
MAX-PLANCK-INSTITUT
FUR

INFORMATIK

An O(n log n) algorithm for finding a.

k-point subset with

minimal Loo-diameter

Michiel Smid

MPI-I—93—116 April 1993

mii
INFORMATIK

Im Stadtwald

66123 Saarbrücken

Germany

An 0(n log n) algorithm for finding a.
k-point subset With

minimal Loo-diameter

Michiel Smid

MPI—I—93—116 April 1993

An O(_n log n) algorithm for finding a k-point
subset With minimal Loo-diameter“

Michiel Smid
Maz-Planck-Instz'tut für Informatik

W- 6600 Saarbrücken, Germany

michiel©mpi—sb.mpg.de

April 5, 1993

Abstract

Let S be a set of n points in d—space, let R be an axes-parallel hyper-rectangle
and let 1 $ k _<_ n be an integer. An algorithm is given that decides if R can be
translated such that it contains at least Ic points of 5. After a presorting step, this
algorithm runs in 0(n) time, with a constant factor that is doubly-exponential
in d. Two applications are given. First, a translate of R containing the maximal
number of points can be computed in 0 (n log n) time. Second, a. k-point subset
of S with minimal Loo-diameter can be computed, also in 0(nlog n) time. Using
known dynamization techniques, the latter result gives improved dynamic data
structures for maintaining such a k-point subset.

] 1 Introduction

In statistical clustering and pattern recognition, the following problem often arises: Given
a. set S of n points in d—dimensional space and an integer I:, find a subset of S of size 1:
that minimizes some proximity measure. Measures that have been considered are the
perimeter of the convex hull of the k points, its diameter and the perimeter of its smallest
enclosing rectangle or square. See Dobkin et al. [4], Aggarwal et al. [1], Smid [9], Eppstein
and Erickson [5], and Datta et al. [3].

In this paper, we take the Lao-diameter as the proximity measure. That is, we want
to find k points that have minimal Loo-diameter among all k-point subsets. Note that
this is equivalent to finding a smallest d—dimensional altes-parallel cube that contains at
least k points.

We summarize the results that were known for this problem. In [1], the first efficient
algorithm for the planar version occurs. It uses k-th order Voronoi diagrams in the Lao-
metric. The running time of this algorithm is bounded by 0(k2n log n) and it uses 0(kn)

*This work was supported by the ESPRIT Basic Research Actions Program, under contract No. 7141
(project ALCOM II).

space. In [9], a simple sweep algorithm is given that solves the problem in O(n log n +
kn log2 k) time using O(n) space.

This running time was subsequently improved in [5]. In fact, their algorithm is
the first efficient one that solves the d—dimensional version of the problem for fixed
d 2 2. Starting by computing for each point its O(k) nearest neighbors leads to an
O(nk log n+nkd/2‘1 log2 k) time algorithm that uses 0(nk+kd/2) space. Using techniques
that were designed for closest pair problems, this result was improved in [3]: There, an
algorithm is given with 0(n log n + 1'z.l=:"[/2‘llog2 k) running time using O(n + lcd/2) space.
Note that for the planar case, the time resp. space bounds of the latter algorithm are
0(n log n + nlogz k) resp. 0(n) . This seems to be the status of the problem.

In this paper, we improve these results drastically: We give an algorithm that, given
any set S of n points in IR}! and any integer 1 g k _<_ n , computes a k-point subset with
minimal Loo-diameter, in O(n log n) time using O(n) space. That is, the complexity
of the problem does not depend on Is. The constant factor, however, is 20992"). This
makes the algorithm unsuited for practical applications.

Our algorithm is based on an efiicient solution to the following problem: Given a
til-dimensional axes-parallel rectangle, decide if it can be translated such that it contains
at least 1: points of S . The solution in [5] also depends on a solution to this problem.
There, the problem is solved using a variant of the algorithm of Overmars and Yap [8]
that computes the volume of the union of a set of altes—parallel rectangles. This variant
takes O(nd/2 log n) time.

We show that the problem of deciding if the rectangle can be translated such that
it contains at least k points can be solved in O(n log n) time. In fact, after a presorting
step, the algorithm takes only O(n) time. In this algorithm, the doubly—exponential
dependence on d occurs.

Note that this result immediately gives an O(n log n) time algorithm for translating
the rectangle such that it contains the maximal number of points. This result seems to
be new. The related problem for a planar Circle can be solved in 007?) time, see Chazelle
and Lee [2].

This paper is organized as follows. In Section 2, we recall degraded grids. Degraded
grids have basically the same properties as standard grids. They can be constructed,
however, without using the floor function. In this way, our algorithms fall inside the
algebraic decision tree model.

In Sections 3 and 4 , we consider the problem of deciding if a hyper-rectangle R can
be translated such that it contains at least k points. First, in Section 3, we consider
the restricted case where all points of 5 lie in a rectangle that has sides of lengths twice
the side—lengths of R. We give a recursive algorithm for this problem with running time
O(n). Then, in Section 4, degraded grids are used to reduce the general problem of
translating R to the restricted version of Section 3.

