocks of indices associated with Al, ... , Am must be allocated from an appropriate

base array. More precisely, with each array Ai we allocate a segment consisting of IAil
blocks of the appropriate size, i.e., of the size associated with the color i, after which

the association of a single block with each cell in Ai is trivial. Since this allocation

reduces to prefix summation, we aim to carry it out using the algorithm of Corollary 2.5.

This requires, on the one hand, that m = (logn)O(l), as above, and, on the other hand,

that the sizes of the blocks to be allocated is polynomial in n. On the outset, these

requirements are not satisfied: The numbers Zl, ... , Zn could all be distinct, which would

give us as many as n color classes, and they could be arbitrarily large. However, the

input can be scaled and rounded to satisfy the requirements, as we show next.

First observe that if M denotes the maximum request value, Le., M = max{zj :

1 ~ j ~ n}, then replacing each nonzero request value Z j by the nearest multiple of

u = r M / n 1 no , sm aller than Z j increases the sum W of all request values by at most

ub ~ M + b, where b is the number of nonzero requests, i.e., at most tripies W. As a

result of this transformation, we can consider all request values to be integers in the

range 0 .. n (simply measure requests and blocks in units of size u). H at this point we

replace each nonzero (modified) re quest value by the nearest larger power of 2, W at most

doubles, and only O(logn) different request values remain, i.e., the compaction-based

algorithm sketched above becomes applicable with m = O(logn) color classes. Every

modified request value is at least as large as the corresponding original value; since the

modified values sum to at most 6 times the original sum, however, solving the interval

allocation problem defined by the modified request values pro duces a solution to the

original interval allocation problem.

The maximum request value M can be computed using the algorithm of Lemma 2.6.

In fact, for the applications of Theorem 7.1 in the present paper, we will frequently

have M = O(n), in which case it is not necessary to actually compute M (because

the procedure described above, with trivial modifications, can be employed with u = 1

whenever M is polynomial in n). Snrnrning up, we have seen that interval allocation

re duces to complete linear colored compaction with a logarithmic number of colors.

Theorem 7.1: There is a constant € > 0 such that for all given n, TEIN with T ;::: log"'n,

interval allocation problems of size n can be solved on a TOLERANT PRAM using O(T)

time, rn/Tl processors and O(n) space with prob ability at least 1 - 2-n~ (Monte Carlo).

Proof: By the above discussion and Theorem 6.2. In particular, note that since resources

(indices) are divided optimally between color c1asses and with a constant-factor "waste"

within color classes, the overall "waste factor" is bounded by a constant, as required by

condition (3) in the definition of interval allocation. •

Remark: Part of the development of Theorem 7.1 took place in a dialog with

36

Joseph Gil. An earlier version of the present paper achieved running times of

O(loglognlog*njlogloglogn), the bottleneck being compaction. After receiving a

pre1iminary sketch of the algorithm of Theorem 7.1 geared towards this running time,

Gil informed us of the results of Matias and Vishkin (1991), unpublished at the time,

and observed their applicability in the context of the algorithm, which allowed him to

derive a first interval allocation algorithm with a running time of O(log"n). We improved

his result by giving an algorithm with optimal speedup and a lower failure prob ability

and by implementing the algorithm on the weaker TOLER.ANT PRAM, after which the

communication with Gil ceased. Theorem 7.1 states the last result mentioned above,

except for a still smaller failure prob ability. A slightly weaker result was published in (Gil

et al., 1991). A time bound of O(loglogn) for a less general load balancing problem was

shown by Gil (1990, 1991).

Remark: At this point we can give only a Monte Carlo algorithm for interval allocation,

and Theorem 7.1 is formulated accordingly. This is due to the use of the Monte Carlo

fine-profiling algorithm of Theorem 5.3. Using Corollary 10.5 instead of Theorem 5.3,

however, allows us to obtain a Las Vegas algorithm for interval allocation. The same

remark applies to Theorem 7.2 below.

Whereas the use öf Theorem 7.1 in memory allocation is obvious, one additional

observation is needed for its application to the allocation of processors. The reason is

that a processor is an active device that needs to know about the task that it is to

execute. Theorem 7.1 can be used to communicate this information to the first processor

in each team, i.e., in each group of consecutively numbered processors allocated to a

common task, but the information must subsequently be broadcast to the remaining

processors in each team. In recognition of this fact, we consider a slight variation of the

interval allocation problem called the interval marking problem. In the definition below,

informally, ZI, ... , Zn are the sizes of n requests for processors. The output consists of a

size indicator s together with s integers ZI, ••• , Z6 and specifies the allocation of s virtual

processors PI, ... , P6 as follows: For j = 1, ... , s, the meaning of Zj = i E {1, ... , n} is

that Pj is a member of the team allocated to the ith request; the meaning of Zj = 0 is

that Pj is not part of any team. Condition (1) requires the processors in each team to be

consecutively numbered, (2) expresses that the number of virtual processors in the team

allocated to the ith request is indeed exactly Zi, for i = 1, ... , n, and (3) states that the

total number of virtual processors exceeds the number of requested processors by at most

a constant factor; this allows the allocated processors to be simulated without loss, up to

a constant factor, by any number of available physical processors.

Definition: For all nEIN, the interval marking problem of size n is the following: Given

n nonnegative integers ZI, ... , Zn, compute nonnegative integers s, ZI, ••• , Z6 such that

37

(1) For all integers i,j,k with 1:::; i:::; j :::; k:::; $, if Zi = Zk -# 0, then Zj = Zi;

(2) For i = 1, ... , n, IV : 1 :::; j :::; $ and Zj = i}1 = Zi;

(3) $ = O(Li=l Zj).

In most applications of interval marking in the present paper we will have

Li=l Zj = O(n). We next show that under this restriction, we can solve the interval

marking problem with input Zl,"" Zn in constant deterministic time with n processors

after solving the interval allocation problem with input Zl, ... ,Zn using the algorithm of

Theorem 7.1. The reader may think of this as a reduction of interval marking to interval

allocation; this is not quite exact, however, since we will use a special property of the

solution produced by Theorem 7.1 (conversely, under the restrietion Li=l Zj = O(n), it

is easy to show that interval allocation reduces to interval marking).

We view interval allocation with input Zl, .. " Zn as allocating disjoint subarrays

Al , ... ,An of sizes Zl, .•. , Zn from a base array and note that it is trivial to mark the

first cell of Ai with the integer i, for i = 1, ... , n. As already discussed above, the

corresponding interval marking problem can essentially be solved by copying the integer

stored in the first cell of Ai to the remaining cells of Ai, for i = 1, ... , n. In other words, it

suffices to provide each cell of a subarray with apointer to the beginning of the subarray.

Now recall that our algorithm for interval allocation actually allocates all subarrays from

O(logn) segments, each of which consists of tightly packed subarrays of the same size. If

we store the subarray size of each segment in the first cell of the segment, which is easy

to do, it suffices to provide each cell of a segment with apointer to the beginning of the

segment, since with this pointer and the relevant subarray size it can easily compute the

beginning of its subarray. We are now left with a problem that can be viewed as an

instance of the nearest preceding element problem defined in Section 2; each beginning

of a segment corresponds to one nonzero input bit. Since the number of segments is

O(log n), we can appeal to part (b) of Lemma 2.8 and obtain the following result.

Theorem 7.2: There is a constant f> 0 such that for all given n, TEIN with T ~ log*n,

interval marking problems of size n can be solved on a TOLER.ANT PRAM using O(T)

time, r(n + W)/r 1 processors and O(n + W) space with prob ability at least 1 _ 2-nf

(Monte Carlo), where W is the sum of the input numbers.

Proof: By the above discussion, Lemma 2.8(b) and Theorem 7.1. The dependence of the

resource bounds on W is due to the fact that the size of the output is O(W + 1). •

The proof of Theorem 7.2 shows how to allocate processors to requesting tasks, each

of which requests one or more processors. A situation frequently encountered is that

many tasks are so small that they do not require "an entire processor" , while at the same

time the number of tasks is so large that we cannot afford to allocate a processor to each.

38

Theorem 7.2 easily extends to cover this situation as well. Let n, TEIN, assume that we

are given a collection Ti, ... , 'In of n tasks, and suppose that for j = 1, ... ,n, we know

an integer qj E IN such that Tj can be executedin O(qj) time with one processor, or in

O(T) time with fqj/Tl processors. Then the n tasks can be executed in O(T) time with

fW/T 1 processors, where W = :Ei=1 qj 2: n. To see this, define Tj to be small if qj ~ T,

and large otherwise, for j = 1, ... , n. Begin by allocating Lqj /T J processors to Tj, for

j = 1, ... , n, clearly a total ofat most W/T processors. For j = 1, . .. , n, if Tj is large,

then Lqj /T J 2: H qj /T 1, so that the processors allocated to Tj suffice to execute Tj in

O(T) time. What remains is to execute the small tasks. Partition these into m = fn/Tl

groups G1 , •• . , Gm of at most T tasks each. For i = 1, ... , m, compute the totallength Qi

of Gi as the sum of the lengths of the tasks in Gi. Then allocate fQi/Tl processors to

Gi, for i = 1, . . . , m, a total of at most m + W/T ~ 2fW/Tl processors. It is not difficult

to see that using sequential prefix summation, the tasks in each group can be distributed

among the processors allocated to the group in such a way that each processor receives

tasks of total length O(T). All that remains is to let each processor execute the tasks

given to it sequentially in O(T) time.

When invoking the above principle, we will speak of "operation allocation" rather

than processor allocation.

While Theorems 7.1 and 7.2 are our main results concerning the interval allocation

and interval marking problems, we also need a more technicallemma (Lemma 7.3 below)

that parallels Lemma 6.1 and allows us to perform what we call incomplete allocation

in constant time. Just as Lemma 6.1 claims efficient deactivation only of elements in

well-supplied color classes, those for which the available array is at least 6v times larger

than the number of elements to be placed there, Lemma 7.3 is wasteful in a sense that

we make explicit through the introduction of a so-called slack parameter.

Definition: For all nEIN and .\ 2: 1, an incomplete interval placement with slack .\ for

n nonnegative integers Z1, ... , Zn is a sequence Y1, ... , Yn of n nonnegative integers such

that

(1) For 1 ~ i < j ~ n, ifD rt {Yi,Yj}, then {Yi, ... ,Yi+Zi-1}n{Yj, .. . ,Yj+Zj -1} = 0;

(2) max{Yj : 1 ~ j ~ n} = 0(.\· :Ej=1 Zj).

The set {j : 1 :S j :S n, Zj i= D and Yj = D} is called the residue set of the incomplete

interval placement. If the residue set is empty, the interval placement is complete.

Contrasted with the definition of (complete) interval allocation, the above definition

does not require a block to be allocated to every request, and blocks may be allocated

from a range .\ times as large. An algorithm that computes complete interval placements

with constant slack performs standard interval allocation.

39

Lemma 7.3: For all given n,v,r E JN, an incomplete interval placement for n given

nonnegative integers Zl, ... , Zn with slack V can be computed on a TOLERANT PRAM

using O(r) time, f(n + v3W)/rl processors and O(n + v3W) space with prob ability at

least 1 - 2-nE (Monte Carlo), where W = :Ej=l Zj, such that the residue set D of the

placement satisfies the following:

(a) For j = 1, ... , n, Pr(j E D) ::; 2-v ;

(b) For every fixed subset R of {1, ... , n} and for all z 2: IRI/2v ,

Pr(IR n DI 2: z) :::; 2e-z2/(29IRlv3);

(c) For every nonnegative real function S of D that satisfies a Lipschitz condition with

constant c,

S = O(E(S) + cv3 n 5
/

8
)

with probability at least 1 _ 2-n1
/

8
•

Proof: The reduction of interval allocation to complete linear tolored compaction with

a logarithmic number of colors extends to incomplete interval allocation and incomplete

colored compaction in a straightforward way. Once each request has been marked with its

color, an integer in the range 1 .. m, we can use the algorithm of Theorem 5.3 to compute

a linear overestimate bi for the size of Bi, for i = 1, ... , m, and that of Corollary 2.5 to

allocate arrays Al, ... , Am with I Ai I = 6vbi, for i = 1, ... , m, and their associated blocks.

Since :E~l ~ = O(W), both the arrays and the blocks can be allocated from a base array

of size O(vW). Lemma 7.3 now follows easily from Lemma 6.1; in particular, note that

since the number of nonzero input numbers is bounded by W, the number of operations

and memory cells needed is O(n + v3W). •

Because of the near-equivalence of interval allocation and interval marking,

Lemma 7;3 can be used for incomplete allocation ofprocessors as weil as ofmemory ceils.

Extending our earlier terminology, we call an input element unlucky in an application

of Lemma 7.3 if its index belongs to the residue set, and lucky otherwise. lust as we

introduced the concept of v-compaction to facilitate the application of Lemma 6.1, let us

agree to use the term "v-allocation", forv E JN, to denote an application of Lemma 7.3

with slack v, followed by the actual allocation of memory ceils or processors to the

luck;r elements. By Lemma 7.3(a), the probability that a fixed element is unlucky in a

v-allocation is at most 2-v
, and if the ''total resource demand" W = :Ej=l Zj is O(n/v3),

then the v-allocation uses O(n) operations and O(n) space.

8 Coarse-Profiling

While many applications call for the profiling of sequences of values in the range

1 . . n stored in an array of size n, our best strong fine-profiling result (Theorem 5.3)

40

allows only 0(nl - 6) different values, for fixed 5 > o. It is hence necessary to relax

the requirements imposed on a profile. Whereas the definition of fine-profiling seems

quite natural, it is not obvious how to defi.ne a computationally more tractable profiling

problem. The following definition of a coarse-profile, which at fust glance may seem

rather artificial, turns out to be useful.

Definition: Let n, mEIN, and let 2:1, •.. , Zn be n integers in the range 0 .. m. For

i = 1, ... , m, take bi = 1 {j : 1 ::; j ::; n and Z j = i} I. An m-color coarse-profile for
~ ~

2:1, ..• , Zn is a sequence of m independent nonnegative integer random variables b1 , ••• , bm

such that

(A) L~l bi = O(n);

(B) For i = 1, ... , m and for all a ~ 1, Pr(bi > abi) ::; 2-a
•

For n, mEIN, the m-color coarse-profiling problem of size n is to compute an m-color

coarse-profile for n given integers in the range 0 .. m.

We will refer to condition (A) in the above definition as the linear.sum condition. As

in the case of fine-profiling, input elements of value 0 are "dummy elements" that do not

take part in the profiling.

In the following, we show that n-color coarse-profiling problems of size n can be

solved wi th optimal speedup in 0 «log* n)2) time. We fust explain the main ideas in the

context of an algorithm that uses n processors and later indicate how to achieve optimal

speedup. We begin by tackling a simpler problem, that of estimating just the large

multiplicities. Our approach is to extrapolate from a fine-profile for a random sample

of size n 1-'Y, for some suitably chosen constant 'Y > O. One small complication is that

although the sample certainly contains at most n 1-'Y distinct values, these are spread

out over the entire range of size n, whereas for an application of Theorem 5.3 a much

smaller range is required. The following technical lemma, which will be used frequently

in the following, allows us to rename the sample values as required, i.e., to compute an

injective function (namely i 1-+ Yi) from the set of original sample values to a range of size

0(n1-'Y).

Lemma 8.1: For all given n, d, s, TEIN with d = O(n/T), the following problem reduces,

using O(T) time, rn/Tl processors and O(n) space on a TOLER.ANT PRAM, to a complete

compaction problem of size n and with parameters d --+ 0: Given d integers Zl, ... , Zd
ß

in the range o .. n, compute n nonnegativeintegers Yl, ... , Yn such that

(1) For i = 1, ... , n, Yi # 0 {:> i E {z j : 1 ::; j ::; d};

(2) For 1 ::; i < j ::; n, if Yi # 0, then Yi # Yj;

(3) max{Yi : 1 ::; i ::; n} ::; s.

41

Proof: lust as we associate arecord X j with value Zj with each input variable Zj, let us

associate an output record Yi with value Yi with the output variable Yi, for i = 1, ... , n.

The problem is simply to mark those output records that are to receive nonzero

values, since afterwards the problem can be solved by compacting the marked records.

Whereas the marking would be trivial on the ARBITRARY PRAM, on the TOLERANT

PRAM several occurrences of a value i might prevent the marking of Yi. Our solution is

to use guarded writing of a new kind that we call inverted guarded writing. For T > 1 we

do not have a (physical) guard processor for each output record, which is the reason why

guarded writing of the kind employed in previous sections cannot be used. Instead note

that by assumption, we can associate a processor with each element j E {I, ... , d}. Let

this processor continuously write some value to YZj • At the same time associate a virtual

guard processor with each output record and let r n/T 1 physical processors simulate the

virtual guard processors in O(T) time. If each virtual guard processor attempts to modify

the value stored in its associated output record and marks the re cord if and only if this

falls, the desired marking will result. •

In the theorem below, condition (1) says that every nonzero estimate is a linear

overestimate for the multiplicity that it estimates. Condition (2) ensures that nonzero

estimates are in fact obtained at least for the large multiplicities.

