
Finding k points with a smallest enclosing
square

Michiel Smid∗

Max-Planck-Institut für Informatik

W-6600 Saarbrücken, Germany

michiel@mpi-sb.mpg.de

August 22, 1995

Abstract

An algorithm is presented that, given a set of n points in the plane and
an integer k, 2 ≤ k ≤ n, finds k points with a smallest enclosing axes-parallel
square. The algorithm has a running time of O(n log n+kn log2 k) and uses O(n)
space. The previously best known algorithm for this problem takes O(k2n logn)
time and uses O(kn) space.

1 Introduction

In statistical clustering and pattern recognition, the following problem often arises:
Given a set of n points in the plane and an integer k, find k points that are similar,
according to some similarity notion. (See Andrews [2] and Hartigan [4].) As an
example, in [3], Dobkin et al. consider the problem of finding a convex polygon of
smallest perimeter that contains k points. Aggarwal et al.[1] give algorithms for finding
k points such that their diameter, or their enclosing square, or the perimeter of their
enclosing rectangle is as small as possible.

In this paper, we consider the second problem studied in [1]. That is, we give
an algorithm for finding a smallest axes-parallel square containing at least k points.
Aggarwal et al. use k-th order Voronoi diagrams in the L∞-metric to solve this problem.
Their algorithm takes O(k2n log n) time and uses O(kn) space. We solve the problem
in O(n log n + kn log2 k) time using only O(n) space, by means of a “double-sweep”
algorithm. Hence, we improve the previously best known result by (roughly) a factor
of k.

In Section 2, we consider a selection problem that we need later in the paper.
Given two sets A and B of real numbers, we want to solve queries of the following
form: Given a real number p and an integer k, find a k-th smallest element in the

∗This work was supported by the ESPRIT Basic Research Actions Program, under contract No.
7141 (project ALCOM II).

1

set A ∪ (B + p), where B + p := {b + p : b ∈ B}. We also want to insert and delete
elements in A and B. Section 2 gives a simple and efficient solution to this problem.

In Section 3, we solve a special case of our problem: We find a smallest square
containing at least k points that has its left boundary on a fixed vertical line. This
problem is solved by a plane sweep algorithm and it uses the data structure of Section 2.
Then, in Section 4, we solve the complete problem. Again, we give a plane sweep
algorithm. For each point encountered by the sweep-line, we use the plane sweep
algorithm of Section 3 to check if the current optimal solution can be improved.

2 A selection problem

Let A and B be two sets of real numbers, and let n := |A|+ |B|. Let ≼ be an ordering
on the real numbers, such that the relative ordering of any two reals can be computed
in constant time. We want to store these sets such that for any real number p, and
any integer k, 1 ≤ k ≤ n, we can efficiently find a k-th smallest—w.r.t. ≼—element in
the set A ∪ (B + p), where B + p := {b + p : b ∈ B}. Moreover, it should be possible
to insert and delete elements in A and B.

A k-th smallest element in A is said to be of rank k. An element of rank greater
than |A| is defined as ∞.

We maintain two balanced binary search trees TA and TB, storing the sets A and B,
respectively, in sorted ≼-order in their leaves. With each node in each of these trees,
we store the number of leaves in its subtree. Hence, in A, we can find an element of
any rank in O(log n) time. Also, given a real number p, we can find an element of any
rank in the set B + p in O(log n) time. Finally, we can insert and delete elements in
A and B in O(log n) time.

In order to describe the query algorithm, we use the following notation: For i ≥ 0,
Ai denotes the set of the i smallest elements in A, i.e., the i leftmost elements in TA.
Note that A0 = ∅ and Ai = A for i ≥ |A|. The set Bi is defined similarly.

Now consider a query: Let p be a real number and let k, 1 ≤ k ≤ n, be an integer.
Algorithm select(k, p) below finds an element of rank k in the set A∪ (B+ p). During
the while-loop, it maintains the following

Invariant: i and j are integers, such that 0 ≤ i, j ≤ k and i + j ≥ k. The set
Ai ∪ (Bj + p) contains a k-th smallest element of A ∪ (B + p).

select(k, p):
begin
i := k; j := k;
while i > 0 and j > 0 and i+ j > k
do i′ := ⌊(i− j + k)/2⌋; j′ := k − i′;

let x be an element of rank i′ in A;
let y be an element of rank j′ in B;
if x ≼ y + p then j := j′ else i := i′ fi

od;
if i = 0

2

then let z be an element of rank k in B + p
else if j = 0

then let z be an element of rank k in A
else (* comment: i+ j = k *)

let x be an element of rank i in A;
let y be an element of rank j in B;
z := max(x, y + p)

fi
fi;
output the value of z
end

Lemma 1 Algorithm select(k, p) finds an element of rank k in the set A ∪ (B + p).
The running time is O(log n log k).