In Section 5, we solve the problem of finding a k-point subset with minimal La,-
diameter. As mentioned already, this is equivalent to finding a smallest d—dimensional
axes-parallel cube that contains at least k points of S . The algorithm makes a binary
search in the set of all d (;) differences [p,- — qgl, where p, q E S and 1 S i g d. To test
one such difference, the algorithm of Section 4 is used. As in [7], the set of candidate
difl'erences is maintained implicitly. In this way, the algorithm uses only O(n) space.

In Section 6, known dynamization results of [3] are used to obtain improved data

structures that maintain a k-point subset With minimal Loo-diameter if points are inserted
and deleted. In Section 7, we give some concluding remarks.

2 Preliminaries: Degraded grids
Later in this paper, we want an algorithm that decides if a d—dimensional axes-parallel
rectangle R can be translated such that it contains at least k points of a given set of n
points. A possible solution is to construct a grid having a size that is equal to the size
of R, and solve the problem for subsets that are contained in neighboring cells of this
grid. Using this approach, however, we need the floor-function to find the grid cell that
contains a given point. Hence, the algorithm falls outside the algebraic decision tree
model.

In this section, we recall degraded grids. These have basically the same properties
as standard grids. We can build and search in a degraded grid, however, Without using
the floor—function. Degraded grids were introduced in [7]. We use a somewhat simpler
notion that was introduced in [3].

A d-dimensional axes-parallel rectangle of the form

[a1:51]><[a2:bz]x... ><[ad:bd],

where a,; and 175, 1 S i g d, are real numbers is called a box. If b,; = a.; + 5 for all i , then
the box is called a ö-boz.

Definition 1 Let S be a set of n real numbers and let 5 be a positive real number. Let
a l , az, . . . ‚az be a sequence of real numbers such that

I . f o r a l l lS j< l , a_ ,—+1Za , -+6 ‚

2 . fo ra l l pES ,a1$p<az ,

3. for all 1 $ j < 1, if there is a point p E S such that a_,- S p < a_.‚-+1‚ then
054.1 = a_,— + 5 .

The collection of intervals [a3- : a_,—+1], 1 _<_ j < 1 , is called a one-dimensional degraded
5—grid for S . I f p is a real number, then p is said to be contained in the internal [a,- : a_,-+1]
£i E? < “5+1-

Constructing a one-dimensional degraded 6-grid: Sort the elements of 5. Let
pm 5 pm 3 . . . 3 pm be the sorted sequence. Let al := pm. Let j Z 1, and assume
that a l , . . . , a_.‚- are defined already.

If there is an element of S that lies in the half—open interval [a,- : a,- + 5), then we set
a_.‚-+1 := a:,- + 6 . Otherwise, we set a_,—+1 to the value of the smallest element in S that is

' larger than a,. The construction stops if We have visited all elements of 5.

Definition 2 Let S be a set of n points in d—space and let 6 be a positive real number.
For 1 S i S d, let S; be the set of i-th coordinates of the points in S . Let

[a,-,- me,-+1], 1 S 5 < l„

be a one-dimensional degraded 6-grz'd for the set 3;. The collection of d-dimensional
bares

d
“[aij, : ag,-54.1], where 1 S j; < 15,
i=1

is called a d-diniensional degraded ä-grid for S . A point p = (111,192, . . . , pg) 6 IR" is said
to be contained in the box I'll-i=1 [ag,—‚. : ai‚j‚'+1] if ag,-‚. S p; < ag,-‚+1 for all 1 S i S d.

See Figure 1 for an example. The following lemma follows immediately.

011 012 G13 G14 G15 016 G17

024 , .
. 0

. . 0

.

0:23 ° .
l
|
|
I
I

z 5
l
l
l
l

&G22 . 4
o o o ,

" . . . 6“

. |

.. ° &021 ' _
¢-—-_>_ 6 - -—> <—- 5 «un-

Figure 1: Example of a degraded ö-grid.

Lemma 1 Let p 6 IR“! and let B be the boa: in the degraded 6-grid for S that contains p.
All points of S that are within Log-distance 5 from p are contained in B and in the 3d - 1
boxes that surround B.

Constructing a d-dimensional degraded 5-grid: Assume the points of S are stored
in an array S . For each 1 S i S d, sort the elements of 55. Give each element in S,- a.
pointer to its occurrence in S .

For each 1 S i _<__ d, construct a one-dimensional degraded 6-grid [ag,- : aid—+1], 1 5
j < li, for the set S,; using the algorithm given above. During this construction, for
each j and each element pi—Which denotes the i—th coordinate of point p—such that
a,-_.,- S p,; < Gig-+1, follow the pointer to S . Store the numbers 055 and j with the occurrence
of p in S .

At the end, each point in S stores with it two vectors of length cl. If point p has
vectors (bl, b2, . . . , ba) and (j1,j2, . . . , ja), then p is contained in the ö-box with “lower—
left” corner (bl, bz, . . . , bd). This ö-box is part of the ji—th 5-slab along the i-th axis.

