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Max-Planck-Institut für Informatik 

D-66123 Saarbrücken, Germany 

The following problems are shown tö be solvable in O(log*n) time with optimal 

speedup with high prob ability on a randomized CRCW PRAM using O(n) space: 

• Space allocation: Given n nonnegative integers Zl, ... , Zn, allocate n nonoverlapping 

blocks of consecutive memory cells of sizes Zl, ... , Zn from a base segment of 

O(L:j=l Zj) consecutive memory cells; 

• Estimation: Given n integers in the range 1 .. n, compute "good" estimates of the 

number of occurrences of each value in the range 1 .. n; 

• Semisorting: Given n integers Zl, .. . , Zn in the range 1.·. n, store the integers 

1, ... ,n in an array of O(n) cells such that for all i E {1, .. . ,n}, all elements of 

{j : 1 ~ j ~ n and Zj = i} occur together, separated only by empty cells; 

• Integer chain-sorting: Given n integers Zl, . .. , Zn in the range 1 .. n, construct a 

linked list· containing the integers 1, ... , n such that for all i, j E {1, ... , n}, if i 

precedes j in the list, then Zi ~ Z j. 

Moreover, given slightly superlinear processor and space bounds, these problems or 

variations of them can be solved in constant time with high probability. 

As a corollary of the integer chain-sorting result, it follows that n integers in the 

range 1 .. n can be sorted in O(lognjloglogn) time with optimal speedup with high 

prob ability. 

* Supported by the ESPRlT Basic Research Actions Program of the EC under 

contracts No. 3075 and 7141 (projects ALCOM and ALCOM TI). A pre1iminary version of 

this paper was presented at the 23rd Annual ACM Symposium on Theory of Computing 

(STOC 91) under the title "Constant-Time Parallel Integer Sorting". 
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1 mtroduction 

This paper studies a number of problems that are of fundamental importance in 

parallel computing. Most of these have traditional, "exact" variants that are known not 

to possess fast parallel solutions. More precisely, computing the parity of n bits reduces 

to instances of these problems of s~ze n, which, therefore, by the lower bound of Beame 

and Hastad (1989), cannot be solved faster than in 0(lognjloglogn) time on a PRAM 

with any polynomial number of processors. Relaxing the problem definitions to allow 

approximate solutions, however, we are able to obtain very fast algorithms that run with 

optimal speedup on a randomized CRCW PRAM. 

The first problem studied is that of space allocation, which we formalize as the 

interval allocation problem. Imagine that we are presented with n simultaneous requests, 

each of which is for a certain number of consecutive memory cells. Note that arequest is 

not for specific memory cells, but merely indicates the number of cells needed. Abstractly 

speaking, such requests might originate with a collection of concurrently executing tasks, 

each of which needs a certain amount of working space for its computation. The 

present paper provides several concrete examples of situations where such requests arise 

naturallYi many more can be found in the papers cited below. Given the set of requests, 

the goal is to satisfy each request, i.e., to supply the requesting agent with a private 

block of memory of the requested size. 

We may view the allocated blocks as nonoverlapping subarrays of a single base array. 

The exact version of the interval allocation problem requires the size of the base array 

to exactly equal the sum of all requested sizes, and is clearly subject to the lower bound 

mentioned above. We must therefore relax this requirement, but still want to insist that 

not too much space be wasted. For reasons similar to those that motivate the use of 

the O-notation, we require the size of the base array to be at most a constant factor 

larger than the sum of the requested sizes. With this convention, we are able to solve 

interval allocation problems of size n in O(log*n) time with optimal speedup with high 

prob ability. As shown by MacKenzie (1992), this is as fast as possible for any algorithm 

that uses no more than n processors. A variant of interval allocation called interval 

marking is a natural formalization of the (vaguely defined) processor allocation problem, 

which adds to the importance of the interval allocation problem. 

The second problem studied is that of profiling. We are here given an array of n 

keys, and the task is to determine the multiplicity (i.e., the number of occurrences) of 

each value represented among the keys. The exact version of the problem asks for the 

exact multiplicities and,again, is clearly subject to the lower bound of n(lognjloglogn). 

We therefore content ourselves with appro.xim.ate counts. We assume that the values 

represented among the keys are integers in a range 1 .. m, where m is at most linear in n. 
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H this is not the case initially, static hashing can frequently be used to map the original 

values injectively to a sufliciently small range of integers, after which approximate counts 

can be computed using our algorithms and associated with the original values (see (Bast 

andHagerup, 1991) and (Bast ei al., 1992) for the best known results on static hashing). 

The output hence takes the form of m nonnegative integers b1 , ••. , bm , where bi is an 

estimate of the number bi of occurrences of the value i, for i = 1, ... , m. 

We study three different variants of the profiling problem. In the first of these, 

the number of different values is assumed to be much smaller than the number of keys; 

specifically, m = O(nl - 6 ), for some fixed 6 > o. In these circumstances, constant time 

and n processors suffice, with high prob ability, to compute what we call a fine-profile, Le., 

a sequence b1 , • •• , bm with bi ~ bi ~ Kbi , for some constant K ;::: 1 and for i = 1, ... , m. 

This simple result furnishes abasie tool used in many of our other algorithms. 

The second and third variant of the profiling problem are concerned with the case 

m = n, which is of special interest and importance (see below). The second variant 

requires the estimates b1 , . • • , bn to be independent random variables (note that b1 , .•• , ~ 
are random variables because the execution of one of our (randomized) algorithms 

constitutes a random experiment; the input is considered to be fixed). Given the difficulty 

of analysis often caused by a lack of independence, this is a reasonable property for which 

to ask. As concems the accuracy of the estimates, we · require on the one hand that 

L:~=1 bi = O(n), a natural condition, andon the other hand that Pr(bi > abi) ~ 2-a
, 

for i = 1, ... , n and for all a ;::: 1 (Le., the prob ability of an estimate being a times too 

small decreases exponentially in a), a less natural condition that represents a compromise 

between what we would ideally like and what we can easily compute. We show that 

estimates b1 , ••• , bn with this property, called a coarse-profile, can be computed in 

O((log"n)2) time with optimal speedup with high prob ability. In the third variant of 

profiling, we give up on the independence of 61 , ... ,6n and instead try to compute the 

estimates faster and to obtain more accurate estimates. 

The third problem studied is that of semisorting (the term was taken from (Valiant, 

1990)). To semisort a sequence of objects 1 each with a distinguished key, is to rearrange 

the objects so that all objects with a common key occur together. We assume that the 

keys are integers in the range 1 .. nj as above, static hashing can often be used to enforce 

this condition if it is not satisfied initially. The lower bound of n(log n flog log n) applies 

to semisorting, as defined so far, so we relax the definition by allowing the output to be 

given in the form of a padded sequence of size O(n), Le.; O(n) special null objects are 

allowed to intervene in arbitrary positions between the n objects that form the actual 

semisorted sequence. Our result is that semisorting problems of size n can be solved in 

O(log"n) time with optimal speedup with high prob ability. The proof is quite involved 

and makes crucial use of the results obtained for the third variant of profiling - the 
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condition Pr(bi > abi) ::; 2-a or, rather, a variation of it tums out to be exactly what is 

needed. We extend the semisorting result to strong semisorting, which requires that all 

occurrences of a key of multiplicity b appear in a subarray of the output array of size 

O(b). 

Semisorting has many and diverse uses. Our result on strong semisorting directly 

provides one of our best profiling results, namely a fine-profile for the case m = n. 

Another immediate application is to integer chain-sorting. General chain-sorting takes as 

input n keys drawn from a totally ordered universe and makes each key point to the next 

larger key, if any (with an arbitrary total order imposed by the algorithm on each set of 

keys of a common value), Le., the keys are stored in sorted order in a linked list. We 

consider the chain-sorting problem with integer input keys drawn from the range 1 .. n. 

In contrast with what is the case for profiling and semisorting, a preptocessing based on 

hashing, which is a nonmonotonic operation, does not enable our integer chain-sorting 

algorithm to cope with more general input keysj allowing only keys in the range 1 . . n 

therefore is a true restriction. In recognition of this fact, we continue to use the term 

"integer chain-sorting", rather than simply "chain-sorting". Note also that the lower 

bound of Beame and Hastad does not apply to chain-sorting, even with no restriction on 

key values. On the other hand, the well-known lower bound of!l(nlogn) for (randomized) 

comparison-based sequential sorting, which holds also for chain-sorting, implies that our 

result, O(log*n) time with optimal speedup with high prob ability, does not extend from 

integer chain-sorting to general chain-sorting. As a rather trivial by-product of our fast 

chain-sorting algorithm, we are able to improve the best previous result on (standard) 

randomized sorting of n integers in the range 1 .. n: We show that this problem can be 

solved in O(lognjloglogn) time with optimal speedup with high probability. 

More substantial applications of our semisorting result were reported elsewhere. 

Semisorting is used in (Hagerup, 1992a, 1992b) to simulate stronger PRAM variants 

on the weaker TOLERANT PRAM; semisorting there serves to bring together all write 

requests pertaining to a common memory cello Hagerup and Katajainen (1993) employ 

semisorting in the construction of the Voronoi diagram of n random sites drawn 

independently from the uniform distribution over the unit square; a grid divides the unit 

square into approximately n cells, and the set of sites in each cell is computed by means 

of semisorting. Our result also allows a significant simplification of the hashing scheme of 

(Bast and Hagerup, 1991). In (Hagerup and Raman, 1992), finally, semisorting is used 

for a variety of different purposes. 

From a different point of view, the present paper explores the power flowing from 

a combination of three new techniques in algoritbm design and analysis: First, the 

"log-star" technique introduced by Raman (1990) and developed further by Matias and 

Vishkin (1991). Second, randomized "scattering" procedures for estimating various 
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quantities crudely, but rapidly, And third, the analysis of randomized algorithms using 

martingale theory, which is not new, but which in the past has not been used as often as 

it deserves . A less detailed and more accessible account of most of the material in this 

paper can be found in (Hagerup, -1992b); the reader may want to study that paper before 

taking on the present one. 

The structure of the paper is as follows: After some preliminaries in Section 2, 

Section 3 intro duces various concepts under the general heading of "scattering" and lists 

some of their basic properties. Section 4 deals with a special case of interval allocation 

called compaction, and Section 6 extends this to so-called colored compaction. Section 5 

presents first results for the fine-profiling problem, and Section 7 uses the results of 

Sections 5 and 6 to solve the interval allocation problem. Sections 8 and 9 are devoted 

to coarse-profiling and semisorting, respectively, and Section 10 describes applications of 

semisorting. Section 11, finally, studies the consequences of allowing slightly superlinear 

processor and space bounds. Every section uses essentially all sections before it, so that 

it is difficult to read sections out of context. 

2 Preliminaries 

A CRCW P RAM (concurrent-read concurrent-write parallel random access machine) 

is a synchronous parallel machine with processors numbered 1,2, ... and with a global 

memory that supports concurrent (i.e., simultaneous) access to a single cell by arbitrary 

sets of processors. The semantics of concurrent writing can be defined in many ways. 

Accordingly, many different variants of the CRCW PRAM, each distinguished by a 

different rule for the resolution ofwrite con:ßicts, have been introduced; see, e.g., (Chlebus 

et nl., 1989; Hagerup and Radzik, 1990; Hagerup, 1992a) for definitions of many of these 

models and for discussion of the relationshipsbetween them. The following two write 

confiict resolution rules and corresponding variants are relevant to the present paper: 

ARBITRARY (Shiloach and Vishkin, 1982): H two or more processors attempt to write to 

a given cell in a given step, then one of them succeeds, but there is no rule assumed 

to govem the selection of the successful processor; 

TOLERANT (Grolmusz and Ragde, 1987): H two or more processors attempt to write to 

a given cell in a given step, then the contents of that cell do not change. 

It is easy to see that the ARBITRARY PRAM is (not necessarily strictly) stronger than the 

TOLERANT PRAM in the sense that one step of a TOLERANT PRAM can be simulated by 

a constant number of steps on an ARBITRARY PRAM with the same number of processors 

and memory cells. In fact, most CRCW PRAM models commonly considered are stronger 

than the TOLERANT PRAM in this sense. We employ the TOLERANT model throughout 
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the paper, with the sole exception ofLemmas 3.4(b) and 3.5 and Theorem 11.6 and their 

proofs, which use the ARBITRARY model. The most direct imp1ementation of some of 

our other a.1gorithms, however, assumes the ARBITRARY model, and we have to put in 

an extra effort in order to derive a solution for the weaker TOLERANT PRAM. Since 

we expect the distinction between different variants of the CRCW PRAM to be of little 

concern to many readers, we try to make it possib1e to skip materia.1 that dea.1s only with 

the translation between models. 

Consider the following assertion: "Every problem that can be solved in T time 

steps with p processors can a.1so, for every given kEIN, be solved in O(kT) time with 

r p / k 1 processors". A simple but important simulation shows the assertion to hold for 

the ARBITRARY PRAM: Each physica.1 processor simulates up to k virtua.1 processors 

in a step-by-step fashion. We express this by saying that the ARBITRARY PRAM is 

self-simulating and sometimes use the word "processor" to denote a virtua.1 processor in 

the sense of this simulation. The number of operations executed by a para.llel a.1gorithm 

that uses T time steps and p processors is defined to be its time-processor product pT. By 

the above simulation, we a.1ways have PT = n(T), where T is the sequentia.1 comp1exity of 

the problem solved by the a.1gorithm. According1y, the para.lle1 a.1gorithm is said to have 

optimal speedup or to be op#mal if PT = O(T). Because of the self-simulating property, if 

a problem can be solved on an ARBITRARY PRAM using t time steps and q operations, 

then it can a.1so, for every given T 2: t, be solved in E>(T) time using O(q + T) operations, 

Le., the aigorithm can be slowed down without 10ss. This makes.it convenient to express 

the performance of the a.1gorithm by giving the pair (t, q) of minimum computation 

time and number of operations. In contrast with a.ll other commonly considered PRAM 

variants, the TOLERANT PRAM is not known to be self-simulating. Since it is still 

important to know the extent to which a particular a.1gorithm can be slowed down (see 

below), we are forced to indicate this explicitly, typica.lly in a statement of the form 

"For a.ll T 2: log"n, O(T) time and rn/Tl processors suffice to ... " . We advise the reader 

to interpret such a statement as "The time is O(log*n), and the a.1gorithm is optima.1 

and can be slowed down". Note that if an a.1gorithm consists of 1 parts with (minima.1 

time, number ofoperations) performance pairs (tl,ql), ... ,(t"q,) and ifeach part can 

be slowed down, in the above sense, then the who1e a.1gorithm has a performance pair 

(t, q), where t = 00::!=l ti) and q = 0CE!=l qi). It is a.1so easy to see that when 

kEIN isa constant, we can a.1ways reduce the number of processors from p to IP/kl, 

even on the TOLERANT PRAM, without increasing the processing time by more than a 

constant factor and the space requirements by more than O(p). We sha.ll free1y use this 

observation, which was also made in (Gil, 1990). 

The majority of our a.1gorithms are randomized. Randomized a.lgorithms are 

customarily divided into Monte Carlo a.1gorithms, which may occasiona.lly err, and Las 
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Vegas algorithms, which never err, but which may either take a long time to produce a 

(correct) result, or finish on time without producing any result - it is easy to transform 

any Las Vegas algorithm from one of these modes of operation to the other. In all cases, 

the analysis of a randomized algorithm bounds the prob ability of the relevant undesirable 

behavior, which we call the failure probability (for a Las Vegas algorithm, this is a slight 

misnomer). 

A Las Vegas algorithm is clearly more desirable than a Monte Carlo algorithm, since 

it is trivial to run a Las Vegas algorithm as a Monte Carlo algorithm: H the algorithm 

has not produced any result within a suitable response time, abort it (if it is still running) 

and output an arbitrary value. The distinetion between Monte Carlo algorithms and Las 

Vegas algorithms will be crucial at one point of our exposition. At any rate, although this 

is not always done, be believe that it is important to classify each randomized algorithm 

as either Monte Carlo or Las Vegas . We will do so by appeIiding the appropriate one of 

"(Monte Carlo)" and "(Las Vegas)" to the bound on the failure prob ability given for each 

algorithm. 

Informally, a randomized algorithm can be formulated as a Las Vegas algorithm 

whenever its output can be verified using negligible resources, either after the fact or 

by the algorithm itself - this is because the algorithm can be e.x:ecuted repeatedly 

until some output passes the verification. Whenever we classify an algorithm as a Las 

Vegas algorithm, it will be easy to see that such verification is possible, and we will not 

demonstrate this explicitly. 

As usual, E l = O(E2 ), where E l and E2 are expressions, means that there is a 

constant c > 0 such thatEl::S; cE2 • Note that we require this relation to hold for all legal 

values of the parameters occurring in E l and E2 , not just for sufficiently large values of 

these parameters. The constant c is independent of all other parameters, except that it 

may depend on quantities that are explicitly qualified as "fixed" (in the present paper, 

such quantities are always denoted by the symbols 5 and J-L). The meaning of E l = n(E2 ) 

is defined analogously. 

In order to make many proofs more readable, we make extensive use of the notion of 

a negligible probability. What constitutes a negligible probability depends on the conte.x:t. 

Is the goal, e.g., to show that some event occurs. with prob ability 2-nfl
(1), then in the 

proof we can ignore any polynomial (in n) number of probabilities of the form 2-0 (nt:), 

für arbitrary f > 0, since for sufficiently large values of n the sum of such probabilities 

will be bounded by 2-n t:' , for suitable f' > 0; we here rely on the fact that all problems 

considered in the paper become trivial if the problem size n is bounded by a constant. 

An event that occurs with high probability is the complement of an event of negligible 

prob ability. We often tacitly assume that such events always occur . Whenever we 

speak of "choosing at random", we mean choosing from the uniform distribution and 
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independently of other such choices. We assume processors to be equipped with unit-time 

operations for integer addition, subtraction, multiplication and division with remainder , 

for computing 26
, for every given oS EIN, and for choosing a random integer from the 

set {1, ... , oS}, for every given sEIN. As a minimum, we assume that the available 

operations can be executed in constant time for integer operands and results of absolute 

value bounded by n + m + p, where n is the input size, m is the largest absolute value of 

an input number, and p is the number of processors of the machine under consideration, 

i.e., a (standard) logarithmic word length suffices. 

When nothing else is stated, arrays are assumed to be one-dimensional. Given an 

array A, we denote by lAI its size, i.e., the number of cells in A. Although, in principle, a 

memory cell contains a single integer, we often find it convenient to pretend that a cell 

can contain an entire record of an arbitrary, but constant, number of (integer) fields; 

achieving this is simply a matter of considering a constant number of cells as a unit, 

also called a cello When we state that a problem can be solved by a certain number of 

processors or speak of allocating a certain number of processors to some task, we always 

assume the processors to be consecutively numbered. Without stating this explicitly, we 

also assume that each processor "comes equipped with" a cell indexed by its processor 

number in a suitable array shared by all processors, which can be used for coordination 

between processors working on a common task. One consequence of this is that our 

processor bounds are always dominated by our space bounds. 

We use "log" to denote the binary logarithm function. For k = 0,1, ... , 

logek) denotes k-fold application of the function 'z ....-+ max{logz, 1}, i.e., logeO)z = z 

and logen)z = max{logloge k- 1)z,1}, for all z > ° and all kEIN. For nEIN, 

log"'n = min{k EIN: logek)n = 1}. Although extracting logarithms is not one of our 

standard operations, we will assume that the function z f-+ Llog z j can be evaluated 

in constant time by a single processor, for z E {1, ... , n}. This is justified hy an 

observation of Hagerup and Radzik (1990), who show that a table realizing this function 

on the domain in question can be constructed in constant time with n processors. As a 

consequence, Llogek)nj can be computed in O(k) time by a single processor, for arbitrary 

given kEIN. It is also easy to see that for any given rational number q, the function 

Z""-+ L zq j can be evaluated in constant time with n processors, for z E {1, ... , n} (details 

are given in (Hagerup, 1992d)). 

Some of the constants appearing in our proofs are very large. This is not evidence 

of a true problem, but merely reflects adecision never to add to the complexity of an 

argument in order to obtain smaner constants. In particular, we make frequent use of the 

very crude estimates 2% ~ z, for all z ~ 0, and r z 1 ::; 2 L z J, for all z ~ 1. We expect that 

a less generous analysis would yield reasonable constant factors. 

Our probabilistic analysis is based on the two lemmas below. Lemma 2.1 states 
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various inequalities commonly known as Chernoff bounds. 

Lemma 2.1: For every binomially distributed random variable S, the following holds: 

(a) For all z ~ 2E(S), Pr(S ~ z) :S e-z / 6
; 

(b) Pr(S :S E(S)/2) :S e-E (S)/8; 

(c) For all z > 0, Pr(S ~ z):S c~Ey)r. 

Proof: Part (a) with z = 2E(S) as well as parts (b) and (c) are well-known and 

proved, e.g., in (Hagerup and Rüb, 1990). In order to show the general form of 

part (a), assume that S is the number of heads in m independent tosses of a coin with 

prob ability p of heads and, without loss of generality, that z :S m. Let Zl,"" Zm 

be independent random variables with range {O, 1, 2} and with Pr(Zi = 1) = P and 

Pr(Zi E {1, 2}) = ~/(2m) (~p), for i = 1, .. . ,m. Then SI = I{i: 1 :S i:S m and Zi = 1}1 

is distributed as S, S2 = I{i : 1 :S i :S m and Zi ~ 1}1 is binomially distributed with 

E(S2) = z/2, and S2 ~ SI' But then, by the special case ofpart (a) already established, 

Pr(S ~ z) = Pr(Sl ~ z) :S Pr(S2 ~ z) = Pr(S2 ~ 2E(S2)) :S C z
/

6
• • 

The following fact is implied by Azuma's inequality (see (Bollobas, 1987) or 

(McDiarmid, 1989)). Corollary 2.3 expresses the special form of Lemma 2.2(a) that we 

shall most often use. 

Lemma 2.2: Let mEIN, let Zl,"" Zm be independent random variables with finite 

ranges, and let S be an arbitrary real function of Zl, ... ,Zm with E(S) ~ O. Assume 

that S changes by at most c in response to an arbitrary change in a single Zi. Then 

(a) Forevery z ~ 2E(S), Pr(S ~ z) :S e-z2
/(8c

2
m); 

(b) Pr(S :S E(S)/2) :S e-(E(S»2 /(8c
2
m). 

Corollary 2.3: Under the assumptions of Lemma 2.2, 

for all E > O. 

In later applications, we write "by aChernoff bound" instead of "by Lemma 2.1", 

and "by a martingale argument" rather than "by Corollary 2.3". 

When we state that an algorithm makes at most m random choices, a change in one 

of which affects some real quantity S by at most c, what we mean is that S is determined 

somehow by an execution of the algorithm, and that the execution is deterministically 

given by the input, except that it may also be inftuenced by at most m independent 

random quantities computed by the algorithm, a change in one of which (with the other 

random quantities kept fixed) causes S to change by an amount of at most c. A statement 
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to the effect that a change in a single random choice affects at most a certain number of 

output variables is to be interpreted in a similar manner. 

The algorithms implied by the results listed below are needed as basic subroutines 

m many places. For all nEIN, the integer prefix summation problem of size n is, 

given n integers a1,"" an, to compute the prefix sums L~=1 aj, for i = 1, ... , n. 

Lemma 2.4 combines many previous results by various authörs by giving the optimal 

prefix summation time for any combination of three independent parameters. 

Lemma 2.4 (Hagerup, 1992c): For all given integers n, m,p 2: 4, the prefi.x sums of n 

integers, each of absolute size at most m, can be computed on a TOLER.ANT PRAM using 

(
n logn {logm}) o - + 1 1 + max log -1-' 1 p og ogp ogp 

time, p processors and O(n + p) space. 

Corollary 2.5: For every fixed 5 > 0 and for all given integers n, r 2: 2, the prefi.x sums 

of (logn)O(1) integers, each of absolute size polynomial in n, can be computed on a 

TOLER.ANT PRAM using O(r) time, O(f n6 /rl) processors and O(n6
) space. 

Lemmas 2.6 and 2.7 provide algorithms for the TOLER.ANT PRAM for problems 

that are trivial on certain stronger PRAM variants. Lemma 2.6 is due to Alon and 

Megiddo, who describe a constant-time algorithm for the more general problem Qf linear 

programming in fixed dimension. Specialized to maximum-finding, their algorithm can 

be viewed as a PRAM implementation of an algorithm for the parallel comparison-tree 

given by Reischuk (1985). 

Lemma 2.6 (Alon and Megiddo, 1990): There is a constant € > 0 such that for all given 

n, rEIN, the maximum of n integers can be computed on a TOLER.ANT PRAM using 

O(r) time, rn/rl processors and O(n) space with prob ability at least 1 - 2-n~ (Las 

Vegas). 

Lemma 2.7 (Fich et al., 1988b, Theorem 1): For all given n,r E IN, the following 

problem can be solved on a TOLER.ANT PRAM using O(r) time, rn/rl processors and 

O(n) space: Given n bits Z1,"" Zn, compute max( {j : 1 :$ j :$ n and Zj = I} U {O}). 

When dealing with groups of consecutively numbered processors, the nearest 

preceding element problem defined below formalizes the task of broadcasting information 

from the lowest-numbered processor in each group to the remaining group members. 

Definition: For all nEIN, the nearest preceding element problem of size n is, given n 

bits Z1, ..• , Zn, to compute Y1, . .. , Yn, where Yi = max( {j : 1 :$ j < i and Zj = I} U {O}), 

for i = 1, ... , n. 
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Part (a) of Lemma 2.8 below is due to Berkman and Vishkin (1989) and Ragde 

(1990), who in fact prove a slightly stronger claim than the one cited here. Part (b) was 

essentially shown by Raman (1990). His algoriihm solves only the less general ordered 

chaining problem, which requires the computation of Yi only if Zi = 1, and he considers 

only the case of constant k, but an extension to the form given here is straightforward. 

Lemma 2.8: For all given nEIN, nearest preceding element problems of size n can be 

solved on a TOLER.ANT PRAM 

(a) in O(T) time using rn/Tl processors and O(n) space, for all given integers T 2: log'"n; 

(b) in 0 (T) time using r kn / Tl processors and 0 (n) space, for all given k, TEIN with 

T 2: k, provided that the number ofnonzero input bits is O(n/log(k)n). 

Lemma 2.9, finally, states that small integers can be sorted fast with optimal 

speedup. 

Lemma 2.9 (Cole and Vishkin, 1989, Section 3.2): For every fixed 6 > 0 and for all given 

integers n,m,T 2: 4 with T 2: log n/log log n + m6 , n integers in the range O .. m can be 

sorted on a TOLER.ANT pRAM using O(T) time, rn/Tl processors and O(n) space. 

3 Scattering 

The fundamental intuitive meaning of a scattering is that each of a number of 

objects is placed randomly and independently of other objects in one of a number of ceils 

placed. in a row. In this paper we are frequently interested in the resulting fullness of the 

row, Le., in the ratio of occupied ceils to the total number of ceils. Since this is clearly 

a random variable that tends to take on larger values if more objects are scattered, it 

provides a (very crude) basis for estimating the number of scattered objects. By letting 

each objett participate in the scattering with some suitable prob ability instead of with 

probability 1 as above (a conditional scattering), we can adjust the "region ofsensitivity" 

of a scattering according to need. A graduated conditional scattering (GCS) takes this 

idea one step furt her by providing a whole sequence of conditional scatterings, each with 

a different associated prob ability of participation, which gives us a way to make more 

substantial statements about the nllmber of scattered objects. Graduated conditional 

scatterings were introduced in (Hagerup and Radzik, 1990), although not for the purpose 

of estimation. 

Our analysis of the outcome of a GCS is limited to determining the last scattering in 

the sequence whose predecessor scatterings all satisfy a certain property. Two properties 

are relevant to us: The row of a scattering being full (all ceils are occupied), and the row 
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being roughly half full. It turns out that testing according to full rows is computationally 

easier, but leads to less accurate estimates. We now provide the technical details. 