Theorem 8.2: For every fixed 5 > 0 there is a constant € > 0 such that the following

holds: Let n, TEIN be given, let Zl, ... , Zn be n given integers in the range 0 .. n

and take bi = lü : 1 ::; j ::; n and Zj = i}l, for i = 1, ... , n. Then it is possible, with

probability at least 1- 2-n
O! (Monte Carlo) and on a TOLERANT PRAM using O(T) time,

rn/Tl processors and O(n) space, to compute n independent nonnegative integer random

variables b1 , ••• ,bn such that conditions (1) and (2) below hold for some constant K 2: 1

and for each i E {I, ... , n}.

(l)bi > 0 => bi ::;bi::; Kbi;
6 ~

(2) bi 2: n => bi > O.

Proof: Without loss of generality assume that 5 is rational. By Lemma 2.9, we can also

assume that T::; n6 / 4 , so that at least n l - 6 / 4 processors are available. Let h = rn6/ 4l
and carry out the following algorithm:

Step 1: Draw a random sampie Y of X by including each input element in Y independently

of other elements and with prob ability l/h. For i = 1, ... , n, let br = IBi n YI.
Step 2: Use the algorithm of Theorem 5.3 to estimate br, for i = 1, ... , n. First place the

elements of Y in an array of size O(nl - 6 / 4). Since 1YI = O(nl - 6 / 4) with high prob ability

by Chemoffbound (a), this can be done by the algorithm of Corollary 4.3. Then use the

algorithms of Lemma 8.1 and Corollary 4.3 to replace the values represented among the

42

elements in Y by values in a range of size O(n1 - o5 / 4). The algorithm of Theorem 5.3

now provides estimates f?, ... , b~ such that with high prob ability, bf ::; br ::; K'bf, for

i = 1, ... , n and for some constant K' (take br = 0 for all i E {1, ... , n} with bf = 0).

Step 3: For i = 1, ... , n, ifbf 2: ";'05/2, then take bi = 2hbf; otherwise take bi = O.

In order to analyze the algorithm, fix i E {1, ... , n}. H bi 2: n o5 / 2, then by Lemma 2.1,

with high prob ability bi /(2h) ::; bf ::; 2bi /h and hence bi /(2h) ::; bf ::; 2K'bi /h, from

which follows that either bi = 0 or bi ::; bi ::; 4K'bi . H bi 2: n o5 , dearly with high

probability bi > o. On the other hand, if bi < n o5 / 2, then with high prob ability

bf < n o5 / 2/ K', hence br < n o5 /
2 and bi = o. •

Lemma 8.3: There is a constant € > 0 such that for all given nEIN, n-color

coarse-profiling problems of size n can be solved on a TOLERANT PRAM using

O((log*n)2) time, n processors and O(n) space with prob ability at least 1 - 2-n
€ (Monte

Carlo).

We begin by describing the algorithm informally. As in the previous profiling

algorithms, the basic idea is that a GCS for each color can be used to estimate the

multiplicity of that color. A fact of prime importance for the design of the algorithm,

however, is that a GCS is suitable for estimating multiplicities in a certain range only:

Very large color dasses are likely to fill every row of their respective graduated conditional

scatterings, which therefore offer no means of distinguishing between them. For a GCS

with parameters r X $, this happens for multiplicities above approximately 2", so that

2" is the upper limit of multiplicities that can be estimated. On the other hand, color

classes of sizes significantly below $ obviously leave all rows practically empty so that,

again, it is not possible to distinguish between them. The range of multiplicities that

can be meaningfully estimated using a GCS with parameters r X $ therefore is roughly

from $ to 2". As can be seen from Lemmas 3.3 and 5.2, increasing $ has the effect of

increasing the reliability of the estimate obtained from the GCS. This, however, turns

out not to be needed for the algorithm discussed here, so that we can fix $ at a constant

value, which, for proof-technical reasons, we choose to be 6; this avoids the exdusion of

small multiplicities. A more significant trade-off concerns the parameter r. Increasing r

extends the range of multiplicities that can be estimated, but obviously also increases

the amount of space needed for the GCS. In order to estimate the size of a large color

dass, we therefore have to allocate a large amount of space for its GCS; on the other

hand, we plan to get by with O(n) space altogether, which prevents us from allocating

so much space to every color dass, independently of its size. In asense, therefore, we

need an estimate of a multiplicity before we can use a GCS to estimate it, a seemingly

hopeless situation. What makes our day is the exponential difference between the space

needed by a GCS with parameters r X 6, which is O(r), and the upper limit of the range

43

of multiplicities that it can estimate, which is roughly 2r
, together with the fact that a

color dass whose size is too large to be estimated at least bears witness to this fact by

filling every row of its GCS.

We begin by carrying out a GCS with parameters Tl X 6 for each of the n colors,

where Tl is a constant . . This gives us an estimate of the size of each color dass that does

not fill every row of its GCS. No estimate is obtained for the remaining color dasses, but

most of these can be assumed to be of size at least T2 ~ 2r1
• We therefore subsequently

carry out a GCS with parameters T2 X 6 for each "unresolved" color, without violating

the 0 (n) space bound. This allows us to estimatemultiplicities up to Ta ~ 2r2
, and we

continue in the same manner. The resulting profiling algorithm works in O(log*n) stages.

A rather intricate analysis is needed to show that the output of the algorithm is indeed a

coarse-profile. Note also that we have carefully matched the definition of a coarse-profile

to what the algorithm actually produces.

We now provide a more formal description of the algorithm and begin by defining an

integer sequence VI, ... ,VT. Briefly let /(z) = z-4Iogz, for all z > O. Then /(2) < 0,

/(16) = 0, /(z) -+ 00 for z -+ 00, and f' has only one zero. It follows that z ~ 4logz for

all z ~ 16. In particular, since flog z 1 < 4 log z for z ~ 2, the relation 0 S flog z 1 < z can

be seen to hold for all zEIN. Now consider the algorithm

z := r n l
/

2°1 j
repeat

write(z)j

z:= flogzl;

until z = 0;

The last relation derived above dearly implies that the output of the algorithm is a finite

sequence VT, .. • , VI (note the reverse indexing) with 1 = VI < V2 < '" < VT ~ r nl /20 l
Since flog[logzll S log(2Iogz) + 1 = log(4Iogz) S logz for z ~ 16, where the last

relation was derived above, we certainly have T S 2log*n + 16 = O(log*n). The lemma

below lists some basic properties of the sequence VI, ... , VT.

Lemma 8.4:

(a) For t = 1, ... , T - 1, Vt+1 S 2t1
, < 2Vt+lj

(b) For t = 5, . .. ,T -1, Vt+1 ~ (2Vt)2j

(c) For t = 1, ... , T , Vt ~ 2 t - 2 .

Proof:

(a) log Vt+1 S flog Vt+11 = Vt < log Vt+ I + 1 and herice Vt+1 S 2t1
, < 2Vt+1'

(b) We noted above that 2z ~ z4 for all z ~ 16. Hence if Vt ~ 16 for some t S T - 1,

then Vt+1 ~ t . 2t1
, ~ t . (Vt)4 ~ (2Vt)2 ~ 16. Repeated use ofpart (a) shows that V2 ~ 2,

44

113 ~ 3, V4 ~ 5 and Vs ~ 17. By induction, the relation VtH ~ (2Vt)2 therefore holds for

t = 5, ... , T - 1.

(c) The claim can be seen to hold for t ~ 5 . . For t :2: 6 it follows from part (b) by

induction. •

Theorem 8.2 allows us to obtain accurate estimates for all color classes of size n 1
/

8

or more, whose elements can subsequently be replaced by "dummy elements" of value 0

(see the discussion preceding the definition of a fine-profile in Section 5). We can

therefore assume without 1055 of generality that bi ~ n 1 / 8 , for i = 1, ... , n. Under this

assumption, the algorithm first computes the sequence V1,"" VT, which can clearly be

done in O(log*n) time (it can actually be done in constant time), and then executes the

following steps, where K = 144.

(1) for i E {1, .. . ,n} pardo let Bi be active;

(2) for t := 1 to T do (* Stage t *)

(3) for each active color class Bi pardo

(4) begin

(5) Allocate a 5Vt X 6 array and 30Vt processors to Bi;

(6) Let the elements of Bi carry out a GCS Si

(7) with parameters 5Vt x 6;

(8) li := the 1-row of Si;

(9) if li < 5Vt (* not entirely full *) then

(10) begin

(11) Make Bi inactive;

(12) bi := min{K· 21., ln1/ 8J};

(13) end;

(14) end;

For t = 1, ... , T, let Stage t be the tth execution of lines (3)-(14). For i = 1, ... , n, if a

value is assigned to bi in line (12) in Stage t, for some t E {1, ... , T}, we shall say that

bi becomes defined in Stage t. Observe that the value assigned to bi is the minimum

of what might, in the light of Lemma 3.3, be regarded as a reasonable estimate of bi

(namely K .21;), and a value no smaller than bi (namely l n1 / 8 J). Forming the minimum

with ln1/ 8J clearly does not make any estimate less accurate; it is necessary to prevent

an occasional violation of the linear-sum condition (the condition can still be violated,

but the probability of this event is negligible).

Each allocation of processors and space in line (5) can be done in O(log*n) time

using the algorithms of Theorems 7.1 and 7.2. Provided that the allocated resources stay

within the limits imposed by Lemma 8.3, it is not difficult to see that the whole algorithm

45

can be executed within the time, processor and space bounds stated in Lemma 8.3 (use

Lemma 3.4(a». The lemmas below show that the resources allocated are not excessive

and that the sequence b1 , ••• , bn is indeed a coarse-profile with the required probability.

Lemma 8.5: For i = 1, ... , n, with high probability bi becomes defined in some stage.

Proof: Fix i E {1, ... , n}. If bi does not become defined in any stage, Li = 5VT in Stage T.

By Lemma 3.3(a), the prob ability ofthis is at most (2- SVT en/6)6, Le., negligible .•

In order to avoid undefined symbols in what follows, we will assume that bi = 0 in

the unlikely event that bi does not become defined in any stage, for i = 1, ... , n. The

algorithm could easily be modified to obey this convention, but this would serve little

purpose.

A tardy color dass Bi, defined below, intuitively is one that "should" have been

deactivated in an earlier stage. Since the size of a color dass may be highly overestimated

if the color dass becomes tardy, we must show this to be an unlikely event.

Definition: For i = 1, ... , n and t = 1, ... , T, call the color dass Bi tardy in Stage t if it

is still active at the beginning of Stage t and bi < vi.

Lemma 8.6: For i = 1, ... , n and t = 2, ... , T, Pr(Bi is tardy in Stage t) ::::; vt 6
•

Proof: If Bi is tardy in Stage t, then Li = 5Vt-l in Stage t - 1. By Lemmas 3.3(a)

and 8.4(a), the probability ofthis is at most

(
2-SVf-lev4)6 (-S 4)6 _ -6 • ____ t < v V t - V t .

6 - t

Lemma 8.7: With high prob ability, the algorithm uses O(n) processors and O(n) space.

Proof: We need O(n) space for storing the input elements and color dasses and their

attributes and O(n) processors standing by the input elements and color dasses. The

. remaining resources used are those explicitly allocated in line (5) in the algorithm. Since

the number of processors allocated equals the number of memory cells allocated, it

suffices to bound the latter. Furthermore, by a martingale argument, it suffices to show

that the expected amount of space allocated to Bi in Stage t is O(bi + 1), for arbitrary

fixed i E {1, ... ,n} and tE {1, ... ,T} (recall that Vt::::; rn1/2°1). But if anarray is

allocated to Bi in Stage t (i.e., if Bi is active at the beginning of Stage t), it is of size

30vt, which is 0(1) if t = 1, and O(bi) if Bi is not tardy in Stage t. By Lemma 8.6,

finally, Bi is tardy in Stage t with prob ability at most vt 6 if t ~ 2, so that this case adds

only 0(1) to the overall expected size. •

46

What remains is to demonstrate that the output of the algorithm satisfies conditions

(A) and (B) in the definition of a coarse-profile. To this end we must show that b1 , •.. , bn

are not too large (Lemmas 8.8 and 8.9), and that they are not too small (Lemma 8.10).

Lemma 8.8: For all i E {1, ... , n} with bi > 0 and for all a 2: 1, Pr(bi > abd ::; (K j a)6.

Proof: It suffices to show for all t E {1, ... , T} with Pr(Dt) > 0, where Dt denotes the

event that bi becomes defined in Stage t, that Pr(bi > abi I Dt) ::; (K j a)6. To this end let

D?t be the event that Bi is active at the beginning of Stage t, take D>t = D?t \Dt and

denote by H the subevent of D?t in which K . 21
, > abi in Stage t. We are interested in

the quantity Pr(H I D t). The central fact to note is that either H = 0, in which case

there is nothing to show, or else D>t ~ H. In the latter case

and since we can clearly assume that abi 2: K 2: 6, Lemma 3.3(b) directly implies that

the right-hand probability is at most (2eKj(6a))6 ::; (Kja)6 .•

Lemma 8.9: With high prob ability, L:~=1 bi = O(n).

Proof: Fix i E {l, ... ,n}. Since bi::; n1 / 8 for all i E {l, ... ,n}, by a martingale

argument it suflices to show that E(bi) = O(bi + 1). If bi = 0, it is easy to see that bi = K

(since all rows of any GCS of Bi are empty). Otherwise use Lemma 8.8 to find that

· 00

E(bi) = L j Pr(bi = j)
j=1

Kb, 00

= LjPr(bi = j) + L jPr(bi = j)
j=1 j=Kb,+1

00

< Kb· + ~ 21+1 Kb·· Pr(2 l Kb o < b o < 21+1 Kb o
) _ t L...J t t t_ t

1=0
00

::; Kbi + L 21+1 Kbi . 2-61 = O(bd· •
1=0

In Lemma 8.10 below, the condition abi> 0 ensures precisely that bi becomes defined

in some stage. By Lemma 8.5, the difference between Pr(bi > abi) and Pr(bi > abi> 0)

is negligible, so that it suflices to bound the latter.

Lemma 8.10: For i = 1, .. . ,n and for all a 2: 1, Pr(bi > abi> 0)::; 2-a .

Proof: Fix i E {l, ... ,n} and for t = 1, ... ,T, denote by D t the event that bi becomes

defined in Stage t. Without loss of generality assume that bi > O. We show that

47

~;=1 Pr(bi > abi and Dt) ::; 2-<1. The analysis proceeds stage by stage and is divided

into three cases depending on whether bi is "too large", "of suitable size" or "too small"

for being estimated in the stage under consideration. We show that the probability that

~ becomes defined at all in a stage in which bi is either "too large" or "too small" is

negligible, and that the prob ability that it receives a far too small value in a stage in

which bi is "of suitable size" is sufficiently small per stage to sum to a negligible quantity

over the relatively few stages of this kind. Let t2 = min{t : 1 ::; t ::; T and 2 911, > bi }

(note that the mjnjmum is not formed over an empty set), t1 = max.{l, t2 - r al - 1},

t3 = min{T,t2 + ral + 5}, 11 = {t EIN: 1 ::; t < tt}, 12 = {t EIN: t1 ::; t ::; t3} and

13 = {t EIN: t3 < t ::; T} and note that 11 U 12 U 13 = {1, ... , T}.

Gase 1 ("bi is too large"): Assume that 11 =I 0 and hence that t1 = t2 - r al - l.

Lemma 3.3(d) implies that for t = 1, ... , T,

Pr(D
t
) ::; 6.21 -&;/(12.259

,) < 12. 2-&,·2- h
, - .

Hence by Lemma 3.2, ~tE11 Pr(D t) ::; 24 . 2-&' ,2-
99

'1. But by the choice of t2, we have

that bi . 2'-911'2- 1 ~ 1 and therefore

b·.2-9v'1 > b·. 2-9(v'2- 1-r<11) > 29 <1 > 9a. , - , --

Thus ~tEIl Pr(Dt) :S 24.2-9<1 ::; 2-4<1.

Gase 2 ("bi is of suitable size"): By Lemma 3.3(c),

Pr(bi > a~ and D t)::; 6·21- K <1/12 = 12·2-12<1::; 2-8<1,

for t = 1, ... , T, and hence

L I>r(bi > abi and Dt) ::; 1121 .2-8 <1 ::; (2 ra 1 + 7) .2-8 <1 ::; Ha· 2-8 <1 ::; 2-3 <1.
tElz

Gase 3 ("bi is too small"): Assume that 13 =I 0 and hence that t3 = t2 + ra 1 + 5. By

Lemma 8.4 and since t2 ~ 1, bi ::; 2911
'2 :::; (2Vt2+d9 < (2Vt2+4)9 :::; V:

2
+6 ::; V:2+6 :::; vt" i.e.,

Bi is tardy in Stage t for all t E 13 • Hence by Lemma 8.6, ~tE13 Pr(Dt) ::; ~tEI, v;6 ::;

2· v~6. By Lemma 8.4(c), Vt3 ~ 2 t3 - 2 ~ 2<1+4 and therefore ~tEI3 Pr(Dt)::; 2-6<1.

The contributions of Cases 1-3 add up to at most 2-4 <1 + 2-3 <1 + 2-6 <1 :::; 2-2<1 ::; 2-<1.