These vectors implicitly define the degraded 6-grid. Note that each j.- is an integer
in the range from 1 to n . Hence, we can sort the vectors (jl , jg, . . . , ja) in O(n) time

4

by using radix-sort. This gives the non—empty boxes of the degraded grid, sorted in
lexicographical order.

Consider a. non-empty box B of the degraded 5-grid. Let (6;, b2, . . . , bd) be the lower-
left corner of B . If the box B' with lower-left corner (61,132, . . . , bd + 5) is non-empty,
then it occurs next to B in the sorted list of boxes. That is, if we are in B , then we can
access B' in constant time.

We extend the algorithm: For each 1 S i < d, do the following: Sort the vectors
(j l , . . . , j,-_1,j,-+1, . . . jd,j,-) lexicographically. Then, given box B , we can access the box
with lower-left corner

(b1 , . . . , b.;_1, b.; + 5, 554.1, . . . , ba) ,

provided it is non-empty, in constant time.
We summarize the result:

Theorem 1 Let S be a set of n points in d-space and let 6 be a positive real number.
Assume the points of S are stored in an array S . Moreover, assume that for each
1 S i _<_ d, the elements of S,- are sorted, and each element of this set contains a pointer
to its occurrence in S .

1. We can construct a d-dimensional degraded 6-grz'd for S in O(n) time using O(n)
space.

2. Given a query point q E md, we can in O(log n) time decide if the box of the
degraded grid that contains q is empty or not. If this boa: is non-empty, we can
access it in O(log n) time.

3. Given a non-empty boa: B of the degraded grid and an integer 1 S i S d, we can
access the boa: that is immediately to the right of B along the i-th dimension—
provided it is non—empty—in constant time.

. Remark: We have defined degraded grids for which the value of 6 is the same for each
dimension. Of course, we can also define degraded grids having a slab-width of 5,- along
the i-th dimension, 1 S i S d. It is clear that all results of this section still hold.

3 Translating a box such that it contains at least k
points: a restricted case

Let ahaz , . . . ‚ad be positive real numbers, let S _C_ IR“! be a set of n points that are
contained in the box B := Hifi—a,- : a,], and let k be a positive integer. We want an
algorithm that decides if the box Hf=1[0 : ai] can be translated such that it contains at
least k points of S. It is allowed that the translate of this box intersects the boundary
of B .

For simplicity, we only treat the case that all ai’s are equal, say a,- = 1 for all
1 S i S d. Treating the general case can be done in exactly the same way. Since this
does not give any more insight into the algorithm, we leave the details to the reader.

So our problem is as follows. Let S be a set of n points that are contained in the
2-box [-—1 : l]d, and let k be a positive integer. We want an algorithm that decides if

5

there is a 1-box that contains at least k points of S . If such a 1-box exists, we want to
compute i t .

1 1
W

9

V
F; T U Fg' 0 U

T;

__1 —-—1
——1 0 f 1 —-1+f 0 f 1

(a) (b)

s0 0 f

—1+f 1
(c) (d)

Figure 2: (a) F,. = T U U and IT| = |U[Z n/4; (b) T,. = VU W and [VI == |W | _>_ 12/16;
(c) ISO] _<_ 1511/16; (d) is there a. 1-hour that contains at least k — |V| points of S” \ V?

We first give an intuitive description of the algorithm for the planar case. Refer to
Figure 2(a). Partition S into sets F; resp. F,. consisting of those points that lie to the
left resp. right of the y-axis. Assume w.1.o.g. that |F‚.| _>_ n/ 2. Compute the median f of
the :c-coordinates of the points in F,. Then, partition F,. into sets T resp. U consisting
of those points having an :c-coordinate less than resp. at least equal to f .

We recursively solve the problem for the set F; U T. Note that this set has size at
most 3n/ 4. Clearly, if there is a l-box that contains at least]: points of F; U T, we are
done. So, assume there is no such 1-box. Then, if there is a 1-box containing at least 1:
points of S , this box must contain points of U. Moreover, such a 1—box cannot contain
any points of F; that have an :c-coordinate less than —1 + f . Therefore, we remove these
points from S . Let S’ be the resulting set and let Fz’ = 3’ fl F}.

We proceed as follows. Refer to Figure 2(b). Consider the set T . Partition this
set into sets T; resp. T,. consisting of those points that lie below resp. above the z-axis.
Assume w.l.o.g. that |T,.| Z IT| /2 2 n/ 8. Compute the median g of the y-coordinates

6

of the points in T.,. Partition T,. into sets V resp. W consisting of those points having a.
y-coordinate less than resp. at least equal to 9.