Definition: For all sEIN and 0 ~ p ~ 1, a conditional scattering with probability p and 

of width s is a random experiment carried out by a set U as follows: Each element u EU, 

independently of other elements, chooses a random number Zu with Pr( Zu = 0) = 1 - P 

and Pr(Zu ::; i) = pj s, for i = 1, ... , s. An element u E U is said to occupY the value i 

if Zu = i, for i = 1, ... , s, and the fullness of the conditional scattering is kj s, where 

k = I{Zu : u E U}\{O}I ::; I{i: 1 ~ i ~ s and i is occupied by at least one element of U}I. 

Two distinct elements in U collide if they occupy the same (nonzero ) value. A scattering 

of width s is a conditional scattering with probability 1 and of width s. 

Note that the value 0 plays a special role in the above definition. An element of U 

that chooses the random value 0, informally, is one that chooses not to participate in the 

conditional scattering; p is hence the probability of participating. 

Lemma 3.1: Let m, sEIN and 0 ~ p ~ 1, and let N be the number of occupied values 

in a conditional scattering with prob ability p and of width s carried out by a set of m 

elements. Then 

(a) For all k E {O, ... ,s}, Pr(N ~ k) ~ (~) ·2m P(k/.t-1); 

(b) Pr(N ~ sj2) ~ 2.t-mp /2; 

(c) Pr(N < s) ~ s. 2-mp/.t; 

(d) For all z > 0, Pr(N ~ z) ~ (mpejz)z. 

Proof: For all k E {O, ... , s}, the probability that a fixed element occupies a value 

outside a fixed set D ~ {1, .. . ,s} of size k is p(s - k)js. Hence the prob ability that all 

occupied values belong to D is (1 - p(s - k)js)m ~ e-mp(.t-k)/.t ~ 2mP(k/.t-1). Part (a) 

now follows by observing that D can be chosen in (~) ways. Parts (b) and (c) are special 

cases of(a), and part (d) is implied by Chernoffbound (c) .• 

Definition: For all r, sEIN, a graduated conditional scattering (GCS) with parameters 

r X s is a sequence S ::; (Sl,' .. , Sr), where Si, called the ith row of S, is a conditional 

scattering with probability 2-i and of width s, for i = 1, ... , r. For 0 ~ f ~ 1, define the 

f-row of S as 0 if Sl has fullness < f, and otherwise as the largest integer i E {1, ... , r} 

such that Sj has fullness ~ f, for j = 1, ... , i. 

Lemma 3.2: For every z > 0, min{l, :E:o 2-2; Z} ~ 21- z. 

Proof: :E:o 2-2;z ~ :E:o 2-z(i+ 1) = 1:~~.' H z ~ 1, then 1 ~ 21- z • On the other 
. 2-· 2-· 1-z 

hand, if z > 1, then 1-:-2-. ~ 172 = 2 .• 
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Lemma 3.3: Let m, r, SEIN and a> 0 and let L be the 1-row of a GCS of a set of m 

elements with parameters r X s. Then if M = 2L s, 

(a) Pr(L = r) ::; (2-"em/s)ß; 

(b) Pr(M > max{s,am})::; (2e/aV; 

(c) Pr(L < r and m > aM) ::; s· 21- a /2; 

(d) Pr(L < r) ::; s. 21 - m /(2ß.2
r

). 

Proof: (a) follows immediately from Lemma 3.1(d). If L > 0, row L is full. Hence by 

Lemma 3.1( d), for every 1 ~ 0, 

(1) 

Likewise, if L < r, row L + 1 is not full, and Lemmas 3.1(c) and 3.2 imply that for every 

1::; r, 
LIJ 

Pr(L< 1) ::; min{l, L s. 2-m.2-·-
1
/ß} 

i=-oo 
00 

(2) 

::; s . min{l, L 2-2'm.2- LIJ -1 /ß} ::; S • 21 - m.2-
1

-
1 /ß. 

i=O 

To show (b), apply (1) with 1 = log(max{s,am}/s) ~ o. This yields 

(
21

-
lem) ß 

Pr(M > max{s,am}) = Pr(L > 1)::; s ::; (2e/a)ß. 

To show (c), apply (2) with 1 = min{log(m/(as)),r}::; r to obtain 

Pr(L< r and m > aM) = Pr(L < 1) ::; s . 21 - m.2-
1

-
1 
/ß ::; S . 21- a /2 . 

(d) follows from (c) by taking a = m/(s· 2"). • 

The following lemmas investigate the computational aspects of graduated conditional 

scattering. Note that part (b) of Lemma 3.4 and Lemma 3.5 are needed only for the 

proof of Theorem 11.6, which is not part of the main development . 

Lemma 3.4: Let r, sEIN be given and suppose that a processor is associated with each 

element of some set U. Then the 1-row of a GCS of U with parameters r X s can be 

determined in constant time 

(a) on a TOLERANT PRAM using rs additional processors and O(rs) space; 

(b) on an ARBITRARY PRAM using one additional processor and O(rs) space. 

Proof: (a) Let A be an r X s array. Each processor associated with an element of 

U chooses a random cell A[l, J], where Pr(l = i, J = j) = 2- i / s, for i = 1, ... , r and 
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j = 1, ... , s, and distinct processors act independently (with whatever prob ability is left, 

processors do nothing). In other words, each processor chooses a random row, row i being 

chosen with prob ability 2- i , and then picks a cell at random from the chosen row. Next 

. the value 1 is stored in each cell of A that was chosen by at least one processor associated 

with an element of U, and the value 0 is stored in each of the remaining cells of A. On 

the ARBITRARY PRAM, this would be trivial; on the TOLERANT PRAM, we proceed 

as follows: Use the rs additional processors to associate one processor, called a guard, 

with each cell of A and let each guard begin by storing the value 1 in its associated cello 

Subsequently let each processor associated with an element of U attempt to write (an 

arbitrary value) to its chosen cell in A; simultaneously, each guard attempts to change 

the value stored in its associated cell from 1 to o. By definition of the TOLERANT PRAM, 

this will succeed if and only if the cell was not chosen by any processor associated with an 

element of U, i.e., afterwards the cell contams the desired value. This technique, which 

we call guarded writing, was first used by Grolmuszand Ragde (1987) and appears to be 

a fundamental technique for programming the TOLERANT PRAM. Once the cells of A 

have been marked with zeros and ones as described above, it is easy to use the algorithm 

of Lemma 2.7 to compute the conjunction Wi of A[i, 1], ... , A[i, s], for i = 1, ... , r. Finally 

Lemma 2.7 is used agam to determine the smallest i E {1, ... , r}, if any, with Wi = o. 

(b) Our algorithm centers around a solution to a . variant of a problem known as 

the leftmost prisoner problem. The leftmost prisoner problem, introduced by Fich et al. 

(1988a), is unusual in that an instance of the problem is not given by an input in a 

traditional sense; rather , the instance is defined by the processors available for its solution 

themselves. In more detail, an instance of the leftmost prisoner problem of size n is given 

by a set of processors numbered 1, . . . , n, each of which is either active or inactive. At 

least one processor is active, and the task is to compute the smallest processor number of 

an active processor, whereby inactive processors do not participate in the computation in 

any way. The latter restriction is essential- without it, the problem could be solved very 

easily using the algorithm of Lemma 2.7. The complexity ofleftmost prisoner problems 

of size n ~ 4 on the ARBITRARY PRAM was shown to be 9(loglogn) by Chlebus et 

al. (1988) and Grolmusz (1991). Here we are interested in a variant of the problem 

called the leftmost empty prison cell problem. The setup is exactly as for the leftmost 

prisoner problem, but we want to compute the smallest processor number of an inactive 

processor, or an indication of the fact that all processors are active. In Lemma 3.5 below 

we show that leftmost empty prison cell problems can be solved in constant time on an 

ARBITRARY PRAM. Here we will take this result for granted and describe its application 

to graduated conditional scattering. 

We use an r X s array A and begin by letting each processor associated with an 

element of U choose a random cell in A exactly as in the proof of part (a). For each row 
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of A, we now wish to associate a processor with the row if and only if each cell in the 

row was chosen by at least one processor. To this end we view each row as defining 

an instance of the leftmost empty prison cell problem. For j = 1, .. . , s, each processor 

having chosen the jth cell in the row temporarily adopts j as its processor number and 

represents an active processor in the sense of the leftmost empty prison cell problem; the 

fact that several processors may have chosen the same cell in A leadsto no problem, 

since they will all carry out the same computation. For j = 1, ... , s, if the jth cell in 

the row under consideration was not chosen by any processor, we associate with it a 

fictitious inactive processor with processor number j. We can now use an algorithm for 

the leftmost empty prison cell problem to determine whether any processor is inactive, 

i.e., whether some cell in the row was not chosen by any processor. Hand only if all cells 

were chosen, we associate one (or all) of the processors having chosen a cell in the row 

with the row; note that in the special case in which no processor chose a cell in the row, 

no processor will be associated with the row, as desired. 

We now view the processors associated with some of the rows of A as defining an 

instance of the leftmost empty prison cell problem in a similar way and observe that 

solving this problem pro duces the desired result. The special case in which no row of A 

has an associated processor can be handled by the single processor dedicated to the GCS . 

• 
Lemma 3.5: Leftmost empty prison cell problems can be solved in constant time on an 

ARBITRARY PRAM. 

Proof: In the algorithm described below we shall frequently want to mark cells that 

we may not have been able to initialize. This is problematic, because an "undefined" 

value present from the outset in a cell that is not marked may happen to coincide with 

the value that would have been written there had the cell been marked. We avoid this 

clifficulty by means of what we call dynamic marking: A processor marks a cell by first 

writing 0 and subsequently 1 (say) to the cello Any processor wishing to know whether 

the cell is marked reads its contents both between the two writes and after the second 

write and deems the cell marked if and only if it observes a change from 0 to 1. Although, 

in this scheme, the writing and reading of a mark takes place in an interleaved fashion, in 

the description below we will pretend that the writing precedes the reading. 

We can assume that n is apower of 2 and that at least one processor is inactive, 

since both requirements can be satisfied by adding a suitable number of fictitious inactive . 

processors (an ans wer larger than the number of original processors should then be 

interpreted as an indication that the original processors are all active). Assume that the 

processors are ordered linearly from left to right by increasing processor numbers. H the 

leftmost processor is inactive, all active processors can discover this fact through dynamic 
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marking and output the correct answer (namely 1); assume therefore that this is not the 

case. 

Starting from the left, divide the processors into groups of sizes 1,1,2,4, ... , n/2 and 

call a group complete if all processors in the groupare active, and incomplete otherwise. 

A first part of the computation serves to let each active processor know whether its 

group is complete. This can be done as follows: Using dynamic marking, each processor 

determines whether its left neighbor is active, whereby the left neighbor of the leftmost 

processor in a group is taken to be the rightmost processorin the group (i.e., the ordering 

within each group is cyc1ic). Then a ce1l associated with each group is initialized to 1 by 

all active processors in the group and subsequently set to 0 by all active processors in the 

group whose left neighbors are inactive. It is easy to see that if at least one processor in 

the group is active, the value of the cell remains 1 if and only if the group is complete. 

The processors in incomplete groups do not participate in the remaining computation. 

The processors in a complete group of size m, on the other hand, use dynamic marking 

and the algorithm. of Lemma 2.7 to solve the leftmost empty prison ce1l problem defined 

by the m' = min{ 4m, n} leftmost processors and output the result if and only if at least 

one of the m' leftmost processors is inactive. 

Any output produced by a complete group c1early is the desired answer. On the 

other hand, if the processor number of the leftmost inactive processor P is k, the group 

to the left of P's group exists (by assumption) and is complete and of size at least k/4, 

so that an output will be produced at least by this complete group. • 

Whereas graduated conditional scatterings were introduced for the purpose of 

estimation, we also employ a different kind of scattering, called v-scattering or (with 

implicit v) multi-scattering, for the task of placing elements in distinct cells of a 

destination array. Because of the more operational use, the definition below is formulated 

in algorithmic terms. 

Definition: For all v, SEIN, to v-scatter a set U over an array A of s cells is to 

execute the following algorithm.: If v > s, do nothing. Otherwise divide A into v disjoint 

subarrays of size at least L s / v J each and create v copies of each element in U. Then let 

the set of ith copies use the ith subarray to carry out a scattering of width L s / v J and 

identify the set of noncolliding copies, for i = 1, ... , v. An element in U is said to be 

successful if it has at least one noncolliding copy; in particular, if v > s we consider all 

elements of U to be unsuccessful. For each successful element u EU, let i and j be, 

respectively, the number of a noncolliding copy of u and the value occupied by that copy, 

and place u in the jth ce1l of the ithsubarray of A; note that this never places distinct 

elements in the same cello The density of the v-scattering is the quantity IUlv / s. 
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Using Lemma 2.7, it is easy to see that if each element of a set U has an associated 

group of v processors, then U can be v-scattered over an arbitrary array A in constant 

time. Lemma 3.6 quantifies the efficiency of this procedure as a me ans of placing the 

elements of U in A. The proof of Lemma 3.6 applies a martingale argument in a situation 

where, apriori, the number of random choices made is too large for such an application. 

We overcome this difficulty by fixing most of these choices in advance, Le., by considering 

a restricted prob ability space. H we can show that some event occurs with prob ability at 

most q independently of how the random choices are fixed, then the event occurs with 

probability at most q even in the actual experiment, where random choices in fact are 

not fixed. The same principle will be used again later. 

Lemma 3.6: Let m, s, v E IN, denote by D the set of unsuccessful elements in a 

v-scattering of a set U of size m over an array of size s and let p = mv J s be the density 

of the v-scattering. Then 

(a) For all u E U, Pr(u E D) ::S ptl j 

(b) For every fixed subset R of U and for all z ~ 21Rlptl, 

Proof: For part (a), it suffices to show for v ::S s that if U carnes out a scattering of 

width l s J v J, then the probability that a fixed element u E U collides is at most mv J s. H 

m ~ s J v, this is certainly true. Otherwise the probability under consideration is at most 

m-l m~1 mv 
--< <­
lsJvJ - sJv - 1 - s· 

For part (b), let R be a fixed subset of U with IRI = r and consider the random choices 

made by copies of elements not in R to be fixed in an arbitrary way. As in the proof 

of part (a), a fixed element in R is unsuccessful with prob ability at most ptl, so that 

E(IR n DI) ::S rptl. A moment's thought reveals that a change in a single random choice 

(namely that of a single copy) can change IR n D I by at most 2. Since there are altogether 

rv such choices, an applicationofLemma2.2(a) now shows that for z ~ 2rptl, IRnDI ~ z 

with probability at most, e- z2 
/(32rtl). • 

Section 6 extends the basic multi-scattering algorithm above to colored multi­

scattering, where the set U to be multi-scattered is partitioned into color classes 

U1 , ••. , Um and Ui is multi-scattered over aseparate array Ai, for i = 1, ... , m . It 

is easy to see that if the density of the multi-scattering of Ui over ~ is bounded by 

p, for i = 1, ... , m, then the assertions of Lemma 3.6 carry over to the more general 

situation. This agrees weil with intuition, since the coloring of elements only helps the 

multi-scattering algorithm to distribute copies evenly and avoid collisions. 
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4 Compaction 

This section studies the compaction problem, which occurs as a base case of the 

more general interval allocaiion problem considered in Section 7. Roughly speaking, the 

compaction problem is to move a number of objects, scattered over a large source array, 

to distinct cells in a smaller destination array, possibly with a small number of objects, 

said to be unlucky, left behind in the source array. Our formalization of the problem 

abstracts away the identities of the objects to be moved and simply takes the input to be 

a sequence Zl, ... , Zn of n bits, where n is the size of the source array; Zj = 1 signifies 

the presence and Zj = 0 the absence of an object in the jth cell of the source array, 

for j = 1, ... , n. The output takes the form of n nonnegative integers Yl,· .. , Yn. H 

Zj = 1, the object in the jth cell of the source array can be moved to the Yjth cell of 

the destination array, for j = 1, ... , n, except that by convention Yj = 0 signals that the 

corresponding object is unlucky. H Zj = 0, the value of Yj is immaterial and mayas well 

be set to zero (condition (1) below). 

Definition: For all nEIN and s ~ 0, an incomplete placement with bound s for n bits 

Zl, ... , Zn is a sequence Yl, ... , Yn of n nonnegative integers such that 

(1) For j = 1, .. . ,n, ifZj = 0, then Yj = 0; 

(2) For 1 ~ i < j ~ n, if Yi :f. 0, then Yi :f. Yj; 

(3) max{yj : 1 ~ j ~ n} ~ s. 

The set {j : 1 ~ j ~ n, Zj = 1 and Yj = O} is called the residue set of the incomplete 

placement. H the residue set is empty, theplacement is said to be complete. 

Condition (2) in the above definition expresses that distinct objects may not be 

placed in the same destination cell, and condition (3) states that size l s J suffices for the 

destination array. The residue set is the set of indices of objects that are not placed in 

the destination array. 

Most of the computational problems introduced in this paper take as (part of) their 

input a sequence Zl, ... , Zn. Although, formally, Zl, ... , Zn are integers . (sometimes 

restricted further to be single bits), informally they represent objects of additional 

internal structure. In particular, if i :f. j, the objects represented by Zi and Z j are 

distinct, even if it happens that Zi = Zj. This is mirrored closely by what happens 

in our algorithms for solving such problems. They typically begin by transforming the 

input Zl, ... , Zn to n records Xl, ... , X n that are subsequently manipulated instead of 

Zl, ... , Zn. For j = 1, ... , n, fields in the record X j contain the integer Zj, called the 

value of X j, the integer j, called its index, as well as any other attributes that the 

algorithms may need; Usually we shall not describe our algorithms at the level of 

such prograrnming detail; note, however, that the symbols Xl, ... , X n will be used in 
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the above sense throughout the paper. When we speak of the jth input element, for 

j = 1, ... , n, we usually mean the re cord Xj, and X = {Xl' ... ' X n } is called the input 

set. In particular, for i ::j: j, the ith and jth input elements are distinct . 

For reasons of convenience, we will occasionally state that some algorithm is applied 

to a subset of X. What we really mean in such a case is that the algorithm is 

applied to the corresponding subsequence of Zl, ... ,Zn, usually permuted in some way 

and augmented with a number of suitable dummy elements , neither of which affects the 

problem in an essential way. Furthermore, we assume that enough additional information 

is kept to interpret the output of the algorithm in terms of the original sequence 

In the context of compaction, an active element is an input element of nonzero value 

that has not yet been placed in the destination array. Once successfully placed, we say 

that it has been deactivated or that it has become inactive. The incomplete compaction 

problem with parameters dl --+ d2 , defined below, is, given at most dl active elements, 
$ 

to move all except at most d2 of these to a destination array of size at most s. 

Definition: For all nEIN and dl , d2 , S 2: 0, the incomplete compaction problem of 

size n and with parameters dl --+ d2 is the following: Given n bits Zl, .. . , Zn with 
$ 

L:j=l Zj ~ dl , compute an incomplete placement for Zl, .. . , Zn with bound s whose 

residue set is of size at most d2 • H d2 = 0, we speak of complete rather than incomplete 

compaction. 

Lemma 4.1: For all given n, dEIN, complete compaction problems of size n and with 

parameters d --+ 0 can be solved on a (deterministic) TOLERANT PRAM using constant 
d" 

time, n processors and O(n) space. 

Proof: The result was proved by Ragde for the stronger ARBITRARY PRAM (Ragde, 

1990, Theorem 1). Using Lemma 2.7, it is easy to translate Ragde's algorithm to the 

TOLERANT PRAM. • 

Lemma 4.1 works m constant time, but places the active elements in an array 

with many more cells than the number of active elements. The far more important 

complete linear compaction problem, with inessential differences also known as the linear 

approzimate compaction or LAG problem (Matias and Vishkin, 1991), requires the size 

of the destination array to be within a constant factor of the bound on the number of 

active elements. 

Definition: For all n, dEIN, the complete linear compaction problem of size n and with 

limit dis the complete compaction problem of size n and with parameters d --+ o. 
O(d) 
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We next show that complete linear compaction problems can be solved in constant 

time using· a superlinear number of processors. Our algorithm first multi-scatters the 

active elements over an auxiliary array in order to distribute them approximately even1y. 

The auxiliary array is then divided into segments of a fixed size chosen so large as to 

make it unlikely that any segment contains more than c times the average number of 

active elements, for a suitable constant c > 1. H a destination array c times larger 

than the number of active elements is now divided even1y among the segments, all 

that remains is to distribute the destination cells allocated to each segment within the 

segment, i.e., among the active elements stored there. This can be done via brute-force 

prefi..x summation (Corollary 2.5) following a "loose" compaction of the active elements 

withinthe segment (Lemma 4.1). The details follow. 

Lemma 4.2: For every fixed 6 > 0, there is a constant € > 0 such that for all given 

n, dEIN, complete linear compaction problems of size n and with limit d can be solved 

on a TOLER.ANT PRAM using constant time, O(n1+6) processors and O(n1+6) space with 

probability at least 1 - 2-n~ (Las Vegas). 

Proof: Let v = rS/6l Without loss of generality we can assume that 6 is rational (so 

that we can easily compute with 6, cf. Section 2) and that n ~ 4 and d ~ n/v (since 

otherwise the compaction problem is trivial). It suffices to describe an algorithm that uses 

constant time, O(n1+6 / 2 ) processors and O(n1+6/2 ) space and that fails with probability 

at most 1/2, since we can execute such an algorithm nO(l) times in parallel and select 

as our output the . outcome of any successful execution. H d < log n, the problem can 

be solved by first using the algorithm of Lemma 4.1 to move the active elements to an 

array of (logn)O(l) cells and subsequently compacting them exactly, i.e., numbering them 

consecutively, using prefix summation (Corollary 2.5). Assume hence that d ~ logn. 

Let A be an array of size vs, where s is chosen as a multiple of r = r d/ llog n J 1 with 

s ~ n 1+6/4 , but s = O(n1+6/4). Then v-scatter the active elements in the source array 

over A; by Lemma 3.6(a), the prob ability that some element cannot be placed in Ais at 

most n· (d/ s)1J ~ n· (n-6/ 4 )8/6 = l/n. 

Divide A into vr disjoint segments of size sir each. The number S of active 

elements placed in a fixed segment in the above v-scattering is clearly bounded by the 

number S' of copies of elements choosing a cell in the segment in the v-scattering (S 

may be smaller than S' because copies choosing a cell in the segment can collide, and 

still sm aller because elements with a rioncolliding copy placed in the segment may be 

moved tothe position of another noncolliding copy). Since the v-scattering partitions A 

into v subarrays of r segments each and at most d copies choose cells in the subarray 

containing the segment under consideration, S' is binomially distributed with expected 

value dir ~ log nj Chernoffbound (a) therefore implies that S' ~ 1210gn with prob ability 
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at most e-21ogn :S n-2 • It follows that except with prob ability at most n . n-2 = l/n, no 

segment contains more than 12 log n active elements. 

Since we have nO(l) processors per segment, we can now use the algorithms of 

Lemma 4.1 and Corollary 2.5 as in the beginning of the proof to attempt to place the 

active elements in each segment in an array of size 12[lognl (the attempt fails only in the 

unlikely event that some segment contains more than 12 flog n l elements). Assigning to 

each segment a subarray of size 12 [log n l of a common destination array and moving each 

active element to the appropriate cell in the destination array completes the compaction. 

The total size ofthe destination arrayis 12vr[lognl = O(d), and the prob ability that the 

algorithm fails is at most 2/n :S 1/2. • 

Corollary 4.3: For every fixed 6 > 0 there is a constant € > 0 such that for all given 

n, d, TEIN, complete linear compaction problems of size n and with limit d = 0 (nl - 6 ) 

can be solved on a TOLER.ANT PRAM using O(T) time, rn/Tl processors and O(n) space 

with probability at least 1 - 2-nE (Las Vegas) . 

Proof: Without loss of generality assume that 6 is rational and that 6 :S 1. Since the 

problem is easily solved using standard prefix sununation (Lemma 2.4) if T = nO(l), we 

can further assume the availability of at least n l - 6/ 4 processors. Divide the input set X 

into O(nl - 6 / 2 ) clusters of O(n6 / 2 ) input elements each and call a cluster nonempty if it 

contains at least one active element. There are obviously at most d nonempty clusters, so 

the algorithm of Lemma 4.2 can be used to place the indices of these in an array of size 

O(d). This implicitlyplaces all active elements in an array ofsize O(d·n6 / 2 ) = O(nl - 6 /
2

), 

after which the compaction can be completed via a second application of the algorithm 

of Lemma 4.2. • 

Matias and Vishkin (1991) showed that complete linear compaction problems of size 

n and with limit d can be solved in O(log*d) time with n processors by successively 

solving O(log* d) incomplete compaction problems. The basic idea is that the gradual 

deactivation of elements frees resources that can be used to speed up the rate of 

deactivation, thus leading to the fast convergence of the algorithm. In more detail, 

Matias and Vishkin show that if the number of active elements has already dropped to 

d/vc , for a suitable constant c> 0 and for some vE IN, then in constant time it can be 

decreased further to d/2C1J
• The algorithm of (Matias and Vishkin, 1991) realizing this 

claim is teasonably complicated and relies crucially on Lemma 4.1. We give a trivial 

algorithm for the same task whose use of Lemma 4.1 is inessential and easy to avoid, and 

whose complete analysis is much simpler than what would be required for the algorithm 

of Matias and Vishkin. As concerns the claim of simplicity, observe below that the appeal 

to Corollary 4.3 is needed only to deal with a special case that was not even considered 

in (Matias and Vishkin, 1991). 
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Oux algorithm for incomplete compaction inputs at most d/v3 active elements stored 

in a source array of size n and pi aces all except d/23v of these in a destination array 

of size O(d/v). The basic idea is to 5v-scatter the active elements over an array of 

size 10d/v2. Since, by assumption, the density of this 5v-scattering is at most 1/2, 

a fixed active element remains active with prob ability at most 2-5v (Lemma 3.6(a)), 

which allows us to conclude that with high prob ability the size of the residue set will be 

bounded by d/23v • The only problem with this approach is that we do not know how to 

allocate the 5v processors per active element necessary to carry out the 5v-scattering in 

constant time. Similarly as in the proof of Corollary 4.3, we therefore divide the input 

set X into clusters of size v each and 5v-scatter not the active elements themselves, but 

instead (the indices of) the nonempty clusters, i.e., those clusters that contain at least 

one active element. Since the number of nonempty clusters is obviously bounded by the 

number of active elements, the density of the modified 5v-scattering is also at most 1/2. 

Furthermore, the allocation of 5v processors to each cluster is trivial, and placing the 

nonempty clusters in an array of size O(d/v2) implicitly places the active elements in an 

array ofsize O(d/v). 

Lemma 4.4: There is a constant € > 0 such that for all given n, d, v, TEIN with d ~ n, 

incomplete compaction problems of size n and with parameters 

d d 
- ---t -
v3 O(djv) 23v 

can be solved on a TOLERANT PRAM using O(T) time, fn/Tl processors and O(n) space 

with prob ability at least 1 - 2-n
€ (Monte Carlo). 

Proof: We give the proof for T = 1, leaving the easy extension to general values of T to 

the reader (informally, the observation needed is that executing a multi-scattering over 

several steps rather than in one step can only cause more elements to be successful). We 

can obviously assume that v3 ~ d ~ n (otherwise we start with no active elements). 

Consider the following algorithm: 

Step 1: Divide X into 1 = f n/v 1 clusters Xl, ... , X, of at most v input elements 

each and use the algorithm of Lemma 2.7 to compute a bit representation of the set 

I = {i : 1 ~ i ~ I and Xi contains at least one active element}. 

Step 2: Associate 5v processors with each element of I and 5v-scatter I over an array 

of size f10d/v2l; let I' ~ I denote the set of unsuccessful indices. Use the outcome 

of the 5v-scattering to place all active elements in UiE1\I' Xi in an array of size 

vf10d/v2l = O(d/v). 

