

LEDA Manual

Version 3.0

Stefan Näher

MPI-I-93-109 February 1993

Max-Planck-Institut für Informatik
Im Stadtwald

D-6600 Saarbrücken

This research was supported by the ESPRIT 11 Basic Research Actions Program, under

contract No. 3075 (project ALCOM)

Table of Contents

o Introduction 1

1 Basics..................... .. 3

1.1 A First Example .. 3

1.2 Specifications. 3

1.3 Implementation Parameters ... 6

1.4 Arguments. 7

1.5 Overloading. 8

1.6 Linear Orders ... 8

1.7 Items... 11

1.8 Iteration ... " . .. 12

1.9 Header Files .. 13

1.10 Libraries .. 13

2 Simple Data Types ... 15

2.1 Boolean (bool) .. 15

2.2 Real N umbers (real) .. 15

2.3 Strings (string) ... 16

2.4 Real-valued vectors (vector) ... 18

2.5 Real-valued matrices (matrix) ... 19

3 Basic Data Types ... 21

3.1

3.2

3.3

3.4

3.5

3.6
3.7

3.8

3.9

3.10

One Dimensional Arrays (array) .. 21

Two Dimensional Arrays (array2) ... 23

Stacks (stack) ... 24

Queues (queue) .. , 25

Bounded Stacks (b_stack) ... 26

Bounded Queues (b_queue) .. 27

Lists (list) .. 28

Sets (set) ... 33

Integer Sets (inLset) .. 34

Partitions (partition) .. 35

3.11 Dynamic collections of trees (tree_collection) 36

1

4 Priority Queues and Dictionaries '. 39

4.1 Priority Queues (priority_queue) .. 39

4.2 Bounded Priority Queues (b_priority_queue) 41

4.3 Dictionaries (dictionary) .. 42

4.4 Dictionary Arrays (d_array) ... 44

4.5 Hashing Arrays (h_array) ... 46

4.6 Sorted Sequences (sortseq) .. 47

4.7 Persistent Dictionaries (p_dictionary) 50

5 Graphs and Related Data Types 53

5.1 Graphs (graph) ... 53

5.2 Undirected Graphs (ugraph) .. 57

5.3 Planar Maps (planar _map) .. 59

5.4 Parameterized Graphs (GRAPH) ... 61

5.5 Parameterized Undirected Graphs (UGRAP H) 63

5.6 Parameterized Planar Maps (PLAN AR_M AP) 64

5.7 Node and Edge Arrays (node_array, edge_array) 65

5.8 Two DimeI;lsional Node Arrays (node_matriz) 67

5.9 N ode and Edge Sets (node_set, edge_set) 68

5.10 Node Partitions (node_partition) .. 69

5.11 Node Priority Queues (node_pq) ... 70

5.12 Graph Algorithms ' 71

5.13 Miscellaneous ... 77

6 Two-Dimensional Geometry ... 79

6.1 Basic two-dimensional objects ... 79

6.2 Two-Dimensional Dictionaries (d2_dictionary) 88

6.3 Sets of Points (poinLset) .. 90

6.4 Sets of Intervals (intervaLset) .. 92

6.5 Sets of Parallel Segments (segmenLset) 94

6.6 Planar Sub division (subdivision) .. 96

6.7 Graphie Windows (window) ... 97

6.7 Panels (panel) .. 106

II

7 MisceUaneous . .. 109

7.1 Streams 109

7.2 U seful Functions 112

7.3 Memory Management ... 113

7.4 Error Handling 113

8 Programs .. 115

8.1 Graph and Network Algorithms ... 115

8.2 Computational Geometry .. 124

9 Implementations 127

9.1 List of Data Structures .. 127

9.2 User Implementations ... 128

10 Tables 133

10.1 Data Types ... 133

10.2 Algorithms .. 135

11 References ' 137

Acknowledgement

The author would like to thank Kurt Mehlhorn for many helpful suggestions and

valuable comments.

m

AI

Introduction

One of the major differences between combinatorial computing and other areas of

computing such as statistics, numerical analysis and linear programming is the use of

complex data types. Whilst the built-in types, such as integers, re als , vectors, and

matrices, usually suffice in the other areas, combinatorial computing relies heavily on

types like stacks, queues, dictionaries, sequences, sorted sequences, priority queues,

graphs, points, segments, ... In the fall of 1988, we started a project (called LEDA for

Library of Efficient Data types and Algorithms) to build a small, but growing library

of data types and algorithms in a form which allows them to be used by non-experts.

We hope that the system will narrow the gap between algorithms research, teaching,

and implementation. The main features of LEDA are:

1. LEDA provides a sizable collection of data types and algorithms in a form which

allows them to be used by non-experts. In the current version, this collection

ineludes most of the data types and algorithms described in the text books of the

area.

2. LEDA gives a precise and readable specification for each of the data types and

algorithms mentioned above. The specifications are short (typically, not more than

a page), general (so as to allow several implementations), and abstract (so as to

hide all details of the implementation).

3. For many efficient data structures access by position is important. In LEDA, we

use an item concept to cast positions into an abstract form. We mention that

most of the specifications given in the LEDA manual use this concept, i.e., the

concept is adequate for the description of many data types.

4. LEDA contains efficient implementations for each of the data types, e.g., Fibonacci

heaps for priority queues, skip lists and dynamic perfect hashing for dictionaries,

5. LEDA contains a comfortable data type graph. It offers the standard iterations

such as "for all nodes v of a graph G do" or "for all neighbors w of v do", it allows

to add and delete vertices and edges and it offers arrays and matrices indexed

by nodes and edges, ... The data type graph allows to write programs for graph

problems in a form elose to the typical text book presentation.

6. LEDA is implemented by a C++ elass library. It can be used with allmost any

C++ compiler (e.g., cfront2, cfront3, g++-1, g++-2, bcc, ztc).

1

7. LEDA is available by anonymous ftp from

ftp.cs.uni-sb.de (134.96.252.31) /pub/LEDA

The Distribution contains all sourees, installation instructions, a technical report,

and the LEDA user manual.

8. LEDA is not in the public domain, but can be used freely for research and teaching.

A commerciallicense is available from the autor.

This manual contains the specifications of all data types and algorithms currently

available in LEDA. Users should be familiar with the C++ programming language

(see [S91] or [L89]). The main concepts and some implementation details of LEDA

are described in [MN89] and [N92]; The manual is structured as follows: In chapter

one, which is aprerequisite for all other chapters, we discuss the basic concepts and

notations used in LEDA. The other chapters define the data types and algorithms

available in LEDA and give examples of their use. These chapters can be consulted

independently from one another.

Version 3.0

The most important changes with respect to previous versions are

a) Parameterized data types are realized by C++ templates. In particular, declare

macros used in previous versions are now obsolete and the syntax for a parameterized

data type D with type parameters T1, ... ,Tk is D<T1, ... ,Tk> (cf. section 1.2).

For C++ compilers not supporting templates there is still a non-template variant

(LEDA-N-3.0) available.

b) Arbitrary data types (not only pointer and simple types) can be used as actual

type parameters (cf. section 1.2).

c) For many of the parameterized data types (in the current version: dictionary,

priority queue, d_array, and sortseq) there exist variants taking an additional data

structure parameter for choosing a particular implementation (cf. section 1.3).

d) The LEDA memory management system can be customized for user-defined classes

(cf. section 7.3)

e) The efficiency of many data types and algorithms has been improved.

See also the "Changes" file in the LEDA root directory.