Let So be the set of all points in S’ that have a y-coordinate less than 9. (See
Figure 2(c).) We recursively solve the problem for the set 50. (Hence, in this recursive
call, we start partitioning So by :c-coordinate.) Since IWI 2 n/ 16, the set So has size at
most 1511/16. Again, if there is a 1—box that contains at least k points of So, we are done.
Assume there is no such 1—box. At this point, we know that if there is a l-box containing
at least k points of S , this box must contain all points of V . Moreover, such a 1—box
cannot contain any points of So that have a y-coordinate less than ——1 + g . Therefore,
we remove these points from S’ . Let S” be the resulting set. Then, it sufiices to solve
the problem of deciding if there is a l-box containing at least k — |V| points of S" \ V.
(See Figure 2(d).) We solve this problem using the same algorithm recursively. Note
that since IV] 2 n/ 16, the set 5” \ V has size at most 15n/ 16. Moreover, it is clear that
we may assume that n 2 k. Therefore, I: — [V] g k -— 11/16 S 15k/16. That is, we have
reduced both parameters n and 1: by a constant factor.

To summarize, let P (n ,k) denote the problem of deciding if there is a l-box that
contains at least 1:: points of a set S g [—1 : 1]d of size n. Then, in 0(n) time, our
algorithm reduces P(n, I:) to problems P(3n/4, k), P(15n/16, k) and P(15n/16, 15k/16).
At first sight, this does not lead to an eficient algorithm.

We may assume, however, that n < 419: If 'n. Z 4k, then one of the 4 quadrants of the
plane contains at least 1: points of S . Clearly, in this case, there is a 1-box that contains
at least 1: points of 5 . That is, if n Z 41:, we can solve our problem in a trivial way and
there are no recursive calls.

So assume that n < 419. In the first two recursive calls, the value of 1: remains the
same, whereas the size of the point set decreases. After a constant number of such
iterations, the point set will have size less than I:. But then the algorithm can stop
because there is no 1—box that contains at least It points of this small set. As we will
see, this observation causes the running time of the entire algorithm to be 0(n) .

This concludes the intuitive description of the algorithm. The formal algorithm
is given in Figure 3. In this algorithm, the coordinates of a point p are denoted by
pl, 192, . . . , 174. In Step 4, local variables occur that satisfy the following

Invariant:

1. f o r a l l lSd : —151_ ,—$0£r ,—51 ,and15=00r13=0 ,

2. og igd ,
3. F“) ; s“) _c_ s , and S(*)g1'[j=,[—1+r,-:1+l,-],

4. for all 1 $ j S 5, the j—th coordinates of the points in FG“) are contained in the
interval [l,- : r5],

5. if there is a 1-box that contains at least !: points of 5 , then there is such a 1-box
that

(a) contains at least k points of S (") , and that
(b) contains the box “3:1[15 : r,].

Algorithm Place(S, n, k)

Comments: S is a set of n points in [—1 : 1]d and 1; is a positive integer. The algorithm
outputs a l—box that contains at least k points of S, if such a box exists. Otherwise, it
outputs NO.

Step 1. If n < 22"!+1 , solve the problem by brute force. If a 1-box is found that contains
at least 1: points of S, output this box and stop. Otherwise, output NO and stop. If
n 2 2244-1, go to Step 2.

Step 2. If n < 19, output NO and stop. Otherwise, go to Step 3.

Step 3. If n 2 2%, find a d—dimensional quadrant of]R‘JE that contains at least 1: points
of 5 . Output the 1-box that lies in this quadrant and that has a corner at the origin,
and stop. Otherwise, if n < Zak, go to Step 4.

Step 4. (* We know that k 5 'n, < d. *)

begin
11 := := l d z=r1 := :=rd:=0; Fm := S; S“) := S;i:=0;
(* Invariant holds. *)
while :: 7E (1
do F; :={p€F(): pg.” <0} ; F,. :={p€F("):p,-+1 20} ;

(* F; n F,. may be non-empty. *)
if |l Z |F(‘)|/2 then h := 1 else h := r fi;
f := median of {p,;+1 :p 6 Pk};
T == {10 6 Fa = lpa+1l S lfl}; U == {P 6 Fa = lPi+1| ?. lfl};
(* Ties are broken such that T n U = @, IT| = HFhI/Z] and |U| = UFhl/ZJ- *)
if h = 1
then 33’). = {p e“ s“) \ U „„-+1 2 f}
else 533 == {p e s“) \ U = p... s f}
fi;nß") == ISSN;
Place(S((, ,)ng) , k);
if h = I
then Ii+1 :: f; ”+1 := 0; SGH) == {P € 5(13) 2P£+1 S 1 +li+1}
else n+1 == f; z£+1 == 0; SGH) == {P € 3(i) 3P£+1 Z —1 + n+1}
fi;

F(£+1) := T;

i := i + 1
(* Invariant holds. *)

od;
501“) := S“) \ F“); n’ := |S(d+1)|; k' := k — |F(d)|;
Place(S(d+1) , n’, k’)
end

Figure 3: Translating a 1-box such that it contains at least 1: points.

Lemma 2 Let 0 _<_ t < d. If the while-loop of Step 4 makes at least i + 1 iterations, then

1. l l _>_ 12/2”, and

2. |S£‘)| < 1 _+ (1 —- 1/22‘+2)n.
If the while-loop makes d iterations, then ISM“)! _<_ (1 — 1/22d)n and k' S (1 —— 1/22d)k.