The . algorithm clea.rly runs on a TOLERANT PRAM within the desired resouxce 

bounds. A fixed active element remains active exactly if the index of its cluster is 
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unsuccessful in the 5v-scattering in Step 2. By Lemma 3.6(b), the number of such 

unsuccessful cluster indices is bounded by max{2d/25v , n5
/ 9 }, except with prob ability at 

most e-(, where ( = (n5/ 9 )2 /(32( d/v3 ) . 5v) = S1(n1 / 9 ) . With high prob ability the number 

ofactive elements therefore decreases to at most v·max{d/24v ,n5
/

9
} ~ max{d/23v ,n8

/
9
}. 

If this is more than d/23v
, at most n8

/ 9 elements remain active, and these can be 

deactivated via an application of the algorithm of Corollary 4.3. • 

Corollary 4.5: There is a constant € > 0 such that for all given n, dEIN, complete linear 

compaction problems of size n and with limit d can be solved on a TOLER.ANT PRAM 

using O(log*d) time, n processors and O(n) space with probability at least 1 - 2-n~ (Las 

Vegas) . 

. Proof: Assume that d ~ n and apply the algorithm of Lemma 4.4 at most log* d times in 

successive stages, starting with v = 1. Each stage after the first attempts to place the 

unlucky elements of the previous stage in a new but smaller array. Schematically, 

d d d d d 
- --+ - --+ - --+ - --+ -- --+ ... --+ 0 
13 O(d/l) 23 O(d/2) 43 O(d/4) 163 O(d/16) (216 )3 . 

The total size of the destination arrays is 

As mentioned above, a weaker form of Corollary 4.5 was first proved by Matias 

and Vishkin (1991), who also noted that it has applications to processor scheduling as 

per Brent 's principle. We next describe an improved algorithm that achieves optimal 

speedup. A similar result was derived in a somewhat different way by Goodrich (1991). 

Theorem 4.6: There is a constant € > 0 such that for all given n, d, TEIN with 

T ~ log* d, complete linear compaction problems of size n and with limit d can be 

solved on a TOLER.ANT PRAM using O(T) time, rn/Tl processors and O(n) space with 

prob ability at least 1 - 2-n~ (Las Vegas). 

Proof: Assume that T ~ (logn)/32, since otherwise the compaction can be carried out 

using prefix summation (Lemma 2.4), and that d ~ n. We describe a preprocessing stage 

that reduces the problem size from n to O(n/T). Divide X into rn/Tl clusters of at 

most T input elements each and associate a processor with each cluster. Using a global 

array A of size 8d, the processors now execute 2T rounds. In each round, each processor 

chooses an active element in its cluster, if any are left, and attempts to place the chosen 

element in a random cell of A. If the cell is not already occupied and there is no collision, 

the element is placed and becomes inactive. It is easy to see that each such trial falls 
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with prob ability at most l/S, even conditionally on any pattern of failures in previous 

rounds. As a consequence, all of r fixed trials by a fixed processor fail with prob ability 

at most (l/Sr (if the processor runs out of active elements, let it subsequently execute 

dummy trials that always succeed). But if a fixed processor has any active elements left 

after 2r rounds (call such a processor lnt.sy), at least r of its trials must have failed, 

which, by the above, happens with prob ability at most e;) (l/Sr ::s 227" . 2-37" = 2-7". 

The expected number of busy processors therefore is O(n/27"). Our intent is to use a 

martingale argument to show that with high prob ability, the actual number of busy 

processors is O( n/r2
), which requires us to bound the effect on the number of busy 

processors of a change in a single random choice. A change in a single random choice 

here is the choice by some processor of a different ceil in A in some round. Say that a 

processor P is affected (by the change under consideration) in a given round if the change 

influences the success of P's trial in the given round or in some earlier round. At most 

two processors are affected in the first round, and it is easy to see that the number of 

affected processors at most tripies from one round to the next - an affected processor 

can "affect" at most two other processors in each later round. Therefore the total number 

of affected processors after 2r rounds is at most 327" ::s 247" ::s n l / 8 ; this is an upper 

bound on the change in the number of busy processors caused by a change in a single 

random choice. Since the algorithm makes a total of O(n) randoni choices, a martingale 

argument now shows that with high probability, the actual number of busy processors is 

O(n/27" + n l / 8 . n 5
/

8
) = O(n/r2

). But then the algorithm of Corollary 4.5 can be used 

to place (the processor numbers of) the busy processors in an array of size O(n/r2 ). 

This implicitly places the remaining active elements in an array of size O(n/r), and the 

compaction can be completed via another application of the algorithm of Corollary 4.5 . 

• 
5 Fine-Profiling 

The presemt paper studies several different kinds of profiling probl~s. In general 

terms, the task is, given an array containing occurrences of several different values, to 

estimate the multiplicity of each value, i.e., the number of occurrences of that value. We 

now introduce . convenient notation and terminology that will be used throughout the 

remainder of the paper. In the context of an input consisting of n integers Zl, ... , Zn in 

the range o .. m, for n, mEIN, we take Bi = {Xj : 1 ::s j ::s n and Zj = i} and bi = IBil, 
for i = 1, ... , m. For i = 1, ... , m, the integer i will also be called a color, Bi is a color 

dass, and bi is called the multiplicity of the color i. For 1 ::s i < j ::s m, we consider 

Bi and Bj to be distinct even if they happen to contain the same elements (this is 

possible only if Bi = B j = 0). When a color dass Bi is manipulated as a single object by 
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some algorithm, it is represented by its index i. Note that elements of value 0 are not 

considered to belong to any color class. They are just "dummy elements" that represent 

the absence of a true element. Whenever we have dealt with certain color classes in some 

algorithm, we can "remove" the elements of these color classes by setting their values to 

0, which allows us to focus on the remaining color classes. This will be used on several 

occasions. Finally let B = U~l Bi be the set of input elements with nonzero values. 

Given n integers Zl, ... ,Zn in the range 0 .. m, for n, mEIN, an m-color profile for 

Zl, ... , Zn is a sequence bl , ... , bm of m nonnegative integers, the idea being that bi is an 

estimate of bi , for i = 1, ... ,m. A fine-profile, defined below, provides estimates that are 

correct up to a constant factor; for reasons of convenience we also require each estimate 

to be no smaller than the true multiplicity. For our purposes, having such estimates 

usually is as good as knowing the exact multiplicities. 

Definition: Let n, mEIN and let Zl,"" Zn be n integers in the range 0 .. m. For 

i = 1, ... , m, take bi = 1 {j : 1 ::::; j ::::; n and Z j = i} I. An m-color fine-profile for 

Zl,' .. , Zn is a sequence bl , ... ,bm of m nonnegative integers such that bi ::::; bi ::::; Kb i , for 

i = 1, ... , m and for some constant K ~ 1. If additionally bl , ... , bm are independent, 

the sequence bl , ... , bm is called a strong fine-profile for Zl, ... , Zn' The m-color (strong) 

fine-profiling problem of size n is, given n and m, to compute an m-color fine-profile 

(composed of independent estimates) for n given integers in the range 0 .. m. 

Note that the quantity K in the above definition is a "true constant" (such as 10). 

In fact, we could fix K at a particular value that can be deduced from the proof of 

Theorem 5.3. We define a linear overestimate for a quantity b as a quantity b with 

b ::::;b ::::; Kb, for some K ~ 1 that is a true constant in this sense. An m-color fine-profile 

for Zl,"" Zn may therefore also be characterized as a sequence of linear overestimates 

for bl , .. . ,bm . 

A statement quite similar to Lemma 5.1 below can be derived by combining results 

of (Stockmeyer, 1983) and (Ajtai and Ben-Or, 1984) with the obvious simulation of 

unbounded fan-in circuits by CRCW PRAMs. We give a somewhat different proof, which 

in the context of PRAMs seems more direct. 

LemJlla 5.1: For every fixed 5 > 0 there is a constant € > 0 such that for all given 

nEIN, the following problem can be solved on a TOLER.ANT PRAM using constant time, 

O(n6 ) processors and O(n) space with probability at least 1- 2-n~ (Monte Carlo): Given 

n bits Zl, ... ,Zn, compute a bit y such that 

(1) ~j=l Zj ~ n/2 :::} y = 1; 

(2) ~j=l Zj ::::; n/8 :::} y = o. 
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Proof: The idea of the proof, which the reader may appreciate better after the first 

reading, is to "amplify" a constant-factor difference to a "polynomial" difference, which 

can then easily be detected using Ragde's lemma (Lemma 4.1). 

Ass~e that 6 is rational, that 6 :S 1 and that n 2: 16, take h = 4l n 6 /2 J :S n 

and let t = 32 rlog n 1. Begin by determining the number of ones in each of h 

random samples of t input bits each, Le., choose ht independent random numbers 

Zl,l,.· ., Zl,t, Z2,l, . .. , Z2,t, . .. , Zh,l, .. . , Zh,t from the uniform distribution over {1, ... , n} 

and use the algorithm of Corollary 2.5 to compute Si = L~=l Zz •. ;, for i = 1, ... , h. The 

random variables Sl, ... , Sh are independent and binomially distributed with expected 

value tb/n, where b = :Ei=l zi. Hence by Lemma 2.1, the following holds for i = 1, ... , h: 

If b 2: n/2, then Pr(Si :S 8 rlognl) :S n-t, while if b :S n/8, then Pr(Si > 8 rlogn1) :S n- l . 

For i = 1, ... , h, take A[i] = 1 if Si > 8 flog n 1, and let A[i] = 0 otherwise. The remaining 

problem is, assuming that the vast majority of A[1], ... , A[h] has a common value (0 or 

1), to find that value. Do this by attempting, using the algorithm of Lemma 4.1 with 

d = l(h/4)1/4J, to move the set of ones in A to an array of size h/4. Set y = 1 if and only 

if this falls. 

In order to analyze the last part of the algorithm, note that S = :E~=1 A[i] is 

binomially distributed, and that the preceding discussion implies that E( S) 2: h/2 if 

b 2: n/2, while E(S) :S 1 if b :S n/8. By another application of Lemma 2.1, the following 

happens with high prob"a.bility: S > h/4 if b 2: n/2, while S :S (h/4)1/4 if b :S n/8. In 

the first case, the compaction using the algorithm of Lemma 4.1 surely falls, while in the 

second case it will succeed. In either case y receives the correct value. • 

When using the algorithm of Lemma 5.1 to analyze the outcome of a GCS 

S = {SI, ... , Sr} below, we apply the algorithm separately to each row of S and define a 

row to be almost-full if the algorithm assigns the value 1 to the bit y associated with the 

row. The threshold of S is 0 if SI is not almost-full, and otherwise is the largest integer 

i E {1, ... , r} such that Si is almost-full, for j = 1, ... , i. 

In loose analogy with the definition of the f-row of a GCS and motivated by 

Lemma 5.1, define an (11, I2)-row of a GCS S = (Sl, ... , Sr), for 0 :S ft :S 12 :S 1, as 0 if 

none of Sl, ... , Sr has fullness > ft, and otherwise as any integer i E {1, ... , r} such that 

Si has fullness > ft, while either i = r or Si+l has fullness < 12. 

Lemma 5.2: Let m, r, sEIN and let L be a (l, t )-row of a GCS of a set of m elements 

with parameters r x s. Let M = 2L s and take Cl = 1/(212e) and C2 = 12. Then 

(a) If m 2: CIS, then Pr(m < CIM) :S 2-"; 

(b) Pr(L > 0 and m < CIM) :S 2-"; . 

(c) Ifr 2: l1ogmJ, then Pr(m > C2M):S 2-". 

26 



Proof: We proceed as in the proof of Lemma 3.3. If L > 0, the fullness of row L is at 

least 1/8. Hence by Lemma 3.1(d), for every 1 ~ 0, 

00 (8 . 2-.i ) r .. /81 (8 .2-1) r .. /81 ~ (24-slem) r .. /81 Pr(L > I) ~ L em ~ 2 _e_m __ 
S S , 

i= rll 
(3) 

Likewise, if L < r, the fullness ofrow L + 1 is at most 1/2. Hence by Lemmas 3.1(b) and 

3.2, for every 1 ~ r, 

LIJ 
Pr(L < I) ~ min{l, L 2 .. -m.2-i-~} 

i=-oo (4) 
00 

~ 2" . min{l, L 2-2im'2-lIJ-~} ~ 2"+l-m '2-'-~. 

i=O 

To verify (a), apply (3) with 1 = log(m/(cls)) ~ 0 to obtain 

(
24 - 1 ) r .. /81 

Pr(m< c1M) = Pr(L > I) ~ sem ~ 2-". 

(b) follows immediately from (a) and the observation that L > 0 implies m ~ s/8 ~ CIS. 

To verify (c), apply (4) with 1 = 10g(m/(c2s)) ~ r to obtain 

The algorithm described in the theorem below outputs a sequence of independent 

integers, except that it may fail and not produce any output at all. As regards the 

independence, the precise statement is that for each input and conditionally on the event 

that any output is produced, the integers output by the algorithm are independent . 

Similar interpretations should be imposed on other results in the sequel concerning 

randomized algorithms that are daimed to output independent random numbers. A 

simpler proof of a statement similar to Theorem 5.3 was indicated by Goodrich (1991). 

Theorem 5.3: For every fixed 5 > 0 there is a constant € > 0 such that for all given 

n,m,T EIN with m = O(nl - 6 ), m-color strong fine-profiling problems of size n can be 

solved on a TOLER.ANT PRAM using O(T) time, rn/Tl processors and O(n) space with 

probability at least 1 - 2-nE (Monte Carlo). 

Proof: The idea of the algorithm is simple: If the size of a color dass is nO(l), it can be 

reliably estimated using a GCS; otherwise the color dass can be blown up by a factor of 

n0(1) and its size estimated in the same way. We now provide the details. 

Without loss of generality assume that 5 is rational and that n ~ 2. Since computing 

exact multiplicities reduces to sorting, the given problem is easily solved using the 
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algorithm of Lemma 2.9 if T = nO(l); we can therefore also assume the availability of at 

least n l - 6/3 processors. Let s = fn6/31. For i = 1, ... , m, use guarded writing to set 

bi = 0 'if bi = 0, and otherwise carry out the following procedure, where Cl and C2 are as 

defined in Lemma 5.2: 

Step 1: Using the algorithm of Lemma 5.1, execute a GCS Si of Bi with parameters 

Llog nJ x s and compute li as the threshold of Si. Note that we need aguard processor for 

each cell of each GCS, and that by assumption sufficiently many processors are available. 

Step 2: If li > 0, take bi = C2 ·2z,s. Otherwise use the algorithm of Corollary 4.3 to 

allocate s processors to each element of Bi, let these processors execute a GCS S: with 

parameters Llog( sn)J x s and take bi = C2 • 2z:, where l~ is the threshold of S:. 

It is easy to see that the space needed by the algorithm is O(n). To see that the same 

holds for the number of operations, note that by Lemma 5.2(c) and condition (1) of 

Lemma 5.1, no processors are allocated to a fixed color dass Bi with bi > C2S, except 

with negligible prob ability. 

Now fix i E {1, ... , m}. The following happens with high probability: If li > 0, 

we have bi S bi S (cdct)bi (by Lemma 5.2, parts (b) and (c)). If li = 0, then 
r .-sbi S C2 ·2 's S (cdct}sbi, l.e., bi S bi S (cdct}bi (by Lemma 5.2, parts (a) and (c)). In 

either case, bi is a linear overestimate for bio 

The estimates produced by the algorithm are dearly independent unless the processor 

allocation according to Corollary 4.3 fails, in which case the algorithm can report failure 

and refrain from producing anyoutput. • 

Remark: The above algorithm for fine-profiling is Monte Carlo, Le., we cannot detect if 

the estimates computed are off by more than the allowed constant factor. In Seetion 10 

we derivea Las Vegas fine-profiling algorithm (Corollary 10.5). 

6 Colored Compaction 

It is essential for the application to interval allocation described in Seetion 7 as well 

as for other reasons to generalize the compaction problem studied in Section 4 to colored 

compaction, where objects of different colors, initially placed in a single source ' array, are 

to be moved to distinct destination arrays, one for each color. As before, an object that 

cannot be placed is called unlucky, and we will not distinguish between an object and the 

input element representing it. In the formal definition below, the value of an element 

represents its color, the special value 0 still representing the absence of an object. This is 

in agreement with our terminology concerning BI,"" Bm . 
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Definition: Given n, mEIN and d1 , • •. , dm ~ 0 as weil as n integers Z1, ... , Zn in the 

range 0 .. m, an incomplete placement for Z1, ... , Zn with bounds d1 , • • . , dm is a sequence 

Y1, .. . , Yn of n nonnegative integers such that 

(1) For j = 1, ... , n, if Zj = 0, then Yj = 0; 

(2) For 1 :S i < j :S n, if Zi = Zj and Yi t= 0, then Yi t= Yj; 

(3) For i = 1, .. . ,m, max({yj: 1:S j:S n and Zj = i} U {O}):S di . 

The set {j : 1.:S j :S n, Zj t= 0 and Yj = O} is called the residue set of the incomplete 

placement. If the residue set is empty, the placement is complete. 

Condition (2) ensures that distinct elements of the same color are not placed in the 

same destination cell, and condition (3) states that the lucky elements of Bi fit into an 

array of size l diJ, for i = 1, ... , m . If there is only a single color, Le., for m = 1, the 

above definition reduces to our earlier definition of an incomplete placement. 

The compaction problems introduced in Section 4 generalize in a natural way to 

colored compaction. Our next goal is to extend the compaction algorithms given for 

the special case of a single color to the case of several colors. Recall that in a first 

approximation, the algorithm of Lemma 4.4 multi-scatters the active elements over an 

array of size s, for suitably chosen s. A straightforward generalization to the case of m 

colors would be to multi-scatter the elements of Bi over an array associated with Bi and of 

a suitably chosen size Si, for i = 1, ... , m. Attempting this, we are faced with a somewhat 

extraneous problem, namely that we do not know how to 'allocate m disjoint arrays of 

prescribed sizes S1, ••• , Sm sufficiently fast without wasting too much space. Lemma 6.1 

below therefore assumes "pre-allocated" such arrays to be supplied by any "user" of the 

lemma; the sizes of these arrays simultaneously serve as the bounds d1 , ..• , dm . As is 

rather obvious, the compaction of a particular color dass will not be very successful 

unless the size of the array provided for that color dass is considerably larger than the 

size of the color dass - we later define such color classes to be well-supplied. Lemma 6.1 

therefore identifies the set of (indices of) elements in weIl-supplied color classes, and its 

assertions apply only to such elements. 

A more interesting complication in the generalization of the algorithm of Lemma 4.4 

to the case of several colors lies in the fact that in Step 2 of the algorithm, several 

elements forming a cluster are multi-scattered together. While this works fine in the case 

of a single color, it is not appropriate ifthe elements in a cluster have different colors, i.e., 

are to be placed in different destination arrays. In order to solve this problem, recall that 

the clusterwise scattering was motivated by effi.ciency considerations: multi-scattering 

single elements works just as weil, but requires severalprocessors standing by each active 

element.The idea now is first to compact the active elements as though they were all 

of the same color - we already know how to do that - but to use the outcome of this 

compaction exclusively to allocate the necessary processors to each active element, after 
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which the colored compaction can be completed in the simple way described above. As 

suggested by this description, an initial part of our algorithm for colored compaction is 

quite similar to the corresponding algorithm for(uncolored) compaction. Because of the 

slight differences and since we want to extend the analysis of the algorithm given earlier, 

however, we essentially reproduce it as Steps 1 and 2 of the algorithm of Lemma 6.1 

below. 

Before we state the lemma, recall that for c > 0, a real-valued function 5 defined on 

a set M equipped with a metric 4> is said to satisfy a Lipschitz condition with constant c if 

for all z, y E M, we have 15(z) - 5(y)1 $ c· 4>(z, y). The only metric space relevant to the 

present paper, and the one implicitly intended in every reference to a Lipschitz condition, 

is the set of subsets of {1, ... , n}, equipped with the metric 4> with 4>( U, V) = IU t::,. VI, 

for all U, V ~ {1, .. . ,n}, where U t::,. V denotes the symmetrie difference of U and V, i.e., 

U t::,. V = (U\V) U (V\U). 

Lemma 6.1: There is a constant € > 0 such that the following holds: Let n, m, v, 7" E IN 

be given, suppose that Zl, ... , Zn are n given integers in the range 0 .. m and let 

Al, ... , Am be m given nonoverlapping arrays. Take Bi = {j : 1 $ j $ n and Z j = i} and 

bi = IBil, for i.= 1, . . . ,n, and define J = {i: 1 $ i $ m and IAi l2: 6vbi }, B' = UiEJBi 

and b = 2::'1 bio Then an incomplete placement for Zl, ... , Zn with bounds lAll,· .. , IAml 
can be computed on a TOLER.ANT PRAM using 0(7") time, ren + v 3 b)/7"1 processors and 

O(n + v3 b) space with probability at least 1 - 2-ntr (Monte Carlo), such that the residue 

set D of the placement satisfies condi tions (a )-( c) below. 

(a) For every j E B', Pr(j E D) $ 2-11 ; 

(b) For every fixed subset R of B' and for all z 2: IRI/211 , 

Pr(IR n DI2: z) $ 2e-z2/(29IRI113); 

( c) For every nonnegative real function 5 of D that satisfies a Lipschitz condition with 

constant c, 

5 = 0(E(5) + cv3n li
/

8
) 

with prob ability at least 1 _ 2-n1
/

8
• 

Remark: As anticipated above, a color dass Bi is called well-supplied, in the context 

of Lemma 6.1, if IAil 2: 6vbi , so that B' is the set of indices of elements in well-supplied 

color dasses. Part (a) of the lemma says that any fixed element of a well-supplied color 

dass is unlikely to remain active, part (b) extends this property from single elements 

to arbitrary sets of elements in well-supplied color dasses, and part (c) states that any 

function of the residue set that satisfies a Lipschitzcondition with a constant that is not 

too large with high prob ability does not significantly exceed its expected value. 
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Proof: With the same justification as in the proof of Lemma 4.4, we give the proof only 

for T = 1. Start by using the algorithm of Theorem 5.3 to compute an estimate b of b 

and assume that b is indeed a linear overestimate for b. Then execute the following: 

Step 1: Divide X into 1 = rn/v 1 clusters Xl, .. " Xl of at most v input elements 

each and use the algorithm of Lemma 2.7 to compute a bit representation of the set 

I = {j : 1 ~ j ~ 1 and Xj contains at least one active element}. 

Step 2: Associate 4v processors with eachelement of I and 4v-scatter lover an array A 

of size 8vb; let I' ~ I denote the set of unsuccessful indices . 

. Step 3: Associate 3v2 processors with each cell of A and use these to 3v-scatter the active 

elements in Bi n UjEI\I' X j over Ai, for i = 1, . .. , m. 

The algorithm clearly runs in constant time on a TOLER.ANT PRAM using O(n+v3 b) 

processors and O(n + v 3 b) memory cells. Since 111 ~ b ~ b, the density of the 

multi-scattering in Step 2 is bounded by 1/2 and, by definition, the densities of the 

multi-scatterings of well-supplied color classes in Step 3 are also bounded by 1/2. Let us 

agree to call a cluster Xi with i E I' (i.e., i was unsuccessful in Step 2) unsuccessful. If 

we take DI for the index set of active elements in unsuccessful clusters and denote by D 2 

the index set of elements that are unsuccessful in Step 3, clearly D = DI U D 2 • 

For the proof of part (a), fix an arbitrary active element X j in a well-supplied color 

class (i.e., j E B') and suppose that X j E Xi' As argued above, j E D (i.e., X j is unlucky) 

if and only if either i E I' (Le., i is unsuccessful in Step 2) or j E D2 (Le., X j participates 

in Step 3, but is unsuccessful). But by Lemma 3.6(a), applied twice with p ~ 1/2, 

Pr(i E I') ~ 2-4v and Pr(j E D2) ~ 2-3v ; hence Pr(j E D) ~ 2-4v + 2-3v ~ 2-v. 

For part (b), let R be a fixed subset of B', take r = IRI and let Z 2: r /2 v • Clearly 

IR n DI 2: Z only if either IR n DII ~ z/2 or IR n D 2 1 2: z/2; we will consider these 

events separately and show each to be unlikely. First consider the multi-scattering 

in Step 2 and let R' ~ I be the index set of clusters containing at least one active 

element whose index belongs to R; obviously IR'I ~ r . If IR n DII 2: z/2, i.e., 

at least z/2 elements of R are indices of elements in unsuccessful clusters, there 

must be at least z / (2v) unsuccessful clusters containing elements with indices in R, . 

i.e., IR' n 1'1 2: z/(2v). In other words, Pr(IR n Dd 2: z/2) ~ PrOR' n 1'1 2: z/(2v)). 

Since z/(2v) ~ 2r . 2-4v , we can apply Lemma 3.6(b) to bound the latter prob ability 

by e-C, where (= (z/(2v))2/(32IR'I·4v) 2: z2/(29rv3). Since also z/2 2: 2r· 2-3v , 

another application of Lemma 3.6(b) shows that Pr(IR n D2 1 2: z/2) ~ e-c, where 

( = (z/2)2 /(32IRI· 3v) 2: z2/(29rv). It follows that IR n DI 2: z with prob ability at most 
e-z2/(29"v3) + e-z2 /(2 9"v) ~ 2e- z2 /(2 9"v3). 

For part (c), note that S can be considered as a function of all the random choices 

made by the algorithm. Now, a change in a single random choice made in Step 2 affects at 

31 



most 2 clusters. Each of the at most 2v elements in the affected clusters in turn affects at 

most 3v other elements in Step 3. Hence altogether at most 2v + 6v2 :s; 8v2 of the output 

variables Yl,' .. , Yn are affected, and it is easy to see that no more output variables are 

affected by a change in a single random choice in Step 3. In other words, if D changes to 

D' in response to a change in a single random choice, we always have that ID 6. D'I :s; 8v2 ; 

by the Lipschitz condition imposed on S, this means that S changes by at most 8cv2 • 

Since the algorithm makes at most 7vb :s; 7vn random choices altogether, an application 

of Corollary 2.3 yields that S :s; max{2E(S), 4· 8cv2 • (7vn)S/8} = O(E(S) + cv3nS/8) with 

prob ability at least 1 _ 2-n1 /
1

• • 

In order to simplify the applications of Lemma 6.1 in the following, we discuss a 

generic application in detail at this point and introduce a convenient shorthand that will 

be used in later applications. 

Assume that we are given a set B of active elements with colors in {1, ... , m} and 

stored in an array Q of size n. For i = 1, ... , m, let Bi be the set of elements in B with 

color i. Further assume that we are given m disjoint arrays Al, . .. , Am. Our goal is to 

place most of the elements of Bi in Ai, for i = 1, ... , m. To this end let Zj be the color 

of the element Xj in the jth cell of Q, for j = 1, ... , n, with Zj = 0 if the jth cell of Q 

does not contain any active element, and let v be a suitable positive integer (the choice 

of v will depend on our (application-specific) knowledge of the ratios IAiIJIBil). Then 

apply the algoritluD. of Lemma 6.1 to compute an incomplete placement Yl,"" Yn for 

Zl,,,,,Zn with bounds IAll, ... ,IAml. Finally, for all j E {1, ... ,n} with Zj =/; 0 and 

Yj =/; 0, actually place X j in the Yjth cell of A~i (the algorithm of Lemma 6.1 already 

places Xj as just described; this is not specified in the statement of the lemma, however, 

so we repeat the operation here). 

In what follows, an application of Lemma 6.1 as above will be called simply 

"v-compacting Bi to Ai, for i = 1, ... , m". Lemma 6.1 gtiarantees that a fixed element of 

a well-supplied color class will be unlucky with probability at most 2-V
• Furthermore, if 

the number of nonzero input numbers is O(nJv3 ), as in most applications of Lemma 6.1 

in the present paper, then the algorithm uses O(n) operations and O(n) space. 

In the remainder of the section we extend the definition of complete linear compaction 

to the case of several colors and prove a result corresponding to Theorem 4.6. 

Definition: For all n, m, dl , ... , dm EIN, the complete linear colored compaction problem 

of size n and with limits dl , ... , dm is, given n integers Zl, ... , Zn in the range O •. m such 

that IV : 1 :s; j :s; n and Zj = i}1 :s; di , for i = 1, ... , m, to compute a complete placement 

for Zl"",Zn with bounds O(dt), ... ,O(dm ). 