This ends the proofs of Lemmas 8.10 and 8.3. •

We now describe a simple procedure called scattering in time that will be used on

five separate occasions. Since in each case we shall need different properties of the

procedure, we believe that it serves little purpose to list at this point all the properties

of the procedure that we shall ever need. After describing the procedure, we therefore

48

analyze it only with respect to its resource requirements; later we will refer back to

the procedure and derive whatever properties are of interest. In four of the five cases,

scattering in time is used as a "profile enhancer", Le., informally, it inputs a profile

b1 , .•• ,bn and pro duces a "better" profile b1 , ••• , bn . In the fourth case we input a very

good profile and use it to semisort.

Scattering in time takes as input n input elements Xl, ... , X n (the primary input)

with values in the . range 0 .. n (input elements with a value of 0 are dummy elements

signifying "no element") and n nonnegative integers b1 , ••. ,bn (the profile input) with

L:7:1 bi = O(n), as weil as an integer T (the phase count) with 1 ~ T ~..Jii. As usual,

let Bi be the set of input elements of value i, for i = 1, ... , n. We begin by using the

algorithm of Theorem 7.1 to allocate an array Ai of size bi to Bi, for i = 1, ... , n, each

ceil of which contains a counter, initialized to zero, and a list header, initially denoting

an empty list. For i = 1, ... , n, every element of Bi now chooses a random integer, called

its list number, from the set {1, ... , bi }, and another random integer, called its phase

number, from the set {1, ... , T}. By Chernoff bound (a), with high prob ability the set YI

of elements with phase number I is of size O(n/T), for I = 1, ... , T. Using the algorithm

of Theorem 6.2 if T ~ log n and that of Lemma 2.9 if T > log n, we can therefore store

the elements of YI in an array Qz of size O(n/T), for 1 = 1, ... , T.

The arrays Q 1 , ... , Q -r are next processed one by one. To pro cess an array Q I

means to associate a processor with each cell in Qz, and then to process all ceils in Qz

simultaneously and in constant time. If a ceil of Qz is empty or contains a dummy

element, the processor in charge of that ceil does nothing. Otherwise, suppose that the

element X stored in the ceil belongs to Bi and chose i as its list number. The processor

then attempts to increment the counter stored in Ai[i] by 1. If this falls, Le., if some

other processor attempts to increment the same counter in the same time step, X is said

to collide. Otherwise X is noncolliding, and the processor in charge of X proceeds to

insert X in the list whose header is stored in Ai[i]. An important fact to note is that an

element X of Bi collides exactly if some other element of Bi chooses both the same list

number and the same phase number as X, for i = 1, ... , n, i.e., the scattering in time of

Bi can be analyzed as a l-scattering of Bi over an array of Tbi cells; the advantage of

scattering in time is that it uses less space and (therefore) fewer operations.

Once a first pass as described above has been completed, we shall sometimes carry

out a second pass exactly like the first pass, except that the only elements taking part

in the computation are those that collided in the first pass. In either case, we say that

an element is successful if and only if there is some pass in which it does not collide. It

is easy to see that one-pass or two-pass scattering in time can be carried out with high

prob ability using O(T) time, rn/Tl processors and O(n) space. After the scattering in

time, the set X' of successful elements as weil as all counters and lists are available for

49

further processing. In particular, note that for all i E {l, ... , n} such that bi = T O(1), we

can compute IBi n X'I exactly in O(T) time using operation allocation, as described in

Section 7. It suffices to observe that ifbi = TO(l), Lemma 2.4 can be used to compute

the sum of the counters stored in Ai, either in O(bi) time with one processor, or in O(T)

time with rbi/Tl processors. Since L~=l bi = O(n), the resource requirements remain as

stated above.

Our first application of scattering in time is to the computation of a profile with

the somewhat unnatural properties listed in Lemma 8.11 below. Once Lemma 8.11 has

been established, a second application of scattering in time will allow us to obtain a

coarse-profiling algorithm with optimal speedup. The proof of Lemma 8.11 is rather

technical, but the main ideas behind it are as follows: We already have an n-processor

coarse-profiling algorithm (Lemma 8.3). In the context of an algorithm with optimal

speedup and a running time of e(T), we can allow ourselves to apply this nonoptimal

algorithm to a random sampie of the input set of size e(n/T). It turns out that this

yields suitable estimates of multiplicities somewhat larger than T, say, at least T 3 / 2 . On

the other hand, very small color classes are likely not to .be represented in the sampie at

all, 50 that their sizes must be estimated in a different way. We here use the scattering

in time described above, which enables us to estimate multiplicities up to roughly T.

Finally, in order to bridge the gap between T and T
3

/
2

, we use another scattering in time,

but this time applied to a random sampie of the input set of size e(n/ JT). The complete

algorithm hence consists of three essentially independent subalgorithms, each of which

"caters to" a different range of multiplicities.

Lemma 8.11: There is a constant € > 0 such that for all given n, TEIN with

T ~ (10g*n)2, the following problem can be solved on a TOLERANT PRAM using O(T)

time, rn/Tl processors and O(n) space with prob ability at least 1 - 2-
nf (Monte Carlo):

Given n integers Zl, ... , Zn in the range 0 .. n, compute independent nonnegative integer
~ ~ .

random variables b1 , ••• , bn such that

(A) L~=l bi = O(n);
(B) For i = 1, ... , n and for all a ~ 1, Pr(bi > abi) S 2-b;/(8'T) + 2-2a ;

(C) For i = 1, ... , n, Pr(bi > JTbi) S 2-.fi,

where bi = I{j: 1 S j S n and Zj = i}l, for i = l, ... ,n.

Proof: Without 1055 of generality, we can assume that 2 S T S n 1 / 2 , since otherwise the

problem is easily solved using the algorithm of Lemma 2.9. Let K = 28 and carry out the

following algorithm:

Step 1: Apply one-pass scattering in time with phase count T to the primary input

Xl, .. . , X n and the (trivial) profile input 8K, ... , 8K and let X' be the resulting set of

noncolliding elements. For i = 1, ... , n, take ~1) = 41Bi n X'I (since 8K = T°(1), we

50

argued above that this quantity is readily available).

Step 2: Draw a random sampie Y ~ X by including each input element in Y
independently of other elements ~d with prob ability 1/ f JTl. Repeat Step 1, but this

time include only elements of Y in the primary input (Le., replace each element not in Y
by a dummy element with a value of 0), and let Y' be the resulting set of noncolliding

elements. For i = 1, ... , n, take ~2) = 8 f JTlIBi n Y'I.

Step 3: Draw a random sampie Z ~ X by including each input element in Z

independently of other elements and with probability l/T. By Chemoff bound (a), we

can assume that IZI = O(n/T). Use the algorithms of Lemma 8.1 and Theorem 4.6
to store Z in an array ofsize O(n/T) and to replace the values of the elements in Z

by values in a range of size O(n/T). Then apply the algorithm of Lemma 8.3 to Z to
. ~z ~z ~z . .

obtam a profile b1 , ... , bn (take bi = 0 for each t E {I, ... , n} wlth Bi n Z = 0). For
. - 1 1}3) - ~bz t - 1, ... ,n, et i - 4T i .

S F · h final' f b ~b {1}1) 1}2) 1}3) K} tep 4: or t = 1, ... , n, compute t e eshmate 0 i as i = max i , i , i' .

For i = 1, ... , n, let bf = IBi n YI and bf = IBi n ZI. We can assume that bf, ... ,b~ is

indeed a coarse-profile for (the sequence of values of elements in) Z. It is easy to see that

with high prob ability, the resource requirements of the algorithm are as stated in the

lemma. The correctness of the algorithm is demonstrated in the lemmas below, each of

which shows one of the properties (A)-(C).

Lemma 8.12: With high prob ability, L::1 bi = O(n).

Proof: L:7=1 ~l) = 4 L::IIBi n X'I ~ 4 L::l bi = 4n. In the same way, L::l ~2) ~
8fJTlIYI, and IYI = O(n/y'T) with high prob ability by Chemoffbound (a). Finally, by

the linear-sum condition, L::l ~3) = 4T L::l bf = O(TIZI) = O(n). •

Lemma 8.13: For i = 1, ... , n and for all a 2: 1, Pr(b i > abi) ~ 2-b./(8'T) + 2-2
<1.

Proof: Clearly, bf is binomially distributed with expected value bi/T. Hence by

Chemoff bound (b), Pr(bf < bi/(2T)) ~ 2-bi/(8'T). Furthermore, by property (B) of a

coarse-profile, Pr(bf > 2abf) ~ 2-2
<1. But bf 2: bi/(2T) and bf ~ 2abf together imply

bi ~ 2Tbf ~ 4aTbf = a~3). Hence Pr(bi > abi) ~ Pr(bi > a~3)) ~ 2-b./(8'T) + 2-2
<1. •

Lemma 8.14: For i = 1, ... , n, Pr(bi > ßi) ~ 2-';;:.

Proof: Without loss of generality assume that bi > K y'T. By the definition of bi , if

bi > ßi' then bi > y':fiJ/) , for 1 = 1,2,3, so that for each i E {I, ... , n} we can show the

event bi > ßi to be unlikely in any of three ways. Correspondingly, we consider three

cases. If T < 4, Case 2 disappears, and Cases 1 and 3 overlap; the argument remains

valid, however.

51

Gase 1: bi:S 2K T. If bi > JT~l), then IBi n X'I = ~1) /4 :s bi/(4JT) :s bi /2, which

implies that at least bi /2 elements of Bi collide in Step 1. But since bi :s 2K T, the

density of the scattering in time of Bi is bi/(SKT) :s 1/4; hence, by Lemma 3.6(b),

the probability that at least bi/2 elements of Bi collide is bounded by e-(, where

(= (bi /2)2/(32bi · 1) = ~i/27 2': K JT /27 = 2.JF, from which the claim follows. Note that

we actually showed the stronger relation Pr(bi 2': 4JTIBi n X'I) :s 2-2'I!'T, which will be

used in Case 2 below.

Gase2: 2KT < bi:S KT3 / 2. Ifbi > JT~2), then IBinY'1 = ~2) /(SfJTl):S bi/(y'T·SfJTl),

which happens only if either bf :s bi/(2 f JTl) (the sampie is small) or IBinY'1 :s bf /(4y'T)

(many elements collide). Since bf is binomially distributed with expected value bi/ f JTl,

Chernoff bound (b) implies that Pr(bf :s bi/ (2 f JTl)) :s e-b;/(S h/T"J). On the other

hand, we know from Case 1 that Pr(bf 2': 4JTIBi n Y'I I bf :s 2KT) :s 2-2'I!'T, and

by Chemoff bound (a), Pr(q > 2KT) :s Pr(bf > 2bi /fJTl) :s e- b;/(3h/T'l). Using

that bi/fJTl 2': (2KT)/(2JT) = KJT, we finally obtain that Pr(bi > JT~2») <
e-b./(Srv'Tl) + 2-2'I!'T + e-bi /(3rv'Tl) < 2-K 'I!'T/s + 2-2";;: + 2-K ";;:/3 < 2-";;:. - -

Gase 3: bi > K T3 / 2. By Lemma S.13, Pr(bi > JTbi) :s 2-bi /(ST) + 2-2";;: <
2-K ";;: /S + 2-2";;: :s 2-";;:. •

Theorem S.15: There is a constant E > 0 such that for all given n, TEIN with

T 2': (log*n)2, n-color coarse-profiling problems of size n can be solved on a TOLERANT

PRAM using O(T) time, fn/Tl processors and O(n) space with prob ability at least

1 - 2-nE (Monte Carlo).

Proof: Assume without loss of generality that T :s n 1/ 4 and that bi :s n1 / S , for

i = 1, ... , n. Begin by computing a profile b1 , •• • , bn for Zl, . . . , Zn with the properties

described in Lemma S.l1. Then apply two-pass scattering in time with phase count T to

the primary input X 1 , •.• ,Xn and the profile input b1 , • •• ,bn . For i = 1, ... ,n, call Bi

well-estimated if bi :s JTbi, and call each element of Bi good if Bi is well-estimated, and

bad otherwise. By property (C) of Lemma S.l1, the expected number of bad elements

in B is at most n· 2-";;:, and a martingale argument shows the actual number of bad

elements to be O(n/T + n3 / 4) = O(n/T) with high probability. It is easy to see that the

probability that a good element collides in one pass of a scattering in time is at most

1/ JT. Since we actually e.xecute two passes, the prob ability that a good element is

unsuccessful is at most I/T, so a martingale argument shows that the number of (good

or bad) unsuccessful elements is O(n/T) with high prob ability. Let X' be the set of

successful elements.

Consider the situation after the scattering in tiine. For i = 1, ... , n, call Bi resolved

if every element of Bi was successful in the scattering in time, and bi :s 16T. The total

number of unsuccessful elements being O(n/T), we can use inverted guarded writing as

52

in the proof of Lemma 8.1 to determine the set of resolved color classes. The important

observation is that if Bi is resolved, then we can compute bi exactly as IBi n X'I, for

i = 1, ... , n. Hence for i = 1, ... , n, do the following: If Bi is resolved, replace (the

estimate) bi by (the exact value) bi; otherwise replace bi by max{bi , 16T}. Since all except

O(n/T) color classes are resolved, these changes preserve the linear-sum condition.

We must finally show that Pr(bi > abi) ~ 2-a , for i = 1, ... , n and for all a ~ l.
Since this is obvious if Bi is resolved, let us assume that this is not the case. But then

bi ~ 16T, so we can assume without loss of generality that bi > 16Ta. Now by property

(B) of Lemma 8.11, Pr(bi > abd ~ 2-b;/(s-r) + 2-2a ::; 2-2a + 2-2a ~ 2-a • •

9 Semisorting

We first define the semisorting problem precisely and then outline the rest of the

section.

Informally, the m-color semisorting problem inputsn elements with values in the

range O .. m (elements with a value of 0 being dummy elements) and place~ these in an

output array of size O(n) such that all elements with a given , color (Le., nonzero value)

occur together, separated only by empty cells. As usual, we model the input as n integers

Zl, ... , Zn in the range 0 .. m and the output as n nonnegative integers Yl, ... , Yn, where

Yj should be thought of as the position in theoutput array of the jth input element, for

j = 1, ... , n. Condition (1) below means that distinct (real) elements are not placed in

the same output cell, condition (2) says that no element of a different color intervenes

between two elements of the same color in the output array, and condition (3) requires

the output array to be of size 0 (n).

Definition: For all n, mEIN, the m-color semisorting problem of size n is the following:

Given n integers Zl, ... , Zn in the range 0 .. m, compute n nonnegative integers Yl, ... , Yn

such that

(1) For 1 ::; i < j ::; n, if Zi # 0, then Yi # Yj;

(2) For all i, j, k E {1, ... , n}, if Yi < Yj < Yle and Zi = zle, then Zj = Zi;

(3) max{yj : 1 ~ j ::; n} = O(n).

The m-color strong semisorting problem is identical, except for the additional

requirement (4) below, where bi = I{j : 1 ~ j ::; n and Zj = i}l, for i = 1, ... , m.

(4) For all j,k E {1, .. . ,n}, if Zj = Zle = i # 0, then IYj - Ylel = O(bi).

It is perhaps instructive to compare the definition of semisorting with that of

complete linear colored compaction given in Section 6. Informally, complete linear

colored compaction requires upper bounds dl , ... , dm on the sizes of the color classes to

53

be specified as part of the input, and the input elements are placed in arrays Al, ... , Am

of sizes O(dl), ... , O(dm), respectively, each of which is indexed starting at 1. In order to

use an algorithm for complete linear colored compaction to semisort, one could therefore

first compute estimates bl , ... ,bm with bi ~ bi , for i = 1, ... , m, but L~l bi = 0 (n),
then use the given compaction subroutine with limits bl , ... , bm , and finally place the

arrays Al, ... ,Am together in a base array of size 0 (n).

The present section culminates in a proof that n-color semisorting problems of

size n can be solved in O(log*n) time with optimal speedup (with high probability).

As mentioned in the introduction, this leads to an algorithm with optimal speedup for

computing n-color fine-profiles in O(log*n) time (Corollary 10.5). On the other hand,

our path to optimal semisorting takes us via no fewer than four auxiliary profilers (Le.,

algorithms that compute profiles) of different types, all of which are finally subsumed by

the n-color fine-profiler.

We now give the plan of this section in more detail. In this overview only, we will

use the terms "Type-1"-"Type-4" to refer to the auxiliary profilers mentioned above.

We characterize these profilers using our standard terminology: The input consists of

n integers Zl, ... , Zn in the range 0 .. n, we take bi = lü : 1 ::::; j ::::; n and Zj = i}I,
for i = 1, ... , n, and the output of a profiler is a sequence bl , ... ,bn of n nonnegative

integers. We always require the linear-sum condition L~=l bi = O(n) to be satisfied, for

which reason we do not repeat this condition below.

A Type-1 profile should ideally have the properties of a coarse-profile. In order to

be able to compute a Type-1 profile in O(log*n) time, however, we are forced to allowa

certain limited dependence between b}, ... , bn . We begin by showing (Lemma 9.1) that

the proof of Lemma 8.3 can be modified to yield an algorithm for computing Type-1

profiles in O(log*n) time with n processors. We then describe an algorithm that, guided

bya Type-1 profile, can semisort in O(log*n) time (Lemma 9.7); this algorithm, however,

uses n processors and hence is not optimal. As a corollary, we obtain a nonoptimal

Type-2 profiler, whose output bl , ... , bn overestimates all multiplicities, in the sense that

bi ~ bi , for i = l, ... ,n (Corollary 9.18) . Scattering in time allows us to derive from

this nonoptimal Type-2 profiler an optimal Type-3 profiler, whose output bl , ... , bn is

such that only 0 (n /log* n) elements belong to (badly estimated) color classes Bi with

bi > vlog*n . bi (Lemma 9.19). By means of another scattering in time that uses both a

nonoptimal Type-2 profiler and an optimal Type-3 profiler as subroutines, we are then
- -able to derive an optimal Type-4 profiler, whose output bl , ... , bn is such that only

O(n/log*n) elements belong to color classes Bi with bi > bi (Lemma 9.20). Scattering in

time using this last result as weil as the nonoptimal ~emisorting algorithm finally yields

an optimal semisorting algorithm (Theorem 9.21).

