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Abstract. The generalized topologica.l sorting problem takes a.s input a 
positive integer /c and a directed, acyclic graph with some vertices labded 
by positive integers, and the goa.l is to labd the remaining vertices by 
positive integers in such a way that each edge leads !rom a lower-Iabeled 
vertex to a higher-Iabded vertex, and such that the set of labds used is 
exactly {l, ... ,/c}. Given a generalized topologica.l sorting problem, we 
want to compute a solution, if one msts, and a.lso to test the unique­
ness of a given solution. The best previous a.lgorithm for the generalized 
topologica.l sorting problem computes a solution, if one exists, and tests 
its uniqueness in O(nloglogn+m) time on input graphs with n vertices 
and m edges. We describe improved a.lgorithms that solve both problems 
in linear time O(n + m). 

1 Introduction 

Motivated by an application in the VLSI layout system BILL (Lengauer and 
Mehlhorn, 1984), Hagerup and Rülling (1986) introduced the generalized topo­
logical sorting (GTS) problem and considered two vanants of the problem. We 
focus here on the so-called constrained GTS problem, deferring a discussion of 
the unconstrained GTS problem to the final section of the paper. Given a par­
tial function j, Dom(j) denotes the domain of j, i.e., Dom(1) = {v I j(v) is 
defined}. 

Definition. An instance of the eonstrained GTS problem is a tuple P = 
(V, E,l. k), where (V, E) is a directed, acyclic graph, j is a partial function 
from V to IN = {I, 2, ... }, and kEIN. A solution to Pisa total {unction 
f : V - IN with the following properties: 
(1) fis monotonie, i.e., for all (u, v) E E, f(u) < f(v). 
(2) fis an extension of 1. i.e., for all v E Dom(j), f(v) = j(v). 
(3) f(V) = {1, ... , k}. 

In the application in the HILL system, an instance of the GTS problem is 
formulated by a user of the system, whose intent is to describe a certain desired 
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vertex labeling to the system in a convenient manner. If the instance has no 
solution, the user haS made amistake. If it has more than one solution, on the 
other hand, the labeling is underdetermined, and the user should be prompted 
for more information. We are therefore interested not only in deciding solvability 
and computing solutions to GTS problems, but also in testing the uniqueness of 
a given solution. 

In a more general perspective, the same question can be asked for other com­
putational problems: If a given instance has a solution, is that solution unique? 
Related questions play a certain role in complexity-theoretic investigations of 
more difficult problems, cf. the definition of UP (Valiant, 1976) as the dass 
of languages accepted in polynomial time by nondeterministic Turing machines 
with at most one accepting path for each input (a single accepting path corre­
sponds in a natural way to a unique solution). However, little work seems to have 
been done along these lines for problems that can be solved in polynomial time. 
It can be shown that there are problems for which testing the uniqueness of a 
solution is harder than producing an irbitrary solution, but we are not aware of 
any natural examples of this phenomenon. 

This paper describes linear-time algorithms for the following tasks: Given 
an instance P of the constrained GTS problem, (A) decide whether P has a 
solution and, if so, compute one; (B) decide whether a given solution to P is 
unique. It turns out that (A), the ezistence problem, is essentially solved by a 
known algorithm for conveX bipartite matching, whereas our handle on (B), the 
uniquene"" problem, is a careful analysis of the special solution produced by our 
algorithm for (A). The best previous algorithms for problems (A) and (B), due 
to Hagerup and Rülling (1986), have running times of O(nloglogn + m) for 
input graphs with n vertices and m edges. 

2 Preliminaries 

Consider from now on a fixed constrained GTS problem P = (V, E, 1, k) and 
let n = lVI, m = lEI and K = {1, ... , k}. The functions Low and High" defined 
below, are fundamental to our discussion. 