Proof: First we prove that the invariant is maintained during the while-loop. It is
clear that the set Ak ∪ (Bk + p) contains a k-th smallest element of A ∪ (B + p).
Therefore, the invariant holds after the initialization of the variables i and j. Consider
one iteration and assume that the invariant holds at the start of it. Then 0 < i, j ≤ k,
i+ j > k and the set Ai ∪ (Bj + p) contains a k-th smallest element of A ∪ (B + p).

It is straightforward to verify that 0 ≤ i′ ≤ k and i′+ j ≥ k for i′ = ⌊(i− j+k)/2⌋.
That is, if we set i := i′ in this iteration, then the first part of the invariant still holds.
Similarly, the first part of the invariant is maintained if we set j := j′.

Let x and y be elements with ranks i′ and j′ in the sets A and B, respectively.
Assume that x ≼ y + p. To prove that the second part of the invariant is maintained,
we must show that the set Ai∪(Bj′+p) contains a k-th smallest element of A∪(B+p).
Assume this is not the case. Let c be a k-th smallest element of A ∪ (B + p). Then, c
must be contained in the set (Bj \Bj′) + p. Note that all elements in Ai′ and Bj′ + p
are at most equal to y + p, which itself is less than c. Therefore, there are at least
i′ + j′ = k elements in A ∪ (B + p) that are less than c. This is a contradiction. If
y + p ≼ x, then it follows in the same way that the set Ai′ ∪ (Bj + p) contains a
k-th smallest element of A ∪ (B + p). This completes the proof that the invariant is
correctly maintained.

Consider the quantity i+ j − k. At the start of the algorithm, it has value k. It is
easy to verify that i′ + j − k ≤ (i+ j − k)/2 and i+ j′ − k ≤ (i+ j − k + 1)/2. That
is, during each iteration, the quantity i + j − k is reduced by a constant factor. By
the invariant, it is always nonnegative. The while-loop terminates if i+ j − k is zero,
or even earlier. Therefore, O(log k) iterations are made. In particular, the while-loop
terminates.

After termination, there are three possible cases. If i = 0, then the invariant says
that Bj + p contains a k-th smallest element of A ∪ (B + p). Similarly, if j = 0, Ai

contains such an element. Otherwise, i + j = k. Then, clearly, the maximal of the
maxima of Ai and Bj is a k-th smallest element in A ∪ (B + p). Hence, the query
algorithm is correct.

It remains to prove the running time. Each iteration takes O(log n) time. Hence,
the while-loop takes O(log n log k) time. After the while-loop is completed, it takes

3

another O(log n) time to compute the output. Hence, the entire query time is bounded
by O(log n log k).

The following theorem summarizes the result.

Theorem 1 Let A and B be two sets of real numbers and let ≼ be an ordering.
There exists a data structure such that for any real number p and any integer k,
1 ≤ k ≤ n = |A| + |B|, we can find a k-th smallest—w.r.t. ≼—element in the set
A ∪ (B + p) in O(log n log k) time. Moreover, we can insert and delete elements in A
and B in O(log n) time. The data structure has size O(n) and can be built in O(n log n)
time.

3 A special case

Let S be a set of n planar points having non-negative x-coordinates and let k be an
integer such that 2 ≤ k ≤ n. Let p be a point of S. Consider the smallest square, if it
exists,

1. whose left-side lies on the y-axis,

2. that has p on its bottom-side, and

3. that contains at least k points of S.

Let l(p) denote the side-length of this smallest square. (If this square does not exist,
then we define l(p) = ∞.) Our goal is an efficient algorithm that computes the minimal
value of l(p) over all points p in S. Notice that this is equivalent to computing a
smallest square containing at least k points of S, whose left-side lies on the y-axis.

We can visualize the definition of l(p) as follows. (See Figure 1.) Start with a
square having its bottom-left and bottom-right corners at (0, p2) and p, respectively.
Then, grow this square by moving the top-right corner under an angle of 45 degrees.
Stop as soon as it contains at least k points of S. Then, l(p) is the side-length of this
final square.