As mentioned above, our first goal is to demonstrate that a profile similar to a

54

coarse-profile can be computed in 0 (log* n) time. Recall that the a.lgorithm of Lemma 8.3

works in O(log*n) stages, each of which carries out a number of simultaneous graduated

conditiona.l scatterings after allocating the necessary resources. The bottleneck in the

a.lgorithm clearly is the resource" allocation (line (5)): Whereas the remaining parts of a

stage run in constant time, the application of the a.lgorithms of Theorems 7.1 and 7.2

uses 0(log*n) time in every stage, totalling 0«log*n)2) time overall.

The idea for reducing the running time to O(log*n) is to replace the 0(log*n)-time

complete allocation by the constant-time incomplete allocation of Lemma 7.3. As a result

of this change, a color class Bi may, in a particular stage, lack the resources needed to

carry out a GCS and possibly obtain an estimate bij in this case the elements of Bi do

nothing, and Bi remains active, just as if it had filled all rows of its GCS. We must show

that even with this additiona.l source of uncertainty, the a.lgorithm pro duces the desired

output without exceeding its resource boundsj note that the resource requirements tend

to go up, because a color class that remains active longer demands (significantly) more

resources.

In stating condition (B) of the lemma below, which corresponds to condition (B)

in the definition of a coarse-profile, we use the convenient shorthand :Ebo>abo to denote

summation over the set of indices of those color classes Bi with b, > abi. S'imiiar notation

will be employed later without comment.

Lemma 9.1: There is a constant € > 0 such that for all given nEIN, the following

problem can be solved on a TOLERANT PRAM using O(log*n) time, n processors and

O(n) space with probability at least 1 - 2-nE (Monte Carlo) : Given n integers Zl, ... ,Zn

in the range 0 .. n, compute nonnegative integers b1 , •.. ,bn such that

(A) :E:l bi = O(n)j

(B) for all a ~ 1, :Eb,>ab,(bi + bi) = O(n/2a +n3
/
4

),

where bi == I {j : 1 :s; j :s; n and Z j = i} I, for i = 1, ... , n.

Proof: As in the proof of Lemma 8.3, we can assume that bi :s; n 1/ 8 , for i = 1, ... , n.

We now use the a.lgorithm of Lemma 8.3, except that we replace the complete allocation

of processors and space in line (5) by (5vt)-allocation according to Lemma 7.3. The

resulting a.lgorithm clearly works in O(log*n) time. Borrowing the definition of a tardy

color class from the proof of Lemma 8.3 and again taking bi = 0 if bi does not become

defined in any stage, for i = 1, .. . , n, we establish Lemma 9.1 in Lemmas 9.2-9.6 below,

which essentially parallel Lemmas 8.5-8.10.

Lemma 9.2: For i = 1, ... , n, with high probability bi becomes defined in some stage.

Proof: Fix i E {1, . . . , n}. If bi does not become defined in any stage, either li = 5VT in

Stage T, or Bi is unlucky (i.e., it does receive any processors a.nd space in the incomplete

55

allocation in line (5» in Stage T. By the proof of Lemma 8.5, the former happens with

negligible prob ability, while, by Lemma 7.3(a), the latter happens with probability at

most 2-StlT , which is also negligible. •

Lemma 9.3: For t ::: 1, ... , T, with high probability the number of color classes that are

tardy in Stage t is O(n/v;).

Proof: The claim is obvious for t ::: 1 since VI ::: 0(1), so fix t E {2, ... , T} and recall that

for i ::: 1, ... , n, Bi is tardy in Stage t exactly if it is still active at the beginning of Stage t

and bi < vt. This can happen only if either 1i ::: 5Vt-1 in Stage t - 1, or Bi is unlucky in

Stage t - 1. By the proof of Lemma 8.6, the former happens with probability at most

v;6; a martingale argument hence shows that the number of color classes falling into

this category is at most O(n/v~ + n3/4) ::: O(n/v;). On the other hand, Lemma 7.3(b)

implies that at most n/2Stli
- 1 ::: O(n/v;) color classes are unlucky in Stage t - 1, except

with prob ability 2e-', where (::: (n/25tJi - 1)2 /(29 . n· (5vt_d3) = n(n/vt3) = n(nl
/

4
).

The claim foilows. •

Lemma 9.4: With high prob ability, the algorithm uses O(n) processors and O(n) space.

Proof: Fix tE {1, ... , T}. The foilowing happens with high probability: By the previous

lemma, the number of tardy color classes in Stage t is O(n/v;). On the other hand, a

color class that is a.ctive but not tardy in Stage t by definition is of size at least vt, so

that there are at most n/vt such color classes. Consequently, the total number of color

classes active at the beginning of Stage t is O(n/vt), which implies that the total number

of processors and memory ceils allocated in Stage t is O(n/v~) . We may therefore

conclude from Lemma 7.3 that each stage can be executed in constant time using O(n)

processors and O(n) space. •

What remains is to show that the algorithm satisfies conditions (A) and (B)

of Lemma 9.1. An attempt to carry out the proof in complete analogy with the

proofs of Lemmas 8.8-8.10 is thwarted by the fact that the incomplete allocation

of resources intro duces complex dependencies between color classes (which, formerly,

were independent), so that the simple-minded applications of martingale arguments in

the earlier proofs cannot be justified in the present setting. In order to cope with

this situation, we have to identify and analyze random experiments that are truly

independent. We could choose to focus on the elementary random choices made by

the processors, Le., the random numbers generated, but the ("long-term") effect of a

change in one of these quantities is complicated arid diflicult to handle. Fortunately,

the graduated conditional scatterings carried out within a single stage are independent,

provided that we fix all random choices made by the algorithm in earlier stages and in

56

the incomplete allocation in the stage under consideration. Put differently, we consider a

random experiment comprising only the graduated conditional scatterings in Stage t, for

some t E {1, ... , T}. As noted previously, if we can show that a given property of this

random experiment holds with prob ability at least p for any fixed setting of the earlier

random choices, we can conclude that the property holds with prob ability at least p even

in the actual experiment consisting of the whole execution of the algorithm, where earlier

random choices in fact are not fixed. When using this principle, we will indicate the

restricted prob ability space under consideration by stating that the analysis is carried out

"for any fixed past of the GCS in Stage t". In the following two proofs, let 6i ,t = 1 if bi

becomes defined in Stage t and 6i,t = ° otherwise, for i = 1, .. . ,n and t = 1, .. . ,T.

Lemma 9.5: With high prob ability, ~7=1 bi = O(n).

Proof: Let i E {1, ... , n} and t E {I, ... , T} and assume first that bi > 0. Translated

to the present setting, the proof of Lemma 8.8 showed that for any fixed past of

the GCS in Stage t and for all a 2: 1, Pr(bi > abi I 6i ,t = 1) ~ (Kja)6. Since

the proof of Lemma 8.9 depends only on the integer random variable bi satisfying

the relation Pr(bi > abd~ (Kja)6, for all a 2: 1, the same proof now yields that

E(bi I 6i ,t = 1) = O(b i + 1), still for any fixed past of the GCS in Stage t. The same

obviously holds if bi = 0, since in that case bi = K (provided that bi becomes defined in

some stage).

Considering agam the entire execution as the random experiment, we will show

that with high prob ability, ~7=1 bi . 6i ,t = 00::7:1 (bi + 1) . 6i,t + n3
/

4
), for t = 1, ... , T.

Surnrning this over all values of t yields ~7:1 bi = 0CE7=1 (bi + 1) + n 3
/

4 1og"'n) = O(n),

as desired.

We show the relation L:7=1 bi · 6i ,t = 0(~7=I(bi + 1)· 6i ,t + n3
/ 4) by demonstrating

that it holds with high prob ability for any fixed past of the GCS in Stage t. Given

such a fixed past, n random variables ZI, ... , Zn will be independent, provided that Zi

is defined exclusively in terms of the GCS of Bi in Stage t (or of the fact that Bi does

not carry out any GCS in Stage t), for i = 1, ... , n. For a certam constant C > 0, we

will use this with Zi = (C(bi + 1) - bi)· 6i ,t, for i = 1, ... , n. Choose C su:ffi.ciently large

to make E(Zi I 6i ,t = 1) 2: 0, for i = 1, .. . ,n, which is possible by what was shown

above. Since clearly E(Zi I 6i ,t = 0) = 0, we have E(Zd 2: 0, for i = 1, ... , n. But then

E(S) 2: n3
/

4
, where S = L:7:1 Zi + n3

/ 4 , and S changes by 0(n1 / 8) in response to a

change in a single Zi. An application of Lemma 2.2(b) therefore shows that with high

prob ability, S 2: E(S)j2. In particular, with high prob ability S 2: ° or, what is the same,

L:7:1 bi . 6i ,t ~ C L:7:1 (bi + 1)· 6i ,t + n3
/

4
• •

Lemma 9.6: For all a 2: 1, with high probability L: b, >ab, (bi + bi) = 0(nj2a + n3
/

4
).

57

Proof: Since bi < bi w henever bi > abi and since bi > 0 for all i E {I, ... , n}

with high probability (Lemma 9.2), it suffices to show that with high prob ability,

2: b.>ab,>O bi = O(n/2
a + n3

/
4

).

Given an assertion P, let v(P) = 1 if P is true, and v(P) = 0 if P is false. A

martingale argument shows that for any tE {I, ... , T} and for any fixed past of the GCS

in Stage t, with high probability

t b; . • (b; > ab; and ';" = 1) = 0 (t b;· Pr(b; > ab; and ';" = 1) + n'/7) . (5)

We are interested in the double sum obtained by summing (5) for t = 1, ... , T. At

this point recall that the proof of Lemma 8.10 showed that 2:;:=1 Pr(bi > a~ and

Di,t = 1) ::; 2-a for all iE {I, ... ,n} by partitioning the index set {I, ... , T} of the

summation into three sets 11 , 12 and 13 , corresponding to the three cases "bi is too

large", "bi is of suitable size" and "bi is too small", respectively (the partition depends

on i). In the first two cases the earlier analysis of a stage can be seen to hold for any

fixed past of the GCS in that stage - in fact, the analysis formally was carried out in the

restricted prob ability space. Sl1mming (5) for t = 1, ... , T, but including only the terms

with t E 11 U 12 , therefore yields

t L bi · V(bi > abi and Di,t = 1) = 0 (t bi . 2-a + n S
/

7 10g"n) = O(n/2a + n3
/

4
).

i=1 tEIl UI2 i=1

Concerning the third case, "bi is too small", recall that bi > abi and Di,t = 1 for

some i E {I, ... , n} and t E 13 only if Bi is tardy in Stage t and Vt 2: 2a
. Therefore

2:7:=1 2:tEI
3

bi·v(bi > a~ and Di,t = 1) :S 2:vt>2G 2:7=1 bi·v(Bi is tardy in Stage t), where

the outer summation is over those t E {I, ... ,T} with Vt 2: 2a . For t = 1, ... , T, a color

class which is tardy in Stage t is of size at most vt, so that Lemma 9.3 implies that

with high prob ability the total size of the color classes that are tardy in Stage t is

O(n/vt). But then the above double sum is 2:v >2 G O(n/vt) = O(n/2a). Altogether,
t_

we have shown that with high prob ability, 2: b.>ab,>o bi = 2:7=12:;=1 bi · v(bi > abi and

Di,t = 1) = O(n/2a + n3 / 4). This ends the proofs ofLemmas 9.6 and 9.1. •

The next major goal is to devise an n-processor semisorting algorithm. The basic

idea is simply to use techniques similar to those of Section 4 to compact the elements

of each color class into an array of suitable size. However, this approach meets with

major complications. Multiplicities must be estimated using the algorithm of Lemma 9.1,

which means that the estimates obtained are not vety reliable. A:rrays must be allocated

as described in Section 7, and colors cannot be handled independently, as far as the

placement in arrays is' concerned, since the faUure prob ability for small color classes

58

cannot be. ignored. Instead it is necessary to monitor the progress of the colors throughout

the' pröcess, pushing more resources towards colors that are not keeping pace with the

rest.

Lemma 9.7: There is a constant e > 0 such that for all given nEIN, n-color semisorting

problems of size n can be solved on a TOLERANT PRAM using O(log*n) time, n

processors and O(n) space with prob ability at least 1 - 2-n
l! (Las Vegas).

Proof: In order to let the basic idea stand out dearly, we first describe and analyze a

simplified algorithm that ignores a nllmber of complications, and afterwards motivate the

various bells and whistles that have to be added to the algorithm to actually make it

work.

In the following the word "element" will be used exdusively to denote elements of

color dasses. The simplified algorithm begins by computing a sequence VI, ... , VT similar

to the one used in the proof of Lemma 8.3 (the exact requirements will be specified

below), and then executes the following:

Let all elements be active;

for t := 1 to T do

for each color dass Bi pardo

begin

Allocate an array Ai,t of size 6bi /vt to Bi;

Vt-compact the active elements in Bi to Ai,t,

deactivating every lucky element in Bi;

end;

The algorithm hence consists of T stages, each of which attempts to place the elements

of each color dass in an array of suitable size. The elements that are successfully placed

in the array become inactive and do not participate in subsequent stages. Conceptually,

if the algorithm succeeds in deactivating all elements, the elements of each color dass

Bi afterwards are stored in T arrays Ai,I, . .. , Ai,T. In actual fact, there is no need

to preserve Ai,t beyond the end of Stage t, for i = 1, ... , n and t = 1, ... , T, and the

algorithm can redaim the space allocated in each stage for reuse in the following stage.

Instead, in Stage t, the algorithm remembers the total size L1:i IAi,l1 of the arrays

allocated to Bi in earlier stages, for i = 1, ... , n and t = 1, .. . , T, and each element of

Bi deactivated in Stage t adds this offset to its position in Ai,t and stores the resulting

absolute position. Informally, this has the effect of gluing the array Ai,t onto the right

end of an array already containing Ai,l, ... ,Ai,t-I. Mter the last stage, it is therefore

an easy matter to use the algorithm of Theorem 7.1 to allocate a single array Ai of size

IAi,11 + ... + IAi,TI to Biand to place the elements of Bi in Ai (informally, to move

59

the elements of Bi from Ai,I, ... ,Ai ,T to Ai). Provided that 2:~=IIAil = O(n), this

pro duces a solution to the semisorting problem. In other words, if all elements are

deactivated, the correctness of the algorithm will be guaranteed if we can show that

2:~=1 2:;=1 IAi,tl = O(n). In the idealized algorithmabove, this condition is satisfied,

since 2:~=1 2:;=1 IAi,tl = 2:;=12:~=1 (6bdvn ~ 2:;=1 (6n/vt) = O(n).

In order to analyze the rate with which elements are deactivated, fix i E {I, ... , n},

let t E {I, ... , T} and assume by way of induction that the number of active elements

in Bi has decreased to at most bi/V: before Stage t. Then Bi is well-supplied in the

Vt-compaction in Stage t, i.e. (Lemma 6.1(a)), the prob ability that a fixed element in Bi

remains active is at most 2-v,. Therefore the expected number of elements in Bi that

remain active is at most bi . 2-v" which, for a suitable choice of the sequence VI, ..• , VT,

is significantly smaller than the bi/v:+l required for the induction.

We now proceed to discuss the problems with the above algorithm. One such

problem is that color classes may be too small to exhibit a "reliable" behavior, in a

statistical sense. E.g., in the analysis in the preceding paragraph, even though the

expected number of elements in Bi that remain active is significantly below bi/v:+l'

the prob ability that their actual number exceeds bi/vt+l may not be negligible (cf.

Lemma 6.1(b), which yields little unless z is much larger than v). We counter this

problem by treating small color classes specially; in particular, the space allocated to

small color classes is larger, relative to their sizes, than for other color classes.

More significantly, we do not know the multiplicities b1 , ••• , bn , so we have to resort

to estimates 61 , .•. ,6n • One consequence of this is that we do not really know whether

a color class is small; the color classes that are treated specially, as mentioned in the

previous paragraph, are hence those whose estimates let them "appear" small.

Another difliculty is posed by the allocation of space to color classes. Similarly as in

the algorithm of Lemma 9.1, we have to res ort to the incomplete allocation of Lemma 7.3

(the color classes themselves will be requesting elements in the sense of Lemma 7.3,

but our convention in this section is to use the word "element" only for elements of

color classes). As a consequence of the incomplete allocation, in each stage certain color

classes will be unlucky (recall that this means that they do not receive the resources that

they requested), so that they cannot participate in the Vt-compactionj this adds another

complication to the analysis. Furthermore, in order for the resource requirements of the

incomplete allocation to remain O(n) in spite of the increase in Vt over the stages, it is

necessary to ensure that the number of requests per stage decreases over the course of the

execution. We therefore initially let all nonempty color classes be active, declare a color

class to become inactive when it loses its last active element, and allocate space only to

active color classes. Since the number of active color classes cannot exceed the number

of active elements, the number of active color classes will decrease as required, provided

60

that the number of active elements does so.