2

1. Basics

1.1 A First Exam pIe

The following program can be compiled and linked with LEDA's basic library libL.a

(cf. section 1.10). When executed it reads a sequence of strings from the standard

input and then prints the number of occurrences of each string on the standard output.

More examples of LEDA programs can be found throughout this manual.

#include <LEDA/ d_array.h>

main()

{
d..array<string,int> N(O)j

string Sj

while (ein » S) N[s]++j

foralLdefined(s, N) cout « s « " " « N[s] « endlj

}

The program above uses the parameterized data type dictionary array (d_array< I, E>)

from the library. This is expressed by the include statement (cf. section 1.9 for more

details). The specification of the data type d_array can be found in section 4.4. We

use it also as a running example to discuss the principles underlying LEDA in sections

1.2 to 1.10.

Parameterized data types in LEDA are realized by templates, inheritance and dynamic

binding (see [N92] for details). For C++ compilers not supporting templates there is

still available a non-template version of LEDA using declare macros as described in

[N90].

1.2 Specifications

In general the specification of a LEDA data type consists of four parts: adefinition of

the set of objects comprising the (parameterized) abstract data type, a description of

how to create an object of the data type, the definition of the operations available on the

objects of the data type, and finally, information about the implementation. The four

parts appear under the headers definition, creation, operations, and implementation

respectively.

3

• Definition

This part of the specification defines the objects (also called instances or elements)

comprising the data type using standard mathematical concepts and notation.

Example, the generic data type dictionary array:

An object a of type d_array<I, E> is an injective function from the data type I to

the set of variables of data type E. The types land E are called the index and the

element type respectively, a is called a dictionary array from I to E.

Note that the types land E are parameters in the definition above. Any built-in,

pointer, item, or user-defined class type T can be used as actual type parameter of a

parameterized data type. Class types however have to provide the following operations:

a) a constructor taking no arguments T::TO
b) a copy constructor T::T(const T &)

c) an input function void Read(T&, istream&)

d) an output function void Print(const T&, ostream&)

A compare function "int compare(const T&, const T&)" (cf. section 1.6) has to be

defined if the data type requires that T is linearly ordered. Section 1.4 contains a

complete example .

• Creation

A variable of a data type is introduced by a C++ variable declaration. For all LEDA

data types variables are initialized at the time of declaration. In many cases the

user has to provide arguments used for the initialization of the variable. In general a

declaration

XYZ<t 1 , ••• ,tk> Y(ZI"'" Zt)j

intro duces a variable y of the data type "XY Z <tb' .. , tk >" and uses the arguments

ZI, ... , Zt to initialize it. For example,

d_array<string, int> A(O)

intro duces A as a dictionary array from strings to integers, and initializes A as

follows: an injective function a from string to the set of unused variables of type int
is constructed, and is assigned to A. Moreover, all variables in the range of aare

initialized to O. The reader may wonder how LEDA handles an array of infinite size.

4

The solution is, of course, that only that part of A is explicitly stored which has been

accessed already.

For all data types, the assignment operator (=) is available for variables of that type.

Note however that assignment is in general not a constant time operation, e.g., if LI and

L2 are variables of type list<T> then the assignment LI = L2 takes time proportional

to the length of the list L 2 times the time required for copying an object of type T.

Remark: For most of the complex data types of LEDA, e.g., dictionaries, lists, and

priority queues, it is convenient to interpret a variable name as the name for an object

of the data type which evolves over time by means of the operations applied to it.

This is appropriate, whenever the operations on a data type only "modify" the values

of variables, e.g., it is more natural to say an operation on a dictionary D modifies D
than to say that it takes the old value of D, constructs a new dictionary out of it, and

assigns the new value to D. Of course, both interpretations are equivalent. From this

more object-oriented point of view, a variable declaration, e.g., dictionary<string, int>
D, is creating a new dictionary object with name D rather than introducing a new

variable of type dictionary<string, int>; hence the name "creation" for this part of a

specmcation .

• Operations

In this section the operations of the data types are described. For each operation the

description consists of two parts

a) The interface of the operation is defined using the C++ function declaration syntax.

In this syntax the result type of the operation (void if there is no result) is followed

by the operation name and an argument list specifying the type of each argument.

For example,

lisLitem L.insert (E :c, lisLitem it, reLpos p = after)
defines the interface of the insert operation on a list L of elements of type E
(cf. section 3.7). Insert takes as arguments an element :c of type E, a lisLitem it
and an optional relative position argument p. It returns a lisLitem as result.

E& A[l :c]
defines the interface of the access operation on a dictionary array A. It takes an

element of l as an argument and returns a variable of type E.

b) The effect of the operation is defined. Often the arguments have to fulfill certain

preconditions. If such a condition is violated the effect of the operation is undefined.

5

Some, but not all, of these cases result in error messages and abnormal termination

ofthe program (see also section 7.5). For the insert operation on lists this definition

reads:

A new item with contents x is inserted after (if p = after) or before (if p = befare)

item it into L. The new item is returned. (precondition: item it must be in L)

For the access operation on dictionary arrays the definiti~n reads:

returns the variable A(x) .

• Implementation

The implementation seetion lists the (default) data structures used to implement the

data type and gives the time bounds for the operations and the space requirement.

For example,

Dictionary arrays are implemented by randomized search trees ([AS89]). Access oper­

ations A[x] take time O(log dom(A». The space requirement is O(dom(A».

1.3 Implementation Parameters

For many of the parameterized data types (in the current version: dictionary, priority

queue, d_array, and sortseq) there exist variants taking an additional data structure

parameter for choosing a particular implementation (cf. section 4). Since C++ does

not allow to overload templates we had to use different names: the variants with an

additional implementation parameters start with an underscore, e.g., _d_array<I,E,impl>.

We can easily modify the example program from section 1.1 to use a dictionary array

implemented by a particular data structure, e.g., skip lists ([Pu89]), instead of the

default data structure (cf. section 4.4.5).

#include <LEDA/d_array.h>

#include <LEDA/impl/skiplist.h>

mainO
{ _d_array<string,int,skiplist> N(O)j

string Sj

while (ein » S) N[s]++j

foralLdefined(s, N) cout « S « " " « N[s] « endlj

}

Any type .-XYZ< Tl , ... , T/c, xyz_impl> is derived from the corresponding "normal" param­

eterized type XYZ<Tl , .. . ,T/c>, i.e., an instance oftype .-XYZ< Tl , ... ,T/c, xyz_impl> can

6

be passed as argument to functions with a formal parameter of type XYZ<T1 , ••• ,Tk>&.
This provides a mechanism for choosing implementations of data types in pre-compiled

algorithms. See "prog/graph/dijkstra.c" for an example.

LEDA offers several implementations for each of the data types. For instance, skip

lists, randomized search trees, and red-black trees for dictionary arrays. Users can

also provide their own implementation. A data structure "xyzJ.mpl" can be used as

actual implementation parameter for a data type -.XY Z if it provides a certain set

of operations and uses certain virtual functions for type dependent operations (e.g.

compare, initialize, copy, ...). Section 9 lists all data structures contained in the

current version and gives the exact requirements for implementations of dictionaries,

priority _queues, sorted sequences and dictionary arrays. A detailed description of the

mechanism for parameterized data types and implementation parameters used in LEDA

can be found in [N92].

1.4 Arguments

• Optional Arguments

The trailing arguments in the argument list of an operation may be optional. If these

trailing arguments are missing in a call of an operation the default argument values

given in the specification are used. For example, if the relative position argument in the

list insert operation is missing it is assumed to have the value after, i.e., L.insert(it, y)

will insert the item <y> after item it into L .