Let Sp be the set of all points in S having a y-coordinate at least equal to p2. We
define an ordering ≤p on this set:

For a, b ∈ Sp: a ≤p b iff max(a1, a2 − p2) ≤ max(b1, b2 − p2).

In geometric terms, a is at most equal to b in the ordering ≤p, if in the process of
growing the square, point b is not touched earlier than point a. Hence, if a ∈ Sp has
rank k w.r.t. this ordering, then the value of l(p) is equal to the side-length of the
corresponding square. Let

Sr
p := {a ∈ Sp : a1 ≥ a2 − p2},

and
St
p := Sp \ Sr

p = {a ∈ Sp : a2 − p2 > a1}.

4

���

•p

Figure 1: Determining l(p) by growing a square.

In geometric terms, Sr
p contains all points of Sp that enter the growing square through

its right side. Similarly, the points in St
p enter the growing square through its top side.

Within the set Sr
p , the ordering by x-coordinates coincides with the ordering ≤p. Sim-

ilarly, within the set St
p, the ordering by y-coordinates coincides with the ordering ≤p.

An element of rank k, w.r.t. the ordering ≤p, in the set Sp is the same as an element
of rank k, again w.r.t. the ordering ≤p, in the set Sr

p ∪ (St
p − p2). Therefore, we can

use the algorithm of the previous section, with ≼=≤p, to compute l(p).

We will compute the minimal value of l(p) with a plane sweep algorithm. First,
we discuss the relation of the orderings ≤p and ≤q.

Lemma 2 Let p and q be points of S, such that q2 ≤ p2. Then, S
t
p ⊆ St

q.

Proof: Let a ∈ St
p. Then a ∈ Sp and a2 − p2 > a1. Since q2 ≤ p2, we also have

a2 − q2 > a1. Clearly, a ∈ Sq. Therefore, a ∈ St
q.

Lemma 3 Let p and q be points of S, such that q2 ≤ p2, and let a ∈ Sr
p. Then, a ∈ St

q

if and only if a2 − a1 > q2.

Proof: Assume that a2 − a1 > q2. Since a ∈ Sr
p ⊆ Sp ⊆ Sq, it follows that a ∈ St

q.
The converse follows from the definition of St

q.

We sweep over the points of S from top to bottom. During this sweep, we maintain
the following information. Assume the (horizontal) sweep-line is at point p. Then the
sets A := Sr

p and B := St
p are stored in a structure of Theorem 1. (The points in A

and B are stored in increasing x- and y-order, respectively.) Moreover, we maintain
a balanced binary search tree D, storing the elements of the set {a2 − a1 : a ∈ Sr

p}
in sorted order in its leaves. With each element a2 − a1, we store the name of the

5

corresponding point a. The root of D contains a pointer to the rightmost leaf, and
the leaves are linked by pointers from right to left. Finally, a variable best contains
the minimal l-value found so far.

At the start of the algorithm, p is the highest point in S. We initialize A := {p},
B := ∅ and best := l(p) = ∞.

Consider one iteration, in which the algorithm sweeps from point p to q. We do
the following:

1. Insert q into A.

2. Insert q2 − q1 into D.

3. Walk along the leaves of D, from right to left. For each element a2 − a1 that is
greater than q2,

(a) delete a2 − a1 from D;

(b) delete a from A;

(c) insert a into B.

4. Find an element of rank k, w.r.t. the ordering ≤q, in A ∪ (B − q2) and compute
l(q).

5. best := min(best , l(q)).

If the algorithm has processed all points of S, the variable best contains the minimal
value of l(p) over all points p of S.

Note that the ordering ≼=≤q that is used in the algorithm depends on the point q.
That is, for different q’s, we get different orderings. It is easy to see, however, that
this does not cause any problems.

Theorem 2 The given algorithm finds the minimal element of {l(p) : p ∈ S}, in
O(n log n log k) time using O(n) space.

Proof: The correctness of the algorithm follows from the discussion above. Clearly,
O(n) space is used. Consider the running time. Each point of S is inserted once and
deleted at most once in the set A. Moreover, each point is inserted at most once
into B. Each difference q2− q1 is inserted once and deleted at most once in D. Hence,
the total time for updating A, B and D is bounded by O(n log n). For each point
q ∈ S, we compute an element of rank k in the set A ∪ (B − q2). By Theorem 1, this
takes O(log n log k) time per point.

If p ∈ S has the smallest l-value, then we can easily find k points that are contained
in the corresponding square, within the given time and space bounds.