Finally, although for most color classes the incomplete compaction in a particular

stage will succeed in deactivating most elements in the color class, for some color classes

almost all elements may remain active;in particular, this surely happens for color classes

that are unlucky in the stage under consideration, and it is likely to happen for those

whose sizes were heavily underestimated. Given the algorithm as described so far, the

problem will be aggravated over successive stages, since the available space decreases.

In such cases we need to res ort to an "emergencyescape", which will be to compact

into an array of size 6vtbi, rather than ai/vr Note that we certainly cannot use 6vfbi

space always, since the total space requirements would be superlinear. In order to decide

when to apply the emergency escape, we begin each stage with a "test scattering" for

each active color class, except those that appear small . . The test scattering is simply a

conditional scattering by the active elements in the color class, with parameters chosen to

allow color classes that are in need of the emergency escape to be roughly distinguished

from those that are not; the actual bit observed is whether or not the fullness of the

scattering equals 1.

Before describing the algorithm proper, we define the sequence · VI," . ,VT and

establish a lemma that paralleis Lemma 8.4. Similarly as in Section 8, let

/(z) = z - 44logz, for z> 0. Then /(2) < 0, /(29
) > 0, /(z) --t 00 for z --t 00, and f'

has only one zero, so that z > 44 log z 2: 22 ßog z 1 for all z 2: 29 . The algorithm below

hence outputs a finite sequence, which we take to be VT, .•• , vI.

z := f n 1/ 881;
repeat

write(z);

z:= 22ßogzl;

until z < 215
;

Clearly VI < 2215 = 0(1). We will assume without loss of generality that T 2: 2 (otherwise

n is bounded by a constant). Then 215 ::s vI < v2 < ... < vT = fn1/ 88l For a sufficiently

large constant zo, clearly 22 ßog(22 flog z 1) 1 ::s 44log(44 log z) = 44(log(44) + log log z) ::s
logz for all z 2: Zo. Hence T:::; 2log*n + 0(1).

Lemma 9.8:

(a) For t = 1, ... , T - 1, vn 1 :::; 2v , :::; vlt 1 ;

(b) For t = 1, .. . ,T -1, v;2 :::; Vt+l;

(c) For t = 1, .. . ,T, Vt 2: 2t .

61

Proof:

(a) log(vn1) = 2210gvt+1 :S 221l0gvt+11 = Vt :S 4410gvt+1 = log(vtt1)' from which the

relation follows by exponentiation.

(b) We noted above that 2% ~ z44 for z ~ 29 • Since Vt ~ 44 . 29 , part (a) therefore

implies that v > 2v ,/44 > (v /44)44 > v22 • t+1 _ _ t _ t

(c) The claim follows tri vially from part (b) by induction. •

- -The algorithm begins by computing a profile b1 , ... , bn for Z1, .. " Zn with the

properties described in Lemma 9.1. By Theorem 8.2, we can assume that bi is a linear

overestimate for bi for all i E 1, where 1 is a known sub set of {I, ... , n} with the property

that i E 1 for all colors i with bi ~ n 1 / 88 • Since we can clearly remove all colors i

with bi < n 1 / 88 from 1 without affecting the property of 1 just mentioned, we can also

assume that 111 = O(n87
/ 88). We want to apply (the nonoptimal part of) the algorithm

of Theorem 6.2 to place the elements of Bi in an array of size O(bi) (with bi serving

as the limit for Bi), for all i E 1. Recall that the algorithm of Theorem 6.2 can cope

with up to E>(n1- O) colors, for arbitrary fixed C > 0, as long as we provide a me ans of

performing the necessary space allocation. Since Theorem 7.1 is now available, the latter

condition no longer is a problem. Using the algorithms of Theorem 4.6 and Lemma 8.1 to

replace the colors in 1 by colors in a range of size 0 (n87 /88), we can therefore apply the

algorithm of Theorem 6.2 as stated. This preprocessing serves to let us assume without

loss of generality that bi :S n 1 / 88 , for i = 1, ... , n. We want to work with estimates that

are at least 1 and at most n 1 / 88 and therefore take bi = min{max{bi , I}, ln1/88J}, for

i = 1, ... , n. It is easy to see that properties (A) and (B) of Lemma 9.1 continue to hold

for the modified profile b1 , • .• , bn • Additionally, bi :S vTbi and bi :S n1
/ 88 , for i = 1, ... , n.

The algorithm now proceeds as folIows.

(1) Let all elements and all nonempty color classes be active;

(2) for t:= 1 to T do (* Stage t *)

(3) for each active color class Bi pardo

(4) begin

(5) if bi > vV (* not apparently-small *) then

(6) begin (* test scattering *)

(7) vt-allocate Vt memory cells and Vt processors to Bi;

(8) if Bi was unlucky in the allocation in line (7)

(9) then goto line (21);

(10) Let the elements in Bi carryout a conditional

scattering Si with prob ability vJ /bi and of width Vt;

(11) Hugei ,t := (Si has fulhiess 1);

(12) end;

62

(13) übi :::; vF (* apparently-small *) then Sizei,t := 6vt9

(14) else if Hugei,t then (* emergency escape *) Sizei,t := 6vlbi

(15) else (* normal case *) Sizei,t := f6bdv:l;

(16) vt-allocate an array A~,t of size ~izei,t to 13i ;

(17) if 13i was lucky in the allocation in line (16) then

(18) Vt-compact the active elements in 13i to Ai,t,

deactivating every lucky element in 13i;

(19) ü no element in 13i remains active

(20) then make 13i inactive;

(21) end;

For t = 1, ... , T, let Stage t be the tth execution of lines (3)-(21) and say that a color

dass 1S active in Stage t if it is active at the beginning of Stage t and that it is unlucky

in Stage t if it is unlucky in the incomplete allocation in either line (7) or line (16) in

Stage t. A color dass that is unlucky in some stage drops out of that stage and rejoins

the computation in the beginning of the next stage, if any; this is realized via a goto

instruction in line (9) and a conditional instruction in line (17).

Thegoal of the analysis is to show that with high probability, the algorithm

deactivates all elements ilsing O(n) processors and O(n) space and allocating arrays ~,t

of total size O(n). Since astage can be executed in constant time, the algorithm is then

correct and its resource requirements are as daimed in Lemma 9.7. A key property

established below is that the number of active elements (and hence of active color dasses)

decreases rapidly over the execution of the algorithm. More precisely, we will show

(Lemma 9.14) that with high probability the number of elements active at the beginning

of Stage t, for t = 1, ... , T, is O(n/v~2). The proof of this key property consists of two

main parts. We first identify certain favorable conditions that may apply to a color dass

in a stage, show that these conditions together imply that the color dass is well-supplied,

in the sense bf Lemma 6.1, in the Vt-compaction in the given stage (Lemma 9.9); and

note that for well-supplied color classes the rate of deactivation is essentially as in the

idealized analysis of the simplified algorithm earlier in this section (Lemma 9.12). We

then show that only very few color classes lack the favorable conditions (Lemma 9.13).

For i = 1, . . . , n and t = 1, ... , T, denote by Ni,t the number of active elements in

13i at the start of Stage t. Bi is said to be apparently-small in Stage t if bi :::; vi 7 , and

to be apparently-huge in Stage t if a test scattering for Bi is carried out in Stage t and

achieves a fullness of 1 (Le., if the value true is assigned to Hugei,t). 8 i is well-estimated

in Stage t if bi :::; Vtbi .(i.e., the size of 13i may have been underestimated, but at most

by a factor of Vt), and Bi is well-s";'pplied in Stage t if it is active in Stage t, lucky

in the incomplete allocations in lines (7) and (16) in Stage t, andwell-supplied in the

incomplete compaction in line (18) in Stage t. Recalling the definition of "well-supplied"

63

in Section 6, we observe that Bi is well-supplied in Stage t if and only if an array Ai,t of

size at least 6vtNi,t is allocated to Bi in Stage t. A suflicient set of conditions for this to

happen is formulated in the following lemma.

Lemma 9.9: For i = 1, ... , n and t = 1, ... , T, Bi is well-supplied in Stage t if it is active

in Stage t and each of the following conditions holds:

(1) Bi is well-estimated in Stage t;

(2) Bi is lucky (in both vt-allocation steps) in Stage t;

(3) Bi is apparently-small or apparently-huge in Stage t, or Ni,t :S bi/vi.

Proof: Let i E {I, ... , n} and t E {I, ... , T} and assume that Bi is active in Stage t

and that conditions (1)-(3) hold. In particular, an array Ai,t of size Sizei,t is allocated

to Bi (condition (2». If Bi is apparently-small in Stage t, then bi :S Vtbi :S vi8

(condition (1» and Sizei,t = 6vt 9
. Otherwise Sizei,t 2: 6bi/v~, and if Ni,t > bi/vi, then

Sizei,t = 6v:bi 2: 6vtbi (conditions (3) and (1». In all cases Sizei,t 2: 6vtNi,t, i.e., Bi is

well-supplied in Stage t. I

Define the density of a conditional scattering with prob ability p and of width s

carried out by a set of m elements as mp / s.

Lemma 9.10: For t = 1, ... , T, if a test scattering is executed in Stage t by a color dass

Bi with Ni,t > bi/vi, then the prob ability that Bi does not become apparently-huge in

Stage t is at most 2-Vt
•

Proof: The density of the test scattering is at least (bi/vi) . (vlJbi) . (l/vt) = vf. Hence

by Lemma 3.1(c), the prob ability in question is at most Vt .2-v; :S 2-Vt .1

Lemma 9.11: With high probability, the algorithm deactivates all elements.

Proof: We first show that with high prob ability, conditions (1)-(3) of Lemma 9.9 are

satisfied in Stage T for all active color dasses. We already noted that bi :S vTbi , for

i = 1, ... , n, so that every color dass is well-estimated in Stage T, i.e., condition (1) is

satisfied. By Lemma 7.3(a), the prob ability that some active color dass is unlucky in

Stage T is at most 2n· 2-VT , i.e., condition (2) is also satisfied with high prob ability.

Condition (3), finally, follows directly from Lemma 9.10.

By what was shown above and Lemma 9.9, with high prob ability every active color

dass is well-supplied in Stage T. Lemma 6.1(a) implies that the probability that a fixed

active element in an active and well-supplied color dass is unlucky in the vT-compaction

in Stage T is at most 2-VT • Hence with high prob ability, no element remains active at

the end of Stage T. I

64

Lemma 9.12: For t = 1, ... , T - 1, with high prob ability the number of active elements

in well-supplied color classes at the end of Stage t is O(njvnl).

Proof: An element whose color class is well-supplied in Stage t remains active at the

end of Stage t only if it is unlucky in the Vt-compaction in Stage t. But Lemmas 9.8(a)

and 6.1(b) show the number of such elements to be no larger than njvnl' except with

prob ability 2e-', where , ~ (njvnd2 j(29nv;) ~ nj(29vltd = O(nl / 4), Le., except with

negligible prob ability. •

Lemma 9.12 shows that the number of elements in well-supplied color classes

decreases as required. In Lemma 9.13 we prove that the elements in color classes that

are active but not well~supplied are so few that they can be ignored in this context.

Informally, the reason for this is that if an active color class is not well-supplied in

Stage t, then either it is unlucky, or its estimate is off by a factor of more than Vt, or

the test scattering for the color class does not achieve fullness 1 although its density is at

least vl, all of which are unlikely.

Lemma 9.13: Let tE {1, .. . ,T -1} and take I = {i: 1::; i::; n and Bi is active but not

well-supplied in Stage t}. Then, with high prob ability, :EiEI(bi ,+ bi) = O(njvnl)'

Proof: H a color class Bi is active but not well-supplied in Stage t, then one of Conditions

(1)-(3) of Lemma 9.9 must be violated. Therefore the index sets 1',1" and 1111 defined

below cover all of I, Le., I' U I" U 1111 = I; we will show that with high prob ability the

sum :Ei(bi + bi) over each ofthese index sets is O(njvnd.

I' = {i EI: Bi is not well-estimated in Stage t},

I" = {i EI: Bi is unlucky in Stage t}, and

1111 = {i E I \ (I' U I") : Bi is neither apparently-small

nor apparently-huge in Stage t and Ni,t > bijvt}.

It follows directly from Lemmas 9.1 and 9.8(a) that with high prob ability :EiEI' (bi + bd =
O(nj2'IJt + n3 / 4) = O(njvnd. In the rest of the proof we consider all random choices

made by the algorithm in Stages 1, ... , t - 1 to be fixed in an arbitrary manner. Write

I" = I{' U I~', where I{' and I~' are the residue sets of the vt-allocations in lines (7)

and (16),respectively. H we further define 51 = :EiEI~' (bi + bd and 52 = :EiEI~' (bi + bi)
as functions of these residue sets, it is easy to see that both 51 and 52 satisfy a Lipschitz

condition with constant O(nl /88) (recall that bi+bi = O(nl /88), for i = 1, .. . ,n). We also

know for each vt-allocation that a fixed color class is unlucky with probability at most

2-'lJt (Lemma 7.3(a)), so that E(51 + 52) = o (nj2'IJt). By two straightforwardapplications

of Lemma 7.3(c), we thus obtain that with high prob ability, :EiEIII (bi + bi) = 51 + 52 =

O(nj2'IJt + nl/88v:nS/8) = O(njvnl + n3 / 4) = O(njvnd. Finally, if a color class Bi is

65

neither apparently-small nor unlucky in Stage t, a test scattering is carried out for Ei

in Stage t. Hence, by Lemma 9.10, Pr(i EI"') :s 2-v" for i = 1, ... , n, and therefore

E(LiEIII1 (bi + bi)) = O(L~1 (bi + bi)j2V
,) = O(nj2V

,). A simple martingale argument

now ensures that, withhighprobability, LiEI11I(bi+bi) = 0(nj2V
' +n3

/
4

) = O(njvU-d .

•
Lemma 9.14: For t = 1, ... , T - 1, with high probability the number of elements (and

hence color classes) active at the end of Stage t is O(njvU-d.

Proof: Immediate from Lemmas 9.12 and 9.13. •

We finally show that the total size of the arrays Ai,t allocated in Stage t is O(njv~),

for t = 1, ... , T (Lemma 9.16), from which will follow not only that the algorithm is

correct, but also that it uses O(n) processors and O(n) space. Disregarding the arrays

allocated to apparently-huge color classes, this can easily be done using Lemma 9.14. In

order to handle the apparently-huge color classes, however, we first have to show the

following technical lemma, which says that if a color dass Bi is well-supplied in Stage t,

then it is unlikely to contain more than max{ Vt+1 A, bdv~+1} active elements at the

beginning of Stage t + 1.

Lemma 9.15: Let t E {I, ... , T - I} and take I = {i : 1 :s i :s n, Bi is active

and well-supplied in Stage t and Ni,t+1 > max{ Vt+l A, bdv~+1}}' Then, with high

probability, LiEI(bi + bi) = O(njvU-I)'

Proof: Consider all random choices made in the algorithm before the Vt-compaction

in line (18) in Stage t to be fixed in an arbitrary way and let i E {I, ... , n}.

Since bijv~+1 ~ bi/2V
, , Lemmas 6.1(b) and 9.8(b) imply that if Bi is active and

well-supplied in Stage t, then Ni,t+l > max{ Vt+l A, bd V~+l} with prob ability at

most 2e-(, where , = vl+1 bij(29biV~) ~ vi4 j(29vn ~ 2vt. We have thus shown

that Pr(i E I) :s 2· 2-2v, :s 2-v,. Similarly as in the proof of Lemma 9.13, let

S = LiEI(bi + bi) and note that S satisfies a Lipschitz condition with constant 0(nl /88).

Now E(S) :s L~l (bi + bi) ·2-v , = O(n· 2-V
,) = O(njvU-I)' and by Lemma 6.1(c), with

high probability S = O(E(S) + nl/88v~n5/8) = O(njvU-I + n3 / 4) = O(njvU-d. •

Lemma 9.16: For t = 1, ... , T, the total size of the arrays Ai,t allocated in Stage t is

O(njvn·

Proof: The claim is obvious for t = 1 since VI = 0(1), so fix t E {2, ... , T}. By

Lemma 9.14, with high prob ability the total number of arrays allocated in Stage t is

o (n j vl2). Hence the total size of the arrays allocated in Stage t to color classes that are

66

. not apparently-huge is

n

O(n/v~2). (v: 9 + 1) + ~)bi/V:)) = O(n/v:),
i=l

as desired.

What remains is to bound. the total size of the arrays allocated to apparently-huge .

color classes. Let I = {i : 1 :::; i :::; n and Bi is apparently-huge in Stage t}. It suffices to

show that :EiEI bi = O(n/ v:) with high prob ability, since then the total size of the arrays

allocated to apparently-huge color classes in Stage t is O(:EiEIV~bi) = O(n/v:). To this

end we partition I into three subsets:

I' = {i EI: Bi is not well~supplied in Stage t - 1 or

Bi is not well-estimated in Stage t},

I" = {i E 1\1' : Ni,t > bi/vI}, and

I'" = {i E 1\1' : Ni,t :::; bi/vI}.