The problem, discussed before the statement of Lemma 6.1, of allocating m disjoint 

arrays Al, ... , Am is easy in a special case, namely when m is so small that the allocation 

32 



can be done by means of brute-force prefix summation (Corollary 2.5). This leads to the 

following result. 

Theorem 6.2: There is a constant € > 0 such that for all given n, m, T, d1, ... , dm E IN 

with m = (logn)O(l) and T ~ log*n, complete linear colored compaction problems of size 

n and with limits d1, ... ,dm can be solved on a TOLER.ANT PRAM using O(T) time, 

rn/Tl processors and O(n+ L:~ldi) space withprobability at least 1_2-nE (Las Vegas). 

Proof: We fust devise a nonoptimal algorithm that solves the problem in O(log*n) time 

using n processors and afterwards show that optimality can be achieved essentially as 

in the proof of Theorem 4.6. The basic idea is to place the active elements in log*n 

successive stages, similarly as in the algorithm of Corollary 4.5. With a view towards a 

future application (Lemma 9.7), we fust consider a more general setting, in which we 

ignore the difficulties of space allocation discussed above, but in return show how to 

tolerate m = O(n1 - O) different colors, for arbitrary fixed 6 > o. 
Without loss of generality assume that 6 is rational and that di ::::; n, for i = 1, ... , n 

(otherwise the elements in Bi can be deactivated in a trivial manner). Say that a color 

dass Bi is smalZ if bi ::::; n° /2, and Zarge otherwise, and note that the total number of 

elements in small color dasses is O(n1 - O . nO/2 ) = O(n1 - O/ 2 ). We begin by reducing the 

number of active elements in large color dasses to a similar level, but in a balanced way 

(Le., each large color dass loses most ofits elements). 

Define the active jraction as zero if all color dasses are small, and otherwise 

as the maximum, over all large color classes Bi, of the ratio of the number of 

(currently) active elements in Bi to bio We aim at decreasing the active fraction 

to at most n-o/8 , after which the total number of remaining active elements will be 

O(n1- O/2 + n l - O/ 8 ) = O(n1- O/8 ). We fust show that if the active fraction has been 

reduced to at most v-3 , for some given v EIN, then in constant time it can be reduced 

further to at most max{2-3t1 , n-O/8 } with high prob ability. H v ~ nO/24 , there is nothing 

to show. Otherwise use the algorithm of Lemma 6.1 to 3v-compact the remaining active 

elements in Bi to an array of size r6 . 3~/v2l, for i = 1, ... , m. Assuming that the active 

fraction is at most v-3 , Lemma 6.1 shows that the 3v-compaction can be carried out 

in constant time using O(n + v3(n1 - O/ 2 + L:~I (bi /V3 ))) = O(n) processors and that for 

each fixed large color dass Bi (which, by assumption, is well-supplied), the number of 

active elements in Bi after the 3v-compaction is bounded by max{bd23t1 , b~/4}, except 

with probability at most 2e-C, where (= (b:/4 )2/(29 (b i /V3 ). (3v?) = n(b~/2) = n(nO/4 ). 

With high prob ability, the fraction of active elements left in each large color dass Bi 

after the 3v-compaction therefore is at most max{2-3t1 , bi"1/4} ::::; max{2-3t1 , n-O/8}, for 

i = 1, ... , m, Le., the active fraction has been reduced to the same level. Applying this 

procedure at most log*n times with v = 1,2,22,222 , ... with high prob ability reduces the 
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active fraction to at most n -0 /8, as desired. Note that the successive arrays used by a 

color dass can be taken as tightly packed subarrays of a single array. 

In order to complete the compaction, we first use the algorithm of Corollary 4.3 to 

move the remaining O(n1- O/ 8 ) active elements to an array of size O(n1 - O/ 8 ), after which 

constant time and n processors suffice to l n° /8 J -scatter the active elements of Bi over an 

array of size 2 . max{ di , r n30/ 4l}, for i = 1, ... , m. Since the number of active elements 

in a large color class Bi is at most bi /nO/ 8 ~ di /nO/ 8 , the density of each of these multi­

scatterings is bounded by 1/2, so that Lemma 3.6( a) ensures that with high prob ability all 

elements are successful. At this point, for i = 1, ... , m, the elements of Bi are stored in an 

array of size r18di /1 2l + r18di/22l + r18di/42l + ... + 2 'max{di, rn30
/
4l} = 0(di + n36

/
4

). 

For all color dass es Bi with di 2: n30/ 4 , this compaction is sufficiently tight, while 

the remaining color classes can be compacted into linear space using the algorithm of 

Corollary 4.3 (recall that we have 0(nO) processors for each color dass). 

Under the restriction m = (log n )0(1) of the theorem, the allocation of an array to 

. each color class, which was ignored above, can clearly be done in constant time using the 

algorithm of Corollary 2.5. 

The algorithm described so far can be excuted in O(log*n) time with n processors. 

To achieve optimal speedup, it suffices, in the light of Theorem 4.6, to show that the 

number of active elements can be reduced to O(n/T) in O(T) time. To this end assume 

that T ~n1/8 (otherwise sort the input numbers using the algorithm of Lemma 2.9), 

divide X into rn/Tl clusters of at most T input elements each and associate a processor 

with each cluster. Then use the algorithm of Corollary 2.5 to allocate an array Ai of size 

8di to Bi, for i = 1, ... , m. Similarly as in the proof of Theorem 4.6, each processor 

now attempts in 2T rounds to place the active elements of its duster in the arrays 

corresponding to their colors. The argument in the proof of Theorem 4.6 shows that with 

high prob ability the number of active elements left after the last round is O(n/T). • 

7 Interval Allocation 

While the compaction problem asks that unit intervals be placed in a base segment, 

the interval allocation problem, defined below, specifies intervals of varying length to be 

placed. Viewed another way, each input element is arequest for a block of consecutive 

indices of a size given by the value of the request. Informally, condition (2) means that 

blocks do not overlap, and (3) means that the allocated blocks are optimally packed, 

except for a constant factor. Another difference between complete linear compaction and 

interval allocation is that in the case of compaction, an upper bound on the number 

of elements present (the limit d) is provided as part of the input, while in the case of 

interval allocation the choice of an appropriate size for the base segment is left to the 
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algorithm. Since a suitable value for d could actually be computed using the algorithm of 

Theorem 5.3 as in the proof of Lemma 6.1, this difference is of no particular significance, 

but merely convenient for the exposition. 

Definition: For all nEIN, the (complete) interval allocation problem of size n is the 

following: Given n nonnegative integers Zl, . .. , Zn, compute n nonnegative integers 

Yl , . . . ,Yn such that 

(1) For j = 1, .. . ,n, Zj = 0 {:} Yj = Oj 

(2) For 1 :S i< j :S n, ifO rt {Zi, Zj}, then {Yi, ... ,Yi+Zi -1}n {yj' ... , Yj +Zj -1} = 0j 

(3) mU{yj : 1 :S j :S n} = On:j=l Zj). 

A natural extension of the interval allocation problem would augment the 

solution by an appropriate size for the base segment, i.e., by an integer s with 

s ~ mU{yj + Zj - 1 : 1 :S j :S n}, but s = 0CEj=l Zj) . Such a quantity is usually 

needed in applications of interval allocation, and our algorithm for interval allocation 

essentially generates it internally. By Lemma 2.6, however, a suitable choice for s 

(namely, mU{yj + Zj - 1 : 1 :S j :S n}) can be computed from the output of interval 

allocation, as defined here, for which reasonwe have refrained from including it in the 

problem definition. 

While interval allocation is a generalization of compaction, we will now show that 

interval allocation reduces to colored compaction. First note that if all nonzero requests 

(i.e., requests of nonzero value) are of value 1, Le., if Z j E {O, 1}, for j = 1, ... ,n, then we 

can indeed first use the algorithm of Theorem 5.3 to compute a linear overestimate b for 

the number b of nonzero requests, and subsequently solve the complete linear compaction 

problem with input Zl, ... , Zn and limit b. Informally, what happens is that nonzero 

requests are interpreted as active elements in the usual sense; once the correct size of the 

destination array A has been established, a unit block (i.e., a single index) is associated 

with each cell of A, the active elements are placed in A by the compaction algorithm, 

and the block associated with a ceil in A is allocated to the element, if any, placed in 

that ceil (i.e., the requests are satisfied) . The same approach works as long as all nonzero 

requests are of a common value I - we simply associate a block of I consecutive indices 

with each ceil of A, rather than a single index. 

If there are nonzero requests of m distinct values, we clearly have to use m distinct 

destination arrays Al' ... ' Am, each associated with blocks of a different size, Le., we 

have to resort to colored compaction. A number of difficulties have to be tackled in this 

generalization. First, we need to estimate the sizes of several color classes simultaneouslyj 

this can still be done by the algorithm of Theorem 5.3 if m = O(nl - 6 ), for some fixed 

5 > o. Second, the colored compaction can be carried out using the algorithm of 

Theorem 6.2, but only under the (more stringent) restriction m = (logn)O(l). Third, 
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the blocks of indices associated with Al, ... , Am must be allocated from an appropriate 

base array. More precisely, with each array Ai we allocate a segment consisting of IAil 
blocks of the appropriate size, i.e., of the size associated with the color i, after which 

the association of a single block with each cell in Ai is trivial. Since this allocation 

reduces to prefix summation, we aim to carry it out using the algorithm of Corollary 2.5. 

This requires, on the one hand, that m = (logn)O(l), as above, and, on the other hand, 

that the sizes of the blocks to be allocated is polynomial in n. On the outset, these 

requirements are not satisfied: The numbers Zl, ... , Zn could all be distinct, which would 

give us as many as n color classes, and they could be arbitrarily large. However, the 

input can be scaled and rounded to satisfy the requirements, as we show next. 

First observe that if M denotes the maximum request value, Le., M = max{zj : 

1 ~ j ~ n}, then replacing each nonzero request value Z j by the nearest multiple of 

u = r M / n 1 no , sm aller than Z j increases the sum W of all request values by at most 

ub ~ M + b, where b is the number of nonzero requests, i.e., at most tripies W. As a 

result of this transformation, we can consider all request values to be integers in the 

range 0 .. n (simply measure requests and blocks in units of size u). H at this point we 

replace each nonzero (modified) re quest value by the nearest larger power of 2, W at most 

doubles, and only O(logn) different request values remain, i.e., the compaction-based 

algorithm sketched above becomes applicable with m = O(logn) color classes. Every 

modified request value is at least as large as the corresponding original value; since the 

modified values sum to at most 6 times the original sum, however, solving the interval 

allocation problem defined by the modified request values pro duces a solution to the 

original interval allocation problem. 

The maximum request value M can be computed using the algorithm of Lemma 2.6. 

In fact, for the applications of Theorem 7.1 in the present paper, we will frequently 

have M = O(n), in which case it is not necessary to actually compute M (because 

the procedure described above, with trivial modifications, can be employed with u = 1 

whenever M is polynomial in n). Snrnrning up, we have seen that interval allocation 

re duces to complete linear colored compaction with a logarithmic number of colors. 

Theorem 7.1: There is a constant € > 0 such that for all given n, TEIN with T ;::: log"'n, 

interval allocation problems of size n can be solved on a TOLERANT PRAM using O(T) 

time, rn/Tl processors and O(n) space with prob ability at least 1 - 2-n~ (Monte Carlo). 

Proof: By the above discussion and Theorem 6.2. In particular, note that since resources 

(indices) are divided optimally between color c1asses and with a constant-factor "waste" 

within color classes, the overall "waste factor" is bounded by a constant, as required by 

condition (3) in the definition of interval allocation. • 

Remark: Part of the development of Theorem 7.1 took place in a dialog with 
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Joseph Gil. An earlier version of the present paper achieved running times of 

O(loglognlog*njlogloglogn), the bottleneck being compaction. After receiving a 

pre1iminary sketch of the algorithm of Theorem 7.1 geared towards this running time, 

Gil informed us of the results of Matias and Vishkin (1991), unpublished at the time, 

and observed their applicability in the context of the algorithm, which allowed him to 

derive a first interval allocation algorithm with a running time of O(log"n). We improved 

his result by giving an algorithm with optimal speedup and a lower failure prob ability 

and by implementing the algorithm on the weaker TOLER.ANT PRAM, after which the 

communication with Gil ceased. Theorem 7.1 states the last result mentioned above, 

except for a still smaller failure prob ability. A slightly weaker result was published in (Gil 

et al., 1991). A time bound of O(loglogn) for a less general load balancing problem was 

shown by Gil (1990, 1991). 

Remark: At this point we can give only a Monte Carlo algorithm for interval allocation, 

and Theorem 7.1 is formulated accordingly. This is due to the use of the Monte Carlo 

fine-profiling algorithm of Theorem 5.3. Using Corollary 10.5 instead of Theorem 5.3, 

however, allows us to obtain a Las Vegas algorithm for interval allocation. The same 

remark applies to Theorem 7.2 below. 

Whereas the use öf Theorem 7.1 in memory allocation is obvious, one additional 

observation is needed for its application to the allocation of processors. The reason is 

that a processor is an active device that needs to know about the task that it is to 

execute. Theorem 7.1 can be used to communicate this information to the first processor 

in each team, i.e., in each group of consecutively numbered processors allocated to a 

common task, but the information must subsequently be broadcast to the remaining 

processors in each team. In recognition of this fact, we consider a slight variation of the 

interval allocation problem called the interval marking problem. In the definition below, 

informally, ZI, ... , Zn are the sizes of n requests for processors. The output consists of a 

size indicator s together with s integers ZI, ••• , Z6 and specifies the allocation of s virtual 

processors PI, ... , P6 as follows: For j = 1, ... , s, the meaning of Zj = i E {1, ... , n} is 

that Pj is a member of the team allocated to the ith request; the meaning of Zj = 0 is 

that Pj is not part of any team. Condition (1) requires the processors in each team to be 

consecutively numbered, (2) expresses that the number of virtual processors in the team 

allocated to the ith request is indeed exactly Zi, for i = 1, ... , n, and (3) states that the 

total number of virtual processors exceeds the number of requested processors by at most 

a constant factor; this allows the allocated processors to be simulated without loss, up to 

a constant factor, by any number of available physical processors. 

Definition: For all nEIN, the interval marking problem of size n is the following: Given 

n nonnegative integers ZI, ... , Zn, compute nonnegative integers s, ZI, ••• , Z6 such that 
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(1) For all integers i,j,k with 1:::; i:::; j :::; k:::; $, if Zi = Zk -# 0, then Zj = Zi; 

(2) For i = 1, ... , n, IV : 1 :::; j :::; $ and Zj = i}1 = Zi; 

(3) $ = O(Li=l Zj). 

In most applications of interval marking in the present paper we will have 

Li=l Zj = O(n). We next show that under this restriction, we can solve the interval 

marking problem with input Zl,"" Zn in constant deterministic time with n processors 

after solving the interval allocation problem with input Zl, ... ,Zn using the algorithm of 

Theorem 7.1. The reader may think of this as a reduction of interval marking to interval 

allocation; this is not quite exact, however, since we will use a special property of the 

solution produced by Theorem 7.1 (conversely, under the restrietion Li=l Zj = O(n), it 

is easy to show that interval allocation reduces to interval marking). 

We view interval allocation with input Zl, .. " Zn as allocating disjoint subarrays 

Al , ... ,An of sizes Zl, .•. , Zn from a base array and note that it is trivial to mark the 

first cell of Ai with the integer i, for i = 1, ... , n. As already discussed above, the 

corresponding interval marking problem can essentially be solved by copying the integer 

stored in the first cell of Ai to the remaining cells of Ai, for i = 1, ... , n. In other words, it 

suffices to provide each cell of a subarray with apointer to the beginning of the subarray. 

Now recall that our algorithm for interval allocation actually allocates all subarrays from 

O(logn) segments, each of which consists of tightly packed subarrays of the same size. If 

we store the subarray size of each segment in the first cell of the segment, which is easy 

to do, it suffices to provide each cell of a segment with apointer to the beginning of the 

segment, since with this pointer and the relevant subarray size it can easily compute the 

beginning of its subarray. We are now left with a problem that can be viewed as an 

instance of the nearest preceding element problem defined in Section 2; each beginning 

of a segment corresponds to one nonzero input bit. Since the number of segments is 

O(log n), we can appeal to part (b) of Lemma 2.8 and obtain the following result. 

Theorem 7.2: There is a constant f> 0 such that for all given n, TEIN with T ~ log*n, 

interval marking problems of size n can be solved on a TOLER.ANT PRAM using O(T) 

time, r(n + W)/r 1 processors and O(n + W) space with prob ability at least 1 _ 2-nf 

(Monte Carlo), where W is the sum of the input numbers. 

Proof: By the above discussion, Lemma 2.8(b) and Theorem 7.1. The dependence of the 

resource bounds on W is due to the fact that the size of the output is O(W + 1). • 

The proof of Theorem 7.2 shows how to allocate processors to requesting tasks, each 

of which requests one or more processors. A situation frequently encountered is that 

many tasks are so small that they do not require "an entire processor" , while at the same 

time the number of tasks is so large that we cannot afford to allocate a processor to each. 
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Theorem 7.2 easily extends to cover this situation as well. Let n, TEIN, assume that we 

are given a collection Ti, ... , 'In of n tasks, and suppose that for j = 1, ... ,n, we know 

an integer qj E IN such that Tj can be executedin O(qj) time with one processor, or in 

O(T) time with fqj/Tl processors. Then the n tasks can be executed in O(T) time with 

fW/T 1 processors, where W = :Ei=1 qj 2: n. To see this, define Tj to be small if qj ~ T, 

and large otherwise, for j = 1, ... , n. Begin by allocating Lqj /T J processors to Tj, for 

j = 1, ... , n, clearly a total ofat most W/T processors. For j = 1, . .. , n, if Tj is large, 

then Lqj /T J 2: H qj /T 1, so that the processors allocated to Tj suffice to execute Tj in 

O(T) time. What remains is to execute the small tasks. Partition these into m = fn/Tl 

groups G1 , •• . , Gm of at most T tasks each. For i = 1, ... , m, compute the totallength Qi 

of Gi as the sum of the lengths of the tasks in Gi. Then allocate fQi/Tl processors to 

Gi, for i = 1, . . . , m, a total of at most m + W/T ~ 2fW/Tl processors. It is not difficult 

to see that using sequential prefix summation, the tasks in each group can be distributed 

among the processors allocated to the group in such a way that each processor receives 

tasks of total length O( T). All that remains is to let each processor execute the tasks 

given to it sequentially in O( T) time. 

When invoking the above principle, we will speak of "operation allocation" rather 

than processor allocation. 

While Theorems 7.1 and 7.2 are our main results concerning the interval allocation 

and interval marking problems, we also need a more technicallemma (Lemma 7.3 below) 

that parallels Lemma 6.1 and allows us to perform what we call incomplete allocation 

in constant time. Just as Lemma 6.1 claims efficient deactivation only of elements in 

well-supplied color classes, those for which the available array is at least 6v times larger 

than the number of elements to be placed there, Lemma 7.3 is wasteful in a sense that 

we make explicit through the introduction of a so-called slack parameter. 

Definition: For all nEIN and .\ 2: 1, an incomplete interval placement with slack .\ for 

n nonnegative integers Z1, ... , Zn is a sequence Y1, ... , Yn of n nonnegative integers such 

that 

(1) For 1 ~ i < j ~ n, ifD rt {Yi,Yj}, then {Yi, ... ,Yi+Zi-1}n{Yj, .. . ,Yj+Zj -1} = 0; 

(2) max{Yj : 1 ~ j ~ n} = 0(.\· :Ej=1 Zj). 

The set {j : 1 :S j :S n, Zj i= D and Yj = D} is called the residue set of the incomplete 

interval placement. If the residue set is empty, the interval placement is complete. 

Contrasted with the definition of (complete) interval allocation, the above definition 

does not require a block to be allocated to every request, and blocks may be allocated 

from a range .\ times as large. An algorithm that computes complete interval placements 

with constant slack performs standard interval allocation. 
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Lemma 7.3: For all given n,v,r E JN, an incomplete interval placement for n given 

nonnegative integers Zl, ... , Zn with slack V can be computed on a TOLERANT PRAM 

using O(r) time, f(n + v3W)/rl processors and O(n + v3W) space with prob ability at 

least 1 - 2-nE (Monte Carlo), where W = :Ej=l Zj, such that the residue set D of the 

placement satisfies the following: 

(a) For j = 1, ... , n, Pr(j E D) ::; 2-v ; 

(b) For every fixed subset R of {1, ... , n} and for all z 2: IRI/2v , 

Pr(IR n DI 2: z) :::; 2e-z2/(29IRlv3); 

( c) For every nonnegative real function S of D that satisfies a Lipschitz condition with 

constant c, 

S = O(E(S) + cv3 n 5
/

8
) 

with probability at least 1 _ 2-n1
/

8 
• 

Proof: The reduction of interval allocation to complete linear tolored compaction with 

a logarithmic number of colors extends to incomplete interval allocation and incomplete 

colored compaction in a straightforward way. Once each request has been marked with its 

color, an integer in the range 1 .. m, we can use the algorithm of Theorem 5.3 to compute 

a linear overestimate bi for the size of Bi, for i = 1, ... , m, and that of Corollary 2.5 to 

allocate arrays Al, ... , Am with I Ai I = 6vbi, for i = 1, ... , m, and their associated blocks. 

Since :E~l ~ = O(W), both the arrays and the blocks can be allocated from a base array 

of size O(vW). Lemma 7.3 now follows easily from Lemma 6.1; in particular, note that 

since the number of nonzero input numbers is bounded by W, the number of operations 

and memory cells needed is O( n + v3W). • 

Because of the near-equivalence of interval allocation and interval marking, 

Lemma 7;3 can be used for incomplete allocation ofprocessors as weil as ofmemory ceils. 

Extending our earlier terminology, we call an input element unlucky in an application 

of Lemma 7.3 if its index belongs to the residue set, and lucky otherwise. lust as we 

introduced the concept of v-compaction to facilitate the application of Lemma 6.1, let us 

agree to use the term "v-allocation", forv E JN, to denote an application of Lemma 7.3 

with slack v, followed by the actual allocation of memory ceils or processors to the 

luck;r elements. By Lemma 7.3(a), the probability that a fixed element is unlucky in a 

v-allocation is at most 2-v
, and if the ''total resource demand" W = :Ej=l Zj is O(n/v3 ), 

then the v-allocation uses O(n) operations and O(n) space. 

8 Coarse-Profiling 

While many applications call for the profiling of sequences of values in the range 

1 . . n stored in an array of size n, our best strong fine-profiling result (Theorem 5.3) 
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allows only 0(nl - 6 ) different values, for fixed 5 > o. It is hence necessary to relax 

the requirements imposed on a profile. Whereas the definition of fine-profiling seems 

quite natural, it is not obvious how to defi.ne a computationally more tractable profiling 

problem. The following definition of a coarse-profile, which at fust glance may seem 

rather artificial, turns out to be useful. 

Definition: Let n, mEIN, and let 2:1, •.. , Zn be n integers in the range 0 .. m. For 

i = 1, ... , m, take bi = 1 {j : 1 ::; j ::; n and Z j = i} I. An m-color coarse-profile for 
~ ~ 

2:1, ..• , Zn is a sequence of m independent nonnegative integer random variables b1 , ••• , bm 

such that 

(A) L~l bi = O(n); 

(B) For i = 1, ... , m and for all a ~ 1, Pr(bi > abi ) ::; 2-a
• 

For n, mEIN, the m-color coarse-profiling problem of size n is to compute an m-color 

coarse-profile for n given integers in the range 0 .. m. 

We will refer to condition (A) in the above definition as the linear.sum condition. As 

in the case of fine-profiling, input elements of value 0 are "dummy elements" that do not 

take part in the profiling. 

In the following, we show that n-color coarse-profiling problems of size n can be 

solved wi th optimal speedup in 0 «log* n )2) time. We fust explain the main ideas in the 

context of an algorithm that uses n processors and later indicate how to achieve optimal 

speedup. We begin by tackling a simpler problem, that of estimating just the large 

multiplicities. Our approach is to extrapolate from a fine-profile for a random sample 

of size n 1-'Y, for some suitably chosen constant 'Y > O. One small complication is that 

although the sample certainly contains at most n 1-'Y distinct values, these are spread 

out over the entire range of size n, whereas for an application of Theorem 5.3 a much 

smaller range is required. The following technical lemma, which will be used frequently 

in the following, allows us to rename the sample values as required, i.e., to compute an 

injective function (namely i 1-+ Yi) from the set of original sample values to a range of size 

0(n1-'Y). 

Lemma 8.1: For all given n, d, s, TEIN with d = O(n/T), the following problem reduces, 

using O(T) time, rn/Tl processors and O(n) space on a TOLER.ANT PRAM, to a complete 

compaction problem of size n and with parameters d --+ 0: Given d integers Zl, ... , Zd 
ß 

in the range o .. n, compute n nonnegativeintegers Yl, ... , Yn such that 

(1) For i = 1, ... , n, Yi # 0 {:> i E {z j : 1 ::; j ::; d}; 

(2) For 1 ::; i < j ::; n, if Yi # 0, then Yi # Yj; 

(3) max{Yi : 1 ::; i ::; n} ::; s. 
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Proof: lust as we associate arecord X j with value Zj with each input variable Zj, let us 

associate an output record Yi with value Yi with the output variable Yi, for i = 1, ... , n. 

The problem is simply to mark those output records that are to receive nonzero 

values, since afterwards the problem can be solved by compacting the marked records. 

Whereas the marking would be trivial on the ARBITRARY PRAM, on the TOLERANT 

PRAM several occurrences of a value i might prevent the marking of Yi. Our solution is 

to use guarded writing of a new kind that we call inverted guarded writing. For T > 1 we 

do not have a (physical) guard processor for each output record, which is the reason why 

guarded writing of the kind employed in previous sections cannot be used. Instead note 

that by assumption, we can associate a processor with each element j E {I, ... , d}. Let 

this processor continuously write some value to YZj • At the same time associate a virtual 

guard processor with each output record and let r n/T 1 physical processors simulate the 

virtual guard processors in O(T) time. If each virtual guard processor attempts to modify 

the value stored in its associated output record and marks the re cord if and only if this 

falls, the desired marking will result. • 

In the theorem below, condition (1) says that every nonzero estimate is a linear 

overestimate for the multiplicity that it estimates. Condition (2) ensures that nonzero 

estimates are in fact obtained at least for the large multiplicities. 

Theorem 8.2: For every fixed 5 > 0 there is a constant € > 0 such that the following 

holds: Let n, TEIN be given, let Zl, ... , Zn be n given integers in the range 0 .. n 

and take bi = lü : 1 ::; j ::; n and Zj = i}l, for i = 1, ... , n. Then it is possible, with 

probability at least 1- 2-n
O! (Monte Carlo) and on a TOLERANT PRAM using O(T) time, 

rn/Tl processors and O(n) space, to compute n independent nonnegative integer random 

variables b1 , ••• ,bn such that conditions (1) and (2) below hold for some constant K 2: 1 

and for each i E {I, ... , n}. 

(l)bi > 0 => bi ::;bi::; Kbi; 
6 ~ 

(2) bi 2: n => bi > O. 

Proof: Without loss of generality assume that 5 is rational. By Lemma 2.9, we can also 

assume that T::; n6 / 4 , so that at least n l - 6 / 4 processors are available. Let h = rn6/ 4l 
and carry out the following algorithm: 

Step 1: Draw a random sampie Y of X by including each input element in Y independently 

of other elements and with prob ability l/h. For i = 1, ... , n, let br = IBi n YI. 
Step 2: Use the algorithm of Theorem 5.3 to estimate br, for i = 1, ... , n. First place the 

elements of Y in an array of size O(nl - 6 / 4 ). Since 1YI = O(nl - 6 / 4 ) with high prob ability 

by Chemoffbound (a), this can be done by the algorithm of Corollary 4.3. Then use the 

algorithms of Lemma 8.1 and Corollary 4.3 to replace the values represented among the 
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elements in Y by values in a range of size O(n1 - o5 / 4 ). The algorithm of Theorem 5.3 

now provides estimates f?, ... , b~ such that with high prob ability, bf ::; br ::; K'bf, for 

i = 1, ... , n and for some constant K' (take br = 0 for all i E {1, ... , n} with bf = 0). 