6

4 The final algorithm

We now give the algorithm that finds k points with a smallest axes-parallel enclosing
square. This is equivalent to finding a smallest square that contains at least k points.
Let S be a set of n points in the plane and let k, 2 ≤ k ≤ n be an integer. The
following lemma is clear.

Lemma 4 There is a smallest square containing at least k points, that contains points
of S on its bottom- and left-side.

For convenience, we add an (n+1)-st point with x-coordinate at −∞. The points
are stored in an array X[0..n], in increasing x-order. The algorithm sweeps over the
points from right to left. Assume the sweep-line is at point p. Let Sp be the set of
points in S \ {p} that have been visited already. A variable smallest is maintained,
containing the best solution found so far, i.e., the side-length of a smallest square
containing at least k points of Sp. All points of Sp that have a distance less than
smallest to the sweep-line, are stored in a balanced binary search tree Y , in sorted
y-order. Variables i and j are maintained, such that Y and {X[i], X[i+ 1], . . . , X[j]}
contain the same points.

At the start of the sweep, we initialize smallest := ∞, Y as the empty tree and
i := j := n+ 1.

Consider one iteration, in which the algorithm sweeps from point p to q. We do
the following:

1. Insert p into Y .

2. Find the set V consisting of all points in Y that have a y-coordinate in the open
interval (p2 − smallest : p2 + smallest).

3. Use the algorithm of the previous section to find a smallest square whose left-side
lies on the vertical line through p, that has a point of V on its bottom-side and
that contains at least k points of V . Let best be the side-length of this smallest
square.

4. smallest := min(smallest , best).

5. i := i − 1. Walk along X starting at X[j]. As long as the difference between
the x-coordinate of X[j] and q1 is greater or equal to smallest , delete point X[j]
from Y and decrease j by one.

If the algorithm has visited all points of S, it outputs the value of the variable smallest .

To prove the correctness, consider one iteration of the algorithm. It is clear that
only points in the set V can improve the current solution. Moreover, if the current
solution is improved, then point p must be part of it. The algorithm of the previ-
ous section finds a best solution in the set V having its left-side on the vertical line
through p. Clearly, if the addition of p leads to a better solution, the algorithm will

7

find it. Therefore, during each iteration, the information in smallest , Y , i and j are
updated correctly.

Hence, the entire algorithm finds a smallest square that contains at least k points
of S and that contains points of S on its bottom- and left-sides. By Lemma 4, this
gives an optimal solution to our problem.

To analyze the running time, we need a bound on the size of the set V .

Lemma 5 |V | ≤ 2k − 1.

Proof: The set V is contained in the rectangle

[p1 : p1 + smallest)× (p2 − smallest : p2 + smallest).

This rectangle consists of two squares of side-length smallest . Each such square can
contain at most k − 1 points of V \ {p}, because otherwise smallest was not the best
solution in Sp. This proves that V has size at most 1 + 2(k − 1).

It takes O(n log n) time to build the array X. Each point of S is inserted once and
deleted at most once in the tree Y . Hence, O(n log n) time is spent to update Y during
the algorithm. Consider one iteration. The set V is found in time O(log n + |V |) =
O(log n+ k). Then, the algorithm of the previous section is called for a set of size at
most 2k− 1. This takes O(k log2 k) time. Therefore, the entire sweep algorithm takes
time

O(n log n+ n(log n+ k) + nk log2 k) = O(n log n+ kn log2 k).

Clearly, the algorithm uses O(n) space. The algorithm can easily be extended so that it
also finds k points that are contained in the smallest square found, without increasing
the complexity. This proves our final result:

Theorem 3 Let S be a set of n points in the plane and let k, 2 ≤ k ≤ n be an
integer. In O(n log n + kn log2 k) time, using O(n) space, we can find k points of S
with a smallest axes-parallel enclosing square.

References

[1] A. Aggarwal, H. Imai, N. Katoh and S. Suri. Finding k points with minimum
diameter and related problems. Journal of Algorithms 12 (1991), pp. 38-56.

[2] H.C. Andrews. Introduction to Mathematical Techniques in Pattern Recognition.
Wiley-Interscience, New York, 1972.

[3] D.P. Dobkin, R.L. Drysdale, III, and L.J. Guibas. Finding smallest polygons. In:
Computational Geometry, Advances in Computing Research, Vol. 1, JAI Press,
London, 1983, pp. 181-214.

[4] J.A. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

8