By Lemmas 9.13 and 9.1, :EiEI' bi = O(n/v~2 + n/21J
, + n3/4) = O(n/vn with high

prob ability. Suppose next that i E I". Then Ni,t > b,i/vl and Bi is well-estimated

in Stage t, Le., bi 2: bi/vt. Also, since Bi is apparently-huge in Stage t, it cannot

be apparently-small in Stage t, so bi > v17 It follows that Ni,t > bi/V: and

also that Ni,t > b~/2v:7/2 /vl 2: Jbi/vt . v:/2 = VtÄ. But then, by Lemma 9.15,

:EiEI" bi = O(n/v:} with high probability.

As concerns I"', finally, we use the fact that a color dass Bi with Ni,t :::; bi/vI is very

unlikely to become apparently-huge in Stage t. Specifically, according to Lemma 3.1(d),

the prob ability of this event is at most

and a simple martingale argument shows that :EiEl'" bi = O(n/v: +nl/88n3/4) = O(n/v:)

with high prob ability. •

Lemma 9.17: With high prob ability, the algorithm is correct and uses O(n) processors

and O(n) space.

Proof: We have already argued that the correctness of the algorithm follows ' from

Lemmas 9.11, 9.16 and 9.8(c). It uses O(n) processors and O(n) space, plus the resources

needed for the incomplete allocations in lines (7) and (16), which are O(n) by Lemmas

9.14, 9.16 and 7.3, and the resources needed for the incomplete compaction in line (18),

which are O(n) by Lemmas 9.14 and 6.1. This ends the proofs of Lemmas 9.17 and 9.7 .

•
67

Corollary 9.18: There is a constant € > 0 such that for all given nEIN, the following

problem can be solved on a TOLERANT PRAM using O(log*n) time, n processors and

O(n) space with prob ability at least 1- 2-n
€ (Las Vegas): Given n integers Z1> .• • ,Zn in

the range 0 .. n, compute n nonnegative integers bl , ... ,bn such that

(A) L~l bi = O(n);

(B) For i = 1, ... , n, bi 2: bi ,

where bi = I V : 1 :::; j :::; n and Z j = i} I, for i = 1, ... , n.

Proof: Mter semisorting the input elements into an array A of size O(n) using the

algorithm of Lemma 9.7, we can use the algorithm of Lemma 2.8(a) to store them in a

linked list in the order in which they occur in A. This makes it easy to compute the first

and the last element in A of each nonempty color dass, which identifies nonoverlapping

subarrays Al, ... , An of A such that Ai contains all elements of Bi, for i = 1, ... , n. All

that remains is to take bi = IAil, for i = 1, ... , n. •

The final goal in this section is to take the step from the nonoptimal algorithm of

Lemma 9.7 to an optimal semisorting algorithm. We first have to show two lemmas that

gradually increase our ability to compute good profiles with optimal speedup.

Lemma 9.19: There is a constant € > 0 such that for all given nEIN with T 2: log*n,

the following problem can be solved on a TOLERANT PRAM using O(T) time, rn/Tl

processors and 0 (n) space with prob ability at least 1 - 2-n~ (Monte Carlo): Given n

integers ZI, ••. , Zn in the range 0 .. n, compute n nonnegative integers b1 , • •• ,bn such

that

(A) L7=1 bi = O(n);

(B) Lbi>ß. bi = O(n/T),
where bi == IV: 1:::; j:::; n and Zj = i}l, for i = 1, . .. ,n.

Proof: Assume that T :::; n1 / 4 and that bi :::; n1 / 8 , for i = 1, ... , n. Obtain 61 , ... , 6n

exact1y as in the proof of Lemma 8.11, except that in Step 3 Corollary 9.18 is used

instead of Lemma 8.3. Since the use of Lemma 8.3 was the only reason for the lower

bound of (log*n)2 on T, this gives an algorithm with the stated resource requirements.

We now demonstrate the correctness of the algorithm. Observe first that since the profile

of Corollary 9.18 satisfies conditions (A) and (B) in the definition of a coarse-profile,

Lemmas 8.12-8.14 continue to hold for the modified algorithm. Lemma 8.12 direct1y

implies condition (A) ofLemma 9.19, and Lemma 8.14 states that Pr(bi > y'T6i) :::; 2-ft ,

for i = 1, ... , n. We would like to condude from this that Lb.>ß. bi = O(n/T) with

high prob ability, Le., that condition (B) of Lemma. 9.19 is satisfied as weIl. This would

follow easily from a martingale argument if 61 , ... , 6n were independent, hut this is not

necessarily the case. At this point, however, we can use the fact that the algorithm

68

of Corollary 9.18 overestimates all multiplitities. Assume that we were to execute the
~z z - -algorithm of Lemma 8.11 as above, but with bi = bi , for i = 1, ... , n, and let b1 ,· .• , bn

be the resulting profile (corresponding to b1 , ••• , bn). In this "ideal" setting bf, ... , b~
are independent, since they are fured, which makes the above martingale argument valid.

~z ~z .
Hence :Eb;>v"Tb; bi = O(n/T). The profile b1 , ••• , bn actually used by our algorlthm

satisn.es bf ~ bf, for i = 1, ... , n. Given the workings of the algorithm of Lemma 8.11,

this can easily be seen to imply that bi ~ bi , for i = 1, ... , n (if a subroutine returns

larger estimates, the final estimates become no smaller). But then

L bi ~ L bi = O(n/T). •
b; > v"Tb; b; > v"Tb;

Lemma 9.20: There is a constant € > 0 such that for all given nEIN with T ~ log*n,

the following problem can be solved on a TOLER.ANT PRAM using O(T) time, rn/Tl

processors and O(n) space with prob ability at least 1 - 2-n~ (Monte Carlo): Given n
- -integers Zl,"" Zn in the range 0 .. n, compute n nonnegative integers b1 , ••• , bn such

that

(A) :E~1 bi = O(n);

(B) :Eb;>b; bi = O(n/T),
where bi = I {j : 1 ~ j ~ n and Z j = i} I, for i = 1, ... , n.

Proof: Assume that -r ~ n1 / 4 and that bi ~ n1 / 8 , for i = 1, ... , n. First use the algorithm

of Lemma 9.19 to computea profile bb ... ,bn for Zl"",Zn with :E~=1 bi = O(n) such

. that :Eb;>v"Tb; bi = O(n/T). Then apply two-pass scattering in time with phase count T

to the primary input Xl,"" X n and the profile input b1 , ••• , bn and let X' and X" be

the resulting sets of successful and unsuccessful elements, respectively. It follows &most

exactly as in the proof of Theorem 8.15 that lX"I = O(n/T) with high prob ability. We

can hence use the algorithms of Theorem 4.6 and Lemma 8.1 to store X" in an array of

size O(n/-r) and torepiace the values of elements in X" by values in a range of size

O(n/-r), after which we can use the algorithm of Corollary 9.18 to compute a profile

b~, ... ,b~ such that :E~=1 b~' = O(n/T), but b~' ~ IBi n X"I, for i == 1, .. . ,n (take b~' = 0

for each i E {I, ... , n} with Bi n X" = 0).

Now draw a random sampie Y from X' (not from X) by including each element

of X' in Y with prob ability l/T and independently of other elements. By Chemoff

bound (a), with high prob ability IYI = O(n/-r). Exactly as described for X" above,

we can compute a profile hr, ... ,b,!: such that :E~=lbf = O(n/T), but bf ~ IBinYI,
for i = 1, .. . ,n. For i == 1, .. . ,n, let b~ = IBi n X'I, b~' = IBi n X"I and br = IBi n YI.
For i = 1, ... , n, if bi ~ -r2

, then take bi = IBi n X'I + b~' ~ b~ + b~' = bi ; otherwise take

b· - max{2-rb~ T 2 } + b~' ~ - ~ , ~ .

69

Property (A) is satisfied, since ~~=l bi ~ L~=l(IBi n X'I + 2Tbf + b~') + n =

O(IX'I + 2T(n/T) + IX"I + n) = O(n). As for property (B), fix i E {I, ... , n} and note

first that we cannot have bi > bi unless b~ > max{2Tbr,T2 }. 'But b~ > 2Tb[implies

br < bU(2T), which under the condition b~ > T2 happens with prob ability at most

e -b: /(8T) ~ e -T /8, by Chernoff bound (b). The desired result now follows by a martingale

argument .•

Theorem 9.21: There is a constant € > 0 such that for all given n, TEIN with T 2: log"'n,

n-color semisorting problems of size n can be solved on a TOLERANT PRAM using O(T)

time, rn/Tl processors and O(n) space with probability at least 1 - 2-nE (Las Vegas).

Proof: Observe first that it suffices to partition the input into two subsets and to

semisort these into arrays Q' and Q" of size O(n) each. For then, as in the proof of

Corollary 9.18, we can divide Q' into nonoverlapping subarrays A~, .. . , A~ and Q" into

nonoverlapping subarrays Af, . .. , A~ such that each element of Bi is stored either in A~

or in A~' , for i = 1, ... , n, after which we can use the algorithm of Theorem 7.1 to allocate

an array Ai of size IA~I + IA~'I to Bi from a base array of size L~=l (IA~I + IA~'I) = O(n)

and store all elements of Bi in ~, for i = 1, ... , n.

By this observation, it suffices to semisort the n input elements with a "waste" of

O(n/T) elements, i.e., with O(n/T) elements not placed in the output array. This is

because the elements that could not be placed are sufficiently few to be semisorted by the

algorithm of Lemma 9.7 (following a compaction according to Theorem 4.6), after which

we are in the situation described above.

As usual, assume that T ~ n l / 4 and that bi ~ n l /8 , for i = 1, ... , n. The algorithm - .

begins by computing a profile bl , ... , bn for Zl, ... , Zn with the properties described in

Lemma 9.20, after which it applies one-pass scattering in time with phase count T to the

primary input Xl, ... , X n and the profile input bl , ... , bn . Similarly as in the proof of

Theorem 8.15, call Bi well-estimated if bi ~ bi , and call each element of Bi good if Bi

is well-estimated, and bad otherwise, for i = 1, ... , n. Our first source of "waste" are

the bad elements; by property (B) of Lemma 9.20, their number is O(n/T) with high

prob ability. A second source of "waste" are the colliding good elements. Since a good

element collides with prob ability at most l/T, a martingale argument shows that the

number of colliding good elements is also O(n/T + n3 / 4) = O(n/T) with high prob ability.

A third and last source of "waste" will be good elements that cannot be placed in the

output array although they did not collide. We now describe a procedure that uses the

output of the scattering in time to semisort most of the noncolliding good elements.
- -Recall that scattering in time with profile input bl , ... , bn , as described in Section8,

uses arrays Al, . .. , An of list headers and counters allocated within a base array of size

O(n), where IAil = bi , for i = 1, ... ,n. For i = 1, .. . , n, divide Ai into rbi/Tl segments,

70

each of size at most r, and say that an element is stored in a segment if it belongs to a

list whose header is stored in (a cell in) the segment. Further take bi = IBi n X'I, where

X' is the set of noncolliding elements.

Now associate a target array with each segment as follows: For i = 1, ... , n, if bi ~ r,

then the target array of the (single) segment of Ai is of size min{b~,2r} (as argued in

Section 8, this quantity is readily available). If bi > r, on the other hand, the target

array of each segment of Ai is of size 2r, and the target arrays of all segments of Ai form

a contiguous block of memory cells - this is easy to ensure, since they are all of the same

size. Note that the total size of the target arrays is O(n), so that they can be allocated

according to Theorem 7.1 from a base array of size O(n), which will be the output array

of the semisorting.

We finally associate with each segment the task of placing min{ m, s} elements stored

in the segment in its target array, where m is the number of elements stored in the

segment and s is the size of its target array, and execute all the tasks using operation

allocation, as described in Section 7; if we take the length of a task to be the sum of the

size of its associated segment and the size of the corresponding target array, the necessary

prerequisites are easily seen to be satisfied (since every task is of length at most 3r, it

suffices to show how toprocess a task in linear sequential time, which is straightforward).

We want to show that with high probability, the number of elements not placed in

the corresponding target arrays in the above computation is O(n/r). To this end note

that the choice of a list number in the scattering in time implicitly is a choice of a

segment, and that the elements stored in a segment can be placed in the corresponding

target array if their number is no larger than the size of the target array, Le., if their

number is at most 2r. The expected number of elements of a well-estimated color class Bi

choosing a particular segment is at most r (since bi ~ bi , the number of lists "associated

with Bi at least equals the number of elements in Bi). Hence by Chemoff bound (a), the

prob ability that a fixed element of a well-estimatedcolor dass Bi finds itself in a segment

containing 2r + 1 or more elements of Bi is at most e-'T/3. A martingale argument now

shows that with high prob ability, the number of noncolliding good elements that cannot

be placed in the appropriate target arrays is O(n/r). •

10 Applications of Semisorting

This section describes a few relatively straightforward applications of Theorem 9.2l.

A number of less immediate applications were mentioned in the introduction.

Our first goal is to extend the semisorting result to strong semisorting. Recall that

whereas usual semisorting places the elements of each color dass in a subarray of a

base array, strong semisorting additionally requh-es the size of the subarray of each color

71

dass to be proportional to the size of the color dass, a property that is often useful in

applications.

Going from usual semisorting to strong semisorting obviously is a matter of

compacting each color dass into linear space. Treating color dasses independently, we

can use the algorithm of Theorem 5.3 to choose a suitable size for the destination array

of each color and carry out the actual compaction using the algorithms of Section 4.

Since color dasses may be small, however, their sizes may be overestimated (as weil as

underestimated) by the algorithm of Theorem 5.3; as a result, although the compaction

of a color dass succeeds, it may fail in the sense that the destination array is too large.

Since this is an infrequent event, we have enough resources to retry each unsuccessful

compaction many times, which achieves a high reliability. An indispensable prerequisite

for this, however, is the ability to teil whether a particular compaction was indeed into

linear space. We therefore need a eertified approximate eounting algorithm that with high

prob ability estimates the number of ones a.mong n bits correctly, up to a constant factor,

and that explicitly reports failure if it is unable to do so, Le., a Las Vegas algorithm for

approximate counting (Lemma 10.3). Our idea for obtaining such an algorithm is simple:

Compacting the ones in the input into an array A furnishes a proof that their number b

is at most lAI. On the other hand, subsequently compacting the free cells in A into an

array Q proves that lAI - b ::; IQI, which yields a lower bound on b.

We already know how to compact b elements into an array of size eb, where c is a

constant. It turns out, however, that for the above scheme to work we cannot allow

c to be arbitrarily large; in fact, we must demand that c < 2. We therefore briefly

depart from our usual philosophy of ignoring constant factors to show that the relevant

result in Section 4 (Theorem 4.6) actually holds for any constant c > 1 (Lemma 10.1).

Observations similar to Lemmas 10.1 and 10.2 were made independently and first

reported by Goodrich (1991).

Lemma 10.1: For every fixed J1. > 0 there is a constant € > 0 such that for all given

n, d, TEIN with T 2: log*n, complete compaction problems of size n and with parameters

d -- 0 can be solved on a TOLERANT PRAM using O(T) time, rn/Tl processors and
(l+~)d

O(n) space with prob ability at least 1 - 2-nE (Las Vegas).

Proof: Without 1055 of generality we can assume that J1.d 2: 12, since otherwise the

number of active input elements is bounded by a constant, that d ::; n and that J1. is

rational and at most 1. It suffices to describe a basic algorithm with a failure probability

of 2-d
O(1), since for d ::; ..;n the active elements can be compacted into an array of

size O(..;n) using the algorithm of Coroilary 4.3, after which the basic algorithm can

be applied independently 0(..;n) times. It also suffices, for a certain constant KEIN,

to place all except J1.d/ K elements in an array of size s = r(l + J1./2)dl, since, provided

72

that K is sufficiently large, the algorithm of Theorem 4.6 can then be used to place the

remaining elements in an array of size r JLd/31, which for JLd ~ 12 is at most (1 + JL)d - s.

We do this using repeated 1-scattering over a fixed array A of size s. Initially let all

elements be active, and then carry out a number of stages. In each stage the remaining

active elements are 1-scattered over A, whereby colliding elements as weil as elements

that hit an element placed in a previous stage remain active, while the other elements are

placed in A and become inactive.

Assume that some stage starts with more than JLd/ K active elements. It is easy to see

that a fixed element collides or hits an element placed in a previous stage with prob ability

at most d/ s :$ 1/(1 + 1'/2), so that the expected number of elements deactivated in

the stage is at least (JLd/K)(1-1/(1 + 1'/2)) = JL2d/(2K(1 + 1'/2)) ~ (JL2/(4K)). d. By

Lemma 2.2(b), with high prob ability the stage under consideration deactivates at least

(JL2 /(SK)) . d elements. We may conclude that with high probability, rSK / 1'21 stages

suffice to reduce the number of active elements to at most JLd/ K, as desired. •

Lemma 10.2: For every fixedJL > 0 there is a constant € > 0 such that for all given

n, TEIN · and T ~ log*n, the foilowing problem can be solved on a TOLER.ANT PRAM

using O(T) time, rn/Tl processors and O(n) space with probability at least 1 _ 2-nf

(Monte Carlo) : Given n bits :l:1, • •. ,:l:n , compute a nonnegative integer b such that

b :$ b :$ (1 + JL)b, where b = IV : 1 :$ j :$ n and :l:j = 1}1.