Proof: The proof of 1 follows by induction on i , because

W“)! = IT| = nal/21 2 IFhl/2 2 müM/4.
To prove 2, note that

IUI = nal/21 2 LIF‘.‘)I/4J z Ln/22‘+2J > n/zw — 1.
Combining this with the fact that U g S“) yields

Isé"| 3 IS“) \ UI = IS“)! -— IUI < n — («z/22‘“ — 1).

Assume the while-loop makes d iterations. Then

IS“+1)| = 13% — IF“)! s (1 — 1/2“»,

and
k’ = k _ |F(")| _<_ k — 12/2“ 3 (1 - 1/2“».

This proves the lemma. I

Lemma 3 Algorithm Place is correct.

- Proof: We prove the claim by induction on n . If n < 2““ , the algorithm is clearly
correct. Let n 2 22““H and assume the algorithm is correct for sets of size less than n. Let
S be a set of size n . I fn < k or n Z Zak, then Place(.5', n , k) gives a correct output. So it
remains to consider the case where k S n < 2%. By carefully inspecting the algorithm,
it follows that during the while-loop of Step 4, the invariant is correctly maintained.

We prove that Place(S‚n, k) outputs a l-box containing at least k points of S if and
only if such a 1—box exists.

First assume there is no 1-box that contains at least k points of S . Then, for each
subset S’ of S , there is no 1-box that contains at least}: points of S’. Therefore, by the
induction hypothesis, each recursive call Place(S((‚'),ng‘)‚ k) , for 0 5 i < d, outputs NO.
(Since n 2 22d“, Lemma 2 implies that ng) < n . Hence, the induction hypothesis can
be applied.) We claim that the recursive call Place(S(d+1),n' , k’) also outputs NO.

Assume the contrary. Then, by the induction hypothesis—which can be applied since
'n' < n—this recursive call outputs a l-box B that contains at least k’ points of SU“).
The invariant implies that

d
SW1): SW \ F“) g H[—1 + r‚- : 1 +15],

j=1

d

FU) g HR; :13] ,
jr.-1

and
—1+r,-sz,-sr,-51+z,-.

Let b1, bg, . . . , bd be real numbers such that

B: fi [b j i b j+1] .

i=1

Let 1 £ j S d and consider the j—th interval [b,- : bj + 1] of B. We consider three cases:
Case 1: I),- < —-1 + r_.‚-. Then we translate B along the j-th axis to the “right” until the
left endpoint of its j-th interval lies at —1 + r_.‚-. Note that then the j—th interval of B
contains the interval [l,- : l - Moreover, B still contains at least k’ points of SW“),
Case 2: ——1 + r,— g b,- S 15. Then the j-th interval of B contains the interval [l,- : r,].
Case 3: bj > l_,-. Then we translate B along the j—th axis to the “left” until the right
endpoint of its j—th interval lies at 1 + l_,—. Then, the j-th interval of B contains [l,- : r5].
Moreover, B still contains at least k’ points of SM“).

These three cases prove that we may assume that B is positioned such that

d
II”-"' : 7'5] g B.

5=1

Therefore, B contains all points of F“). Hence, B contains at least k’ + |F(d)[= 14: points
of the set S (“E“) U F“) ; S . This is a contradiction.

We have proved that the algorithm outputs NO, if there is no l-box that contains
at least k points of S . To prove the converse, assume there is a 1-box that contains
at least 1: points of 5. If one of the recursive calls of the while-100p finds such a 1-
box, we are done. So assume no such 1-box is found during the while-loop. Consider
what happens immediately after the While-100p. By the invariant, there is a l-box that
contains at least k points of 5(a) and that contains Hj=1[l_,- : "‘jl- Moreover, F“) g S“)
and F“) ; flf=1[l‚- : "‘a‘l- Hence, there is a 1—box containing at least 1: — [Fm] = k’
points of 5(a) \ F (d) = SM“). Since ISÜH'UI < n, the induction hypothesis implies that
the recursive call Place(S(d+1),n' , k') finds such a 1-box. Clearly, this l-box contains at
least 1: points of S. This completes the proof. I

We now analyze the complexity of the algorithm. Let T(n, k) denote the worst-case
running time of PIace(S,n, k). Then, T(n, k) = 0(1) if n < 22‘”1 or n < k. If n _>_ 2d}:
and n _>_ 22““, then T(n,k) = O(n).

Assume that n Z 22“!+1 and k 5 n < 2%. Let a = 1 — 1/2““. Then, for some
constant c,

d—l _
T(n, k) g an + Z) „1550|, k) + T(|S(°'+1)[, y).

£=O

Since 12. 2 22d“, Lemma 2 implies that |SSÜI 5 am, |S(d+1)| S am, and k’ S ak.
Therefore, - -

T(n, k) g cn + d - T(om, k) + T(om, ak).

10

Applying this recurrence L times yields

T(n,k)_<_ri12_c(id)dl“ialn+z(L)ddL'i-I’T(a male).
1-0 1

We bound the values of i in these summations. Let 2 be such that az‘ln 2 1: and
azn < k . Since n < 2%, we have

2 < 1 + d/ log(1/a) ~ 1 + d22d+1 ln2.