• Argument Passing

There are two kinds of argument passing In C++ , by value and by reference. An

argument x of type type specified by "type x" in the argument list of an operation

or user defined function will be passed by value, i.e., the operation or function is

provided with a copy of x. The syntax for specifying an argument passed by reference

is "type& x". In this case the operation or function works directly on x (the variable

x is passed not its value).

Passing by reference must always be used if the operation is to change the value of

the argument. It should always be used for passing large objects such as lists, arrays,

graphs and other LEDA data types to functions. Otherwise a complete copy of the

actual argument is made, which takes time proportional to its size, whereas passing

by reference always takes constant time.

7

• Functions as Arguments

Some operations take functions as arguments. For instance the bucket sort operation

on lists requires a function which maps the elements of . the list into an interval of

integers. We use the C++ syntax to define the type of a function argument f:

T (*f)(TI ,T2 , ... ,Tk)

declares f to be a function taking k arguments of the data types Tl, ... , Tk, respectively,

and returning a result of type T, i.e, f : Tl X ••• X Tk ---+ T .

1.5 Overloading

Operation and function names may be overloaded, i.e., there can be different interfaces

for the same operation. An example is the translate operations for points (cf. section 6.1).

point p.translate(vector v)

point p.translate(double (t, double dist)

It can either be called with a vector as argument or with two arguments of type double

specifying the direction and the distance of the translation.

An important overloaded function is discussed in the next section: Function compare,

used to define linear orders for data types.

1.6 Linear Orders

Many data types, such as dictionaries, priority queues, and sorted sequences require

linearly ordered subtypes. Whenever a type T is used in such a situation, e.g. in

dictionary<T, ... > the function

int compare(T, T)

must be declared and must define a linear order on the data type T.

A binary relation rel on a set T is called a linear order on T if for all x, y, z E T:

1) x rel y

2) x rel y and y rel z implies x rel z

3) x rel y or y rel x

4) x rel y and y rel x implies x = y

8

A function int compare(T, T) is said to define the linear order rel on T if

{
< 0, ~ x rel y and x =1= y

compare(x,y) =0, Ifx=y
> 0, if y rel x and x =1= y

For each of the simple data types char, short, int, long, float, double, string, and

point a function compare is predefined and defines the so-called default ordering on

that type. The default ordering is the usual ~ - order for the built-in numerical types,

the lexicographic ordering for string, and for point the lexicographic ordering of the

cartesian coordinates. For all other types T there is no default ordering, and the user

has to provide a compare function whenever a linear order on T is required.

Example: Suppose pairs of real numbers shall be used as keys in a dictionary with

the lexicographic order of their components. First we dedare dass pair as the type

of pairs of real numbers, then we define the 1/0 operations Read and Print and the

lexicographic order on pair by writing an appropriate compare function.

dass pair {

double Xj

double Yj

pairO { x = y = Oj }

pair(const pair& p) { x = p.Xj Y = p.Yj }

}j

friend void Read(pair& p, istream& is) { is » p.x » p.Yj }

friend void Print(const pair& p, ostream& os) { os « p.x « " " « p.Yj }

friend int compare(const pair&, const pair&)j

int compare(const pair& p, const pair& q)

{ if (p.x < q.x) return -lj

if (p.x > q.x) return 1j

if (p.y < q.y) return -lj

if (p.y > q.y) return 1j

return Oj }

Now we can use dictionanes with key type pair, e.g.,

dictionary<pair,int> Dj

9

Sometimes, a user may need additional linear orders On a data type T which are

different from the order defined by compare, e.g., he might want to order points in the

plane by the lexicographic ordering of their cartesian coordinates and by their polar

coordinates. In this example, the former ordering is the default ordering for points.

The user can introduce an alternative ordering on the data type point (cf. section 6.1)

by defining an appropriate comparing function int cmp(const point&, const point&)

and then calling the macro DEFINE..LINEAR_ORDER(point, cmp, pointi). After this

call point I is a new data type which is equivalent to the data type point, with the only

exception that, if point I is used as an actual parameter e.g. in dictionary<point l , .•. >,
the resulting data type is based on the linear order defined by cmp.

In general the macro call

DEFINE_LINEAR_ORDER(T,cmp,TI)

introduces a new type Tl equivalent to type T with the linear order defined by the

compare function cmp.

In the example, we first declare a function poLcmp and derive a new type poLpoint

using the DEFINE..LINEAR_ORDER macro.

int poLcmp(const point& x, cosnt point& y)
{ / / lexicographic ordering on polar coordinates }

DEFINE_LINEAR_ORDER(point,pol_cmp,poLpoint)

N ow, dictionaries based on either ordering can be used.

dictionary<poLpoint, int> D I ; / / polar ordering

dictionary<point, int> Do; / / default ordering

Remark: We have chosen to associate a fixed linear order with most of the simple

types (by predefining the function compare). This order is used whenever operations

require a linear order on the type, e.g., the operations on a dictionary. Alternatively,

we could have required the user to specify a' linear order each time he uses a simple

type in a situation where an ordering is needed, e.g., a user could define

dictionary<point, lexicographic_ordering, ... >

This alternative would handle the cases where two or more different orderings are

needed more elegantly. However, we have chosen the first alternative because of the

smaller implementation effort.

10

1.7 Items

Many of the advanced data types in LEDA (e.g. dictionaries), are defined in terms of

so-called items. An item is a container which can hold an object relevant for the data

type. For example, in the case of dictionaries a dic_item contains a pair consisting of

a key and an information. A general definition of items will be given at the end of

this section.

We now discuss the role of items for the dictionary example in some detail. A popular

specification of dictionaries defines a dictionary as a partial function from some type

K to some other type I, or alternatively, as a set of pairs from K x I, i.e., as the

graph of the function. In an implementation each pair (k, i) in the dictionary is stored

in some location of the memory. Efliciency dictates that the pair (k, i) cannot only

be accessed through the key k but sometimes also through the location where it is

stored, e.g., we might want to lookup the information i associated with key k (this

involves a search in the data structure), then compute with the value i a new value i',
and finally associate the new value with k. This either involves another search in the

data structure or, if the lookup returned the location where the pair (k, i) is stored,

can be done by direct access. Of course, the second solution is more eflicient and we

therefore wanted to provide it in LEDA.

In LEDA items play the role of positions or locations in data structures. Thus an

object of type dictionary<K, I>, where K and I are types, is defined as a collection

of items (type dic_item) where each item contains a pair in K x I. We use <k, i> to

denote an item with key k and information i and require that for each k E K there

is at most one i E I such that <k, i> is in the dictionary. In mathematical terms this

definition may be rephrased as follows: A dictionary d is a partial function from the

set dic_item to the set K xl. Moreover, for each k E K there is at most one i E I
such that the pair (k, i) is in d.

The functionality of the operations

dic_item D .lookup(K k)
I D .inf(dic_item it) ·
void D.changejnf(dic_item it, I i')

is now as follows: D.lookup(k) returns an item it with contents (k, i), D.inf(it) extracts

i from it, an<l a new value i' can be associated with k by D.changejnf(it,i').

Let us have a look at the insert operation for dictionaries next:

dic_item D.insert(K k, I i)

11

There are two cases to consider. If D contains an item it with contents (k, i') then i'
is replaced by i and it is returned. If D contains no such item, then a new item, i.e.,

an item which is not contained in any dictionary, is added to D, this item is made to

contain (k, i) and is returned. In this manual (cf. section 4.3) all of this is abbreviated
to

dic_item D.insert(K k, I i) associates the information i with the key k.