Definition. Let Low and High, be the functions defined on V by 

Low(v) = max{fL(u) + length,(p) lu E V and pisa path in G from u to v} 
High,(v) = min{JH(w) - length,(p) Iw E V and pisa path in G from v to w}, 

for all v E V, where length,(p) denotes the number of edges on the path p,and 
hand fH are the trivial extensions of 1 with . 

h(v) = {1(v), 
1, 

if v E Dom(i) 
if v E V\Dom(i) 

fH(V) = {1(v), 
k, 

if v E Dom(1) 
if v E V\Dom(1). 
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Low(v) and High(v) can be computed for all v E V in O(n + m) time by a 
procedure, similar to usual topological sorting, that processes the vertices once 

. in topologicalorder and on ce in inverse topological order. If f is a solution to 
P, clearly Low(v) ~ f(v) ~ High(v) for all v E V. In particular, we will assume 
throughout that 1 .~ Low( v) ~ High ( v) ~ k ~ n for all v E V, since oiherwise 
P fails in a trivial way to be solvable. It is then easy to see that Low and High 
are monotonie extensions of 1, i.e., the functions Low and High are solutions to 
P, except that their ranges may not include all of 1.(. 

3 The Existence Problem 

Consider the bipartite graph H on the vertex sets K and V that contains an 
edge (i,v), for i E K and v E V, exactly if Low(v) ~ i ~ High(v). His convez, 
i.e., the vertices connected to each v E V form a sei of consecutive integers. We 
make use of maximum matchings in H, but for reasons of convenience phrase 
the discussion in terms of what we call pairings. 

Definition. A pairing is an injective partial function 9 : V "-+ IN with Low( v) ~ 
g(v) ~ High(v) for all v E Dom(g). The size of a pairing 9 is IDom(g)l, and gis 
maximum if IDom(g)1 ~ IDom(g')I for all pairings g'. 

Lipski and Preparata (1981) gave an algorithm for computing maximum 
matchings in convex bipartite graphs, which is trivially converted into an algo­
rithm for computing maximum pairings. As demonstrated by Gabow and Tarjan 
(1985), the algorithm can be implemented to run in linear time O(n). The al­
gorithm below, where implementaiion details have been ignored, computes the 
same maximum pairing as the linear-time algorithm. Identify the partial function 
9 with the set ((v,g(v» I v E Dom(g)}. 

Sort the elements of V by their High values, i.e., compute a bijection 
0': {1, ... ,n} -+ V such that for all i,j EIN with 1 ~ i < j ~ n, 
High(O'(i» ~ High(O'(j»; 

9 :=0; 
ror i:= 1 to n do 

begin (* assign a value to 0'( i), if possible *) 
J := {Low(O'(i)), ... , High(O'(i»)}\g(Dom(g)); 

(* possible candidates for g( 0'( i)) *) 
üJ#0 
then 9 := 9 U ((O'(i), minJ)}; 

end; 

The vertices are hence processed in the order of increasing High values, and each 
vertex is mapped to the smallest allowed value still available, if any. In addition 
to being maximum, the pairing computed by the algoriihm is also regular in the 
sense of the following definition. 
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Definition. A pairing 9 is called regular if for all U,v E V with v E Dom(g) and 
Low(u) ~ g(v) ~ High(u) < High(v), we have u E Dom(g) and g(u) < g(v). 

Lemma 1. Any pairing computed by the above algorithm i.s regular. 

Prool. Let 9 be a pairing computed by the algorithm and let u, v E V be as in the 
definition of a regular pairing, i.e., v E Dom(g) and Low(u) ~ g(v) ~ High(u) < 
High(v). Then q-l(U) < q-l(v), i.e., u is processed before v. Since g(v) is 
included in g(Dom(g)) during the processing of v, it belongs to J during the 
processing of u. In particular, J :F 0 during the processing of u, so u E Dom(g). 
The claim now follows, since g(u) is chosen as minJ, yet is different !rom g(v). 

o 

Definition. For any partial function 9 !rom V to .IN, the total function 1 : V -
.IN given by 

{ 
g(v), if v E Dom(g) 

I(v) = High(v), if v E V\Dom(g) 

is called the High extension of g. 

Lemma 2. Let 1 be the High extension 01 a regular pairing g. Then lor all 
u,v E V, 

Low(u) ~ I(v) ~ I(u) =? High(v) ~ High(u). 