Step 3: For i = 1, ... , n, ifbf 2: ";'05/2, then take bi = 2hbf; otherwise take bi = O. 

In order to analyze the algorithm, fix i E {1, ... , n}. H bi 2: n o5 / 2, then by Lemma 2.1, 

with high prob ability bi /(2h) ::; bf ::; 2bi /h and hence bi /(2h) ::; bf ::; 2K'bi /h, from 

which follows that either bi = 0 or bi ::; bi ::; 4K'bi . H bi 2: n o5 , dearly with high 

probability bi > o. On the other hand, if bi < n o5 / 2, then with high prob ability 

bf < n o5 / 2/ K', hence br < n o5 /
2 and bi = o. • 

Lemma 8.3: There is a constant € > 0 such that for all given nEIN, n-color 

coarse-profiling problems of size n can be solved on a TOLERANT PRAM using 

O((log*n)2) time, n processors and O(n) space with prob ability at least 1 - 2-n
€ (Monte 

Carlo). 

We begin by describing the algorithm informally. As in the previous profiling 

algorithms, the basic idea is that a GCS for each color can be used to estimate the 

multiplicity of that color. A fact of prime importance for the design of the algorithm, 

however, is that a GCS is suitable for estimating multiplicities in a certain range only: 

Very large color dasses are likely to fill every row of their respective graduated conditional 

scatterings, which therefore offer no means of distinguishing between them. For a GCS 

with parameters r X $, this happens for multiplicities above approximately 2", so that 

2" is the upper limit of multiplicities that can be estimated. On the other hand, color 

classes of sizes significantly below $ obviously leave all rows practically empty so that, 

again, it is not possible to distinguish between them. The range of multiplicities that 

can be meaningfully estimated using a GCS with parameters r X $ therefore is roughly 

from $ to 2". As can be seen from Lemmas 3.3 and 5.2, increasing $ has the effect of 

increasing the reliability of the estimate obtained from the GCS. This, however, turns 

out not to be needed for the algorithm discussed here, so that we can fix $ at a constant 

value, which, for proof-technical reasons, we choose to be 6; this avoids the exdusion of 

small multiplicities. A more significant trade-off concerns the parameter r. Increasing r 

extends the range of multiplicities that can be estimated, but obviously also increases 

the amount of space needed for the GCS. In order to estimate the size of a large color 

dass, we therefore have to allocate a large amount of space for its GCS; on the other 

hand, we plan to get by with O(n) space altogether, which prevents us from allocating 

so much space to every color dass, independently of its size. In asense, therefore, we 

need an estimate of a multiplicity before we can use a GCS to estimate it, a seemingly 

hopeless situation. What makes our day is the exponential difference between the space 

needed by a GCS with parameters r X 6, which is O( r), and the upper limit of the range 
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of multiplicities that it can estimate, which is roughly 2r
, together with the fact that a 

color dass whose size is too large to be estimated at least bears witness to this fact by 

filling every row of its GCS. 

We begin by carrying out a GCS with parameters Tl X 6 for each of the n colors, 

where Tl is a constant . . This gives us an estimate of the size of each color dass that does 

not fill every row of its GCS. No estimate is obtained for the remaining color dasses, but 

most of these can be assumed to be of size at least T2 ~ 2r1
• We therefore subsequently 

carry out a GCS with parameters T2 X 6 for each "unresolved" color, without violating 

the 0 (n) space bound. This allows us to estimatemultiplicities up to Ta ~ 2r2
, and we 

continue in the same manner. The resulting profiling algorithm works in O(log*n) stages. 

A rather intricate analysis is needed to show that the output of the algorithm is indeed a 

coarse-profile. Note also that we have carefully matched the definition of a coarse-profile 

to what the algorithm actually produces. 

We now provide a more formal description of the algorithm and begin by defining an 

integer sequence VI, ... ,VT. Briefly let /(z) = z-4Iogz, for all z > O. Then /(2) < 0, 

/(16) = 0, /(z) -+ 00 for z -+ 00, and f' has only one zero. It follows that z ~ 4logz for 

all z ~ 16. In particular, since flog z 1 < 4 log z for z ~ 2, the relation 0 S flog z 1 < z can 

be seen to hold for all zEIN. Now consider the algorithm 

z := r n l
/

2°1 j 
repeat 

write(z)j 

z:= flogzl; 

until z = 0; 

The last relation derived above dearly implies that the output of the algorithm is a finite 

sequence VT, .. • , VI (note the reverse indexing) with 1 = VI < V2 < '" < VT ~ r nl /20 l 
Since flog[logzll S log(2Iogz) + 1 = log(4Iogz) S logz for z ~ 16, where the last 

relation was derived above, we certainly have T S 2log*n + 16 = O(log*n). The lemma 

below lists some basic properties of the sequence VI, ... , VT. 

Lemma 8.4: 

(a) For t = 1, ... , T - 1, Vt+1 S 2t1
, < 2Vt+lj 

(b) For t = 5, . .. ,T -1, Vt+1 ~ (2Vt)2j 

(c) For t = 1, ... , T , Vt ~ 2 t - 2 . 

Proof: 

( a) log Vt+1 S flog Vt+11 = Vt < log Vt+ I + 1 and herice Vt+1 S 2t1
, < 2Vt+1' 

(b) We noted above that 2z ~ z4 for all z ~ 16. Hence if Vt ~ 16 for some t S T - 1, 

then Vt+1 ~ t . 2t1
, ~ t . (Vt)4 ~ ( 2Vt)2 ~ 16. Repeated use ofpart (a) shows that V2 ~ 2, 
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113 ~ 3, V4 ~ 5 and Vs ~ 17. By induction, the relation VtH ~ (2Vt)2 therefore holds for 

t = 5, ... , T - 1. 

(c) The claim can be seen to hold for t ~ 5 . . For t :2: 6 it follows from part (b) by 

induction. • 

Theorem 8.2 allows us to obtain accurate estimates for all color classes of size n 1
/

8 

or more, whose elements can subsequently be replaced by "dummy elements" of value 0 

(see the discussion preceding the definition of a fine-profile in Section 5). We can 

therefore assume without 1055 of generality that bi ~ n 1 / 8 , for i = 1, ... , n. Under this 

assumption, the algorithm first computes the sequence V1,"" VT, which can clearly be 

done in O(log*n) time (it can actually be done in constant time), and then executes the 

following steps, where K = 144. 

(1) for i E {1, .. . ,n} pardo let Bi be active; 

(2) for t := 1 to T do (* Stage t *) 

(3) for each active color class Bi pardo 

(4) begin 

(5) Allocate a 5Vt X 6 array and 30Vt processors to Bi; 

(6) Let the elements of Bi carry out a GCS Si 

(7) with parameters 5Vt x 6; 

(8) li := the 1-row of Si; 

(9) if li < 5Vt (* not entirely full *) then 

(10) begin 

(11) Make Bi inactive; 

(12) bi := min{K· 21., ln1/ 8J}; 

(13) end; 

(14) end; 

For t = 1, ... , T, let Stage t be the tth execution of lines (3)-(14). For i = 1, ... , n, if a 

value is assigned to bi in line (12) in Stage t, for some t E {1, ... , T}, we shall say that 

bi becomes defined in Stage t. Observe that the value assigned to bi is the minimum 

of what might, in the light of Lemma 3.3, be regarded as a reasonable estimate of bi 

(namely K .21;), and a value no smaller than bi (namely l n1 / 8 J). Forming the minimum 

with ln1/ 8J clearly does not make any estimate less accurate; it is necessary to prevent 

an occasional violation of the linear-sum condition (the condition can still be violated, 

but the probability of this event is negligible). 

Each allocation of processors and space in line (5) can be done in O(log*n) time 

using the algorithms of Theorems 7.1 and 7.2. Provided that the allocated resources stay 

within the limits imposed by Lemma 8.3, it is not difficult to see that the whole algorithm 
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can be executed within the time, processor and space bounds stated in Lemma 8.3 (use 

Lemma 3.4(a». The lemmas below show that the resources allocated are not excessive 

and that the sequence b1 , ••• , bn is indeed a coarse-profile with the required probability. 

Lemma 8.5: For i = 1, ... , n, with high probability bi becomes defined in some stage. 

Proof: Fix i E {1, ... , n}. If bi does not become defined in any stage, Li = 5VT in Stage T. 

By Lemma 3.3(a), the prob ability ofthis is at most (2- SVT en/6)6, Le., negligible .• 

In order to avoid undefined symbols in what follows, we will assume that bi = 0 in 

the unlikely event that bi does not become defined in any stage, for i = 1, ... , n. The 

algorithm could easily be modified to obey this convention, but this would serve little 

purpose. 

A tardy color dass Bi, defined below, intuitively is one that "should" have been 

deactivated in an earlier stage. Since the size of a color dass may be highly overestimated 

if the color dass becomes tardy, we must show this to be an unlikely event. 

Definition: For i = 1, ... , n and t = 1, ... , T, call the color dass Bi tardy in Stage t if it 

is still active at the beginning of Stage t and bi < vi. 

Lemma 8.6: For i = 1, ... , n and t = 2, ... , T, Pr(Bi is tardy in Stage t) ::::; vt 6
• 

Proof: If Bi is tardy in Stage t, then Li = 5Vt-l in Stage t - 1. By Lemmas 3.3(a) 

and 8.4(a), the probability ofthis is at most 

(
2-SVf-lev4)6 (-S 4)6 _ -6 • ____ t < v V t - V t . 

6 - t 

Lemma 8.7: With high prob ability, the algorithm uses O(n) processors and O(n) space. 

Proof: We need O(n) space for storing the input elements and color dasses and their 

attributes and O(n) processors standing by the input elements and color dasses. The 

. remaining resources used are those explicitly allocated in line (5) in the algorithm. Since 

the number of processors allocated equals the number of memory cells allocated, it 

suffices to bound the latter. Furthermore, by a martingale argument, it suffices to show 

that the expected amount of space allocated to Bi in Stage t is O(bi + 1), for arbitrary 

fixed i E {1, ... ,n} and tE {1, ... ,T} (recall that Vt::::; rn1/2°1). But if anarray is 

allocated to Bi in Stage t (i.e., if Bi is active at the beginning of Stage t), it is of size 

30vt, which is 0(1) if t = 1, and O(bi ) if Bi is not tardy in Stage t. By Lemma 8.6, 

finally, Bi is tardy in Stage t with prob ability at most vt 6 if t ~ 2, so that this case adds 

only 0(1) to the overall expected size. • 
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What remains is to demonstrate that the output of the algorithm satisfies conditions 

(A) and (B) in the definition of a coarse-profile. To this end we must show that b1 , •.. , bn 

are not too large (Lemmas 8.8 and 8.9), and that they are not too small (Lemma 8.10). 

Lemma 8.8: For all i E {1, ... , n} with bi > 0 and for all a 2: 1, Pr(bi > abd ::; (K j a)6. 

Proof: It suffices to show for all t E {1, ... , T} with Pr(Dt ) > 0, where Dt denotes the 

event that bi becomes defined in Stage t, that Pr(bi > abi I Dt ) ::; (K j a)6. To this end let 

D?t be the event that Bi is active at the beginning of Stage t, take D>t = D?t \Dt and 

denote by H the subevent of D?t in which K . 21
, > abi in Stage t. We are interested in 

the quantity Pr(H I D t ). The central fact to note is that either H = 0, in which case 

there is nothing to show, or else D>t ~ H. In the latter case 

and since we can clearly assume that abi 2: K 2: 6, Lemma 3.3(b) directly implies that 

the right-hand probability is at most (2eKj(6a))6 ::; (Kja)6 .• 

Lemma 8.9: With high prob ability, L:~=1 bi = O(n). 

Proof: Fix i E {l, ... ,n}. Since bi::; n1 / 8 for all i E {l, ... ,n}, by a martingale 

argument it suflices to show that E(bi) = O(bi + 1). If bi = 0, it is easy to see that bi = K 

(since all rows of any GCS of Bi are empty). Otherwise use Lemma 8.8 to find that 

· 00 

E(bi ) = L j Pr(bi = j) 
j=1 

Kb, 00 

= LjPr(bi = j) + L jPr(bi = j) 
j=1 j=Kb,+1 

00 

< Kb· + ~ 21+1 Kb·· Pr(2 l Kb o < b o < 21+1 Kb o
) _ t L...J t t t_ t 

1=0 
00 

::; Kbi + L 21+1 Kbi . 2-61 = O(bd· • 
1=0 

In Lemma 8.10 below, the condition abi> 0 ensures precisely that bi becomes defined 

in some stage. By Lemma 8.5, the difference between Pr(bi > abi) and Pr(bi > abi> 0) 

is negligible, so that it suflices to bound the latter. 

Lemma 8.10: For i = 1, .. . ,n and for all a 2: 1, Pr(bi > abi> 0)::; 2-a . 

Proof: Fix i E {l, ... ,n} and for t = 1, ... ,T, denote by D t the event that bi becomes 

defined in Stage t. Without loss of generality assume that bi > O. We show that 
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~;=1 Pr( bi > abi and Dt ) ::; 2-<1. The analysis proceeds stage by stage and is divided 

into three cases depending on whether bi is "too large", "of suitable size" or "too small" 

for being estimated in the stage under consideration. We show that the probability that 

~ becomes defined at all in a stage in which bi is either "too large" or "too small" is 

negligible, and that the prob ability that it receives a far too small value in a stage in 

which bi is "of suitable size" is sufficiently small per stage to sum to a negligible quantity 

over the relatively few stages of this kind. Let t2 = min{t : 1 ::; t ::; T and 2 911, > bi } 

(note that the mjnjmum is not formed over an empty set), t1 = max.{l, t2 - r al - 1}, 

t3 = min{T,t2 + ral + 5}, 11 = {t EIN: 1 ::; t < tt}, 12 = {t EIN: t1 ::; t ::; t3} and 

13 = {t EIN: t3 < t ::; T} and note that 11 U 12 U 13 = {1, ... , T}. 

Gase 1 ("bi is too large"): Assume that 11 =I 0 and hence that t1 = t2 - r al - l. 

Lemma 3.3(d) implies that for t = 1, ... , T, 

Pr(D
t
) ::; 6.21 -&;/(12.259

,) < 12. 2-&,·2- h
, - . 

Hence by Lemma 3.2, ~tE11 Pr( D t ) ::; 24 . 2-&' ,2-
99

'1. But by the choice of t2, we have 

that bi . 2'-911'2- 1 ~ 1 and therefore 

b·.2-9v'1 > b·. 2-9(v'2- 1-r<11) > 29 <1 > 9a. , - , --

Thus ~tEIl Pr(Dt ) :S 24.2-9<1 ::; 2-4<1. 

Gase 2 ("bi is of suitable size"): By Lemma 3.3(c), 

Pr(bi > a~ and D t )::; 6·21- K <1/12 = 12·2-12<1::; 2-8<1, 

for t = 1, ... , T, and hence 

L I>r(bi > abi and Dt ) ::; 1121 .2-8 <1 ::; (2 ra 1 + 7) .2-8 <1 ::; Ha· 2-8 <1 ::; 2-3 <1. 
tElz 

Gase 3 ("bi is too small"): Assume that 13 =I 0 and hence that t3 = t2 + ra 1 + 5. By 

Lemma 8.4 and since t2 ~ 1, bi ::; 2911
'2 :::; (2Vt2+d9 < (2Vt2+4)9 :::; V:

2
+6 ::; V:2+6 :::; vt" i.e., 

Bi is tardy in Stage t for all t E 13 • Hence by Lemma 8.6, ~tE13 Pr(Dt ) ::; ~tEI, v;6 ::; 

2· v~6. By Lemma 8.4(c), Vt3 ~ 2 t3 - 2 ~ 2<1+4 and therefore ~tEI3 Pr(Dt )::; 2-6<1. 

The contributions of Cases 1-3 add up to at most 2-4 <1 + 2-3 <1 + 2-6 <1 :::; 2-2<1 ::; 2-<1. 

This ends the proofs of Lemmas 8.10 and 8.3. • 

We now describe a simple procedure called scattering in time that will be used on 

five separate occasions. Since in each case we shall need different properties of the 

procedure, we believe that it serves little purpose to list at this point all the properties 

of the procedure that we shall ever need. After describing the procedure, we therefore 
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analyze it only with respect to its resource requirements; later we will refer back to 

the procedure and derive whatever properties are of interest. In four of the five cases, 

scattering in time is used as a "profile enhancer", Le., informally, it inputs a profile 

b1 , .•• ,bn and pro duces a "better" profile b1 , ••• , bn . In the fourth case we input a very 

good profile and use it to semisort. 

Scattering in time takes as input n input elements Xl, ... , X n (the primary input) 

with values in the . range 0 .. n (input elements with a value of 0 are dummy elements 

signifying "no element") and n nonnegative integers b1 , ••. ,bn (the profile input) with 

L:7:1 bi = O(n), as weil as an integer T (the phase count) with 1 ~ T ~..Jii. As usual, 

let Bi be the set of input elements of value i, for i = 1, ... , n. We begin by using the 

algorithm of Theorem 7.1 to allocate an array Ai of size bi to Bi, for i = 1, ... , n, each 

ceil of which contains a counter, initialized to zero, and a list header, initially denoting 

an empty list. For i = 1, ... , n, every element of Bi now chooses a random integer, called 

its list number, from the set {1, ... , bi }, and another random integer, called its phase 

number, from the set {1, ... , T}. By Chernoff bound (a), with high prob ability the set YI 

of elements with phase number I is of size O(n/T), for I = 1, ... , T. Using the algorithm 

of Theorem 6.2 if T ~ log n and that of Lemma 2.9 if T > log n, we can therefore store 

the elements of YI in an array Qz of size O(n/T), for 1 = 1, ... , T. 

The arrays Q 1 , ... , Q -r are next processed one by one. To pro cess an array Q I 

means to associate a processor with each cell in Qz, and then to process all ceils in Qz 

simultaneously and in constant time. If a ceil of Qz is empty or contains a dummy 

element, the processor in charge of that ceil does nothing. Otherwise, suppose that the 

element X stored in the ceil belongs to Bi and chose i as its list number. The processor 

then attempts to increment the counter stored in Ai[i] by 1. If this falls, Le., if some 

other processor attempts to increment the same counter in the same time step, X is said 

to collide. Otherwise X is noncolliding, and the processor in charge of X proceeds to 

insert X in the list whose header is stored in Ai[i]. An important fact to note is that an 

element X of Bi collides exactly if some other element of Bi chooses both the same list 

number and the same phase number as X, for i = 1, ... , n, i.e., the scattering in time of 

Bi can be analyzed as a l-scattering of Bi over an array of Tbi cells; the advantage of 

scattering in time is that it uses less space and (therefore) fewer operations. 

Once a first pass as described above has been completed, we shall sometimes carry 

out a second pass exactly like the first pass, except that the only elements taking part 

in the computation are those that collided in the first pass. In either case, we say that 

an element is successful if and only if there is some pass in which it does not collide. It 

is easy to see that one-pass or two-pass scattering in time can be carried out with high 

prob ability using O(T) time, rn/Tl processors and O(n) space. After the scattering in 

time, the set X' of successful elements as weil as all counters and lists are available for 
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further processing. In particular, note that for all i E {l, ... , n} such that bi = T O( 1), we 

can compute IBi n X'I exactly in O(T) time using operation allocation, as described in 

Section 7. It suffices to observe that ifbi = TO(l), Lemma 2.4 can be used to compute 

the sum of the counters stored in Ai, either in O(bi ) time with one processor, or in O(T) 

time with rbi/Tl processors. Since L~=l bi = O(n), the resource requirements remain as 

stated above. 

Our first application of scattering in time is to the computation of a profile with 

the somewhat unnatural properties listed in Lemma 8.11 below. Once Lemma 8.11 has 

been established, a second application of scattering in time will allow us to obtain a 

coarse-profiling algorithm with optimal speedup. The proof of Lemma 8.11 is rather 

technical, but the main ideas behind it are as follows: We already have an n-processor 

coarse-profiling algorithm (Lemma 8.3). In the context of an algorithm with optimal 

speedup and a running time of e(T), we can allow ourselves to apply this nonoptimal 

algorithm to a random sampie of the input set of size e(n/T). It turns out that this 

yields suitable estimates of multiplicities somewhat larger than T, say, at least T 3 / 2 . On 

the other hand, very small color classes are likely not to .be represented in the sampie at 

all, 50 that their sizes must be estimated in a different way. We here use the scattering 

in time described above, which enables us to estimate multiplicities up to roughly T. 

Finally, in order to bridge the gap between T and T
3

/
2

, we use another scattering in time, 

but this time applied to a random sampie of the input set of size e( n/ JT). The complete 

algorithm hence consists of three essentially independent subalgorithms, each of which 

"caters to" a different range of multiplicities. 

Lemma 8.11: There is a constant € > 0 such that for all given n, TEIN with 

T ~ (10g*n)2, the following problem can be solved on a TOLERANT PRAM using O(T) 

time, rn/Tl processors and O(n) space with prob ability at least 1 - 2-
nf (Monte Carlo): 

Given n integers Zl, ... , Zn in the range 0 .. n, compute independent nonnegative integer 
~ ~ . 

random variables b1 , ••• , bn such that 

(A) L~=l bi = O(n); 
(B) For i = 1, ... , n and for all a ~ 1, Pr(bi > abi) S 2-b;/(8'T) + 2-2a ; 

(C) For i = 1, ... , n, Pr(bi > JTbi ) S 2-.fi, 

where bi = I{j: 1 S j S n and Zj = i}l, for i = l, ... ,n. 

Proof: Without 1055 of generality, we can assume that 2 S T S n 1 / 2 , since otherwise the 

problem is easily solved using the algorithm of Lemma 2.9. Let K = 28 and carry out the 

following algorithm: 

Step 1: Apply one-pass scattering in time with phase count T to the primary input 

Xl, .. . , X n and the (trivial) profile input 8K, ... , 8K and let X' be the resulting set of 

noncolliding elements. For i = 1, ... , n, take ~1) = 41Bi n X'I (since 8K = T°(1), we 
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argued above that this quantity is readily available). 

Step 2: Draw a random sampie Y ~ X by including each input element in Y 
independently of other elements ~d with prob ability 1/ f JTl. Repeat Step 1, but this 

time include only elements of Y in the primary input (Le., replace each element not in Y 
by a dummy element with a value of 0), and let Y' be the resulting set of noncolliding 

elements. For i = 1, ... , n, take ~2) = 8 f JTlIBi n Y'I. 

Step 3: Draw a random sampie Z ~ X by including each input element in Z 

independently of other elements and with probability l/T. By Chemoff bound (a), we 

can assume that IZI = O(n/T). Use the algorithms of Lemma 8.1 and Theorem 4.6 
to store Z in an array ofsize O(n/T) and to replace the values of the elements in Z 

by values in a range of size O(n/T). Then apply the algorithm of Lemma 8.3 to Z to 
. ~z ~z ~z . . 

obtam a profile b1 , ... , bn (take bi = 0 for each t E {I, ... , n} wlth Bi n Z = 0). For 
. - 1 1}3) - ~bz t - 1, ... ,n, et i - 4T i . 

S F · h final' f b ~b {1}1) 1}2) 1}3) K} tep 4: or t = 1, ... , n, compute t e eshmate 0 i as i = max i , i , i' . 

For i = 1, ... , n, let bf = IBi n YI and bf = IBi n ZI. We can assume that bf, ... ,b~ is 

indeed a coarse-profile for (the sequence of values of elements in) Z. It is easy to see that 

with high prob ability, the resource requirements of the algorithm are as stated in the 

lemma. The correctness of the algorithm is demonstrated in the lemmas below, each of 

which shows one of the properties (A)-(C). 

Lemma 8.12: With high prob ability, L::1 bi = O(n). 

Proof: L:7=1 ~l) = 4 L::IIBi n X'I ~ 4 L::l bi = 4n. In the same way, L::l ~2) ~ 
8fJTlIYI, and IYI = O(n/y'T) with high prob ability by Chemoffbound (a). Finally, by 

the linear-sum condition, L::l ~3) = 4T L::l bf = O(TIZI) = O(n). • 

Lemma 8.13: For i = 1, ... , n and for all a 2: 1, Pr(b i > abi) ~ 2-b./(8'T) + 2-2
<1. 

Proof: Clearly, bf is binomially distributed with expected value bi/T. Hence by 

Chemoff bound (b), Pr(bf < bi/(2T)) ~ 2-bi/(8'T). Furthermore, by property (B) of a 

coarse-profile, Pr(bf > 2abf) ~ 2-2
<1. But bf 2: bi/(2T) and bf ~ 2abf together imply 

bi ~ 2Tbf ~ 4aTbf = a~3). Hence Pr(bi > abi) ~ Pr(bi > a~3)) ~ 2-b./(8'T) + 2-2
<1. • 

Lemma 8.14: For i = 1, ... , n, Pr(bi > ßi) ~ 2-';;:. 

Proof: Without loss of generality assume that bi > K y'T. By the definition of bi , if 

bi > ßi' then bi > y':fiJ/) , for 1 = 1,2,3, so that for each i E {I, ... , n} we can show the 

event bi > ßi to be unlikely in any of three ways. Correspondingly, we consider three 

cases. If T < 4, Case 2 disappears, and Cases 1 and 3 overlap; the argument remains 

valid, however. 
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Gase 1: bi:S 2K T. If bi > JT~l), then IBi n X'I = ~1) /4 :s bi/( 4JT) :s bi /2, which 

implies that at least bi /2 elements of Bi collide in Step 1. But since bi :s 2K T, the 

density of the scattering in time of Bi is bi/(SKT) :s 1/4; hence, by Lemma 3.6(b), 

the probability that at least bi/2 elements of Bi collide is bounded by e-(, where 

( = (bi /2)2/(32bi · 1) = ~i/27 2': K JT /27 = 2.JF, from which the claim follows. Note that 

we actually showed the stronger relation Pr(bi 2': 4JTIBi n X'I) :s 2-2'I!'T, which will be 

used in Case 2 below. 

Gase2: 2KT < bi:S KT3 / 2. Ifbi > JT~2), then IBinY'1 = ~2) /(SfJTl):S bi/(y'T·SfJTl), 

which happens only if either bf :s bi/(2 f JTl) (the sampie is small) or IBinY'1 :s bf /( 4y'T) 

(many elements collide). Since bf is binomially distributed with expected value bi/ f JTl, 

Chernoff bound (b) implies that Pr( bf :s bi/ (2 f JTl)) :s e-b;/(S h/T"J). On the other 

hand, we know from Case 1 that Pr(bf 2': 4JTIBi n Y'I I bf :s 2KT) :s 2-2'I!'T, and 

by Chemoff bound (a), Pr(q > 2KT) :s Pr(bf > 2bi /fJTl) :s e- b;/(3h/T'l). Using 

that bi/fJTl 2': (2KT)/(2JT) = KJT, we finally obtain that Pr(bi > JT~2») < 
e-b./(Srv'Tl) + 2-2'I!'T + e-bi /(3rv'Tl) < 2-K 'I!'T/s + 2-2";;: + 2-K ";;:/3 < 2-";;:. - -

Gase 3: bi > K T3 / 2. By Lemma S.13, Pr(bi > JTbi ) :s 2-bi /(ST) + 2-2";;: < 
2-K ";;: /S + 2-2";;: :s 2-";;:. • 

Theorem S.15: There is a constant E > 0 such that for all given n, TEIN with 

T 2': (log*n)2, n-color coarse-profiling problems of size n can be solved on a TOLERANT 

PRAM using O(T) time, fn/Tl processors and O(n) space with prob ability at least 

1 - 2-nE (Monte Carlo). 