Let l 2 z and let i g l — z . Then a‘n _<_ ai+zn < aik. That is, for l _>_ 2, the recursion
stops at terms T(a‘n, a“‘k). Moreover, for i < l — 2, there are no terms T(a‘n,a‘k).
Therefore,

13—1 1

Z Z
l=0 i=max(0, l—z)

ZZCCP‘M
=0 i=0

T(n, k)
l - L

c (i) dlf'aln + z
i=max(O‚L—z)

(f) dL'i - T(aLn, aik)

<

We use the following identity (see [6, page 199]) to compute the latter double summation:

co

Z
1:!)

By a. straightforward calculation, we get

ZZ
1:!) i=0 ©“

(z)
EJ‘Z

at

z co

l=0i=0

z
@

i=0 (1aa)i+__1_

liai‘ßfaf1:0

2d+1 z d i2 I; (d 22 +1)

22d+2 (d22d+1)"

20(1‘23‘) .

This proves that
T(n, k) 5 cn2o(d22u).

We have proved:

Theorem 2 Let a l , ag,. ‚ad be positive real numbers, let S' g [Rd be a set of n points
that are contained in the boa: B : : Hf_1[——a.; . a,], and let k be a positive integer. In 0(n)
time and using 0(n) space we can find a translate of the box Hf_1[0 : ai] that contains
at least 1: points of 5 , if such a translate exists.

11

4 Translating a box such that it contains at least k
points: the general case

Let a1,a2, . . . , ad be positive real numbers, let S be a set of n points in Bd, and let k be
a. positive integer. In this section, we consider the problem of finding a translate of the
box IT:-1:1 [0 : ai] that contains at least k points of S. As in the previous section, we only
treat the case that all ai’s are equal to one. That is, we want an algorithm that decides
if there is a 1-box that contains at least k points of S . If such a 1-box exists, we want
to compute i t . We reduce this problem to that of the previous section.

Assume we already made the presorting step of Section 2. That is, the points of S are
stored in an array 5 . Moreover, _for each 1 _<_ i S d, there is a list containing the points
of _.5' sorted by their i-th coordinates, and each element in this list contains a pointer to
its occurrence in S . The following algorithm solves our problem.

Step 1. Construct a degraded l-grid for 5'. With each non-empty box of this grid, store
a list consisting of all points of S that are contained in it.

Step 2 . For each non—empty box B of the degraded l-grid, do the following: Let
(b1, 62, . . . , ha!) be the lower—left corner of B. Find the at most 2a non-empty boxes of the
degraded grid whose interior overlap the 2-box

[b12b1+2]x [b22b2+2]X. . .X[bdd+2] .

These boxes are found by using the neighbor pointers that are stored with B. (See
Theorem 1.) Let 53 be the set of those points of S that are contained in these at most
2" boxes. Use the algorithm of Section 3 to decide if there is a l-box that contains at
least k points of 53.

Theorem 3 Let a l , az, . . . , ad be positive real numbers, let S be a set of n points in Rd
and let k be a positive integer. After the presorting step, we can in O(n) time find a
translate of the boa: Hf=1[0 : ai] that contains at least k points of S , if such a translate
exists.

Proof: Assume for simplicity that all (z,-’s are equal to one. Consider Step 2 of the
algorithm. By the definition of degraded grid, each non-empty box of the l—grid is a 1-
box. Therefore, the set SB is contained in a 2-box and, hence, the algorithm of Section 3
can be called on this set. The correctness of the entire algorithm follows easily.

After presorting, the degraded l-grid can be constructed in O(n) time. By Theorem 2,
we spend for each non-empty box B of this grid 0([SB|) time in Step 2. Each point of
S occurs in at most 2a subsets SB- Hence, the total time spent in Step 2 is bounded by
O(n). This proves that—after the presorting step—the algorithm takes O(n) time. I

Corollary 1 Let a1,az, . . . ‚ad be positive real numbers and let S be a set of n points
in IRd. In O(nlog n) time and using O(n) space, we can find a translate of the boa:
II:-1:1 [0 : a,] that contains the maximal number of points of 3 .

Proof: In 0(n log n) time, perform the presorting step. Then, do a binary search in the
set {1,2, . . . ,n}. For a test value k, decide in O(n) time if the box can be translated
such that it contains at least k points of S. I

12

5 Finding k points with minimal Loo-diameter

Let S be a set of n points in IR"! and let 1 5 k __<_ n be an integer. We want an algorithm
that finds a k-point subset of S with minimal Lao-diameter. This is equivalent to finding
a. smallest d—dimensional axes-parallel cube that contains at least k points of 5. Let
5* be the side-length of such a smallest cube. Clearly, 5" is equal to the LG,-distance
between two points of 5 . Therefore, we could make a binary search for 6* in the set
of (€) Loo—distances defined by S . It is not clear, however, how to maintain this set
efficiently. Instead, as in [3, 7], we make a binary search in the larger set consisting of all
differences [p,-, — q,;l, where p and q are points of S and 1 S i S d. Of course, we maintain
the candidate differences implicitly. The following lemma is clear.