If there is an item <k,j> in D then j is

replaced by i, else a new item <k, i> is added

to D. In both cases the item is returned.

We now turn to a general discussion. With some LEDA types XY Z there is an associated

type XY Z _item of items. Nothing is known ab out the objects of type XY Z _item except

that there are infinitely many of them. The only operations available on XY Z _items
besides the one defined in the specification of type XY Z is the equality predicate

"==" and the assignment operator "=" . The objects of type XY Z are defined as

sets or sequences of XYZ_items containing objects of some other type Z. In this

situation an XYZ_item containing an object z E Z is denoted by <z>. A new or

unused XYZ_item is any XYZjtem which is not part of any object of type XYZ.

Remark: For some readers it may be useful to interpret a dic_item as apointer to

a variable of type K x I. The differences are that the assignment to the variable

contained in a dic_item is restricted, e.g., the K -component cannot be changed, and

that in return for this restrietion the access to dic_items is more flexible than for

ordinary variables, e.g., access through the value of the K -component is possible.

1.8 Iteration

For many data types LEDA provides iteration macros. These macros can be used to

iterate over the elements of lists, sets and dictionanes or the nodes and edges of a

graph. Iteration macros can be used similarly to the C++ for statement. Examples

are

for all item based data types:

foralLitems(it, D} { the items of D are successively assigned to variable it}

for lists and sets:

forall(z, L) { the elements of L are successively assigned to z}

12

for graphs:

foralLnodes(v, G) { the nodes of Gare successively assigned to v}

foralLedges(e, G) { the edges of G are successively assigned to e}

foraILadj_edges(e, v) { all edges adjacent to v are successively assigned to e}

1. 9 Header Files

LEDA data types and algorithms can be used in any C++ program as described in this

manual. The specifications (class declarations) are contained in header files. To use a

specific data type its he ader file has to be included into the program. In general the

header file for data type xyz is <LEDA/xyz.h>. Exceptions to this rule are described

in Table 10.1 and 10.2.

1.10 Libraries

The implement ions of all LEDA data types and algorithms are precompiled and

contained in 5 libraries (libL.a, libG.a, libP.a, lib W s.a, lib Wx.a) which can be linked

with C++ application programs. In the following description it is assumed that these

libraries are installed in one of the systems default library directories (e.g. /usr/lib),

which allows to use the "-1. .. " compiler option.

a) libL.a is the main LEDA library, it contains the implementations of all simple

data types (section 2), basic data types (section 3), dictionaries and priority queues

(section 4). A program prog.c using any of these data types has to be linked with the

libL.a library like this:

CC prog.c -lL

b) libG.a is the LEDA graph library. It contains the implementations of all graph

data types and algorithms (section 5). To compile a program using any graph data

type or algorithm the libG.a and libL.a library have to be used:

CC prog.c -lG -11

13

e) libP.a is the LEDA library for geometry in the plane. It eontains the implementations

of all data types and algorithms for two-dimensional geometry (seetion 6). To eompile

a program using two-dimensional data types or algorithms the libP.a, libG.a, libL.a

and maths libranes have to be used:

ce prog.c -lP -IG -lL -1m

d) libWx.a, libWs.a are the LEDA libranes for graphie windows under the Xl!
(xview) or SunView window systems. Applieation programs using data type window
(cf. seetion 6.7) have to be linked with one of these libranes:

a) For the Xl! (xview) window system:

ce prog.c -IP -IG -IL -IWx -lxview -lolgx -lXl! -1m

b) For the Sun View window system:

ce prog.c -IP -IG -lL -IWs -lsuntool -lsunwindow -lpixreet -1m

Note that the libraries must be given in the order -IP -IG -IL and that the window

library (-IWx or -IWs) has to appear after the plane library (-lP).

14

2. Simple Data Types

2.1 Boolean Values (bool)

An instance of the data type bool has either the value true or false. The usual

C++ logical operators && (and), 11 (or), ! (negation) are defined for bool.

2.3 Strings (string)

Data type string is the LEDA equivalent of char* in C++ . The differences to the

char*-type are that assignment, compare and concatenation operators are defined and

that argument passing by value works properly, i.e., there is passed a copy of the

string and not only a copy of apointer. Furthermore a few useful operations for string

manipulations are available.

1. Creation of astring

a) string s· ,

b) string s(char * p);

b) string s(char c);

introduces a variable s of type string. s is initialized with the empty string (variant

a), the string constant p (variant b), or the one-character string "c" (variant c).

2. Operations on astring s

int

char&

string

string

string

int

s.length()

s [int i]

s (int i, int j)

s.tail(int i)

s.head(int i)

s.pos(string SI)

returns the length of string s

returns the character at position i

Precondition: 0 ~ i ~ s.lengthO-1

returns the substring of s starting at

position i and ending at position j

Precondition: 0 ~ i ~ j ~ s.lengthO-1

returns the last i characters of s

returns the first i characters of s

returns the first position of SI in s if SI 1S

15

int

string

string

string

string

string

string

string

string

string

void

void

void

void

string

string&

bool

bool

bool

bool

bool

bool

a substring of s, -1 otherwise

s.pos(string SI, int i) returns the first position of SI in s right of

position i (-1 if no such position exists)

s.insert(string SI, int i) returns s(O,i -1) + SI + s(i,s.lengthO -1)
Precondition: 0 ~ i < s.lengthO-1

s.replace(string SI, string S2, int i-= 1)

returns the string created from s by replacing

the i-th occurence of SI in s by S2

s.replace_all(string SI, string S2)

returns the string created from S by replacing

all occurences of SI in s by S2

s.replace(int i, int j, string SI)

s.replace(int i, string SI)

returns the string created from s by replacing

s(i,j) by SI

returns the string created from s by replacing

stil by SI

s.del(string SI, int i = 1) returns s.replace(sl,"",i)

s.deLall(string sd returns s.replace_all(sl' "")

s.del(int i, int j) returns s.replace(i,j, "")

s.del(int i) returns s.replace(i, "")

s.read(istream I, char delim ,=' ')

s.read(char delim =' ')

s .readJine(istream I)

s.readJineO

s + 81

s += SI

8 81

8 ! = sI

8 < SI

s > 81

8 <= 81

s >= SI

reads characters from input stream I into s

until the first occurence of character delim

read(cin,delim)

read(I,'\n')

readJine(ein)

returns the concatenation of s and SI

appends SI to s and returns s

true iff s and SI are equal

true iff 8 and 81 are not equal

true iff s is lexicographically smaller than SI

true iff S is lexicographically greater than SI

returns (8 < sd 11 (s == sd

returns (s > sI) 11 (s == sd

16

ostream& 0 < < s

istream& I > > s

3. Implementation

writes string s to the output stream 0

read(I,' ')

Strings are implemented by C++ character vectors. All operations on astring stake

time O(s.lengthO).

2.4 Real-Valued Vectors (vector)

An instance of the data type vector is a vector of real variables.

1. Creation

a) vector v(int d)j

b) vector v(double a, double b)j

c) vector v(double a, double b, double c)j

creates an instance v. of type vectorj v is initialized to the zero vector of dimension

d (variant a), the two-dimensional vector (a, b) (variant b) or the three-dimensional

vector (a, b, c) (variant c).