Proof: Define an input element to be active if its value is 1, and assume without

loss of generality that I' is rational and at most 1. Take 6 = 1'/3 and begin by using

the algorithm of Theorem 5.3 to compute an integer b such that with high prob ability,

b/ K :$ b :$ b, for some constant K ~ 1. If 6b :$ 1, solve the problem in a trivial

manner. Otherwise repeatedly use the algorithm of Lemma 10.1 with I' = 6 to attempt

to compact the active elements with limit d = b, b + l6bJ, b + 2l6bJ, ... , stopping after the

first successful complete compaction, and return as b the quantity l(1 + 6)dJ, where dis

the limit of the last (successful) attempt.

The size of the destination array of the successful compaction is at most (1 + 6)d,

Le., the relation b :$ b is satisfied. On the other hand, the compaction will succeed with

high probability for any limit which is at least b. Provided that indeed b :$ b, the first

limit with this property in the above series is at most b + 6b :$ (1 + 6)b, so that with high

prob ability, b :$ (1 + 6)2b :$ (1 + 36)b = (1 + JL)b. It is easy to see from this that provided

that indeed b = O(b), with high prob ability thealgorithm of Lemma 10.1 is applied only

a constant number of times, Le., the running time is O(T) . •

Informally, the "true" output of the Las Vegas algorithm below for approximate

counting is the integer b. y = 0 indicates the correctness of the output, whereas y = 1

signifies that the execution failed.

73

Lemma 10.3: For every fixed J.L > 0 there is a constant € > 0 such that for all given

n, rEIN with r 2: log*n, the following problem can be solved on a TOLERANT PRAM

using O(r) time, rn/rl processors and O(n) space: Given n bits ib" .,Zn, compute a

nonnegative integer b and a bit y such that

(a) If y = 0, then b ~ b ~ (1 + J.L)b, where b = L:7=1 Zj;

(b) Pr(y = 1) ~ 2-nf
• .

Proof: Assume that J.L is rational, choose 0 < 1 to make (1 - 40)(1 + J.L) = 1 and begin

by applying the algorithm of Lemma 10.2 to obtain a nonnegative integer b such that

with high prob ability, b ~ b ~ b/(l - 0). Taking b = L(l + O)bj, we now verify the two

inequalities b ~ b ~ (1 + J.L)b and set y = 1 if the verm.cation fails. Assume that b 2: 1,

since for b = 0 the verification can be done trivially according to Lemma 2.7.

Again define an input element to be active if its value is 1. Let A be an array of size

b and use the algorithm of Lemma 10.1 with J.L = 0 and d = b to attempt to place the

active elements in A. If this succeeds, it clearly proves that b ~ b. On the other hand,

since b 2: b with high prob ability, the compaction succeeds with high prob ability.

Assuming that the compaction into A succeeds, we next use the algoritlim of

Lemma 10.1 with J.L = 1 and d = L20bj to attempt to place the free cells in A in an

array Q of size L 40bj . More precisely, this entails deriving from A a bit sequence

zi, . .. , zlAI+n such that zj = 1 if and only if the jth cell of A contains no input element,

for j = 1, ... , lAI, and zj = 0 for j = lAI + 1, .. . , lAI + n, and then using zi,· · .,zIAI+n

as input to the algorithm of Lemma 10.1 (zIAI+1" '" zlAI+n are added only to ensure

that the algorithm works correctly with high probability). Take y = 0 if and only if both

compactions according to Lemma 10.1 succeed.

The following happens with high probability: b 2: (1 - O)b, so the number b - b of

free cells in A is at most (1 + O)b - (1 - O)b = 20b ~ 20b, and the compaction into Q

succeeds. If it does, this is proof that the number of free cells in Ais at most IQI, and

hence that b 2: b - L 40bj 2: (1 - 40)b, from which follows that b ~ (1 + J.L)b. •

Theorem 10.4: There is a constant € > 0 such that for all given n, rEIN with r 2: log"n,

n-color strong semisorting problems of size n can be solved on a TOLERANT PRAM

using O(r) time, r n/rl processors and O(n) space with probability at least 1- 2-nf (Las

Vegas).

Proof: Assume that r ~ n l /
4

• We begin by semisorting the input according to

Theorem 9.21. As in the proof of Corollary 9.18, we can view this as providing us with n

disjoint subarrays Al,' . . ,An of a base array A of size 0 (n) such that the elements of

Ei are placed in Ai, for i = 1, ... ,n. Our goal is to· move the elements in Ei from Ai to

a subarray of Ai of size 0 (bi), for i · = 1, ... , n, which provides a solution to the strong

semisorting problem.

74

We process Al, ... , An using operation allocation, as described in Section 7. The

sequential processing of an array is simply exact compaction by me ans of prefix

summation. The parallel processing of Ai is as follows, for i = 1, ... , n: Apply the

algorithm of Lemma 10.3 to Ai with JL = 1 to obtain a pair (bi, Yi), where bi is an

estimate of bi and Yi is an indication of the validity of bi (if Yi = 0, then bi S bi S 2bi).

Subsequently apply the algorithm of Lemma 10.1 with JL = 1 to attempt to place Bi in a

subarray A~ of Ai of size at most 2bi (if 2bi ~ IAil, simply take A~ = Ai). H either Yi = 1

.or the compaction of Bi into A~ faUs, we will say that the processing of ~ faUs. Take

Y~ = 1 if the processing of Ai faUs, and Y~ = 0 otherwise.

By Lemmas 10.1 and 10.3, the processing of Ai faUs with prob ability at most

2 . 2- IAi I' , for some fixed 5 > 0 and for i = 1, ... ,n. In particular, with high prob ability

the processing of an array of size n l / 8 or more does not faU. As another consequence,

E(L:=1 Y~· 2IAil') = O(n). Furthermore, by a martingale argument, L:=l y~qi = O(n)

with high prob ability, where qi = min{2 r1Ail '1, fn l / 41}, for i = 1, ... ,n. But this means

that if the processing of Ai faUs, for some i E {1, ... , n}, then we can expend 8(qi)

operations in a second attempt to process~. We again use operation allocation, now

with a new collection of tasks. Since I~I S n l / 8 with high prob ability, we can clearly

compact Bi exactly in O(qd sequential time. Furthermore, if qi = 2 rlA i 1'1, we can use

prefix summation (Lemma 2.4) to compact Bi in O(T) time using f qi/Tl processors,

while if instead qi = fnl
/

41, f qi/Tl processors suffice to carry out 0(nl
/

8
) independent

attempts to process Ai in O(T) time as above, at least one of which will succeed with

high prob ability. •

Corollary 10.5: There is a constant € > 0 such that for all given n, TEIN with

T ~ log"'n, n-color fine-profiling problems of size n can be solved on a TOLERANT PRAM

using O(T) time, fn/Tl processors and O(n) space with prob ability at least 1- 2-n
€ (Las

Vegas).

Proof: Immediatefrom Theorem 10.4 and Lemma 2.8(a) (see the proof of Corollary 9.18) .

•
A second application of semisorting is to integer chain-sorting. Recall that the

chain-sorting problem is to store given keys in sorted order in a linked list. In the formal

definition below, the linked list is represented by a circular structure and apointer to the

last list element.

Definition: For all n, mEIN, the m-color chain-sorting problem of size n is · the

following: Given n integers Zl, ... ,Zn in the range 1 .. m, compute a cyclic permutation

'IrI, ••. , 'lrn of 1, ... , n and an integer q E {1, ... , n} such that for all j E {1, ... , n}\{q},

we have Z"Irj ~ Zj.

75

Theorem 10.6: There is a eonstant € > 0 such that for all given n, TEIN with T 2: log*n,

n-eolor chain-sorting problems of size n ean be solved on a TOLERANT PRAM using O(T)

time, rn/Tl proeessors and O(n) spaee with prob ability at least 1 - 2-nE (Las Vegas).

Proof: Begin by semisorting the input elements into an array of size 0 (n) aeeording to

Theorem 9.21. Using the algorithm ofLemma 2.8(a), it is then easy to eonstruet a linked

list eontaining precisely the elements of Bi in the order in which they oeeur in A, for

i = 1, ... , n. The remaining problem is to eoneatenate these lists in the right order. This

ean be done by applying the algorithm of Lemma 2.8(a) a seeond time, now to an n-bit

input whose ith bit is 1 if and only if Bi =1= 0, for i = 1, ... , n. •

A claim similar to Theorem 10.6 above was made in (Gil et al., 1991). It seems

unlikely, however, that any algorithm based on the outline given in (Gil et al., 1991) ean

be made to run in linear spaee.

An important applieation of Theorem 10.6 is to (standard) integer sorting. Let

us restriet attention to the problem of sorting n integers in the range 1 .. n on a

CReW PRAM. Rajasekaran and Reif (1989) deseribe a randomized algorithm with

optimal speedup for this problem that uses O(logn) time and O(n/logn) proeessors

with high prob ability. Bhatt et al. (1991) give a deterministic algorithm that works in

O(logn/loglogn) time using O(n(loglogn)2 /logn) proeessors. We show how to eombine

the time bound of (Bhatt et al., 1991) with the time-proeessor produet of (Rajasekaran

and Reif, 1989), thus achieving at the same time optimal speed and optimal speedup.

Similar results were found independently by Matias and Vishkin (1991) and Raman

(1991); note, however, that the algorithms of these authors (which are quite similar) are

inherently much less reliable than the algorithm given here - the failure probability is

!l(2-(logn)"'), for some fixed a, to be eontrasted with our failure probability of 2-n11
(1) •

Our algorithm makes use of a subroutine for monotonie list ranking with optimal

speedup. The monotonie list ranking problem of size n is, given a linked list of n

elements such that which of two given list elements preeedes the other ean be determined

in eonstant time by a single proeessor, to mark each element of the list with its position

within the list.

Lemma 10.7 (Bhatt et al., 1991): For all given integers n 2: 4 and T 2: logn/loglogn,

monotonie list ranking problems of size n ean be solved on a (deterministie) TOLERANT

PRAM using O(T) time, rn/Tl proeessors and O(n) spaee.

Theorem 10.8: There is a eonstant € > 0 such that for all given integers n 2: 4 and

T 2: logn/loglogn, n integers in the range 1 .. n dU!. be sorted on a TOLERANT PRAM

using O(T) time, rn/Tl proeessors and O(n) spaee with prob ability at least 1- 2-nE (Las

Vegas).

76

Proof: Chain-sort the input elements using the algorithm of Theorem 10.6 and compute

the position of each element within the resulting list using the algorithm of Lemma 10.7.

In order to determine the relative order of two elements with the same value, compare

their positions in the semisorted array output by the algorithm of Theorem 9.21. •

11 Nonoptimal Algorithms

This section investigates the effect for the problems considered of allowing slightly

superlinear processor and space bciunds. In some cases, we also have to generalize the

problems by introducing a so-called slack parameter (this not ion already appeared in

Lemmas 6.1 and 7.3). We begin by showing that compaction with slack can be done in

constant time.

Although, technically, the results stated in this section allow k and '1' to vary

independently as functions of n, it is probably most useful to imagine that '1' = k is

constant. Our informal discussion makes this assumption.

Theorem 11.1: There is a constant f > 0 such that for all given n, d, k, '1' E IN with

'1' ~ k, complete compaction problems of size n and with parameters d -- 0, where
0(8)

s = dLlog(k)nJ, can be solved on a TOLERANT PRAM using 0('1') time, rkn/'1'l processors

and O(n) space with prob ability at least 1 - 2-n~ (Las Vegas).

Proof: We can assume that (2fl,og(k+l)dl)3 :s; log(k)d, since otherwise k = O(log*d) and

we can apply the algorithm of Theorem 4.6, and that s :s; n. Then apply the algorithm of

Lemma 4.4 O(k) times. The number of operations needed is O(kn), which translates into

rkn/rl processors, for any '1' ~ k. Omitting the size U of the destination array from the

notation d1 -- d2 , we can express the process symbolically as follows:
~ .

The last step in the above sequence reduces the number of active elements below 1, i.e.,

to zero. The destination array used in the first step is of size O(dlog(k)d) = O(s), and

the sizes of the destination arrays used in the remaining steps sum to 0 (d). Hence all

active elements can indeed be placed in an array of size O(s) .•

We now extend Theorem 11.1 to the case of several colors. In contrast with the

algorithm of Theorem 11.1, the generalized algorithm of Theorem 11.2 needs superlinear

space.

77

Definition: For all n, mEIN, dl , ... , dm. ~ 0 and >. ~ 1, the complete colored

compaction problem of size n and with limits dl , ... , dm. and slack >. is, given n integers

Zl, ... , Zn in the range 0 .. m such that I {j : 1 ~ j ~ n and Z j = i} I ~ di , for i = 1, ... , m,

to compute a complete placement for Zl, ... , Zn with bounds >.dl , ... , >'dm..

Theorem 11.2: There is a constant € > 0 such that for all given n, m, k, r, dl , ... , dm. E IN

with m = (logn)O(l) and r ~ k, complete colored compaction problems of size n with

limits dl , .. . ,dm. and with slack O(1og(1c)n) can be solved on a TOLERANT PRAM using

O(r) time, rkn/rl processors and O((n+ 2::1 di)log(1c)n) space with probability at least

1 - 2-nE (Las Vegas).

Proof: The idea of the proof is to apply the nonoptimal part of the algorithm of

Theorem 6.2 (with 5 = 1/2) in a situation in which some of the elements have already

been deactivated. Define Bi to be large if bi > n l / 4 , for i = 1, ... , m, and recall that

the algorithm of Theorem 6.2 essentially applies the algorithm of Lemma 6.1 log*n

times to reduce the fraction of active elements in each large color dass below a certain

threshold, after which the compaction is finished using negligible resources. In the

present setting, where we are allowed O(log(1c)n) slack, we can speed up the deactivation

by first l-scattering the elements of Bi over an array of size 2di flog(1c)nl, for i = 1, . .. , m.

Lemma 3.6(b) shows that the number of elements in a fixed large color dass Bi that

collide in the l-scattering is at most max{bi/log(k)n, b~/4}, except with prob ability at

most e-', where (= (b~/4)2 /(32bi) = O(b~/2) = O(nl /8), so that with high prob ability

the fraction of active elements left in any large color dass is o (l/log(1c)n). It is now

easy to see that all but the last O(k) applications of the algorithm of Lemma 6.1 in the

algorithm of Theorem 6.2 can be omitted. Since all subroutines used can be made to run

in O(r/k) time using rkn/rl processors, we can therefore deactivate all elements in O(r)

time. •

Armed with Theorem 11.2, we can easily use the reductions of interval allocation

and interval marking to colored compaction given in Section 7 to derive similar results

for these problems.

Definition:For all nEIN and >. ~ 1, the interval allocation problem of size n and

with slack >. is, given n nonnegative integers Zl, ... , Zn, to compute a complete interval

placement for Zl, ... , Zn with slack >..

Theorem 11.3: There is a constant € > 0 such that for all given n, k, rEIN with

r ~ k, interval allocation problems of size n and with slack O(log(1c)n) canbe solved on

a TOLERANT PRAM using O(r) time, rkn/rl processors and O(nlog(1c)n) space with

prob ability at least 1 - 2-nE (Las Vegas).

Proof: As the proof of Theorem 7.1, except that Theorem 11.2 is used instead of

Theorem 6.2, and that Corollary 10.5 is used instead of Theorem 5.3 (the latter

substitution serves only to obtain a Las Vegas algorithm). •

In (Bast et al., 1992), Theorem 11.3 is used to prove a related result: For any kEIN,

usual interval allocation problems (i.e., with constant slack) of size n can be solved in

O(k) time using O(nlog(1c)n) processors and O(nlog(1c)n) space with high prob ability.

Definition: For all nEIN and A 2: 1, the interval marking problem of size n and with

slack A is the following: Given n nonnegative integers :Cl, ... ,:Cn , compute nonnegative

integers s, Zl, ... ,Z. such that

(1) For all integers i, j, k with 1 :s; i :s; j :s; k :s; s, if Zi = Zk :# 0, then Zj = Zi;

(2) For i = 1, .. . ,n, I{j: 1:S; j:S; s and Zj = i}1 = :Ci;

(3) s = O(A ~;=l :Cj).

Theorem 11.4: There is a constant € > 0 such that for all given n, kEIN, interval

marking problemsof size n and with slack O(log(k)n) can be solved on a TOLERANT

PRAM using O(k) time, O(n + Wlog(k)n) processors and O((n + W) logUc)n) space with

prob ability at least 1 - 2-nE (Las Vegas), where W is the sum of the input numbers.

Proof: As the proof of Theorem 7.2, using Theorem 11.3 instead of Theorem 7.1. •

Our goal in the remainder of this section is to derive constant-time algorithms for

coarse-profiling and for a variant of semisorting. Recall from Sections 8 and 9 that the

n-processor algorithms for these problems proceed in a number of stages, each except the

last of which essentially performs bootstrapping for the following stage, while only the

last stage actually solves the entire problem. The key observation for the present section

is that if we simply omit the bootstrapping of the first stages, the algorithms still operate

in a well-defined way, but with a certain increase in their resource requirements and,

possibly, a certain degradation in the quality of their output. It even turns out that if we

start with Stage to, for some to, the bootstrapping effect of Stage to is not affected by the

absence of Stages 1, ... , to - 1, so that our original analysis applies without modification

to all stages following Stage to . It therefore suffices to reanalyze Stage to with respect to

its resource requirements and its effect on the output.