Proof: Assume without loss of generality that T :s n 1/ 4 and that bi :s n1 / S , for 

i = 1, ... , n. Begin by computing a profile b1 , •• • , bn for Zl, . . . , Zn with the properties 

described in Lemma S.l1. Then apply two-pass scattering in time with phase count T to 

the primary input X 1 , •.• ,Xn and the profile input b1 , • •• ,bn . For i = 1, ... ,n, call Bi 

well-estimated if bi :s JTbi, and call each element of Bi good if Bi is well-estimated, and 

bad otherwise. By property (C) of Lemma S.l1, the expected number of bad elements 

in B is at most n· 2-";;:, and a martingale argument shows the actual number of bad 

elements to be O(n/T + n3 / 4 ) = O(n/T) with high probability. It is easy to see that the 

probability that a good element collides in one pass of a scattering in time is at most 

1/ JT. Since we actually e.xecute two passes, the prob ability that a good element is 

unsuccessful is at most I/T, so a martingale argument shows that the number of (good 

or bad) unsuccessful elements is O(n/T) with high prob ability. Let X' be the set of 

successful elements. 

Consider the situation after the scattering in tiine. For i = 1, ... , n, call Bi resolved 

if every element of Bi was successful in the scattering in time, and bi :s 16T. The total 

number of unsuccessful elements being O(n/T), we can use inverted guarded writing as 
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in the proof of Lemma 8.1 to determine the set of resolved color classes. The important 

observation is that if Bi is resolved, then we can compute bi exactly as IBi n X'I, for 

i = 1, ... , n. Hence for i = 1, ... , n, do the following: If Bi is resolved, replace (the 

estimate) bi by (the exact value) bi; otherwise replace bi by max{bi , 16T}. Since all except 

O(n/T) color classes are resolved, these changes preserve the linear-sum condition. 

We must finally show that Pr(bi > abi) ~ 2-a , for i = 1, ... , n and for all a ~ l. 
Since this is obvious if Bi is resolved, let us assume that this is not the case. But then 

bi ~ 16T, so we can assume without loss of generality that bi > 16Ta. Now by property 

(B) of Lemma 8.11, Pr(bi > abd ~ 2-b;/(s-r) + 2-2a ::; 2-2a + 2-2a ~ 2-a • • 

9 Semisorting 

We first define the semisorting problem precisely and then outline the rest of the 

section. 

Informally, the m-color semisorting problem inputsn elements with values in the 

range O .. m (elements with a value of 0 being dummy elements) and place~ these in an 

output array of size O(n) such that all elements with a given , color (Le., nonzero value) 

occur together, separated only by empty cells. As usual, we model the input as n integers 

Zl, ... , Zn in the range 0 .. m and the output as n nonnegative integers Yl, ... , Yn, where 

Yj should be thought of as the position in theoutput array of the jth input element, for 

j = 1, ... , n. Condition (1) below means that distinct (real) elements are not placed in 

the same output cell, condition (2) says that no element of a different color intervenes 

between two elements of the same color in the output array, and condition (3) requires 

the output array to be of size 0 ( n ). 

Definition: For all n, mEIN, the m-color semisorting problem of size n is the following: 

Given n integers Zl, ... , Zn in the range 0 .. m, compute n nonnegative integers Yl, ... , Yn 

such that 

(1) For 1 ::; i < j ::; n, if Zi # 0, then Yi # Yj; 

(2) For all i, j, k E {1, ... , n}, if Yi < Yj < Yle and Zi = zle, then Zj = Zi; 

(3) max{yj : 1 ~ j ::; n} = O(n). 

The m-color strong semisorting problem is identical, except for the additional 

requirement (4) below, where bi = I{j : 1 ~ j ::; n and Zj = i}l, for i = 1, ... , m. 

(4) For all j,k E {1, .. . ,n}, if Zj = Zle = i # 0, then IYj - Ylel = O(bi ). 

It is perhaps instructive to compare the definition of semisorting with that of 

complete linear colored compaction given in Section 6. Informally, complete linear 

colored compaction requires upper bounds dl , ... , dm on the sizes of the color classes to 
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be specified as part of the input, and the input elements are placed in arrays Al, ... , Am 

of sizes O( dl ), ... , O( dm ), respectively, each of which is indexed starting at 1. In order to 

use an algorithm for complete linear colored compaction to semisort, one could therefore 

first compute estimates bl , ... ,bm with bi ~ bi , for i = 1, ... , m, but L~l bi = 0 (n), 
then use the given compaction subroutine with limits bl , ... , bm , and finally place the 

arrays Al, ... ,Am together in a base array of size 0 (n). 

The present section culminates in a proof that n-color semisorting problems of 

size n can be solved in O(log*n) time with optimal speedup (with high probability). 

As mentioned in the introduction, this leads to an algorithm with optimal speedup for 

computing n-color fine-profiles in O(log*n) time (Corollary 10.5). On the other hand, 

our path to optimal semisorting takes us via no fewer than four auxiliary profilers (Le., 

algorithms that compute profiles) of different types, all of which are finally subsumed by 

the n-color fine-profiler. 

We now give the plan of this section in more detail. In this overview only, we will 

use the terms "Type-1"-"Type-4" to refer to the auxiliary profilers mentioned above. 

We characterize these profilers using our standard terminology: The input consists of 

n integers Zl, ... , Zn in the range 0 .. n, we take bi = lü : 1 ::::; j ::::; n and Zj = i}I, 
for i = 1, ... , n, and the output of a profiler is a sequence bl , ... ,bn of n nonnegative 

integers. We always require the linear-sum condition L~=l bi = O(n) to be satisfied, for 

which reason we do not repeat this condition below. 

A Type-1 profile should ideally have the properties of a coarse-profile. In order to 

be able to compute a Type-1 profile in O(log*n) time, however, we are forced to allowa 

certain limited dependence between b}, ... , bn . We begin by showing (Lemma 9.1) that 

the proof of Lemma 8.3 can be modified to yield an algorithm for computing Type-1 

profiles in O(log*n) time with n processors. We then describe an algorithm that, guided 

bya Type-1 profile, can semisort in O(log*n) time (Lemma 9.7); this algorithm, however, 

uses n processors and hence is not optimal. As a corollary, we obtain a nonoptimal 

Type-2 profiler, whose output bl , ... , bn overestimates all multiplicities, in the sense that 

bi ~ bi , for i = l, ... ,n (Corollary 9.18) . Scattering in time allows us to derive from 

this nonoptimal Type-2 profiler an optimal Type-3 profiler, whose output bl , ... , bn is 

such that only 0 (n /log* n) elements belong to (badly estimated) color classes Bi with 

bi > vlog*n . bi (Lemma 9.19). By means of another scattering in time that uses both a 

nonoptimal Type-2 profiler and an optimal Type-3 profiler as subroutines, we are then 
- -able to derive an optimal Type-4 profiler, whose output bl , ... , bn is such that only 

O(n/log*n) elements belong to color classes Bi with bi > bi (Lemma 9.20). Scattering in 

time using this last result as weil as the nonoptimal ~emisorting algorithm finally yields 

an optimal semisorting algorithm (Theorem 9.21). 

As mentioned above, our first goal is to demonstrate that a profile similar to a 
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coarse-profile can be computed in 0 (log* n) time. Recall that the a.lgorithm of Lemma 8.3 

works in O(log*n) stages, each of which carries out a number of simultaneous graduated 

conditiona.l scatterings after allocating the necessary resources. The bottleneck in the 

a.lgorithm clearly is the resource" allocation (line (5)): Whereas the remaining parts of a 

stage run in constant time, the application of the a.lgorithms of Theorems 7.1 and 7.2 

uses 0(log*n) time in every stage, totalling 0«log*n)2) time overall. 

The idea for reducing the running time to O(log*n) is to replace the 0(log*n)-time 

complete allocation by the constant-time incomplete allocation of Lemma 7.3. As a result 

of this change, a color class Bi may, in a particular stage, lack the resources needed to 

carry out a GCS and possibly obtain an estimate bij in this case the elements of Bi do 

nothing, and Bi remains active, just as if it had filled all rows of its GCS. We must show 

that even with this additiona.l source of uncertainty, the a.lgorithm pro duces the desired 

output without exceeding its resource boundsj note that the resource requirements tend 

to go up, because a color class that remains active longer demands (significantly) more 

resources. 

In stating condition (B) of the lemma below, which corresponds to condition (B) 

in the definition of a coarse-profile, we use the convenient shorthand :Ebo>abo to denote 

summation over the set of indices of those color classes Bi with b, > abi. S'imiiar notation 

will be employed later without comment. 

Lemma 9.1: There is a constant € > 0 such that for all given nEIN, the following 

problem can be solved on a TOLERANT PRAM using O(log*n) time, n processors and 

O( n) space with probability at least 1 - 2-nE (Monte Carlo) : Given n integers Zl, ... ,Zn 

in the range 0 .. n, compute nonnegative integers b1 , •.. ,bn such that 

(A) :E:l bi = O(n)j 

(B) for all a ~ 1, :Eb,>ab,(bi + bi ) = O(n/2a +n3
/
4

), 

where bi == I {j : 1 :s; j :s; n and Z j = i} I, for i = 1, ... , n. 

Proof: As in the proof of Lemma 8.3, we can assume that bi :s; n 1/ 8 , for i = 1, ... , n. 

We now use the a.lgorithm of Lemma 8.3, except that we replace the complete allocation 

of processors and space in line (5) by (5vt)-allocation according to Lemma 7.3. The 

resulting a.lgorithm clearly works in O(log*n) time. Borrowing the definition of a tardy 

color class from the proof of Lemma 8.3 and again taking bi = 0 if bi does not become 

defined in any stage, for i = 1, .. . , n, we establish Lemma 9.1 in Lemmas 9.2-9.6 below, 

which essentially parallel Lemmas 8.5-8.10. 

Lemma 9.2: For i = 1, ... , n, with high probability bi becomes defined in some stage. 

Proof: Fix i E {1, . . . , n}. If bi does not become defined in any stage, either li = 5VT in 

Stage T, or Bi is unlucky (i.e., it does receive any processors a.nd space in the incomplete 
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allocation in line (5» in Stage T. By the proof of Lemma 8.5, the former happens with 

negligible prob ability, while, by Lemma 7.3(a), the latter happens with probability at 

most 2-StlT , which is also negligible. • 

Lemma 9.3: For t ::: 1, ... , T, with high probability the number of color classes that are 

tardy in Stage t is O(n/v;). 

Proof: The claim is obvious for t ::: 1 since VI ::: 0(1), so fix t E {2, ... , T} and recall that 

for i ::: 1, ... , n, Bi is tardy in Stage t exactly if it is still active at the beginning of Stage t 

and bi < vt. This can happen only if either 1i ::: 5Vt-1 in Stage t - 1, or Bi is unlucky in 

Stage t - 1. By the proof of Lemma 8.6, the former happens with probability at most 

v;6; a martingale argument hence shows that the number of color classes falling into 

this category is at most O(n/v~ + n3/4 ) ::: O(n/v;). On the other hand, Lemma 7.3(b) 

implies that at most n/2Stli
- 1 ::: O(n/v;) color classes are unlucky in Stage t - 1, except 

with prob ability 2e-', where ( ::: (n/25tJi - 1 )2 /(29 . n· (5vt_d3) = n(n/vt3) = n(nl
/

4
). 

The claim foilows. • 

Lemma 9.4: With high prob ability, the algorithm uses O( n) processors and O( n) space. 

Proof: Fix tE {1, ... , T}. The foilowing happens with high probability: By the previous 

lemma, the number of tardy color classes in Stage t is O(n/v;). On the other hand, a 

color class that is a.ctive but not tardy in Stage t by definition is of size at least vt, so 

that there are at most n/vt such color classes. Consequently, the total number of color 

classes active at the beginning of Stage t is O(n/vt), which implies that the total number 

of processors and memory ceils allocated in Stage t is O(n/v~) . We may therefore 

conclude from Lemma 7.3 that each stage can be executed in constant time using O(n) 

processors and O( n) space. • 

What remains is to show that the algorithm satisfies conditions (A) and (B) 

of Lemma 9.1. An attempt to carry out the proof in complete analogy with the 

proofs of Lemmas 8.8-8.10 is thwarted by the fact that the incomplete allocation 

of resources intro duces complex dependencies between color classes (which, formerly, 

were independent), so that the simple-minded applications of martingale arguments in 

the earlier proofs cannot be justified in the present setting. In order to cope with 

this situation, we have to identify and analyze random experiments that are truly 

independent. We could choose to focus on the elementary random choices made by 

the processors, Le., the random numbers generated, but the ("long-term") effect of a 

change in one of these quantities is complicated arid diflicult to handle. Fortunately, 

the graduated conditional scatterings carried out within a single stage are independent, 

provided that we fix all random choices made by the algorithm in earlier stages and in 
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the incomplete allocation in the stage under consideration. Put differently, we consider a 

random experiment comprising only the graduated conditional scatterings in Stage t, for 

some t E {1, ... , T}. As noted previously, if we can show that a given property of this 

random experiment holds with prob ability at least p for any fixed setting of the earlier 

random choices, we can conclude that the property holds with prob ability at least p even 

in the actual experiment consisting of the whole execution of the algorithm, where earlier 

random choices in fact are not fixed. When using this principle, we will indicate the 

restricted prob ability space under consideration by stating that the analysis is carried out 

"for any fixed past of the GCS in Stage t". In the following two proofs, let 6i ,t = 1 if bi 

becomes defined in Stage t and 6i,t = ° otherwise, for i = 1, .. . ,n and t = 1, .. . ,T. 

Lemma 9.5: With high prob ability, ~7=1 bi = O(n). 

Proof: Let i E {1, ... , n} and t E {I, ... , T} and assume first that bi > 0. Translated 

to the present setting, the proof of Lemma 8.8 showed that for any fixed past of 

the GCS in Stage t and for all a 2: 1, Pr(bi > abi I 6i ,t = 1) ~ (Kja)6. Since 

the proof of Lemma 8.9 depends only on the integer random variable bi satisfying 

the relation Pr(bi > abd~ (Kja)6, for all a 2: 1, the same proof now yields that 

E(bi I 6i ,t = 1) = O(b i + 1), still for any fixed past of the GCS in Stage t. The same 

obviously holds if bi = 0, since in that case bi = K (provided that bi becomes defined in 

some stage). 

Considering agam the entire execution as the random experiment, we will show 

that with high prob ability, ~7=1 bi . 6i ,t = 00::7:1 (bi + 1) . 6i,t + n3
/

4
), for t = 1, ... , T. 

Surnrning this over all values of t yields ~7:1 bi = 0CE7=1 (bi + 1) + n 3
/

4 1og"'n) = O(n), 

as desired. 

We show the relation L:7=1 bi · 6i ,t = 0(~7=I(bi + 1)· 6i ,t + n3
/ 4 ) by demonstrating 

that it holds with high prob ability for any fixed past of the GCS in Stage t. Given 

such a fixed past, n random variables ZI, ... , Zn will be independent, provided that Zi 

is defined exclusively in terms of the GCS of Bi in Stage t (or of the fact that Bi does 

not carry out any GCS in Stage t), for i = 1, ... , n. For a certam constant C > 0, we 

will use this with Zi = (C(bi + 1) - bi )· 6i ,t, for i = 1, ... , n. Choose C su:ffi.ciently large 

to make E(Zi I 6i ,t = 1) 2: 0, for i = 1, .. . ,n, which is possible by what was shown 

above. Since clearly E(Zi I 6i ,t = 0) = 0, we have E(Zd 2: 0, for i = 1, ... , n. But then 

E(S) 2: n3
/

4
, where S = L:7:1 Zi + n3

/ 4 , and S changes by 0(n1 / 8 ) in response to a 

change in a single Zi. An application of Lemma 2.2(b) therefore shows that with high 

prob ability, S 2: E(S)j2. In particular, with high prob ability S 2: ° or, what is the same, 

L:7:1 bi . 6i ,t ~ C L:7:1 (bi + 1)· 6i ,t + n3
/

4
• • 

Lemma 9.6: For all a 2: 1, with high probability L: b, >ab, (bi + bi ) = 0(nj2a + n3
/

4
). 
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Proof: Since bi < bi w henever bi > abi and since bi > 0 for all i E {I, ... , n} 

with high probability (Lemma 9.2), it suffices to show that with high prob ability, 

2: b.>ab,>O bi = O(n/2
a + n3

/
4

). 

Given an assertion P, let v( P) = 1 if P is true, and v( P) = 0 if P is false. A 

martingale argument shows that for any tE {I, ... , T} and for any fixed past of the GCS 

in Stage t, with high probability 

t b; . • (b; > ab; and ';" = 1) = 0 (t b;· Pr(b; > ab; and ';" = 1) + n'/7) . (5) 

We are interested in the double sum obtained by summing (5) for t = 1, ... , T. At 

this point recall that the proof of Lemma 8.10 showed that 2:;:=1 Pr(bi > a~ and 

Di,t = 1) ::; 2-a for all iE {I, ... ,n} by partitioning the index set {I, ... , T} of the 

summation into three sets 11 , 12 and 13 , corresponding to the three cases "bi is too 

large", "bi is of suitable size" and "bi is too small", respectively (the partition depends 

on i). In the first two cases the earlier analysis of a stage can be seen to hold for any 

fixed past of the GCS in that stage - in fact, the analysis formally was carried out in the 

restricted prob ability space. Sl1mming (5) for t = 1, ... , T, but including only the terms 

with t E 11 U 12 , therefore yields 

t L bi · V(bi > abi and Di,t = 1) = 0 (t bi . 2-a + n S
/

7 10g"n) = O(n/2a + n3
/

4
). 

i=1 tEIl UI2 i=1 

Concerning the third case, "bi is too small", recall that bi > abi and Di,t = 1 for 

some i E {I, ... , n} and t E 13 only if Bi is tardy in Stage t and Vt 2: 2a
. Therefore 

2:7:=1 2:tEI
3 

bi·v(bi > a~ and Di,t = 1) :S 2:vt>2G 2:7=1 bi·v(Bi is tardy in Stage t), where 

the outer summation is over those t E {I, ... ,T} with Vt 2: 2a . For t = 1, ... , T, a color 

class which is tardy in Stage t is of size at most vt, so that Lemma 9.3 implies that 

with high prob ability the total size of the color classes that are tardy in Stage t is 

O(n/vt). But then the above double sum is 2:v >2 G O(n/vt) = O(n/2a). Altogether, 
t_ 

we have shown that with high prob ability, 2: b.>ab,>o bi = 2:7=12:;=1 bi · v(bi > abi and 

Di,t = 1) = O(n/2a + n3 / 4 ). This ends the proofs ofLemmas 9.6 and 9.1. • 

The next major goal is to devise an n-processor semisorting algorithm. The basic 

idea is simply to use techniques similar to those of Section 4 to compact the elements 

of each color class into an array of suitable size. However, this approach meets with 

major complications. Multiplicities must be estimated using the algorithm of Lemma 9.1, 

which means that the estimates obtained are not vety reliable. A:rrays must be allocated 

as described in Section 7, and colors cannot be handled independently, as far as the 

placement in arrays is' concerned, since the faUure prob ability for small color classes 
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cannot be. ignored. Instead it is necessary to monitor the progress of the colors throughout 

the' pröcess, pushing more resources towards colors that are not keeping pace with the 

rest. 

Lemma 9.7: There is a constant e > 0 such that for all given nEIN, n-color semisorting 

problems of size n can be solved on a TOLERANT PRAM using O(log*n) time, n 

processors and O(n) space with prob ability at least 1 - 2-n
l! (Las Vegas). 

Proof: In order to let the basic idea stand out dearly, we first describe and analyze a 

simplified algorithm that ignores a nllmber of complications, and afterwards motivate the 

various bells and whistles that have to be added to the algorithm to actually make it 

work. 

In the following the word "element" will be used exdusively to denote elements of 

color dasses. The simplified algorithm begins by computing a sequence VI, ... , VT similar 

to the one used in the proof of Lemma 8.3 (the exact requirements will be specified 

below), and then executes the following: 

Let all elements be active; 

for t := 1 to T do 

for each color dass Bi pardo 

begin 

Allocate an array Ai,t of size 6bi /vt to Bi; 

Vt-compact the active elements in Bi to Ai,t, 

deactivating every lucky element in Bi; 

end; 

The algorithm hence consists of T stages, each of which attempts to place the elements 

of each color dass in an array of suitable size. The elements that are successfully placed 

in the array become inactive and do not participate in subsequent stages. Conceptually, 

if the algorithm succeeds in deactivating all elements, the elements of each color dass 

Bi afterwards are stored in T arrays Ai,I, . .. , Ai,T. In actual fact, there is no need 

to preserve Ai,t beyond the end of Stage t, for i = 1, ... , n and t = 1, ... , T, and the 

algorithm can redaim the space allocated in each stage for reuse in the following stage. 

Instead, in Stage t, the algorithm remembers the total size L1:i IAi,l1 of the arrays 

allocated to Bi in earlier stages, for i = 1, ... , n and t = 1, .. . , T, and each element of 

Bi deactivated in Stage t adds this offset to its position in Ai,t and stores the resulting 

absolute position. Informally, this has the effect of gluing the array Ai,t onto the right 

end of an array already containing Ai,l, ... ,Ai,t-I. Mter the last stage, it is therefore 

an easy matter to use the algorithm of Theorem 7.1 to allocate a single array Ai of size 

IAi,11 + ... + IAi,TI to Biand to place the elements of Bi in Ai (informally, to move 
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the elements of Bi from Ai,I, ... ,Ai ,T to Ai). Provided that 2:~=IIAil = O(n), this 

pro duces a solution to the semisorting problem. In other words, if all elements are 

deactivated, the correctness of the algorithm will be guaranteed if we can show that 

2:~=1 2:;=1 IAi,tl = O(n). In the idealized algorithmabove, this condition is satisfied, 

since 2:~=1 2:;=1 IAi,tl = 2:;=12:~=1 (6bdvn ~ 2:;=1 (6n/vt) = O(n). 

In order to analyze the rate with which elements are deactivated, fix i E {I, ... , n}, 

let t E {I, ... , T} and assume by way of induction that the number of active elements 

in Bi has decreased to at most bi/V: before Stage t. Then Bi is well-supplied in the 

Vt-compaction in Stage t, i.e. (Lemma 6.1(a)), the prob ability that a fixed element in Bi 

remains active is at most 2-v,. Therefore the expected number of elements in Bi that 

remain active is at most bi . 2-v" which, for a suitable choice of the sequence VI, ..• , VT, 

is significantly smaller than the bi/v:+l required for the induction. 

We now proceed to discuss the problems with the above algorithm. One such 

problem is that color classes may be too small to exhibit a "reliable" behavior, in a 

statistical sense. E.g., in the analysis in the preceding paragraph, even though the 

expected number of elements in Bi that remain active is significantly below bi/v:+l' 

the prob ability that their actual number exceeds bi/vt+l may not be negligible (cf. 

Lemma 6.1(b), which yields little unless z is much larger than v). We counter this 

problem by treating small color classes specially; in particular, the space allocated to 

small color classes is larger, relative to their sizes, than for other color classes. 

More significantly, we do not know the multiplicities b1 , ••• , bn , so we have to resort 

to estimates 61 , .•. ,6n • One consequence of this is that we do not really know whether 

a color class is small; the color classes that are treated specially, as mentioned in the 

previous paragraph, are hence those whose estimates let them "appear" small. 

Another difliculty is posed by the allocation of space to color classes. Similarly as in 

the algorithm of Lemma 9.1, we have to res ort to the incomplete allocation of Lemma 7.3 

(the color classes themselves will be requesting elements in the sense of Lemma 7.3, 

but our convention in this section is to use the word "element" only for elements of 

color classes). As a consequence of the incomplete allocation, in each stage certain color 

classes will be unlucky (recall that this means that they do not receive the resources that 

they requested), so that they cannot participate in the Vt-compactionj this adds another 

complication to the analysis. Furthermore, in order for the resource requirements of the 

incomplete allocation to remain O(n) in spite of the increase in Vt over the stages, it is 

necessary to ensure that the number of requests per stage decreases over the course of the 

execution. We therefore initially let all nonempty color classes be active, declare a color 

class to become inactive when it loses its last active element, and allocate space only to 

active color classes. Since the number of active color classes cannot exceed the number 

of active elements, the number of active color classes will decrease as required, provided 
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that the number of active elements does so. 

Finally, although for most color classes the incomplete compaction in a particular 

stage will succeed in deactivating most elements in the color class, for some color classes 

almost all elements may remain active;in particular, this surely happens for color classes 

that are unlucky in the stage under consideration, and it is likely to happen for those 

whose sizes were heavily underestimated. Given the algorithm as described so far, the 

problem will be aggravated over successive stages, since the available space decreases. 

In such cases we need to res ort to an "emergencyescape", which will be to compact 

into an array of size 6vtbi, rather than ai/vr Note that we certainly cannot use 6vfbi 

space always, since the total space requirements would be superlinear. In order to decide 

when to apply the emergency escape, we begin each stage with a "test scattering" for 

each active color class, except those that appear small . . The test scattering is simply a 

conditional scattering by the active elements in the color class, with parameters chosen to 

allow color classes that are in need of the emergency escape to be roughly distinguished 

from those that are not; the actual bit observed is whether or not the fullness of the 

scattering equals 1. 

Before describing the algorithm proper, we define the sequence · VI," . ,VT and 

establish a lemma that paralleis Lemma 8.4. Similarly as in Section 8, let 

/(z) = z - 44logz, for z> 0. Then /(2) < 0, /(29
) > 0, /(z) --t 00 for z --t 00, and f' 

has only one zero, so that z > 44 log z 2: 22 ßog z 1 for all z 2: 29 . The algorithm below 

hence outputs a finite sequence, which we take to be VT, .•• , vI. 

z := f n 1/ 881; 
repeat 

write(z); 

z:= 22ßogzl; 

until z < 215
; 

Clearly VI < 2215 = 0(1). We will assume without loss of generality that T 2: 2 (otherwise 

n is bounded by a constant). Then 215 ::s vI < v2 < ... < vT = fn1/ 88l For a sufficiently 

large constant zo, clearly 22 ßog( 22 flog z 1 ) 1 ::s 44log( 44 log z) = 44(log( 44) + log log z) ::s 
logz for all z 2: Zo. Hence T:::; 2log*n + 0(1). 

Lemma 9.8: 

( a) For t = 1, ... , T - 1, vn 1 :::; 2v , :::; vlt 1 ; 

(b) For t = 1, .. . ,T -1, v;2 :::; Vt+l; 

(c) For t = 1, .. . ,T, Vt 2: 2t . 
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Proof: 

(a) log(vn1) = 2210gvt+1 :S 221l0gvt+11 = Vt :S 4410gvt+1 = log(vtt1)' from which the 

relation follows by exponentiation. 

(b) We noted above that 2% ~ z44 for z ~ 29 • Since Vt ~ 44 . 29 , part (a) therefore 

implies that v > 2v ,/44 > (v /44)44 > v22 • t+1 _ _ t _ t 

( c) The claim follows tri vially from part (b) by induction. • 

- -The algorithm begins by computing a profile b1 , ... , bn for Z1, .. " Zn with the 

properties described in Lemma 9.1. By Theorem 8.2, we can assume that bi is a linear 

overestimate for bi for all i E 1, where 1 is a known sub set of {I, ... , n} with the property 

that i E 1 for all colors i with bi ~ n 1 / 88 • Since we can clearly remove all colors i 

with bi < n 1 / 88 from 1 without affecting the property of 1 just mentioned, we can also 

assume that 111 = O(n87
/ 88 ). We want to apply (the nonoptimal part of) the algorithm 

of Theorem 6.2 to place the elements of Bi in an array of size O(bi ) (with bi serving 

as the limit for Bi), for all i E 1. Recall that the algorithm of Theorem 6.2 can cope 

with up to E>(n1- O) colors, for arbitrary fixed C > 0, as long as we provide a me ans of 

performing the necessary space allocation. Since Theorem 7.1 is now available, the latter 

condition no longer is a problem. Using the algorithms of Theorem 4.6 and Lemma 8.1 to 

replace the colors in 1 by colors in a range of size 0 (n87 /88), we can therefore apply the 

algorithm of Theorem 6.2 as stated. This preprocessing serves to let us assume without 

loss of generality that bi :S n 1 / 88 , for i = 1, ... , n. We want to work with estimates that 

are at least 1 and at most n 1 / 88 and therefore take bi = min{max{bi , I}, ln1/88J}, for 

i = 1, ... , n. It is easy to see that properties (A) and (B) of Lemma 9.1 continue to hold 

for the modified profile b1 , • .• , bn • Additionally, bi :S vTbi and bi :S n1
/ 88 , for i = 1, ... , n. 