Prool. lf v Et Dom(g), then High(v) = I(v) ~ I(u) ~ High(u). Suppose therefore 
that v E Dom(g) and that High(v) > High(u). Then 

Low(u) ~ I(v) = g(v) ~ I(u) ~ High(u) < High(v), 

and the regularity of 9 implies that I(u) = g(u) < g(v) = I(v), a contradiction. 
o 

Lemma 3. Any High extension 1 01 a regular pairing 01 size k is a solution 
to P. 

Prool. We need only verify that 1 is monotonie. Let (u,v) E E. Since Low(u) < 
Low(v) ~ I(v) and High(v) > High(u), Lemma 2 implies that I(v) > I(u) . 0 

Theorem 1. Given an instance P = (V, E, 1, k) 01 the constrained GTS problem 
with !VI = n and lEI = m, the solvability 01 P can be tested in O(n + m) time, 
and il Pissolvable, a solution to P can be computed in O(n + m) time. 

Prool. First compute the functions Low and High corresponding to P in O(n+m) 
time. Then find a regular maximum pairing g. As stated above, tbis can be done 
in O(n) time. lf 9 is not of size k, clearly Pis not solvable. Otherwise, by 
Lemma 3, Pissolvable, and a solution to P can be obtained in O(n) time as 
the High extension of g. 0 
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4 The Uniqueness Problem 

This seetion develops an algorithm to test whether a given eonstrained GTS 
problem hasmore than one solution. Define a standard solution to be the High. 
extension of a regular pairing of size k (by Lemma 3, each sueh function is indeed 
a solution to P). We begin by investigating theproperties of standard solutions, 
one major goal beingto show that sueh solutions maximize the sum of all vertex 
labels. 

Definition. For any solution f to P, let S(f) = E"EV f(v). fis ealled maximal 
if S(f) ;:: S(f') for all solutions f' to P, and minimal if S(f) $ S(f') for all 
solutions f' to P. 

Definition. For any two solutions f and f' to P, let D(f', I) denote the direeted 
multigraph (K,A), where A = {(f(v),J'(v)) E K x K I v E V} should be 
taken as a multiset, i.e., it is formed without elimination of duplieates, and its 
eardinality is exactly n. 

Given two solutions fand f' to P, D(f', 1), informally, expresses the changes 
neeessary to turn f into J'. We now deeompose D(f', I) into simpler parts. 

Definition. Let D = (U, A) be a directed multigraph.A vertex in D is ealled 
outdominant in D if its outdegree in D (strictlY) exeeeds its indegree in D. A 
path P in D is called complete in D exaetly if pis simple and the first vertex on 
pis outdominant in D. A path. decomposition of Dis a set II of pathS in D such 
that eaeh edge in A lies on exactly one path in II, and such that each path in 
II is either eyclie or eomplete in D. 

Lemma 4. Every directed mwtigraph. D = (U, A) h.as a path. decomposition. 

Proof. By induetion on lAI. If lAI = 0, there is nothing to show. Otherwise ehoose 
PI as a eycle in D or, if Dis aeyelie, as a maximal path in D, whieh is neeessarily 
eomplete in D, and apply the induetion hypothesis to D1 = (U,A\Ad, where 
Al is the set of edges on Pl' The lemma follows, sinee every eomplete path in 
D 1 is a eomplete path in D. 0 

Definition. For every direeted multigraph D = (K,A) on the vertex set K, let 
L1(D) = E(i,i)EA (j - i). D is ealled incrementing if L1(D) > O. 

If D is a eycle, elearly L1(D) = 0, and if D is a eomplete path !rom i to 
j, then L1(D) = j - i. Furthermore, for any two solutions fand f' to P, it is 
easy to see that L1(D(f', 1)) = S(f') - S(f). Using the latter eharacterization of 
S(f') - S(f) as wen as the following lemma, we are finally able to demonstrate 
the maximality of standard solutions. 
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Lemma 6. For all standard solutions fand for all v E V with Ir1(l(v))1 ~ 2, 
we have f(v) = High(v). 