2. Operations on a vector v

int v.dimO

double v.length()

double v.angle(vector w)

double& v [int i]

vector v+ VI

vector

double v *

returns the dimension of v.

returns the Euclidean length of v

returns the angle between v and w.

returns i-th component of v.

Precondition: 0 ~ i ~ v.dimO-l.

Addition

Precondition: v.dimO = vI.dimO.

Subtraction

Precondition: v.dimO = vI.dimO.

Scalar multiplication

17

vector v * r

baal v ---- VI

baal v! = VI

ostream& 0« v

istream& I» v

3. Implementation

Precondition: v.dimO = vI.dimO.

Componentwise multiplication with double r

Test for equality

Test for inequality

writes v componentwise to the output streaIJ

reads v componentwise from the input streal

Vectors are implemented by arrays of real numbers. All operations on a vector t

take time O(v.dimO), except of dim and [] which take constant time. The spac~

requirement is O(v.dimO).

2.5 Re al-Valued Matrices (matrix)

An instance of the data type matrix is a matrix of double variables.

1. Creation

matrix M(intn, int m)j

creates an instance M of type matrix, M is initialized to the n x m - zero matrix.

2. Operations on a matrix M

int M.dim10

int M.dim20

vector M.row(int i)

vector M.col(int i)

matrix M.trans()

double M.detO

returns n, the number of rows of M.

returns m, the number of cols of M.

returns the i-th row of M· (an m-vector).

Precondition: 0::::; i ::::; n - 1.

returns the i-th column of M (an n-vector).

Precondition: 0::::; i ::::; m - 1.

returns MT (m x n - matrix).

returns the determinant of M.
Precondition: M is quadratic.

18

matrix M.invO

vector M .solve(vector b)

double& M (int i, int j)

matrix

matrix

matrix

matrix M * r

vector M * v

ostream& 0 < < M

istream& I > > M

3. Implementation

returns the inverse matrix of M.

Precondition: M.detO -1= o.
returns vector x with M . x = b.

Precondition: M.dim10 = M.dim20 = b.dimO

and M .detO -1= o.

returns Mi,j.

Precondition: O:S i :S n - 1 and 0 < j :S m - 1.

Addition

Precondition: M.dim10 = M 1 .dim10 and

M.dim20 = M1 .dim20.

Subtraktion

Precondition: M.dim10 = M 1 .dim10 and

M.dim20 = M 1 .dim20.

Multiplication

Precondition: M.dim20 = M1 .dim10.

Multiplication with double

Multiplication with vector

Precondition: M.dim20 = v.dimO.

writes matrix M to the output stream 0

reads matrix M from the input stream I

Data type matrix is implemented by two-dimensional arrays of double numbers.

Operations det, solve, and inv take time O(n3
), dim1, dim2, row, and col take constant

time, all other operations take time O(nm). The space requirement is O(nm).

19

oz

3. Basic Data Types

3.1 One Dimensional Arrays (array)

1. Definition

An instance A of the parameterized data type array<E> is a mapping from an interval

1= [a .. b] of integers, caIled the index set of A, to the set of variables of data type E,

caIled the element type of A. A(i) is caIled the element at position i.

2. Creation

array<E> A(int a, int b);

creates an instance A of type array<E> with index set [a .. b].

3. Operations

E&

int

int

void

A [int i]

A.lowO

A.highO

A.sort(int (*cmp)(E&, E&))

returns A(i). Precondition: a ~ i ~ b

returns the minimal index a

returns the maximal index b

sorts the elements of A, using function cmp

to compare two elements, i.e., if (in a , ••• ,inb)

and (out a , ••• , outb) denote the values of the

variables (A(a), ... , A(b)) before and after the

caIl of sort, then cmp(outi, out;) ~ 0 for i ~ j

and there is a permutation 'Ir of [a .. b] such that

outi = in1f(i) for a ~ i ~ b.

void A.sort(int (*cmp)(E&,E&), int 1, int h)

applies the above defined sorting operations to

the sub-array A[I .. h].

int A.binary_search(E z,int (*cmp)(E&,E&))

void A.read(istream I)

performs a binary search for z. Returns i
with A[i] = z if z in A, A.lowO - 1

otherwise. Function cmp is used to compare

two elements. Precondition: A must be sorted

according to cmp.

reads b - a + 1 objects of type E from the

21

void A.read()

void A.read(string s)

input stream I into the array A using the

overloaded Read function (cf. section 1.5)

Calls A.read(ein) to read A from the

standard input stream ein.

As above, uses string s as a prompt.

void A.print(ostream 0, ehar spaee = ")

void A.print(ehar spaee = ")

Prints the contents of array A to the output

stream 0 using the overload Print function

(cf. section 1.5) to print each element. The

elements are separated by the character spaee.

Calls A.print(eout, spaee) to print A on

the standard output stream eout.

void A.print(string s, ehar spaee = ' ')

As above, uses string s as a he ader .

4. Implementation

Arrays are implemented by C++ vectors. The access operation takes time 0(1), the

sorting is realized by quicksort (time O(n log n)) and the binary.-Search operation takes

time O(log n), where n = b - a + 1. The space requirement is 0(111).

22

3.2 Two Dimensional Arrays (array2)

1. Definition

An instance A of the parameterized data type array2<E> is a mapping from a set of

pairs 1 = [a .. b] x [e .. d], called the index set of A, to the set of variables of data type E,
called the element type of A, for two fixed intervals of integers [a .. b] and [b .. e]. A(i,j)
is called the element at position (i,j).

2. Creation

array2<E> A(a, b, e, d);

creates an instance A of type array2<E> with index set [a .. b] x [e .. d].

3. Operations

E& A (int i, int j) returns A(i,j).
Precondition: a S; i S; band e S; j S; d.

int A.low10 returns a

int A.high10 returns b

int A.low20 returns e

int A.high2O returns d

4. Implementation

Two dimensional arrays are implemented by C++ vectors. All operations take time

0(1), the space requirement is 0(111).

23

3.3 Stacks (stack)

1. Definition

An instance S of the parameterized data type stack<E> is a sequence of elements of

data type E, called the element type of S. lnsertions or deletions of elements take

place only at one end of the sequence, called the top of S. The size of S is the length

of the sequence, a stack of size zero is called the empty stack.

2. Creation

stack<E> Sj

creates an instance S of type stack<E>. S is initialized with the empty stack.

3. Operations

E

E

void

void

int

bool

S.topO

S.popO

S.push(E z)

S.clearO

S.sizeO

S.emptyO

4. Implementation

returns the top element of S

Precondition: S is not empty.

deletes and returns the top element of S

Precondition: S is not einpty.

adds z as new top element to S.

makes S the empty stack.

returns the size of S.

returns true if S is empty, false otherwise.

Stacks are implemented by singly linked linear lists. All operations take time 0(1),
except clear which takes time O(n), where n is the size of the stack.

24

3.4 Queues (queue)

1. Definition

An instance Q of the parameterized data type queue<E> is a sequence of elements

of data type E, called the element type of Q. Elements are inserted at one end (the

rear) and deleted at the other end (the front) of Q. The size of Q is the length of the

sequence, a queue of size zero is called the empty queue.

2. Creation

queue<E> Q;

creates an instance Qof type queue<E>. Q is initialized with the empty queue.

3. Operations

E Q.topO returns the front element of Q
Precondition: Q is not empty.

E Q.popO deletes and returns the front element of Q
Precondition: Q is not empty.

void Q .append(E :z:) appends :z: to the rear end of Q.

void Q.clearO makes Q the empty queue.

int Q.sizeO returns the size of Q.

bool Q.emptyO returns true if Q is empty, false otherwise.