The algorithm now proceeds as folIows. 

(1) Let all elements and all nonempty color classes be active; 

(2) for t:= 1 to T do (* Stage t *) 

(3) for each active color class Bi pardo 

(4) begin 

(5) if bi > vV (* not apparently-small *) then 

(6) begin (* test scattering *) 

(7) vt-allocate Vt memory cells and Vt processors to Bi; 

(8) if Bi was unlucky in the allocation in line (7) 

(9) then goto line (21); 

(10) Let the elements in Bi carryout a conditional 

scattering Si with prob ability vJ /bi and of width Vt; 

(11) Hugei ,t := (Si has fulhiess 1); 

(12) end; 
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(13) übi :::; vF (* apparently-small *) then Sizei,t := 6vt9 

(14) else if Hugei,t then (* emergency escape *) Sizei,t := 6vlbi 

(15) else (* normal case *) Sizei,t := f6bdv:l; 

(16) vt-allocate an array A~,t of size ~izei,t to 13i ; 

(17) if 13i was lucky in the allocation in line (16) then 

(18) Vt-compact the active elements in 13i to Ai,t, 

deactivating every lucky element in 13i; 

(19) ü no element in 13i remains active 

(20) then make 13i inactive; 

(21) end; 

For t = 1, ... , T, let Stage t be the tth execution of lines (3)-( 21) and say that a color 

dass 1S active in Stage t if it is active at the beginning of Stage t and that it is unlucky 

in Stage t if it is unlucky in the incomplete allocation in either line (7) or line (16) in 

Stage t. A color dass that is unlucky in some stage drops out of that stage and rejoins 

the computation in the beginning of the next stage, if any; this is realized via a goto 

instruction in line (9) and a conditional instruction in line (17). 

Thegoal of the analysis is to show that with high probability, the algorithm 

deactivates all elements ilsing O(n) processors and O(n) space and allocating arrays ~,t 

of total size O(n). Since astage can be executed in constant time, the algorithm is then 

correct and its resource requirements are as daimed in Lemma 9.7. A key property 

established below is that the number of active elements (and hence of active color dasses ) 

decreases rapidly over the execution of the algorithm. More precisely, we will show 

(Lemma 9.14) that with high probability the number of elements active at the beginning 

of Stage t, for t = 1, ... , T, is O(n/v~2). The proof of this key property consists of two 

main parts. We first identify certain favorable conditions that may apply to a color dass 

in a stage, show that these conditions together imply that the color dass is well-supplied, 

in the sense bf Lemma 6.1, in the Vt-compaction in the given stage (Lemma 9.9); and 

note that for well-supplied color classes the rate of deactivation is essentially as in the 

idealized analysis of the simplified algorithm earlier in this section (Lemma 9.12). We 

then show that only very few color classes lack the favorable conditions (Lemma 9.13). 

For i = 1, . . . , n and t = 1, ... , T, denote by Ni,t the number of active elements in 

13i at the start of Stage t. Bi is said to be apparently-small in Stage t if bi :::; vi 7 , and 

to be apparently-huge in Stage t if a test scattering for Bi is carried out in Stage t and 

achieves a fullness of 1 (Le., if the value true is assigned to Hugei,t). 8 i is well-estimated 

in Stage t if bi :::; Vtbi .(i.e., the size of 13i may have been underestimated, but at most 

by a factor of Vt), and Bi is well-s";'pplied in Stage t if it is active in Stage t, lucky 

in the incomplete allocations in lines (7) and (16) in Stage t, andwell-supplied in the 

incomplete compaction in line (18) in Stage t. Recalling the definition of "well-supplied" 
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in Section 6, we observe that Bi is well-supplied in Stage t if and only if an array Ai,t of 

size at least 6vtNi,t is allocated to Bi in Stage t. A suflicient set of conditions for this to 

happen is formulated in the following lemma. 

Lemma 9.9: For i = 1, ... , n and t = 1, ... , T, Bi is well-supplied in Stage t if it is active 

in Stage t and each of the following conditions holds: 

(1) Bi is well-estimated in Stage t; 

(2) Bi is lucky (in both vt-allocation steps) in Stage t; 

(3) Bi is apparently-small or apparently-huge in Stage t, or Ni,t :S bi/vi. 

Proof: Let i E {I, ... , n} and t E {I, ... , T} and assume that Bi is active in Stage t 

and that conditions (1)-(3) hold. In particular, an array Ai,t of size Sizei,t is allocated 

to Bi (condition (2». If Bi is apparently-small in Stage t, then bi :S Vtbi :S vi8 

(condition (1» and Sizei,t = 6vt 9
. Otherwise Sizei,t 2: 6bi/v~, and if Ni,t > bi/vi, then 

Sizei,t = 6v:bi 2: 6vtbi (conditions (3) and (1». In all cases Sizei,t 2: 6vtNi,t, i.e., Bi is 

well-supplied in Stage t. I 

Define the density of a conditional scattering with prob ability p and of width s 

carried out by a set of m elements as mp / s. 

Lemma 9.10: For t = 1, ... , T, if a test scattering is executed in Stage t by a color dass 

Bi with Ni,t > bi/vi, then the prob ability that Bi does not become apparently-huge in 

Stage t is at most 2-Vt
• 

Proof: The density of the test scattering is at least (bi/vi) . (vlJbi ) . (l/vt) = vf. Hence 

by Lemma 3.1( c), the prob ability in question is at most Vt .2-v; :S 2-Vt .1 

Lemma 9.11: With high probability, the algorithm deactivates all elements. 

Proof: We first show that with high prob ability, conditions (1)-(3) of Lemma 9.9 are 

satisfied in Stage T for all active color dasses. We already noted that bi :S vTbi , for 

i = 1, ... , n, so that every color dass is well-estimated in Stage T, i.e., condition (1) is 

satisfied. By Lemma 7.3(a), the prob ability that some active color dass is unlucky in 

Stage T is at most 2n· 2-VT , i.e., condition (2) is also satisfied with high prob ability. 

Condition (3), finally, follows directly from Lemma 9.10. 

By what was shown above and Lemma 9.9, with high prob ability every active color 

dass is well-supplied in Stage T. Lemma 6.1(a) implies that the probability that a fixed 

active element in an active and well-supplied color dass is unlucky in the vT-compaction 

in Stage T is at most 2-VT • Hence with high prob ability, no element remains active at 

the end of Stage T. I 
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Lemma 9.12: For t = 1, ... , T - 1, with high prob ability the number of active elements 

in well-supplied color classes at the end of Stage t is O(njvnl). 

Proof: An element whose color class is well-supplied in Stage t remains active at the 

end of Stage t only if it is unlucky in the Vt-compaction in Stage t. But Lemmas 9.8(a) 

and 6.1(b) show the number of such elements to be no larger than njvnl' except with 

prob ability 2e-', where , ~ (njvnd2 j(29nv;) ~ nj(29vltd = O(nl / 4 ), Le., except with 

negligible prob ability. • 

Lemma 9.12 shows that the number of elements in well-supplied color classes 

decreases as required. In Lemma 9.13 we prove that the elements in color classes that 

are active but not well~supplied are so few that they can be ignored in this context. 

Informally, the reason for this is that if an active color class is not well-supplied in 

Stage t, then either it is unlucky, or its estimate is off by a factor of more than Vt, or 

the test scattering for the color class does not achieve fullness 1 although its density is at 

least vl, all of which are unlikely. 

Lemma 9.13: Let tE {1, .. . ,T -1} and take I = {i: 1::; i::; n and Bi is active but not 

well-supplied in Stage t}. Then, with high prob ability, :EiEI(bi ,+ bi ) = O(njvnl)' 

Proof: H a color class Bi is active but not well-supplied in Stage t, then one of Conditions 

(1)-(3) of Lemma 9.9 must be violated. Therefore the index sets 1',1" and 1111 defined 

below cover all of I, Le., I' U I" U 1111 = I; we will show that with high prob ability the 

sum :Ei(bi + bi) over each ofthese index sets is O(njvnd. 

I' = {i EI: Bi is not well-estimated in Stage t}, 

I" = {i EI: Bi is unlucky in Stage t}, and 

1111 = {i E I \ (I' U I") : Bi is neither apparently-small 

nor apparently-huge in Stage t and Ni,t > bijvt}. 

It follows directly from Lemmas 9.1 and 9.8( a) that with high prob ability :EiEI' (bi + bd = 
O(nj2'IJt + n3 / 4) = O(njvnd. In the rest of the proof we consider all random choices 

made by the algorithm in Stages 1, ... , t - 1 to be fixed in an arbitrary manner. Write 

I" = I{' U I~', where I{' and I~' are the residue sets of the vt-allocations in lines (7) 

and (16),respectively. H we further define 51 = :EiEI~' (bi + bd and 52 = :EiEI~' (bi + bi) 
as functions of these residue sets, it is easy to see that both 51 and 52 satisfy a Lipschitz 

condition with constant O(nl /88 ) (recall that bi+bi = O(nl /88 ), for i = 1, .. . ,n). We also 

know for each vt-allocation that a fixed color class is unlucky with probability at most 

2-'lJt (Lemma 7.3(a)), so that E(51 + 52) = o (nj2'IJt ). By two straightforwardapplications 

of Lemma 7.3( c), we thus obtain that with high prob ability, :EiEIII (bi + bi ) = 51 + 52 = 

O(nj2'IJt + nl/88v:nS/8) = O(njvnl + n3 / 4 ) = O(njvnd. Finally, if a color class Bi is 
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neither apparently-small nor unlucky in Stage t, a test scattering is carried out for Ei 

in Stage t. Hence, by Lemma 9.10, Pr( i EI"') :s 2-v" for i = 1, ... , n, and therefore 

E(LiEIII1 (bi + bi)) = O(L~1 (bi + bi )j2V
,) = O( nj2V

,). A simple martingale argument 

now ensures that, withhighprobability, LiEI11I(bi+bi) = 0(nj2V
' +n3

/
4

) = O(njvU-d . 

• 
Lemma 9.14: For t = 1, ... , T - 1, with high probability the number of elements (and 

hence color classes) active at the end of Stage t is O(njvU-d. 

Proof: Immediate from Lemmas 9.12 and 9.13. • 

We finally show that the total size of the arrays Ai,t allocated in Stage t is O(njv~), 

for t = 1, ... , T (Lemma 9.16), from which will follow not only that the algorithm is 

correct, but also that it uses O(n) processors and O(n) space. Disregarding the arrays 

allocated to apparently-huge color classes, this can easily be done using Lemma 9.14. In 

order to handle the apparently-huge color classes, however, we first have to show the 

following technical lemma, which says that if a color dass Bi is well-supplied in Stage t, 

then it is unlikely to contain more than max{ Vt+1 A, bdv~+1} active elements at the 

beginning of Stage t + 1. 

Lemma 9.15: Let t E {I, ... , T - I} and take I = {i : 1 :s i :s n, Bi is active 

and well-supplied in Stage t and Ni,t+1 > max{ Vt+l A, bdv~+1}}' Then, with high 

probability, LiEI(bi + bi) = O(njvU-I)' 

Proof: Consider all random choices made in the algorithm before the Vt-compaction 

in line (18) in Stage t to be fixed in an arbitrary way and let i E {I, ... , n}. 

Since bijv~+1 ~ bi/2V
, , Lemmas 6.1(b) and 9.8(b) imply that if Bi is active and 

well-supplied in Stage t, then Ni,t+l > max{ Vt+l A, bd V~+l} with prob ability at 

most 2e-(, where , = vl+1 bij(29biV~) ~ vi4 j(29vn ~ 2vt. We have thus shown 

that Pr(i E I) :s 2· 2-2v, :s 2-v,. Similarly as in the proof of Lemma 9.13, let 

S = LiEI(bi + bi ) and note that S satisfies a Lipschitz condition with constant 0(nl /88 ). 

Now E(S) :s L~l (bi + bi ) ·2-v , = O(n· 2-V
,) = O(njvU-I)' and by Lemma 6.1( c), with 

high probability S = O(E(S) + nl/88v~n5/8) = O(njvU-I + n3 / 4 ) = O(njvU-d. • 

Lemma 9.16: For t = 1, ... , T, the total size of the arrays Ai,t allocated in Stage t is 

O(njvn· 

Proof: The claim is obvious for t = 1 since VI = 0(1), so fix t E {2, ... , T}. By 

Lemma 9.14, with high prob ability the total number of arrays allocated in Stage t is 

o (n j vl2 ). Hence the total size of the arrays allocated in Stage t to color classes that are 
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. not apparently-huge is 

n 

O(n/v~2). (v: 9 + 1) + ~)bi/V:)) = O(n/v:), 
i=l 

as desired. 

What remains is to bound. the total size of the arrays allocated to apparently-huge . 

color classes. Let I = {i : 1 :::; i :::; n and Bi is apparently-huge in Stage t}. It suffices to 

show that :EiEI bi = O( n/ v:) with high prob ability, since then the total size of the arrays 

allocated to apparently-huge color classes in Stage t is O(:EiEIV~bi) = O(n/v:). To this 

end we partition I into three subsets: 

I' = {i EI: Bi is not well~supplied in Stage t - 1 or 

Bi is not well-estimated in Stage t}, 

I" = {i E 1\1' : Ni,t > bi/vI}, and 

I'" = {i E 1\1' : Ni,t :::; bi/vI}. 

By Lemmas 9.13 and 9.1, :EiEI' bi = O(n/v~2 + n/21J
, + n3/4) = O(n/vn with high 

prob ability. Suppose next that i E I". Then Ni,t > b,i/vl and Bi is well-estimated 

in Stage t, Le., bi 2: bi/vt. Also, since Bi is apparently-huge in Stage t, it cannot 

be apparently-small in Stage t, so bi > v17 It follows that Ni,t > bi/V: and 

also that Ni,t > b~/2v:7/2 /vl 2: Jbi/vt . v:/2 = VtÄ. But then, by Lemma 9.15, 

:EiEI" bi = O(n/v:} with high probability. 

As concerns I"', finally, we use the fact that a color dass Bi with Ni,t :::; bi/vI is very 

unlikely to become apparently-huge in Stage t. Specifically, according to Lemma 3.1( d), 

the prob ability of this event is at most 

and a simple martingale argument shows that :EiEl'" bi = O(n/v: +nl/88n3/4) = O(n/v:) 

with high prob ability. • 

Lemma 9.17: With high prob ability, the algorithm is correct and uses O(n) processors 

and O(n) space. 

Proof: We have already argued that the correctness of the algorithm follows ' from 

Lemmas 9.11, 9.16 and 9.8(c). It uses O(n) processors and O(n) space, plus the resources 

needed for the incomplete allocations in lines (7) and (16), which are O(n) by Lemmas 

9.14, 9.16 and 7.3, and the resources needed for the incomplete compaction in line (18), 

which are O(n) by Lemmas 9.14 and 6.1. This ends the proofs of Lemmas 9.17 and 9.7 . 
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Corollary 9.18: There is a constant € > 0 such that for all given nEIN, the following 

problem can be solved on a TOLERANT PRAM using O(log*n) time, n processors and 

O(n) space with prob ability at least 1- 2-n
€ (Las Vegas): Given n integers Z1> .• • ,Zn in 

the range 0 .. n, compute n nonnegative integers bl , ... ,bn such that 

(A) L~l bi = O(n); 

(B) For i = 1, ... , n, bi 2: bi , 

where bi = I V : 1 :::; j :::; n and Z j = i} I, for i = 1, ... , n. 

Proof: Mter semisorting the input elements into an array A of size O(n) using the 

algorithm of Lemma 9.7, we can use the algorithm of Lemma 2.8(a) to store them in a 

linked list in the order in which they occur in A. This makes it easy to compute the first 

and the last element in A of each nonempty color dass, which identifies nonoverlapping 

subarrays Al, ... , An of A such that Ai contains all elements of Bi, for i = 1, ... , n. All 

that remains is to take bi = IAil, for i = 1, ... , n. • 

The final goal in this section is to take the step from the nonoptimal algorithm of 

Lemma 9.7 to an optimal semisorting algorithm. We first have to show two lemmas that 

gradually increase our ability to compute good profiles with optimal speedup. 

Lemma 9.19: There is a constant € > 0 such that for all given nEIN with T 2: log*n, 

the following problem can be solved on a TOLERANT PRAM using O(T) time, rn/Tl 

processors and 0 (n) space with prob ability at least 1 - 2-n~ (Monte Carlo): Given n 

integers ZI, ••. , Zn in the range 0 .. n, compute n nonnegative integers b1 , • •• ,bn such 

that 

(A) L7=1 bi = O(n); 

(B) Lbi>ß. bi = O(n/T), 
where bi == IV: 1:::; j:::; n and Zj = i}l, for i = 1, . .. ,n. 

Proof: Assume that T :::; n1 / 4 and that bi :::; n1 / 8 , for i = 1, ... , n. Obtain 61 , ... , 6n 

exact1y as in the proof of Lemma 8.11, except that in Step 3 Corollary 9.18 is used 

instead of Lemma 8.3. Since the use of Lemma 8.3 was the only reason for the lower 

bound of (log*n)2 on T, this gives an algorithm with the stated resource requirements. 

We now demonstrate the correctness of the algorithm. Observe first that since the profile 

of Corollary 9.18 satisfies conditions (A) and (B) in the definition of a coarse-profile, 

Lemmas 8.12-8.14 continue to hold for the modified algorithm. Lemma 8.12 direct1y 

implies condition (A) ofLemma 9.19, and Lemma 8.14 states that Pr(bi > y'T6i ) :::; 2-ft , 

for i = 1, ... , n. We would like to condude from this that Lb.>ß. bi = O(n/T) with 

high prob ability, Le., that condition (B) of Lemma. 9.19 is satisfied as weIl. This would 

follow easily from a martingale argument if 61 , ... , 6n were independent, hut this is not 

necessarily the case. At this point, however, we can use the fact that the algorithm 
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of Corollary 9.18 overestimates all multiplitities. Assume that we were to execute the 
~z z - -algorithm of Lemma 8.11 as above, but with bi = bi , for i = 1, ... , n, and let b1 ,· .• , bn 

be the resulting profile (corresponding to b1 , ••• , bn ). In this "ideal" setting bf, ... , b~ 
are independent, since they are fured, which makes the above martingale argument valid. 

~z ~z . 
Hence :Eb;>v"Tb; bi = O(n/T). The profile b1 , ••• , bn actually used by our algorlthm 

satisn.es bf ~ bf, for i = 1, ... , n. Given the workings of the algorithm of Lemma 8.11, 

this can easily be seen to imply that bi ~ bi , for i = 1, ... , n (if a subroutine returns 

larger estimates, the final estimates become no smaller). But then 

L bi ~ L bi = O(n/T). • 
b; > v"Tb; b; > v"Tb; 

Lemma 9.20: There is a constant € > 0 such that for all given nEIN with T ~ log*n, 

the following problem can be solved on a TOLER.ANT PRAM using O(T) time, rn/Tl 

processors and O(n) space with prob ability at least 1 - 2-n~ (Monte Carlo): Given n 
- -integers Zl,"" Zn in the range 0 .. n, compute n nonnegative integers b1 , ••• , bn such 

that 

(A) :E~1 bi = O(n); 

(B) :Eb;>b; bi = O(n/T), 
where bi = I {j : 1 ~ j ~ n and Z j = i} I, for i = 1, ... , n. 

Proof: Assume that -r ~ n1 / 4 and that bi ~ n1 / 8 , for i = 1, ... , n. First use the algorithm 

of Lemma 9.19 to computea profile bb ... ,bn for Zl"",Zn with :E~=1 bi = O(n) such 

. that :Eb;>v"Tb; bi = O(n/T). Then apply two-pass scattering in time with phase count T 

to the primary input Xl,"" X n and the profile input b1 , ••• , bn and let X' and X" be 

the resulting sets of successful and unsuccessful elements, respectively. It follows &most 

exactly as in the proof of Theorem 8.15 that lX"I = O(n/T) with high prob ability. We 

can hence use the algorithms of Theorem 4.6 and Lemma 8.1 to store X" in an array of 

size O(n/-r) and torepiace the values of elements in X" by values in a range of size 

O(n/-r), after which we can use the algorithm of Corollary 9.18 to compute a profile 

b~, ... ,b~ such that :E~=1 b~' = O(n/T), but b~' ~ IBi n X"I, for i == 1, .. . ,n (take b~' = 0 

for each i E {I, ... , n} with Bi n X" = 0). 

Now draw a random sampie Y from X' (not from X) by including each element 

of X' in Y with prob ability l/T and independently of other elements. By Chemoff 

bound (a), with high prob ability IYI = O(n/-r). Exactly as described for X" above, 

we can compute a profile hr, ... ,b,!: such that :E~=lbf = O(n/T), but bf ~ IBinYI, 
for i = 1, .. . ,n. For i == 1, .. . ,n, let b~ = IBi n X'I, b~' = IBi n X"I and br = IBi n YI. 
For i = 1, ... , n, if bi ~ -r2

, then take bi = IBi n X'I + b~' ~ b~ + b~' = bi ; otherwise take 

b· - max{2-rb~ T 2 } + b~' ~ - ~ , ~ . 
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Property (A) is satisfied, since ~~=l bi ~ L~=l(IBi n X'I + 2Tbf + b~') + n = 

O(IX'I + 2T(n/T) + IX"I + n) = O(n). As for property (B), fix i E {I, ... , n} and note 

first that we cannot have bi > bi unless b~ > max{2Tbr,T2 }. 'But b~ > 2Tb[ implies 

br < bU(2T), which under the condition b~ > T2 happens with prob ability at most 

e -b: /(8T) ~ e -T /8, by Chernoff bound (b). The desired result now follows by a martingale 

argument .• 

Theorem 9.21: There is a constant € > 0 such that for all given n, TEIN with T 2: log"'n, 

n-color semisorting problems of size n can be solved on a TOLERANT PRAM using O(T) 

time, rn/Tl processors and O(n) space with probability at least 1 - 2-nE (Las Vegas). 

Proof: Observe first that it suffices to partition the input into two subsets and to 

semisort these into arrays Q' and Q" of size O(n) each. For then, as in the proof of 

Corollary 9.18, we can divide Q' into nonoverlapping subarrays A~, .. . , A~ and Q" into 

nonoverlapping subarrays Af, . .. , A~ such that each element of Bi is stored either in A~ 

or in A~' , for i = 1, ... , n, after which we can use the algorithm of Theorem 7.1 to allocate 

an array Ai of size IA~I + IA~'I to Bi from a base array of size L~=l (IA~I + IA~'I) = O(n) 

and store all elements of Bi in ~, for i = 1, ... , n. 

By this observation, it suffices to semisort the n input elements with a "waste" of 

O(n/T) elements, i.e., with O(n/T) elements not placed in the output array. This is 

because the elements that could not be placed are sufficiently few to be semisorted by the 

algorithm of Lemma 9.7 (following a compaction according to Theorem 4.6), after which 

we are in the situation described above. 

As usual, assume that T ~ n l / 4 and that bi ~ n l /8 , for i = 1, ... , n. The algorithm - . 

begins by computing a profile bl , ... , bn for Zl, ... , Zn with the properties described in 

Lemma 9.20, after which it applies one-pass scattering in time with phase count T to the 

primary input Xl, ... , X n and the profile input bl , ... , bn . Similarly as in the proof of 

Theorem 8.15, call Bi well-estimated if bi ~ bi , and call each element of Bi good if Bi 

is well-estimated, and bad otherwise, for i = 1, ... , n. Our first source of "waste" are 

the bad elements; by property (B) of Lemma 9.20, their number is O(n/T) with high 

prob ability. A second source of "waste" are the colliding good elements. Since a good 

element collides with prob ability at most l/T, a martingale argument shows that the 

number of colliding good elements is also O(n/T + n3 / 4 ) = O(n/T) with high prob ability. 

A third and last source of "waste" will be good elements that cannot be placed in the 

output array although they did not collide. We now describe a procedure that uses the 

output of the scattering in time to semisort most of the noncolliding good elements. 
- -Recall that scattering in time with profile input bl , ... , bn , as described in Section8, 

uses arrays Al, . .. , An of list headers and counters allocated within a base array of size 

O(n), where IAil = bi , for i = 1, ... ,n. For i = 1, .. . , n, divide Ai into rbi/Tl segments, 
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each of size at most r, and say that an element is stored in a segment if it belongs to a 

list whose header is stored in (a cell in) the segment. Further take bi = IBi n X'I, where 

X' is the set of noncolliding elements. 

Now associate a target array with each segment as follows: For i = 1, ... , n, if bi ~ r, 

then the target array of the (single) segment of Ai is of size min{b~,2r} (as argued in 

Section 8, this quantity is readily available). If bi > r, on the other hand, the target 

array of each segment of Ai is of size 2r, and the target arrays of all segments of Ai form 

a contiguous block of memory cells - this is easy to ensure, since they are all of the same 

size. Note that the total size of the target arrays is O(n), so that they can be allocated 

according to Theorem 7.1 from a base array of size O(n), which will be the output array 

of the semisorting. 

We finally associate with each segment the task of placing min{ m, s} elements stored 

in the segment in its target array, where m is the number of elements stored in the 

segment and s is the size of its target array, and execute all the tasks using operation 

allocation, as described in Section 7; if we take the length of a task to be the sum of the 

size of its associated segment and the size of the corresponding target array, the necessary 

prerequisites are easily seen to be satisfied (since every task is of length at most 3r, it 

suffices to show how toprocess a task in linear sequential time, which is straightforward). 

We want to show that with high probability, the number of elements not placed in 

the corresponding target arrays in the above computation is O(n/r). To this end note 

that the choice of a list number in the scattering in time implicitly is a choice of a 

segment, and that the elements stored in a segment can be placed in the corresponding 

target array if their number is no larger than the size of the target array, Le., if their 

number is at most 2r. The expected number of elements of a well-estimated color class Bi 

choosing a particular segment is at most r (since bi ~ bi , the number of lists "associated 

with Bi at least equals the number of elements in Bi). Hence by Chemoff bound (a), the 

prob ability that a fixed element of a well-estimatedcolor dass Bi finds itself in a segment 

containing 2r + 1 or more elements of Bi is at most e-'T/3. A martingale argument now 

shows that with high prob ability, the number of noncolliding good elements that cannot 

be placed in the appropriate target arrays is O(n/r). • 

10 Applications of Semisorting 

This section describes a few relatively straightforward applications of Theorem 9.2l. 

A number of less immediate applications were mentioned in the introduction. 

Our first goal is to extend the semisorting result to strong semisorting. Recall that 

whereas usual semisorting places the elements of each color dass in a subarray of a 

base array, strong semisorting additionally requh-es the size of the subarray of each color 
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dass to be proportional to the size of the color dass, a property that is often useful in 

applications. 

Going from usual semisorting to strong semisorting obviously is a matter of 

compacting each color dass into linear space. Treating color dasses independently, we 

can use the algorithm of Theorem 5.3 to choose a suitable size for the destination array 

of each color and carry out the actual compaction using the algorithms of Section 4. 

Since color dasses may be small, however, their sizes may be overestimated (as weil as 

underestimated) by the algorithm of Theorem 5.3; as a result, although the compaction 

of a color dass succeeds, it may fail in the sense that the destination array is too large. 

Since this is an infrequent event, we have enough resources to retry each unsuccessful 

compaction many times, which achieves a high reliability. An indispensable prerequisite 

for this, however, is the ability to teil whether a particular compaction was indeed into 

linear space. We therefore need a eertified approximate eounting algorithm that with high 

prob ability estimates the number of ones a.mong n bits correctly, up to a constant factor, 

and that explicitly reports failure if it is unable to do so, Le., a Las Vegas algorithm for 

approximate counting (Lemma 10.3). Our idea for obtaining such an algorithm is simple: 

Compacting the ones in the input into an array A furnishes a proof that their number b 

is at most lAI. On the other hand, subsequently compacting the free cells in A into an 

array Q proves that lAI - b ::; IQI, which yields a lower bound on b. 