Proof. Let f be the High extension of a regular pairing g, and suppose that 
v E V has lf-l(l(v))1 ~ 2, but f(v) < High(v). Then v E Dom(g), and for some 
u E V with u ~ Dom(g), f(u) = High(u) ::: f(v). But then 

Low(u) ::; f(u) = f(v) = g(v) = High(u) < High(v), 

contradicting the regularity of g. o 

Lemma 6. Let f' be a solution to P and let f be a standard solution. Then no 
path decomposition of D(I', I) contains an incrementing path. 

Proof. Let p be a complete path in some j>ath decomposition of D(I', I) consist­
ing of the edges 

(io, id, (i1, i 2 ), ••• , (it - 1, i t ), 

and choose wb ••. 1 Wt E V such that for j = 1
"

" 1 t , 

For s = 1
" 

.. , t, consider now the assertion 

Q(s): High(w.) ::; i o. 

We will prove Q(s) for s = 1
"

" 1 t by complete induction on s. Q(t) implies 
it = f'(wt} ::; High ( wt} ::; i OI showing that p cannot be incrementing. 

Since io is outdominant in D(I', I) and f'(V) = K, If- 1 (io)1 > 1(I')-l(io)1 ~ 
1. Rence by Lemma 5, High(wd = f(wd = i o, providing the basis Q(l) for the 
induction. 

For the inductive step, fix s with 2 ::; s ::; t and assume that Q(j) is true for 
j = 1, ... 1 S - 1. Choose r with 1 ::; r ::; s - 1 such that 4-1 > i.- 1 ~ 4. This 
is possible since i j > i'_1 holds for j = 0, by the induction hypothesis Q(s - 1) 
and the fact that i o :f; i'_ll but not for j = s - 1. Now 

Low(w .. ) ::; f'(w .. ) = i .. ::; i._ 1 = f(w.) < 4-1 = f(w .. ), 

and Lemm~ 2 implies that High(w,) ::; High(w .. ) and hence, by the induction 
hypothesis Q(r), that High(w.) ::; i o, i.e., Q(s). 0 

Lemma 'T. Every standard solution f is a maximal solution to P. 

Proof. Let f' be an arbitrary solution to P and let {P1" .. ,P .. } be a path de­
composition of D(I',I). S(I') - S(f) = il(D(I',I)) = E;=1 il(Pi), and by 
Lemma 6, il(p.) ::; 0 for i = 1

"
, . 1 r. Hence S(I') ::; S(I). 0 

Assume in the remainder of this section that P is solvable. Raving shown that 
a maximal solution to P can be computed in O( n + m) time, we nat argue that 
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a minimal solution to P can be found within the same time bound. Whereas this 
fact can be demonstrated by simple modifications to the algorithms described in 
Section 3, a cleaner argument proceeds as follows: Consider the constrained GTS 
problem Prev = (V, E rev , k + 1-1. k), where E rev = {(v, u) E V x V I (u, v) E E} 
and Je + 1 -1 is the partial function flom V to IN with the same domain as 1 
and given by (Je + 1 - !)(v) = Je + 1 - !(v), for all v E Dom(!). It is easy to 
see that for any given function I : V - IN, I is a minimal solution to P if and 
only if Je + 1 - I is a maximal solution to Prev • O(n + m) time hence suffices to 
compute a standard (maximal) solution Im/U and a minimal sollJtion Imm to P. 
If Imm ::f. Im/U, then obviously I has more than one solution. On the other hand, 
if ImiD = lma:s., then all solutions to P are maximal. We will show that in this 
case, if I is a standard solution to P, then P has a solution different flom f if 
and only if such a solution can be obtained flom I simply by interchanging the 
labels of twovertices. Subsequently we show .how to identify two such vertices 
in linear time. 

For all v E V, call u EVa predecessor of vif (u, v) E E, and call w EVa 
successor of v if (v, w) E E. 