4. Implementation

Queues are implemented by singly linked linear lists. All operations take time 0(1),
except clear which takes time O(n), where n is the size of the queue.

25

3.5 Bounded Stacks (b-.Stack)

1. Definition

An instance S of the parmaterized data type b_stack<E> is a stack (see section 2.3)

of bounded size.

2. Creation

b_stack<E> S(n);

creates an instance S of type b_stack<E> that can hold up to n elements. S is initialized

with the empty stack.

3. Operations

,E S.topO

E S.popO

void S.push(E :z:)

void S.clearO

int S.sizeO

bool S.emptyO

4. Implementation

returns the top element of S
Precondition: S is not empty.

deletes and returns the top element of S

Precondition: S is not empty.

adds :z: as new top element to S

Precondition: S .sizeO < n.

makes S the empty stack.

returns the size of S.

returns true if S is empty, false otherwise.

Bounded Stacks are implemented by C++ vectors. All operations take time 0(1). The

space requirement is O(n).

26

3.6 Bounded Queues (b_queue)

1. Definition

An instance Q of the paramerized data type b_queue<E> is a queue (see section 2.4)

of bounded size.

2. Creation

b_queue<E> Q(n);

creates an instance Q of type b_queue<E> that can hold up to n elements. Q lS

initialized with the empty queue.

3. Operations

E Q.topO returns the front element of Q

Precondition: Q is not empty.

E Q.popO deletes and returns the front element of Q

Precondition: Q is not empty.

void Q.append(E z) appends z to the rear end of Q

Precondition: Q.sizeO< n.

void Q.clearO makes Q the empty queue.

int Q.size{) returns the size of Q.

bool Q.emptyO returns true if Q is empty, false otherwise.

4. Implementation

Bounded Queues are implemented by circular arrays. All operations take time 0(1).
The space requirement is O(n).

27

3.7 Linear Lists (list)

1. Definition

An instance L of the parameterized data type list<E> is a sequence of items (lisLitem).
Each item in L contains an element of data type E, called the element type of L. The

number of items in L is called the length of L. If L has length zero it is called the

empty list. In the sequel < x > is used to denote a list item containing the element

x and L[i] is used to denote the contents of list item i in L.

2. Creation

list<E> Li

creates an instance L of type list<E> and initializes it to the empty list.

3. Operations

a) Access Operations

int L.lengthO

int L.sizeO

bool L.emptyO

lisLitem L.firstO

lisLitem L.lastO

lisLitem L.succ(lisLitem it) .

lisLitem L.pred(lisLitem it)

lisLitem L.cyclic_succ(lisLitem it)

lisLitem L.cyclic_pred(lisLitem it)

lisLitem L.search(Ex)

returns the length of L.

returns L.lengthO.

returns true if L is empty, false otherwise.

returns the first item of L.

returns the last item of L.

returns the successor item of item it, nil
if it = L.lastO.
Precondition: it is an item in L.

returns the predecessor item of item it, nil
if it = L.firstO.

Precondition: it is an item in L.

returns the cyclic successor of item it, i.e.,

L.firstO if it = L.lastO, L.succ(it) otherwise.

returns the cyclic predecessor of item it, i.e,

L.lastO if it . L.firstO, L.pred(it) otherwise.

returns the first item of L that contains x,

nil if x is not an element of L

28

E

E

E

E

int

L.contents(lisLitem it)

L.inf(lisLitem it)

L.headO

L.tailO

L.rank(E z)

b) Update Operations

returns the contents L[it] of item it
Precondition: it is an item in L.

returns L.contents(it).

returns the first element of L, i.e. the contents

of L.firstO.
Precondition: L is not empty.

returns the last element of L, i.e. the contents

of L.lastO.
Precondition: . L is not empty.

returns the rank of z in L, i.e. its first

position in L as an integer from [1. .. ILI]

(0 if x is not in L).

lisLitem L.insert(E z,lisLitem it, direction dir = after)

lisLitem L.push(E z)

lisLitem L .append(E z)

E L.deLitem(lisLitem it)

E L.popO

E L.PopO

inserts a new item < z > after (if dir = after)
or before (if dir = before) item it into Land

returns it. Precondition: it is an item in L.

adds a new item < z > at the front of L and

returns it (L.insert(z, L.firstO, before))

appends a new item < z > to Land returns

it (L.insert(z, L.lastO, after))

deletes the item it from Land returns its

contents L[it].
Precondition: it is an item in L.

deletes the first item from L and returns its

contents.

Precondition: L is not empty.

deletes the last item from Land returns its

contents.

Precondition: L is not empty.

void L.assign(lisLitem it, E z) makes z the contents of item it.
Precondition: it is an item in L.

void L.conc(list& LI) appends list LI to list Land makes LI the

empty list

void L.split(lisLitem it,list& LI, L2)

splits L at item it into lists LI and L2

29

and makes L the empty list. More precisely,

if L = ZI, ... , Zk-l, it, Zk+l, ... , Zn then

LI = ZI, ... ,Zk-l and L2 = it,Zk+l, ... ,Zn
Precondition: it is an item in L.

void L.apply(void (* f)(E&» for all items < Z > in L function 1 is

called with argument Z (passed by reference).

void L.sort(int (*cmp)(E&,E&)) sorts the items of L using the ordering defined

by the compare function cmp : E x E ---+ int,

< 0, if a< b

with cmp(a, b) = 0, if a = b
< 0, if a> b

More precisely, if L = (ZI, ... , zn) before the sort

then L = (Z1I'(1)' ... ,z1r{n)) for some permutation

7r of [1..n] and emp(L[zj], L[Zj+l]) ::; ° for

1 ::; i < n after the sort.

void L .bucket...sort(int i, int j, int (*f)(E&»

void

void

L.permuteO

L.clearO

c) Input and Output

sorts the items of L using bucket sort,

where 1 : E ---+ int with I(z) E [i .. j] for

all elements Z of L. The sort is stable,

i.e., if I(z) = I(y) and < Z > is before < y > in
L then < Z > is before < y > after the sort.

the items of L are randomly permuted.

makes L the empty list

void L .read(istream I, ehar delim =' \n')
reads a sequence of objects of type E termmated

by the delimiter delim from the input stream I
using the overloaded Read nmction (section 1.5)

L is made a list of appropriate length and the

sequence is stored in L.

void L.read(ehar delim =' \n') Calls L.read(ein, delim) to read L from

the standard input stream ein.

void L.read(string s, ehar delim =' \n')
As above, but uses string s as a prompt.

void L.print(ostream 0, ehar spaee =' ')
Prints the contents of list L to the output

stream 0 using the overload Print function

30

void L.print(char space =' ')

(cf. section 1.5) to print each element. The

elements are separated by the character space.

Calls L.print(cout, space) to print L on

the standard output stream cout.

void L.print(string s, char space =' ')
As above, but uses string s as a header.

d) Iterators

Each list L has a special item called the iterator of L. There are operations to read

the current value or the contents of this iterator, to move it (setting it to its successor

or predecessor) and to test whether the end (head or tail) of the list is reached. If

the iterator contains a lisLitem =I nil we call this item the position of the iterator.