Lemma 4 Let 5 be a real number. There exists a ö-boz that contains at least 1: points
ofS, if anal only ifä Z 6*.

The algorithm maint ains the following information:

. Arrays A1, . . . , Ad of length n , where A,- contains the points of 5 sorted w.r.t. their
i—th coordinates. For each 1 S i 5 d, each point in A,— contains a pointer to its _
occurrence in A1.

. For each 1 S i 5 d and 1 $ j < n, we store with A.,-[j] an interval [1,3 : hi5], where
1.5 and kg:,- are integers, such that j < 1,3,- S it,-‚° + 1 g n + 1.

o A real number 5’ and a 5’—box B .

We define the set of candidate difierences as follows. Let p = (p1,...,pd) and q =
(q1,. . . ,qd) be two distinct points in S , and let 1 _<_ 2' £ d. Moreover, let j and j’ be such _
that A.,-[j] = p and A.,-[j'] = q. Assume w.l.o.g. that j < 3". Then lg; —— p,;l is a. candidate
difference ifl' lg,- 5 j’ S hi,-. Hence, the total number of candidate differences is equal to

d n—l

E 20155 _ ij + 1) -
£=1 j=1

The algorithm makes a. sequence of iterations. In each iteration, this summation is
decreased by a factor of at least one fourth. During the iteration, we maintain the
following

Invariant:

1. 6’ 2 5* and B is a 5’-box that contains at least 1: points of 5 , and

2. 6* = 5’, or 6* is contained in the set of candidate differences.

Initialization: Build the arrays A1, . . . ,Ad . For each 1 S i S d and 1 __<_ j < n , store
with ‚q,-[j] the interval [1,5 : m,] = [j + 1 : n]. Initialize 6’ := 00 and B := IR“.

Now, the algorithm starts with the

While-loop: Repeat Steps 1, 2 and 3 until the set of candidate differences is empty:

13

Step 1. For each 1 $ i S d and 1 $ j < n, such that 1,3 3 hi,-, take the pair

AillUij + hi5) /2Jl and AM

and take the (positive) difference of their i-th coordinates. Give this difference weight
hij — l,;_.‚- + 1. This gives a sequence of at most d(n —- 1) weighted differences.

Step 2 . Compute a weighted median 5 of these weighted differences.

Step 3. Use the algorithm of Section 4 to decide if there is a 5—box that contains at
least k points of S.

3.1 If there is such a 5—box, then for each pair

AiHUia' +h‚-‚-)/2J] and AiLi]

selected in Step 1 whose i-th coordinates have difierence at least 5, set hij :=
[(L-‚- + hi5)/2J _ 1- 4
Moreover, if 5 < 5’ , then set 5’ := 5 and set B to the 5—box that was found.

3.2 If such a 5—box does not exist, then for each pair

AillUü +h£5)/2Jl and Adj]

selected in Step 1 whose i-th coordinates have difierence at most 5, set 1;,- :=
[(1.55 + h;,-)/2j + 1-

After the while-lo op: Walk along the points of S and select k points that are contained
in the 5’-box B . Output 5’ , B and these k points.

Lemma 5 During the while-loop, the invariant is correctly maintained.

Proof: After the initialization, the total number of candidate differences is equal to

d n—l; zen —j) = de‘),
i=1 j=1

i.e., the set of candidate differences equals the set of all d('2‘) differences Ip,- — q,;l. There-
fore, the invariant holds initially. Consider one iteration.

First assume that Case 3.1 applies. Then, Lemma 4 implies that 5 Z 5*. The
algorithm sets 5' := min(5’ , 5) and it removes differences [pu—qul from the set of candidate
differences that are at least equal to 5. It is clear that the new value of 5’ is still at least
equal to 5*, i.e., after the iteration, item 1 of the invariant still holds.

To prove that item 2 also holds, first assume that immediately before the iteration,
5* = 5’ . Then, after this iteration, we still have 5* = 5’ and, hence, item 2 still holds.

It remains to consider the case that before the iteration, 5* is one of the candidate
differences. If 5 > 5*, then this remains true, because we only remove differences that
are larger than 5*. Otherwise, if 5 = 5*, we have 5' = 5* after the iteration, i.e., item 2
still holds.

14

This proves that if Case 3.1 applies, the invariant holds after the iteration.
If Case 3.2 applies, then Lemma 4 implies that 6 < 6*. Hence, we can remove

differences [pu — qul from the set of candidate difl'erences that are at most equal to 5,
without invalidating the invariant. I

Lemma 6 The while-loop makes at most 1 + log4/3(d n”) = 0(log n) iterations.

Proof: At the start of the while-loop, the set of candidate differences has size (1(2). In
each iteration, the size of this set is decreased by a. factor of at least one fourth. (See [7]
for a precise proof of this.) I

Theorem 4 Let S be a set of n points in IR.“l and let 1 5 k S n be an integer. In
0(n log n) time and using 0(n) space, we can compute a k-point subset of S that has
minimal Loo-diameter.