Definition. Let I bea solution to P. An interchangeable pair in I is a pair 
(Vi,V2) E (V\Dom(!))2 such that 

(1) I(vd < I(V2) . 
(2) I(u) < f(1.!d for all predecessors u of V2. 
(3) I(w) > I(V2) for all successors w of Vi. 

Lemma 8. Let I be a standard· solution. Then P has a maximal solution different 
Irom I if and only if there is an interchangeable pair in I. 

Prool. If (Vll V2) is an interchangeable pair in I, then the function f' : V - K 
given by 

obviously is a solution to P different flom I. 
Assurne now that P has a maximal solution f' different flom I and let 

D = D(f', 1). By Lemma 6, the indegree of each vertex in D equals its outdegree. 
Choose V2 E V with f'(V2) ::f. I(V2) such that f'(V2) is minimal, subject to the 

condition f'(V2) ::f. I(V2) . By formulating the corresponding property in terms 
of D, it is easy to see that 1'(V2) < I(V2) (f'(V2) is the smallest nonisolated 
vertex in D). Then choose Vi E V with I(vd < I(V2) and f'(vd ~ I(V2) such 
that I(vd is maximal, subject to the conditions I(vd < I(V2) and f'(vd ~ 
I(V2). The existence of Vi follows flom the properties of D: Since at least one 
edge in D (namely, (f(V2), f'(V2))) leads flom KH = {/(V2), ... , Je} to KL = 
{1, .. . ,/(v2) - 1}, at least one edge must lead flom KL to KH. Furtherrnore, 
I(vd ~ f'(V2) · The situation is depicted in Fig. 1. Note that f'(V2) = I(Vi) 
and/or I(V2) = f'(vd is possible. 
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8··· 
Fig. 1. The identification of an interchangeable pair (V1l V2)' 

We next verify that (V1, V2) satisfies the conditions stated in the definition of 
an interchangeable pair. First of all, it is dear that V1, V2 ~ Dom(j) and that 
f( V1) < f( V2). In order to verify condition (2), let u be a predecessor of V2 . Since 
f'(u) < f'(V2), it follows hom the choice of V2 that f(u) = f'(u) < f'(V2) ~ 
f( V1), as required. 

Finally consider condition (3) and letw be a successor of V1' Since fand f' 
are solutions to P, f(w) > f(vd and f'(w) > f'(V1)' If f(w) < f(V2)' we have a 
contradiction to the choice of V1. On the other hand, it follows hom condition (2) 
that w :f. V2. Hence if f(w) = f(V2), Lemma 5 implies that f(w) = High(w), 
which leads to the contradiction f'(w) > f'(V1) ~ f(V2) = High(w). We may 
therefore conclude that f(w) > f(V2)' 0 

Lemma 9. Given a solution f to P containing an interchangeable pair, an 
interchangeable pair in f can be identified in O(n + m) time. 

Remark. We cannot compute all interchangeable pairs, since their number may 
be n(n2 ). 

Proof. Consider the following algorithm: 

U1 := 0; 
for j := 2 to Je do 

begin 
Uj := (Uj-1 U {v E V\Dom(l) I f(v) = j - 1}) 

\{v E V I f(w) = j for some successor w of v}; 
if Uj :f. 0 
then 

begin 
Choose Zl E Uj with f(zt) maximal; 

for a11 Z2 E f- 1(j)\Dom(1) 
do if f ( u) < f (zt) for all predecessors u of Z2 

then output('An interchangeable pair: ',Z1lZ2); 

end; 
end; 

It is easy to see by induction that for j = 1, ... , Je, 

Uj = {v E V\Dom(l) I f(v) ~ j -1 and f(w) > j for all successors w ofv}. 
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Hence every pair (Z1. Z2) reported by the algorithm indeed isan interchangeable 
pair. Onthe other hand, suppose that (Vll V2) is an interchangeable pair in I. 
By the characterization of Uj given above, it is easy to see that VI E Uf ('02)' 

Hence in that execution of the loop in which j has the value !(V2), Zl will be 
chosen as some vertex with l(zI) ~ l(vI), and the algorithm will report the 
interchangeable pair (ZI1 V2) (and possibly other pairs). The algorithm hence 
correctly computes an interchangeable pair, if there is one. 