Iterators are used to implement iteration statements on lists.

void L.set...iterator(lisLitem it) assigns item it to the iterator

void L.iniLiteratorO

lisLitem L.get...iteratorO

Precondition: it is in L or it = nil.

assigns nil to the iterator

returns the current value of the iterator

lisLitem L.move...iterator(direction dir = forward)

bool L.currenLelement(E& x)

bool L.nexLelement(E& x)

bool L.prev_element(E& x)

e) Operators

E& L [lisLitem it]

list<E>& L = L l

moves the iterator to its successor (predecessor)

if dir = forward (backward) and to the first

(last) item if it is undefined (= nil), returns

the iterator.

if the iterator is defined (=I nil) its contents is

assigned to x and true is returned else false

is returned

L.movejterator(forward) +
return L.currenLelement(x)

L.movejterator(backward) +
return L.current_element(x)

returns a reference to the contents of it.

The assignment operator makes L a copy of

list L l . More precisely if L l is the sequence

of items Xl, x2, ... xn then L is made a

31

4. Iteration

sequence of items Yl, Y2, ... Yn with

L[Yil = LI [zil for 1 ::; i ::; n.

foralUtems(it, L) { lethe items of L are successively assigned to it" }

foraU(z, L) { "the elements of L are successively assigned to z" }

5. Implementation

The data type list is realized by doubly linked linear lists. All operations take constant

time except for the following operations. Search and rank take linear time O(n),
buckeL.sort takes time O(n + j - i) and sort takes time O(n . c . log n) where c is the

time complexity of the compare function. n is always the current length of the list.

32

3.8 Sets (set)

1. Definition

An instance S of the parameterized data type set<E> is a collection of elements of the

linearly ordered type E, called the element type of S. The size of S is the number of

elements in S, a set of size zero is called the empty set.

2. Creation

set<E> Sj

creates an instance S of type set<E> and initializes it to the empty set.

3. Operations

void S.insert(E x)

void S.del(E x)

bool S .member(Ex)

E S.chooseO

bool S.empty()

int S.sizeO

void S.clearO

4. Iteration

adds x to S

deletes x from S

returns true if x in S, false otherwise

returns an element of S.

Precondition: S is not empty.

returns true if S is empty, false otherwise

returns the size of S

makes S the empty set

forall(x, S) { "the elements of S are successively assigned to x" }

5. Implementation

Sets are impiemented by randomized search trees ([AS89]). Operations insert, deI,

member take time O(logn), empty, size take time 0(1), and clear takes time O(n),
where n is the current size of the set.

33

3.9 Integer Sets (int.ßet)

1. Definition

An instance S of the data type inLset is a subset of a fixed interval interval [a .. b] of
the integers.

2. Creation

inLset S(a,b)j

creates an instance S of type inLset for elements from [a .. b] and initializes it to the
empty set.

2." Operations

void S .insert(int x)

void S.del(int x)

bool S .member(int x)

void S .dearO

inLset SI = S2

inLset SI I S2

inLset SI & S2

inLset - S

3. Implementation

adds x to S

Precondition: a ~ x ~ b.

deletes x from S

Precondition: a ~ x ~ b.

returns true if x in S, false otherwise

Precondition: a ~ x ~ b.

makes S the empty set

assignment

returns the union of SI and S2

returns the intersection of SI and S2

returns the complement of S

Integer sets are implemented by bit vectors. Operations insert, delete, member ,empty,

and size take constant time. Clear, intersection, union and complement take time

O(b - a + 1).

34

3.10 Partitions (partition)

1. Definition

An instance of the data type partition consists of a finite set of items (predefined type

partition_item) and a partition of trus set into blocks.

2. Creation

partition Pj

Creates an instance P of type partition and initializes it to the empty partition.

2. Operations

partition_item P .make_blockO

partition_item P .find(partition_item p)

returns a new partition_item it and adds

the block {it} to partition P.

returns a canonical item of the block that

contains item p, i.e., if P .same_block(p, q)
then P.find(p) = P.find(q).

Precondition: p is an item in P.

bool P .same_block(partition_item p, partition_item q)
returns true if p and q belong to the same

block of partition P.
Precondition: p and q are items in P.

void P .union_blocks(partition_item p, partition_item q)

3. Implementation

unites the blocks of partition P containing

items p and q.

Precondition: p and q are items in P.

Partitions are implemented by the union find algorithm with weighted union and path

compression (cf. [T83]). Any sequence of n make_block and m ~ nother operations

takes time O(ma(m,n)).

4. Example

Spanning Tree Algorithms (cf. graph)

35

3.11 Dynamic collections oftrees (tree_collection)

1. Definition

An instance D of the parameterized data type tree_colledion<I> is a collection of vertex

disjoint rooted trees, each of whose vertices has a double-valued cost and contains an

information of type I, called the information type of D.

2. Creation

tree_collection<I> D;

creates an instance D of type tree_collection<I>, initialized with the empty collection.

3. Operations

d_vertex D.maketree(I x)

I D.inf(d_vertex v)

Adds a new tree to D containing a single

vertex v with cost zero and information x,

and returns v.

Returns the information of vertex v.

d_vertex D.findroot(d_vertex v) Returns the root of the tree containing v.

d_vertex D.findcost(d_vertex v, double& x)

Sets x to the minimum cost of a vertex on the

tree path from v to findroot(v) and returns

the last vertex (dosest to the root) on this

path of cost x.

void D.addcost(d_vertex v, double x)

Adds double number x to the cost of every vertex

on the tree path from v tö findroot(v).

void D.link(d_vertex v, d_vertex w)

void D.cut(d_vertex v)

Combines the trees containing vertices v and w

by adding the edge (v,w). (We regard tree

edges as directed from child to parent.)

Precondition: v and ware in different trees

and v is a root.

Divides the tree containing vertex v into

. two trees by deleting the edge out of v.

Precondition: v is not a tree root.

36

4. Implementation

Dynamic collections of trees are implemented by partitioning the trees into vertex

disjoint paths and representing each path by a self-adjusting binary tree (see [T83]). All

operations take amortized time O(log n) where n is the number of maketree operations.

37

8f:

4. Priority Queues and Dictionaries

4.1 Priority Queues (priority _queue)

1. Definition

An instance Q of the parameterized data type priority_queue<K, I> is a collection of

items (type pq_item). Every item contains a key from type K and an information

from the linearly ordered type I. K is called the key type of Q and I is called the

information type of Q. The number of items in Q is called the size of Q. If Q has

size zero it is called the empty priority queue. We use < k, i > to denote a pq_item

with key k and information i.

2. Creation

a) priority_queue<K, I> Qj

creates an instance Q of type priority_queue<K, I> and initializes it with the empty

priority queue. Variant a) chooses the default data structure (cf. 4.1.4), and variant

b) chooses class prio_impl as the implementation of the queue (cf. section 9 for a list

of possible implement at ion parameters).

3. Operations

K Q.key(pq_item it)

I Q.inf(pq_item it)

pq_item Q.insert(K k,I i)

pq_item Q.find....minO

void Q.deLitem(pq_item it)

K Q.deLminO

returns the key of item it.
Precondition: it is an item in Q.

returns the information of item it.

Precondition: it is an item in Q.

adds a new item < k, i > to Q and returns it.

returns an item with minimal information

(nil if Q is empty)

removes the item it from Q.
Precondition: it is an item in Q.

removes the item it = Q .find-IDinO from Q

and returns the key of it.

Precondition: Q is not empty.

39

void Q.decreaseinf(pq_item it, I i) makes i the new information of item it

Precondition: it is an item in Q and i
is not larger then inf(it).

void Q.change..key(pq_item it, K k) makes k the new key of item it

void

bool

int

Q.clearO

Q.empty()

Q.sizeO

4. Implementation

Precondition: it is an item in Q.

makes Q the empty priority queue

returns true, if Q is empty, false otherwise

returns the size of Q.