Proof: Consider the real number 5’ , the 5’—box B and the k points that are reported
after the while-loop. Since at that moment the set of candidate differences is empty, the
invariant implies that 5’ = 6*. Moreover, the k points are contained in B . This proves
the correctness of the algorithm. The initialization of the algorithm takes 0(n log n)
time. By Theorem 3 and since a weighted median can be computed in linear time, one
iteration takes 0(n) time. Therefore, the while-loop takes 0(n log n) time. After the
while-loop, we need 0(n) time to find k points that are contained in B. This proves
that the entire algorithm has a running time of 0(n log n). It is clear that it uses linear
space. I

Remark: Consider the real number 6’ that is reported by the algorithm. We search
for this number in the set of all possible differences Ip,- — qil. Since 6’ = 6*, however, it
cannot be any difference; it is an Log-distance between two points of S.

6 Dynamic solutions

We combine Theorem 4 with the results of [3] to obtain dynamic data structures that
maintain a k-point subset with minimal Loo-diameter, if points are inserted and deleted
in S' . We recall the results of [3]: _

Let A be any algorithm that, given a set of 17. points and an integer k, computes a
k-point subset With minimal Loo-diameter. Let t(n, k) resp. s(n, k) be the running time
resp. space complexity of this algorithm. Then, there exist data structures that maintain
such a k-point subset under insertions and deletions of points.

If only insertions are allowed, then there is a constant c such that the data structure
has size 0(n + s(ck,k)) and an insertion time of 0(logn + t(ck,k)). If both inser-
tions and deletions are allowed then—again for some constant c—the space bound is
0(n logd(n/k) + s(ck, h)) and the amortized update time bound is

0(log nlogd"1(n/k) + logd(n/k) log log n + t(ck, k) logd(n/k)).

If we take for A the algorithm of Theorem 4, then we get:

15

Corollary 2 There is a data structure that maintains a k-point subset with minimal
Lao-diameter, if points are inserted. This data structure has size O(n) and an insertion
time of 0(log n + klog k) .

Corollary 3 There is a data structure that maintains a k-point subset with minimal Loo-
diameter, if points are inserted and deleted. This data structure has size 0(n logd(n/k))
and an amortized update time of

0(logd(n/k) log log n + h log k logd(n/k)).

Proof: Note that for all 1: and n such that 1 _<_ k S n , logn + log(n/k) loglogn +
klog k log(n/k) = O(log(n/k) log log n + klog h log(n/k)). I

7 Concluding remarks
We have solved the problem of finding a k-point subset with minimal Loo-diameter or,
equivalently, finding a smallest d—dimensional axes--parallel cube that contains at least
k points. Although the running time IS O(n log n) , the dependence on the dimension IS
much too high: The constant factor IS 20011222) . It would be interesting to improve this
dependence on d.

Another open problem is to consider other measures. For example, find a smallest
d—dimensional box—w.r.t. the sum of its side-lengths—that contains at least k points.
Note that our algorithm for translating a box such that it contains at least 1: points
can be applied. It is not clear, however, how to efiiciently generalize the algorithm of
Section 5 to arbitrary boxes.

A related open problem is, given a figure C , translate it such that it contains the
maximal number of points. We solved this problem in O(n log n) time for the case where
C is a box. What is the complexity for other figures C? In the planar case, if C is a
disk, this problem can be solved in O(n2) time. See Chazelle and Lee [2]. Can this be
improved?

References

[1] A . Aggarwal, H. Imai, N . Katoh and S. Suri. Finding h points with minimum diam—
eter and related problems. J . Algorithms 12 (1991), pp. 38-56.

[2] B . Chazelle and D.T. Lee. On a circle placement problem. Computing 1 (1986), pp.
1-16.

[3] A . Datta, H.P. Lenhof, C. Schwarz and M. Smid. Static and dynamic algorithms
for k-point clustering problems. Report MPI-I-93-108, Max-Planck—Institut für In-
formatik, Saarbrücken, 1993.

[4] D. P. Dobkin R. L Drysdale and L...] Guibas. Finding smallest polygons. In. F. P
Preparata (ed.), Advances 1n Computing Research, Vol. 1, Computational Geome-
t ry , J . A.I. Press, London, 1983, pp. 181- 214.

16

[5] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal poly-
topes. Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms, 1993, pp. 64-73.

[6] RL. Graham, D.E. Knuth and O. Patashnik. Concrete Mathematics. Addison-
Wesley, Reading, MA, 1989.

[7] EP. Lenhof and M. Smid. Enumemting the k closest pairs optimally. Proc. 33rd
Annual IEEE Symp. Foundations of Computer Science, 1992, pp. 380-386.

[8] M.H. Overmars and C.K. Yap. New upper bounds in Klee ’s measure problem. SIAM
J. Comput. 20 (1991), pp. 1034-1045.

[9] M. Smid. Finding 1: points with a smallest enclosing square. Report MPI—I-92-152,
Max-Planck-Institut für Informatik, Saarbrücken, 1992.

17