We now consider the complexity of the algorithm. First of all, the elements 
of V can initially be (bucket-) sorted in O( n) time by their images under I 
(i.e., labels). If U1 , • •• , U" are the successive values assumed by a single variable 
U implemented as a doubly-linked linear list with its elements sorted by their 
images under I, it is then possible to carry out the insertions into U in O(n) 
overall time, the deletions from U in O(n + m) overall time, and the selection 
of Zl in 0(1) time per execution of the loop. Since the remaining parts of the 
algorithm can also be executed in O(n + m) time, the lemma folIows. 0 

Theorem 2. Given an instance P = (V, E, 1, k) 0/ a constrained GTS problem 
with !VI = n and lEI = m, it ·is possible to test in O(n + m) time whether P 
has more than one solution. 1/ so, two distinct solutions to P can be computed 
in O(n + m) time. 

Proo/. If Pis solvable, compute a standard solution lmaz. and a minimal solution 
Imin to P. As previously described, this cu be done in O(n+m) time. If Imin # 
Imu., the two desired solutions to P have been produced. If Imin = lmax, compute 
an interchangeable pair in lmax, if one exists. By Lemma 9, this can be done 
in O(n + m) time. If an interchangeable pair exists, it directly implies a second 
(maximal) solution to P . If not, it follows from Lemma 8 that lmax is the only 
solution to P. 0 

5 Unconstrained GTS Problems 

In this section we review the connection between the constrained GTS problem 
studied in this paper and the original unconstrained GTS problem of (Hagerup 
and Rülling, 1986). 

An instance of the unconstrained GTS problem is a tuple (V, E, 1), where V · 
is a directed, acyclic graph and 1 is a partial function from V to IN. A solution 
to P is a total function I : V --+ IN such that for so me kEIN, I is a solution 
to the constrained GTS problem (V, E, 1, k) (informally, the choice of a suitable 
value for k is left to the algorithm) . 

Given an unconstrained GTS problem P = (V, E, 1), denote by P" the cor­
responding constrained GTS problem (V, E, 1, k), for all kEIN. Further let 
M = max,.ev Low(v) (computed with respect to an arbitrary P,,). It is implied 
in (Hagerup and Rülling, 1986) that the set {k E IN I P" is solvable} is either 
empty or of the form {M, M + 1, ... , kmax}, for some integer kmax ~ M. A proof 
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of this fact needs only show that if 'p"+l is solvable, for some Tc ~ M, then so is 
Pk. To see the truth of the latter claim, suppose that f is a solution to Pk+l' let 

U = {v E V I there is a path in (V,E) oflength Tc + 1- f(v) 
from v to a vertex w with f(w) =Tc + I} 

and note that since Tc ~ M, U contains neither vertices in Dom(j) nor vertices 
v with f(v) = 1. Now consider the function f' : V -+ IN with 

'( {f(V)-I, ifvEU f v) = 
f(v), if v E V\U. 

We will showthat f' is a solution to Pk. The fact noted above shows that f' is an 
extension of 1. If some vertex v E V belongs to U, then so does any predecessor 
U of v with f( u) = f( v) - 1 j hence f' is monotonic. Finally, if some vertex v E V 
with f(v) ~ Tc belongs to U, then so does at least one successor w of v with 
f(w) = f(v) + I, Le., f'(V) = {I, ... , Tc}. Bence f' is indeed a solution to Pk. 

As argued in (Bagerup and Rülling, 1986), it is now easy to cOJilpute solutions 
to unconstrained GTS problems and to test their uniqueness by answering the 
same questions for constrained GTS problems. Specifically, with the notation 
from above, P is solvable if and only if PM is, and a solution to P is unique if 
and only if PM has a unique solution, while PM +1 is not solvable. 

Acknowledgment. We are grateful to Günter Rote, who pointed out the pos­
sible relevance of convex bipanite matching. 
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