We already know how to compact b elements into an array of size eb, where c is a 

constant. It turns out, however, that for the above scheme to work we cannot allow 

c to be arbitrarily large; in fact, we must demand that c < 2. We therefore briefly 

depart from our usual philosophy of ignoring constant factors to show that the relevant 

result in Section 4 (Theorem 4.6) actually holds for any constant c > 1 (Lemma 10.1). 

Observations similar to Lemmas 10.1 and 10.2 were made independently and first 

reported by Goodrich (1991). 

Lemma 10.1: For every fixed J1. > 0 there is a constant € > 0 such that for all given 

n, d, TEIN with T 2: log*n, complete compaction problems of size n and with parameters 

d -- 0 can be solved on a TOLERANT PRAM using O(T) time, rn/Tl processors and 
(l+~)d 

O(n) space with prob ability at least 1 - 2-nE (Las Vegas). 

Proof: Without 1055 of generality we can assume that J1.d 2: 12, since otherwise the 

number of active input elements is bounded by a constant, that d ::; n and that J1. is 

rational and at most 1. It suffices to describe a basic algorithm with a failure probability 

of 2-d
O(1), since for d ::; ..;n the active elements can be compacted into an array of 

size O(..;n) using the algorithm of Coroilary 4.3, after which the basic algorithm can 

be applied independently 0(..;n) times. It also suffices, for a certain constant KEIN, 

to place all except J1.d/ K elements in an array of size s = r(l + J1./2)dl, since, provided 

72 



that K is sufficiently large, the algorithm of Theorem 4.6 can then be used to place the 

remaining elements in an array of size r JLd/31, which for JLd ~ 12 is at most (1 + JL)d - s. 

We do this using repeated 1-scattering over a fixed array A of size s. Initially let all 

elements be active, and then carry out a number of stages. In each stage the remaining 

active elements are 1-scattered over A, whereby colliding elements as weil as elements 

that hit an element placed in a previous stage remain active, while the other elements are 

placed in A and become inactive. 

Assume that some stage starts with more than JLd/ K active elements. It is easy to see 

that a fixed element collides or hits an element placed in a previous stage with prob ability 

at most d/ s :$ 1/(1 + 1'/2), so that the expected number of elements deactivated in 

the stage is at least (JLd/K)(1-1/(1 + 1'/2)) = JL2d/(2K(1 + 1'/2)) ~ (JL2/(4K)). d. By 

Lemma 2.2(b), with high prob ability the stage under consideration deactivates at least 

(JL2 /(SK)) . d elements. We may conclude that with high probability, rSK / 1'21 stages 

suffice to reduce the number of active elements to at most JLd/ K, as desired. • 

Lemma 10.2: For every fixedJL > 0 there is a constant € > 0 such that for all given 

n, TEIN · and T ~ log*n, the foilowing problem can be solved on a TOLER.ANT PRAM 

using O(T) time, rn/Tl processors and O(n) space with probability at least 1 _ 2-nf 

(Monte Carlo) : Given n bits :l:1, • •. ,:l:n , compute a nonnegative integer b such that 

b :$ b :$ (1 + JL)b, where b = IV : 1 :$ j :$ n and :l:j = 1}1. 

Proof: Define an input element to be active if its value is 1, and assume without 

loss of generality that I' is rational and at most 1. Take 6 = 1'/3 and begin by using 

the algorithm of Theorem 5.3 to compute an integer b such that with high prob ability, 

b/ K :$ b :$ b, for some constant K ~ 1. If 6b :$ 1, solve the problem in a trivial 

manner. Otherwise repeatedly use the algorithm of Lemma 10.1 with I' = 6 to attempt 

to compact the active elements with limit d = b, b + l6bJ, b + 2l6bJ, ... , stopping after the 

first successful complete compaction, and return as b the quantity l(1 + 6)dJ, where dis 

the limit of the last (successful) attempt. 

The size of the destination array of the successful compaction is at most (1 + 6)d, 

Le., the relation b :$ b is satisfied. On the other hand, the compaction will succeed with 

high probability for any limit which is at least b. Provided that indeed b :$ b, the first 

limit with this property in the above series is at most b + 6b :$ (1 + 6)b, so that with high 

prob ability, b :$ (1 + 6)2b :$ (1 + 36)b = (1 + JL)b. It is easy to see from this that provided 

that indeed b = O(b), with high prob ability thealgorithm of Lemma 10.1 is applied only 

a constant number of times, Le., the running time is O(T) . • 

Informally, the "true" output of the Las Vegas algorithm below for approximate 

counting is the integer b. y = 0 indicates the correctness of the output, whereas y = 1 

signifies that the execution failed. 
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Lemma 10.3: For every fixed J.L > 0 there is a constant € > 0 such that for all given 

n, rEIN with r 2: log*n, the following problem can be solved on a TOLERANT PRAM 

using O(r) time, rn/rl processors and O(n) space: Given n bits ib" .,Zn, compute a 

nonnegative integer b and a bit y such that 

(a) If y = 0, then b ~ b ~ (1 + J.L)b, where b = L:7=1 Zj; 

(b) Pr(y = 1) ~ 2-nf
• . 

Proof: Assume that J.L is rational, choose 0 < 1 to make (1 - 40)(1 + J.L) = 1 and begin 

by applying the algorithm of Lemma 10.2 to obtain a nonnegative integer b such that 

with high prob ability, b ~ b ~ b/(l - 0). Taking b = L(l + O)bj, we now verify the two 

inequalities b ~ b ~ (1 + J.L)b and set y = 1 if the verm.cation fails. Assume that b 2: 1, 

since for b = 0 the verification can be done trivially according to Lemma 2.7. 

Again define an input element to be active if its value is 1. Let A be an array of size 

b and use the algorithm of Lemma 10.1 with J.L = 0 and d = b to attempt to place the 

active elements in A. If this succeeds, it clearly proves that b ~ b. On the other hand, 

since b 2: b with high prob ability, the compaction succeeds with high prob ability. 

Assuming that the compaction into A succeeds, we next use the algoritlim of 

Lemma 10.1 with J.L = 1 and d = L20bj to attempt to place the free cells in A in an 

array Q of size L 40bj . More precisely, this entails deriving from A a bit sequence 

zi, . .. , zlAI+n such that zj = 1 if and only if the jth cell of A contains no input element, 

for j = 1, ... , lAI, and zj = 0 for j = lAI + 1, .. . , lAI + n, and then using zi,· · .,zIAI+n 

as input to the algorithm of Lemma 10.1 (zIAI+1" '" zlAI+n are added only to ensure 

that the algorithm works correctly with high probability). Take y = 0 if and only if both 

compactions according to Lemma 10.1 succeed. 

The following happens with high probability: b 2: (1 - O)b, so the number b - b of 

free cells in A is at most (1 + O)b - (1 - O)b = 20b ~ 20b, and the compaction into Q 

succeeds. If it does, this is proof that the number of free cells in Ais at most IQI, and 

hence that b 2: b - L 40bj 2: (1 - 40)b, from which follows that b ~ (1 + J.L )b. • 

Theorem 10.4: There is a constant € > 0 such that for all given n, rEIN with r 2: log"n, 

n-color strong semisorting problems of size n can be solved on a TOLERANT PRAM 

using O(r) time, r n/rl processors and O(n) space with probability at least 1- 2-nf (Las 

Vegas). 

Proof: Assume that r ~ n l /
4

• We begin by semisorting the input according to 

Theorem 9.21. As in the proof of Corollary 9.18, we can view this as providing us with n 

disjoint subarrays Al,' . . ,An of a base array A of size 0 (n) such that the elements of 

Ei are placed in Ai, for i = 1, ... ,n. Our goal is to· move the elements in Ei from Ai to 

a subarray of Ai of size 0 (bi), for i · = 1, ... , n, which provides a solution to the strong 

semisorting problem. 
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We process Al, ... , An using operation allocation, as described in Section 7. The 

sequential processing of an array is simply exact compaction by me ans of prefix 

summation. The parallel processing of Ai is as follows, for i = 1, ... , n: Apply the 

algorithm of Lemma 10.3 to Ai with JL = 1 to obtain a pair (bi, Yi), where bi is an 

estimate of bi and Yi is an indication of the validity of bi (if Yi = 0, then bi S bi S 2bi). 

Subsequently apply the algorithm of Lemma 10.1 with JL = 1 to attempt to place Bi in a 

subarray A~ of Ai of size at most 2bi (if 2bi ~ IAil, simply take A~ = Ai). H either Yi = 1 

.or the compaction of Bi into A~ faUs, we will say that the processing of ~ faUs. Take 

Y~ = 1 if the processing of Ai faUs, and Y~ = 0 otherwise. 

By Lemmas 10.1 and 10.3, the processing of Ai faUs with prob ability at most 

2 . 2- IAi I' , for some fixed 5 > 0 and for i = 1, ... ,n. In particular, with high prob ability 

the processing of an array of size n l / 8 or more does not faU. As another consequence, 

E(L:=1 Y~· 2IAil') = O(n). Furthermore, by a martingale argument, L:=l y~qi = O(n) 

with high prob ability, where qi = min{2 r1Ail '1, fn l / 41}, for i = 1, ... ,n. But this means 

that if the processing of Ai faUs, for some i E {1, ... , n}, then we can expend 8( qi) 

operations in a second attempt to process~. We again use operation allocation, now 

with a new collection of tasks. Since I~I S n l / 8 with high prob ability, we can clearly 

compact Bi exactly in O( qd sequential time. Furthermore, if qi = 2 rlA i 1'1, we can use 

prefix summation (Lemma 2.4) to compact Bi in O(T) time using f qi/Tl processors, 

while if instead qi = fnl
/

41, f qi/Tl processors suffice to carry out 0(nl
/

8
) independent 

attempts to process Ai in O( T) time as above, at least one of which will succeed with 

high prob ability. • 

Corollary 10.5: There is a constant € > 0 such that for all given n, TEIN with 

T ~ log"'n, n-color fine-profiling problems of size n can be solved on a TOLERANT PRAM 

using O(T) time, fn/Tl processors and O(n) space with prob ability at least 1- 2-n
€ (Las 

Vegas). 

Proof: Immediatefrom Theorem 10.4 and Lemma 2.8(a) (see the proof of Corollary 9.18) . 

• 
A second application of semisorting is to integer chain-sorting. Recall that the 

chain-sorting problem is to store given keys in sorted order in a linked list. In the formal 

definition below, the linked list is represented by a circular structure and apointer to the 

last list element. 

Definition: For all n, mEIN, the m-color chain-sorting problem of size n is · the 

following: Given n integers Zl, ... ,Zn in the range 1 .. m, compute a cyclic permutation 

'IrI, ••. , 'lrn of 1, ... , n and an integer q E {1, ... , n} such that for all j E {1, ... , n}\{q}, 

we have Z"Irj ~ Zj. 
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Theorem 10.6: There is a eonstant € > 0 such that for all given n, TEIN with T 2: log*n, 

n-eolor chain-sorting problems of size n ean be solved on a TOLERANT PRAM using O(T) 

time, rn/Tl proeessors and O(n) spaee with prob ability at least 1 - 2-nE (Las Vegas). 

Proof: Begin by semisorting the input elements into an array of size 0 (n) aeeording to 

Theorem 9.21. Using the algorithm ofLemma 2.8(a), it is then easy to eonstruet a linked 

list eontaining precisely the elements of Bi in the order in which they oeeur in A, for 

i = 1, ... , n. The remaining problem is to eoneatenate these lists in the right order. This 

ean be done by applying the algorithm of Lemma 2.8(a) a seeond time, now to an n-bit 

input whose ith bit is 1 if and only if Bi =1= 0, for i = 1, ... , n. • 

A claim similar to Theorem 10.6 above was made in (Gil et al., 1991). It seems 

unlikely, however, that any algorithm based on the outline given in (Gil et al., 1991) ean 

be made to run in linear spaee. 

An important applieation of Theorem 10.6 is to (standard) integer sorting. Let 

us restriet attention to the problem of sorting n integers in the range 1 .. n on a 

CReW PRAM. Rajasekaran and Reif (1989) deseribe a randomized algorithm with 

optimal speedup for this problem that uses O(logn) time and O(n/logn) proeessors 

with high prob ability. Bhatt et al. (1991) give a deterministic algorithm that works in 

O(logn/loglogn) time using O(n(loglogn)2 /logn) proeessors. We show how to eombine 

the time bound of (Bhatt et al., 1991) with the time-proeessor produet of (Rajasekaran 

and Reif, 1989), thus achieving at the same time optimal speed and optimal speedup. 

Similar results were found independently by Matias and Vishkin (1991) and Raman 

(1991); note, however, that the algorithms of these authors (which are quite similar) are 

inherently much less reliable than the algorithm given here - the failure probability is 

!l(2-(logn)"'), for some fixed a, to be eontrasted with our failure probability of 2-n11
(1) • 

Our algorithm makes use of a subroutine for monotonie list ranking with optimal 

speedup. The monotonie list ranking problem of size n is, given a linked list of n 

elements such that which of two given list elements preeedes the other ean be determined 

in eonstant time by a single proeessor, to mark each element of the list with its position 

within the list. 

Lemma 10.7 (Bhatt et al., 1991): For all given integers n 2: 4 and T 2: logn/loglogn, 

monotonie list ranking problems of size n ean be solved on a (deterministie) TOLERANT 

PRAM using O(T) time, rn/Tl proeessors and O(n) spaee. 

Theorem 10.8: There is a eonstant € > 0 such that for all given integers n 2: 4 and 

T 2: logn/loglogn, n integers in the range 1 .. n dU!. be sorted on a TOLERANT PRAM 

using O(T) time, rn/Tl proeessors and O(n) spaee with prob ability at least 1- 2-nE (Las 

Vegas). 
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Proof: Chain-sort the input elements using the algorithm of Theorem 10.6 and compute 

the position of each element within the resulting list using the algorithm of Lemma 10.7. 

In order to determine the relative order of two elements with the same value, compare 

their positions in the semisorted array output by the algorithm of Theorem 9.21. • 

11 Nonoptimal Algorithms 

This section investigates the effect for the problems considered of allowing slightly 

superlinear processor and space bciunds. In some cases, we also have to generalize the 

problems by introducing a so-called slack parameter (this not ion already appeared in 

Lemmas 6.1 and 7.3). We begin by showing that compaction with slack can be done in 

constant time. 

Although, technically, the results stated in this section allow k and '1' to vary 

independently as functions of n, it is probably most useful to imagine that '1' = k is 

constant. Our informal discussion makes this assumption. 

Theorem 11.1: There is a constant f > 0 such that for all given n, d, k, '1' E IN with 

'1' ~ k, complete compaction problems of size n and with parameters d -- 0, where 
0(8) 

s = dLlog(k)nJ, can be solved on a TOLERANT PRAM using 0('1') time, rkn/'1'l processors 

and O(n) space with prob ability at least 1 - 2-n~ (Las Vegas). 

Proof: We can assume that (2fl,og(k+l)dl)3 :s; log(k)d, since otherwise k = O(log*d) and 

we can apply the algorithm of Theorem 4.6, and that s :s; n. Then apply the algorithm of 

Lemma 4.4 O(k) times. The number of operations needed is O(kn), which translates into 

rkn/rl processors, for any '1' ~ k. Omitting the size U of the destination array from the 

notation d1 -- d2 , we can express the process symbolically as follows: 
~ . 

The last step in the above sequence reduces the number of active elements below 1, i.e., 

to zero. The destination array used in the first step is of size O(dlog(k)d) = O(s), and 

the sizes of the destination arrays used in the remaining steps sum to 0 ( d). Hence all 

active elements can indeed be placed in an array of size O(s) .• 

We now extend Theorem 11.1 to the case of several colors. In contrast with the 

algorithm of Theorem 11.1, the generalized algorithm of Theorem 11.2 needs superlinear 

space. 
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Definition: For all n, mEIN, dl , ... , dm. ~ 0 and >. ~ 1, the complete colored 

compaction problem of size n and with limits dl , ... , dm. and slack >. is, given n integers 

Zl, ... , Zn in the range 0 .. m such that I {j : 1 ~ j ~ n and Z j = i} I ~ di , for i = 1, ... , m, 

to compute a complete placement for Zl, ... , Zn with bounds >.dl , ... , >'dm.. 

Theorem 11.2: There is a constant € > 0 such that for all given n, m, k, r, dl , ... , dm. E IN 

with m = (logn)O(l) and r ~ k, complete colored compaction problems of size n with 

limits dl , .. . ,dm. and with slack O(1og(1c)n) can be solved on a TOLERANT PRAM using 

O(r) time, rkn/rl processors and O((n+ 2::1 di)log(1c)n) space with probability at least 

1 - 2-nE (Las Vegas). 

Proof: The idea of the proof is to apply the nonoptimal part of the algorithm of 

Theorem 6.2 (with 5 = 1/2) in a situation in which some of the elements have already 

been deactivated. Define Bi to be large if bi > n l / 4 , for i = 1, ... , m, and recall that 

the algorithm of Theorem 6.2 essentially applies the algorithm of Lemma 6.1 log*n 

times to reduce the fraction of active elements in each large color dass below a certain 

threshold, after which the compaction is finished using negligible resources. In the 

present setting, where we are allowed O(log(1c)n) slack, we can speed up the deactivation 

by first l-scattering the elements of Bi over an array of size 2di flog(1c)nl, for i = 1, . .. , m. 

Lemma 3.6(b) shows that the number of elements in a fixed large color dass Bi that 

collide in the l-scattering is at most max{bi/log(k)n, b~/4}, except with prob ability at 

most e-', where ( = (b~/4)2 /(32bi) = O(b~/2) = O(nl /8 ), so that with high prob ability 

the fraction of active elements left in any large color dass is o (l/log(1c)n). It is now 

easy to see that all but the last O(k) applications of the algorithm of Lemma 6.1 in the 

algorithm of Theorem 6.2 can be omitted. Since all subroutines used can be made to run 

in O(r/k) time using rkn/rl processors, we can therefore deactivate all elements in O(r) 

time. • 

Armed with Theorem 11.2, we can easily use the reductions of interval allocation 

and interval marking to colored compaction given in Section 7 to derive similar results 

for these problems. 

Definition:For all nEIN and >. ~ 1, the interval allocation problem of size n and 

with slack >. is, given n nonnegative integers Zl, ... , Zn, to compute a complete interval 

placement for Zl, ... , Zn with slack >.. 

Theorem 11.3: There is a constant € > 0 such that for all given n, k, rEIN with 

r ~ k, interval allocation problems of size n and with slack O(log(1c)n) canbe solved on 

a TOLERANT PRAM using O(r) time, rkn/rl processors and O(nlog(1c)n) space with 

prob ability at least 1 - 2-nE (Las Vegas). 



Proof: As the proof of Theorem 7.1, except that Theorem 11.2 is used instead of 

Theorem 6.2, and that Corollary 10.5 is used instead of Theorem 5.3 (the latter 

substitution serves only to obtain a Las Vegas algorithm). • 

In (Bast et al., 1992), Theorem 11.3 is used to prove a related result: For any kEIN, 

usual interval allocation problems (i.e., with constant slack) of size n can be solved in 

O(k) time using O(nlog(1c)n) processors and O(nlog(1c)n) space with high prob ability. 

Definition: For all nEIN and A 2: 1, the interval marking problem of size n and with 

slack A is the following: Given n nonnegative integers :Cl, ... ,:Cn , compute nonnegative 

integers s, Zl, ... ,Z. such that 

(1) For all integers i, j, k with 1 :s; i :s; j :s; k :s; s, if Zi = Zk :# 0, then Zj = Zi; 

(2) For i = 1, .. . ,n, I{j: 1:S; j:S; s and Zj = i}1 = :Ci; 

(3) s = O(A ~;=l :Cj). 

Theorem 11.4: There is a constant € > 0 such that for all given n, kEIN, interval 

marking problemsof size n and with slack O(log(k)n) can be solved on a TOLERANT 

PRAM using O(k) time, O(n + Wlog(k)n) processors and O((n + W) logUc)n) space with 

prob ability at least 1 - 2-nE (Las Vegas), where W is the sum of the input numbers. 

Proof: As the proof of Theorem 7.2, using Theorem 11.3 instead of Theorem 7.1. • 

Our goal in the remainder of this section is to derive constant-time algorithms for 

coarse-profiling and for a variant of semisorting. Recall from Sections 8 and 9 that the 

n-processor algorithms for these problems proceed in a number of stages, each except the 

last of which essentially performs bootstrapping for the following stage, while only the 

last stage actually solves the entire problem. The key observation for the present section 

is that if we simply omit the bootstrapping of the first stages, the algorithms still operate 

in a well-defined way, but with a certain increase in their resource requirements and, 

possibly, a certain degradation in the quality of their output. It even turns out that if we 

start with Stage to, for some to, the bootstrapping effect of Stage to is not affected by the 

absence of Stages 1, ... , to - 1, so that our original analysis applies without modification 

to all stages following Stage to . It therefore suffices to reanalyze Stage to with respect to 

its resource requirements and its effect on the output. 

Theorem 11.5: There is a constant € > 0 such that for all given n, kEIN, n-color 

coarse-profiling problems of size n can be solved on a TOLER.ANT PRAM using O(k2 ) 

time, O(nlogUc)n) processors and O(nlog(k)n) space with prob ability at least 1 _ 2-nE 

(Monte Carlo). 

Proof: Execute only Stages to, ... , T of the algorithm of Lemma 8.3, where 

to = max{l, T - 2(k + I)}, and note that Vto = O(log(k+l)n) (because Vt-2 :s; 10gVt for 
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t larger than some constant). The number of processors and memory cells allocated in 

Stage to clearly is O( nVto). By the proof of Lemma 8.6, the probability that a fixed color 

class is tardy in Stage t is still bounded by V;6, for t = to + 1, ... , T. Therefore the 

number of processors and memory cells allocated in each of Stages to + 1, ... , T remains 

O(n) (Lemma 8.7) . The amount ofresources consumed is hence as desired, and a running 

time of 0 (k 2 ) is achieved by allocating the resources needed in each of the 0 (k) stages 

using the algorithms of Theorems 11.3 and 11.4. 

Intuitively, the quality of an estimate is essentially independent of the stage in 

which it becomes defined. Correspondingly, it is not difficult to see that Lemmas 8.8 

and 8.9 hold without change; hence the linear-sum condition is satisfied with high 

prob ability. To show property (B) of a coarse-profile, fix a 2: 1 and i E {1, ... , n} with 

bi > O. In the present setting in which Stages 1 to to - 1 are omitted, the proof of 

Theorem 8.10 yields that :E;=to+l Pr(bi > abi and D t ) ::; 2-2
<1, where D t denotes the 

event that bi becomes defined in Stage t, for t = 1, .. . , T. Note that to is excluded 

from the sum; this is necessary because small color classes are certain to be tardy in 

Stage to, thus invalidating the analysis in Case 3 of the proof of Lemma 8.10. By the 

analysis of Case 2, however, Pr(bi > abi and D to ) ::; 2-8
<1, allowing us to conclude that 

Pr(bi > abi) ::; 2-2<1 + 2-8<1 ::; 2-<1. The output of the modified algorithm therefore indeed 

is a coarse-profile. • 

Theorem 11.5 represents the best that we can do on the TOLERANT PRAM; in 

particular, the number of processors needed is superlinear . On the ARBITRARY PRAM, 

on the other hand, we obtain a constant-time algorithm with optimal speedup with the 

sole drawback of superlinear space requirements. 

Theorem 11.6: There is a constant f > 0 such that for all given n, kEIN, n-color 

coarse-profiling problems of size n can be solved on an ARBITRARY PRAM using O(k2 ) 

time, n processors and O(nlog(1e)n) space with prob ability at least 1 - 2-nE (Monte 

Carlo ). 

Proof: Consider the algorithm of Theorem 11.5 and note that the processors allocated 

by the algorithm serve exclusively to determine the 1-rows of a number of graduated 

conditional scatterings according to Lemma 3.4( a). By Lemma 3.4(b), on the ARBITRARY 

PRAM the same can be achieved with just one processor for each element scattered, plus 

one additional processor per GCS. Since these processors can be allocated in a trivial 

manner from a pool of O(n) processors and the allocation of space can be done using the 

algorithm of Theorem 11.3, the claim folIows . • 

Definition: For all n, mEIN and .A 2: 1, the m-color semisorting problem of size n and 

with slack .A is the following: Given n integers Z1, ... , Zn in the range 0 . . m, compute n 
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nonnegative integers Yi , ... , Yn such that 

(1) For 1:S i < j:S n, ifzi # 0, then Yi # Yj; 

(2) For all i,j,k E {I, .. . ,n}, ifYi < Yj < Yle and Zi = ZIe, then Zj = Zi; 

(3) ma:x:{yj : 1 :S j :S n} = O(;\n). 

Theorem 11.7: There is a constant € > 0 such that for all given n, kEIN, n-color 

semisorting problems of size n and with slack O(log(le)n) can be solved on a TOLER.ANT 

PRAM using O(k) time, O(nlog(le)n) processors and O(nlog(le)n) space with prob ability 

at least 1 - 2-nE (Las Vegas). 

Proof: As in the proof of Lemma 9.7, we first computea profile with properties (A) 

and (B) of L~a 9.1. The procedure is similar to that of the proof of Theorem 11.5: 

With to = ma:x:{l, T - 2(k + I)}, we execute only Stages to, ... , T of the algorithm of 

Lemma 9.1. By the proof of Lemma 9.3, the number of tardy color classes in Stage t is 

still O(njvt), for t = to + 1, ... , T, sothat Stages to + 1, ... , T can be executed using O(n) 

processors and O(n) space (Lemma 9.4). The &mount of resources allocated in Stage to 

is O(nvto); hence, by Lemma 7.3, Stage to can be executed using O(nvto) = O(nlog(le)n) 

processors and memory ceils. Furthermore, Lemma 9.5 still holds, so the linear-sum 

condition is satisfied. Using an argument in the proof of Theorem 11.5 showing that 

~;=to Pr(bi > abi and Dt ) :S 2-4
, the proof of Lemma 9.6 carries over to the modified 

algorithm, and condition (B) of Lemma 9.1 is satisfied as weil. 

Now execute Stages to, ... , T of the algorithm of Lemma 9.7, still with 

to = max{l,T - 2(k + I)}. Although the series Vi, . . ',VT is now different, it is agam 

the case that Vto = O(log(Hi)n). Recall that each stage deactivates elements by placing 

them in suitably-sized arrays, one for each color. In every stage, the size of the array 

used for a particular color is chosen on the basis of a test scattering for that color, 

which roughly estimates the number of remaining active elements of that color. As 

an important consequence of this "self-correcting" mechanism, we were able to analyze 

the deactivation capability of a stage without relying on the deactivation carried out in 

earlier stages (if earlier stages perform poody, the resource requirements of the stage 

at hand go up, but it will still reduce the number of remaining active elements to the 

required level). Therefore Lemma 9.11 remains true (the last stage always deactivates all 

remaining active elements), and with the additional restriction t ~ to, the same holds for 

Lemmas 9.12-9.15. We must show that the algorithm is correct and bound its resource 

requirements. As in Section 9, this essentially boils down to bounding the total size of 

the arrays A i .t allocated in Stage t, for t = to, ... , T. For t ~ to + 1, this quantity can 

be seen to be O(njvn (Lemma 9.16); the reason is that in the analysis of a particular 

stage, Lemmas 9.13-9.15 can be applied to the previous stage. As regards Stage to itself, 

it is easy to see from lines (7) and (13)-(15) in the algorithm that the total size of the 
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arrays allocated in Stage to is O(nv}:). Since vl; = O(log(k)n), by the choice of to, it 

now follows essentially as in the proof of Lemma 9.17 that with high prob ability, the 

algorithm uses O(nlog(k)n) processors and O(nlog(k)n) space and solves the semisorting 

problem with slack O(nlog(k)n). • 

Corollary 11.8: . There is a constant € > 0 such that for all given n, kEIN, n-color 

chain-sorting problems of size n can be solved on a TOLERANT PRAM using O(k) time, 

O(nlog(k)n) processors and O(nlog(k)n) space with prob ability at least 1 - 2-ne (Las 

Vegas). 

Proof: As the proof of Theorem 10.6, using Theorem 11.7 instead of Theorem 9.21 and 

part (b) of Lemma 2.8 instead of part (a). • 
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