Theorem 11.5: There is a constant € > 0 such that for all given n, kEIN, n-color

coarse-profiling problems of size n can be solved on a TOLER.ANT PRAM using O(k2)

time, O(nlogUc)n) processors and O(nlog(k)n) space with prob ability at least 1 _ 2-nE

(Monte Carlo).

Proof: Execute only Stages to, ... , T of the algorithm of Lemma 8.3, where

to = max{l, T - 2(k + I)}, and note that Vto = O(log(k+l)n) (because Vt-2 :s; 10gVt for

79

t larger than some constant). The number of processors and memory cells allocated in

Stage to clearly is O(nVto). By the proof of Lemma 8.6, the probability that a fixed color

class is tardy in Stage t is still bounded by V;6, for t = to + 1, ... , T. Therefore the

number of processors and memory cells allocated in each of Stages to + 1, ... , T remains

O(n) (Lemma 8.7) . The amount ofresources consumed is hence as desired, and a running

time of 0 (k 2) is achieved by allocating the resources needed in each of the 0 (k) stages

using the algorithms of Theorems 11.3 and 11.4.

Intuitively, the quality of an estimate is essentially independent of the stage in

which it becomes defined. Correspondingly, it is not difficult to see that Lemmas 8.8

and 8.9 hold without change; hence the linear-sum condition is satisfied with high

prob ability. To show property (B) of a coarse-profile, fix a 2: 1 and i E {1, ... , n} with

bi > O. In the present setting in which Stages 1 to to - 1 are omitted, the proof of

Theorem 8.10 yields that :E;=to+l Pr(bi > abi and D t) ::; 2-2
<1, where D t denotes the

event that bi becomes defined in Stage t, for t = 1, .. . , T. Note that to is excluded

from the sum; this is necessary because small color classes are certain to be tardy in

Stage to, thus invalidating the analysis in Case 3 of the proof of Lemma 8.10. By the

analysis of Case 2, however, Pr(bi > abi and D to) ::; 2-8
<1, allowing us to conclude that

Pr(bi > abi) ::; 2-2<1 + 2-8<1 ::; 2-<1. The output of the modified algorithm therefore indeed

is a coarse-profile. •

Theorem 11.5 represents the best that we can do on the TOLERANT PRAM; in

particular, the number of processors needed is superlinear . On the ARBITRARY PRAM,

on the other hand, we obtain a constant-time algorithm with optimal speedup with the

sole drawback of superlinear space requirements.

Theorem 11.6: There is a constant f > 0 such that for all given n, kEIN, n-color

coarse-profiling problems of size n can be solved on an ARBITRARY PRAM using O(k2)

time, n processors and O(nlog(1e)n) space with prob ability at least 1 - 2-nE (Monte

Carlo).

Proof: Consider the algorithm of Theorem 11.5 and note that the processors allocated

by the algorithm serve exclusively to determine the 1-rows of a number of graduated

conditional scatterings according to Lemma 3.4(a). By Lemma 3.4(b), on the ARBITRARY

PRAM the same can be achieved with just one processor for each element scattered, plus

one additional processor per GCS. Since these processors can be allocated in a trivial

manner from a pool of O(n) processors and the allocation of space can be done using the

algorithm of Theorem 11.3, the claim folIows . •

Definition: For all n, mEIN and .A 2: 1, the m-color semisorting problem of size n and

with slack .A is the following: Given n integers Z1, ... , Zn in the range 0 . . m, compute n

80

nonnegative integers Yi , ... , Yn such that

(1) For 1:S i < j:S n, ifzi # 0, then Yi # Yj;

(2) For all i,j,k E {I, .. . ,n}, ifYi < Yj < Yle and Zi = ZIe, then Zj = Zi;

(3) ma:x:{yj : 1 :S j :S n} = O(;\n).

Theorem 11.7: There is a constant € > 0 such that for all given n, kEIN, n-color

semisorting problems of size n and with slack O(log(le)n) can be solved on a TOLER.ANT

PRAM using O(k) time, O(nlog(le)n) processors and O(nlog(le)n) space with prob ability

at least 1 - 2-nE (Las Vegas).

Proof: As in the proof of Lemma 9.7, we first computea profile with properties (A)

and (B) of L~a 9.1. The procedure is similar to that of the proof of Theorem 11.5:

With to = ma:x:{l, T - 2(k + I)}, we execute only Stages to, ... , T of the algorithm of

Lemma 9.1. By the proof of Lemma 9.3, the number of tardy color classes in Stage t is

still O(njvt), for t = to + 1, ... , T, sothat Stages to + 1, ... , T can be executed using O(n)

processors and O(n) space (Lemma 9.4). The &mount of resources allocated in Stage to

is O(nvto); hence, by Lemma 7.3, Stage to can be executed using O(nvto) = O(nlog(le)n)

processors and memory ceils. Furthermore, Lemma 9.5 still holds, so the linear-sum

condition is satisfied. Using an argument in the proof of Theorem 11.5 showing that

~;=to Pr(bi > abi and Dt) :S 2-4
, the proof of Lemma 9.6 carries over to the modified

algorithm, and condition (B) of Lemma 9.1 is satisfied as weil.

Now execute Stages to, ... , T of the algorithm of Lemma 9.7, still with

to = max{l,T - 2(k + I)}. Although the series Vi, . . ',VT is now different, it is agam

the case that Vto = O(log(Hi)n). Recall that each stage deactivates elements by placing

them in suitably-sized arrays, one for each color. In every stage, the size of the array

used for a particular color is chosen on the basis of a test scattering for that color,

which roughly estimates the number of remaining active elements of that color. As

an important consequence of this "self-correcting" mechanism, we were able to analyze

the deactivation capability of a stage without relying on the deactivation carried out in

earlier stages (if earlier stages perform poody, the resource requirements of the stage

at hand go up, but it will still reduce the number of remaining active elements to the

required level). Therefore Lemma 9.11 remains true (the last stage always deactivates all

remaining active elements), and with the additional restriction t ~ to, the same holds for

Lemmas 9.12-9.15. We must show that the algorithm is correct and bound its resource

requirements. As in Section 9, this essentially boils down to bounding the total size of

the arrays A i .t allocated in Stage t, for t = to, ... , T. For t ~ to + 1, this quantity can

be seen to be O(njvn (Lemma 9.16); the reason is that in the analysis of a particular

stage, Lemmas 9.13-9.15 can be applied to the previous stage. As regards Stage to itself,

it is easy to see from lines (7) and (13)-(15) in the algorithm that the total size of the

81

arrays allocated in Stage to is O(nv}:). Since vl; = O(log(k)n), by the choice of to, it

now follows essentially as in the proof of Lemma 9.17 that with high prob ability, the

algorithm uses O(nlog(k)n) processors and O(nlog(k)n) space and solves the semisorting

problem with slack O(nlog(k)n). •

Corollary 11.8: . There is a constant € > 0 such that for all given n, kEIN, n-color

chain-sorting problems of size n can be solved on a TOLERANT PRAM using O(k) time,

O(nlog(k)n) processors and O(nlog(k)n) space with prob ability at least 1 - 2-ne (Las

Vegas).

Proof: As the proof of Theorem 10.6, using Theorem 11.7 instead of Theorem 9.21 and

part (b) of Lemma 2.8 instead of part (a). •

Acknowledgment: We are grateful to the anonymous referees for their meticulous

reading and for many useful suggestions. We also thank Peter Miltersen for pointing us

to the papers by Stockmeyer and Ajtai and Ben-Or, and Prabhakar Ragde for simplifying

the proof of Lemma 3.5.

References

AnAl, M., AND BEN-OR, M. (1984), A Theorem on Probabilistic Constant Depth

Computations, in Proc. 16th Annual ACM Symposium on Theory of Computing,

pp. 471-474.

ALON, N., AND MEGIDDo, N. (1990), Parallel Linear Programming in Fixed Dimension

Almost Surely in Constant Time, in Proc. 31st Annual Symposium on Foundations

of Computer Science, pp. 574-582.

BAST, H., DIETZFELBINGER, M., AND HAGERUP, T. (1992), APerfeet Parallel

Dictionary, in Proe. 17th International Symposium on Mathematieal Foundations

of Computer Scienee, Springer Lecture Notes in Computer Scienee, Vol. 629, pp.

133-141.

BAST, H., AND HAGERUP, T. (1991), Fast and Reliable Parallel Hashing, manuscript.

A preliminary version appears in Proe. 3rd Annual ACM Symposium on Parallel

Algorithms and Architeetures, pp. 50-61.

BEAME, P., AND HASTAD, J. (1989), Optimal Bounds for Decision Problems on the

CRCW PRAM, J. ACM 36, pp. 643-670.

BERKMAN, 0., AND VISHKIN, U.(1989), Reeursive *-Tree Parallel Data-Strueture, in

Proe. 30th Annual Symposium on Foundations of Computer Scienee, pp. 196-202.

82

BHATT, P. C. P., DIKS, K., HAGERUP, T., PRASAD, V. C., RADZIK, T., AND SAXENA,

S. (1991), Improved Deterministic Parallel Integer Sorting, Inform. and Comput. 94,

pp. 29-47.

BOLLOBAS, B. (1987), Martingales, Isoperimetric Inequalities and Random Graphs, in

Colloq. Math. Soc. J. Bolyai 52, pp. 113-139.

CHLEBUS, B. S., DIKS, K., HAGERUP, T., AND RADZIK, T. (1988), Efficient Simula­

tions between Concurrent-Read Concurrent-Write PRAM Models, in Proc. 13th

Symposium on Mathematical Foundations of Computer Science, Springer Lecture

Notes in Computer Science, Vol. 324, pp. 231-239.

CHLEBUS, B. S., DIKS, K., HAGERUP, T., AND RADZIK, T. (1989), New Simulations

between CRCW PRAMs, in Proc. 7th International Conference on FUndamentals of

Computation Theory, Springer Lecture Notes in Computer Science, Vol. 380, pp.

95-104.

COLE, R., AND VISHKIN, U. (1989), Faster Optimal Parallel Prefix Sums and List

Ranking, Inform. and Comput. 81, pp. 334-352.

FICH, F.E., RAGDE, P., AND WIGDERSON, A. (1988a), Simulations Among Concurrent­

Write PRAMs, Algorithmica 3, pp. 43-5l.

FlcH, F. E., RAGDE, P., AND WIGDERSON, A. (1988b), Relations Between Concurrent­

Write Models of Parallel Computation, SIAM J. Comput. 17, pp. 606-627.

GIL, J. (1990), Lower Bounds and Algorithms for Hashing and Parallel Processing, Ph.

D. Thesis, The Hebrew University, Jerusalem.

GIL, J. (1991), Fast Load Balancing on a PRAM, in Proc. 3rd IEEE Symposium on

Parallel and Distributed Processing, pp. 10-17.

GIL, J., MATIAS, Y., AND VISHKIN, U. (1991), Towards a Theory of Nearly Constant

Time Parallel Algorithms, in Proc. 32nd Annual Symposium on Foundations of

Computer Science, pp. 698-710.

GOODRICH, M. T. (1991), Using Approximation Algorithms to Design Parallel

Algorithms that May Ignore Processor Allocation, in Proc. 32nd Annual Symposium

on Foundations of Computer Science, pp. 711-722.

GROLMUSZ, V. (1991), Large Parallel Machines Can Be Extremely Slow for Small

Problems, Algorithmica 6, pp. 479-489.

GROLMUSZ, V., AND RAGDE, P. (1987), Incomparability in Parallel Computation, in

Proc. 28th Annual Symposium on Foundations of Computer Science, pp. 89-98.

Journal version: Disc. Appl. Matb. 29 (1990), pp. 63-78.

HAGERUP, T. (1992a), Fast and Optimal Simulations between CRCW PRAMs, in Proc.

9th Annual Symposium on Theoretical Aspects of Computer Science, Springer

Lecture Notes in Computer Science, Vol. 577, pp. 45-56.

83

HAGERUP, T. (1992b), The Log-Star Revolution, in Proc. 9th Annual Symposium on

Theoretical Aspects of Computer Science, Springer Lecture Notes in Computer

Science, Vol. 577, pp. 259-278.

HAGERUP, T. (1992c), The Parallel Complexity ofInteger Prefix Summation, Tech. Rep .

no. LSI-92-18-R, Dept. de LSI, Universitat Politecnica de Catalunya, Barcelona,

Spain.

HAGERUP, T. (1992d), On a Compaction Theorem of Ragde, Inform. Process. Lett. 43,

pp. 335-340.

HAGERUP, T., AND KATAJAINEN, J. (1993), Improved Parallel Bucketing Algorithms

for Proximity Problems, in Proc. 26th Hawaii International Conference on System

Sciences, Vol. 11: Software Technology, pp. 318-327.

HAGERUP, T., AND RADZIK, T. (1990), Every Robust CRCW PRAM Can Efficiently

Simulate a PRIORITY PRAM, in Proc. 2nd Annual ACM Symposium on Parallel

Algorithms and Architectures, pp. 117-124.

HAGERUP, T., AND RAMAN, R. (1992), Waste Makes Haste: Tight Bounds for Loose

Parallel Sorting, in Proc. 33rd Annual Symposium on Foundations of Computer

Science (1992), pp. 628-637.

HAGERUP, T., AND RÜB, C. (1990), A Guided Tour of Chernoff Bounds, Inform.

Process. Lett. 33, pp. 305-308.

MACKENZIE, P. D. (1992), Load Balancing Requires n(log*n) Expected Time, in Proc.

3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 94-99.

MATIAS, Y., AND VISHKIN, U. (1991), Converting High Probability into Nearly­

Constant Time - with Applications to Parallel Hashing, in Proc. 23rd Annual ACM

Symposium on Theory of Computing, pp. 307-316.

McDIARMID, C. (1989), On the Method of Bounded Differences, in Surveys in

Combinatorics, ed. J. Siemons, London Math. Soc. Lecture Note Series 141,

Cambridge University Press, pp. 148-188.

RAGDE, P. (1990), The Parallel Simplicity of Compaction and Chaining, in Proc. 17th

International Colloquium on Automata, Languages and Programming, Springer

Lecture Notes in Computer Science, Vol. 443, pp. 744-75l.

RAJ ASEKARAN, S., AND REIF, J. H. (1989), Optimal and Sublogarithmic Time

Randomized Parallel Sorting Algorithms, SIAM J. Comput. 18, pp. 594-607.

RAMAN, R. (1990), The Power of Collision: Randomized Parallel Alg9rithms for

Chaining and Integer Sorting, in Proc. 10th C6nference on Foundations of Software

Technology and Theoretical Computer Science, Springer Lecture Notes in Computer

Science, Vol. 472, pp. 161-175.

84

RAMAN, R. (1991), Optimal Sub-logarithmic Time Integer Sorting on the CRCW PRAM,

Tech. Rep . no. 370, Dept . of Computer Science, University of Rochester, Rochester,

New York.

REISCHUK, R. (1985), Probabilistic Parallel Algorithms for Sorting and Selection, SIAM

J. Comput. 14, pp. 396-409.

SHILOACH, Y., AND VISHKIN, U. (1982), An O(logn) Parallel Connectivity Algorithm,

J . Alg. 3, pp. 57-67.

STOCKMEYER, L. (1983), The Complexity of Approximate Counting, lD Proc. 15th

Annual ACM Symposium on Theory of Computing, pp. 118-126.

VALIANT, L. G. (1990), General Purpose Parallel Architectures, in "Handbook of

Theoretical Computer Science, Vol. A: Algorithms and Complexity" (J. van Leeuwen,

ed.), pp. 943-971, Elsevier, Amsterdam.

85

	93-1230001
	93-1230002
	93-1230003
	93-1230004
	93-1230005
	93-1230006
	93-1230007
	93-1230008
	93-1230009
	93-1230010
	93-1230011
	93-1230012
	93-1230013
	93-1230014
	93-1230015
	93-1230016
	93-1230017
	93-1230018
	93-1230019
	93-1230020
	93-1230021
	93-1230022
	93-1230023
	93-1230024
	93-1230025
	93-1230026
	93-1230027
	93-1230028
	93-1230029
	93-1230030
	93-1230031
	93-1230032
	93-1230033
	93-1230034
	93-1230035
	93-1230036
	93-1230037
	93-1230038
	93-1230039
	93-1230040
	93-1230041
	93-1230042
	93-1230043
	93-1230044
	93-1230045
	93-1230046
	93-1230047
	93-1230048
	93-1230049
	93-1230050
	93-1230051
	93-1230052
	93-1230053
	93-1230054
	93-1230055
	93-1230056
	93-1230057
	93-1230058
	93-1230059
	93-1230060
	93-1230061
	93-1230062
	93-1230063
	93-1230064
	93-1230065
	93-1230066
	93-1230067
	93-1230068
	93-1230069
	93-1230070
	93-1230071
	93-1230072
	93-1230073
	93-1230074
	93-1230075
	93-1230076
	93-1230077
	93-1230078
	93-1230079
	93-1230080
	93-1230081
	93-1230082
	93-1230083
	93-1230084
	93-1230085
	93-1230086
	93-1230087
	cover-hinten_2099-2897-300dpi