Priority queues are implemented by Fibonacci heaps ([FT84]. Operations insert,

delitem, deLmin take time O(log n), find...min, decreaseinf, key, inf, empty take time

0(1) and clear takes time O(n), where n is the size of Q. The space requirement is

O(n).

5. Example

Dijkstra's Algorithm (cf. section 8.1)

40

4.2 Bounded Priority Queues (b_priority _queue)

1. Definition

An instance Q of the parameterized data type b_priority_queue<K> is a priority Aueue

(cf. section 4.1) whose information type is a fixed interval [a .. b] of integers.

2. Creation

creates an instance Q of type b_priority_queue<K> with information type [a .. b] and

initializes it with the empty priority queue.

3. Operations on a b_priority _queue Q

The operations are the same as for the data type priority_queue with the additional

precondition that any information argument must be in the range [a .. b].

4. Implementation

Bounded priority queues are implemented by arrays of linear lists. Operations insert,

find...min, delitem, decrease-IDf, key, inf, and empty take time 0(1), deLmin (=

delitem for the minimal element) takes time O(d), where d is the distance of the

minimal element to the next bigger element in the queue (= O(b - a) in the worst

case). clear takes time O(b-a+n) and the space requirement is O(b-a+n), where

n is the current size of the queue.

41

4.3 Dictionaries (dictionary)

1. Definition

An instance D of the parameterized data type dictionary<K, I> is a collection of

items (dic_item). Every item in D contains a key from the linearly ordered data type

K, called the key type of D, and an information from the data type I, called the

information type of D. The number of items in D is called the size of D. A dictionary

of size zero is called the empty dictionary. We use < k, i > to denote an item with

key k and information i (i is said to be the information associated with key k). For

each k E K there is at most one i E I with < k, i >E D.

2. Creation

a) dictionary<K, I> D;

b) _dictionary<K, I, dic_impl> D ;

creates an instance D of type dictionary<K, I> and initializes it with the empty

dictionary. Variant a) chooses the default data structure (cf. 4.3.4), and variant b)

chooses dass dic_impl as the implementation of the dictionary (cf. section 9 for a list

of possible implementation parameters).

3. Operations

K D .key(dic_item it)

I D.inf(dic_item it)

dic_item D.insert(K k, I i)

dic_item D.lookup(K k)

I D.access(K k)

void D.del(K k)

returns the key of item it.

Precondition: it is an item in D.

returns the information of item it.

Precondition: it is an item in D.

associates the information i with the key k.

If there is an item < k,j > in D then j is

replaced by i, else a new item < k, i > is added

to D. In both cases the item is returned.

returns the item with key k (nil if no such

item exists in D).

returns the information associated with key k

Precondition: there is an item with key kinD.

deletes the item with key k from D
(null operation, if no such item exists).

42

void D.deLitem(dic_item it) removes item it from D.

Precondition: it is an item in D.

void D .changeinf(dic_item it, I i) makes i the information of item it.

Precondition: it is an item in D.

void D.clearO makes D the empty dictionary.

bool D.empty() returns true if D is empty, false otherwise.

int D.sizeO returns the size of D.

4. Implementation

Dictionaries are implemented by randomized search trees ([AS89]). Operations insert,

lookup, deUtem, deI take time O(log n), key, inf, empty, size, changeinf take time
0(1), and clear takes time O(n). Here n is the current size of the dictionary. The

space requirement is O(n).

5. Example

U sing a dictionary to count the number of occurrences of the elements in a sequence

of strings, terminated by string "stop".

#include <LEDA/dictionary.h>

mainO
{

}

dictionary<string,int> D;

string S;

dicitem it;

w hile (ein > > s)
{ it = D.lookup(s);

if (it == nil) D.insert(s, 1);

else D .changeinf(it,D .inf(it)+ 1);

}

foraILitems(it,D) cout « D.key(it) « " . " « D.inf(it) « "\n";

43

4.4 Dictionary Arrays (d_array)

1. Definition

An instance A of the parameterized data type d_array<I ,E> (dictionary array) is an

injective mapping from thelinearly ordered data type I, called the index type of A, to

the set of variables of data type E, called the element type of A.

2. Creation

a) d_array<I, E> A(z)j

b) _d_array<I, E, impl> A(z)

creates an injective function a from I to the set of unused variables of type E, assigns z

to all variables in the range of a and initializes A with a. Variant a) chooses the default

data structure (cf. 4.4.5), and variant b) chooses dass impl as the implementation of

the dictionary (cf. section 9 for a list of possible implementation parameters).

3. Operations

E&

bool

A [I z]

A.defined(I z)

4. Iteration

returns the variable A(z)

returns true if z E dom(A), false otherwise; here

dom(A) is the set of all z E I for which A[z] has

already been executed.

foraILdefined(z, A) { "the elements from dom(A) are successively assigned to z" }

5. Implementation

Dictionary arrays are implemented by randomized search trees ([AS89]). Access oper­

ations A[z] take time O(1og dom(A)). The space requirement is O(dom(A)).

44

6. Example

Program 1: Using a dictionary array to count the number of occurences of the

elements in a sequence of strings.

#include <LEDA/d_array.h>

mainO
{

d_array<string,int> N(O)j

string Sj

while (ein » s) N[s] + +j
foralLdefined(s,N) cout « s « " " « N[s] « "\n"j

}

Program 2: Using a d_array to realize an english/german dictionary.

#include <LEDA/ d_array.h>

mainO
{

d_array<string,string> trans;

trans ["hello"] - "hallo";

trans ["world"] - "Welt";
trans["book"] - "Buch";

trans["key"] - "Schluessel";

string Sj

foraILdefined(s, trans) cout « s « " " « trans[s] « "\n"j

}

45

4.5 Hashing arrays (h_array)

1. Definition

An instance A of the parameterized data type h_array<l, E> (hashing array) is an

injective mapping from the data type I, called the index type of A, to the set of

variables of data type E, called the element type of A. I must be an integer, pointer,

or item type.

2. Creation

h_array<l, E> A(z);

creates an injective function a from I to the set of unused variables of type E, assigns

z to all variables in the range of a and initializes A with a.

3. Operations

E&

bool

A [I z]

A.defined(1 z)

4. Iteration

returns the variable A(z)

returns true if z E dom(A), false otherwise; here

dom(A) is the set of all z E I for which A[z] has

already been executed.

foraILdefined(z, A) { "the elements from dom(A) are successively assigned to z" }

5. Implementation

Hashing arrays are implemented by dynamic perfeet hashing ([DKMMRT88]). Access

operations A[z] take time 0(1). Hashing arrays are more efficient than dictionary

arrays.

46

4.6 Sorted Sequences (sortseq)

1. Definition

An instance S of the parameterized data type sortseq<K, I> is a sequence of items

(seq_item). Every item contains a key from the linearly ordered data type K, called

the key type of S, and an information from data type I, called the information type

of S. The number of items in S is called the size of S. A sorted sequence of size zero

is called empty. We use < k, i > to denote a seq_item with key k and information i

(called the information associated with key k). For each k E K there is at most one

item < k,i >E S.

The linear order on K may be time-dependent, e.g., in an algorithm that sweeps

an arrangement of lines by a vertical sweep line we may want to order the lines by

the y-coordinates of their intersections with the sweep line. However, whenever an

operation (except of reversejtems) is applied to a sorted sequence S, the keys of S

must form an increasing sequence according to the currently valid linear order on K.
For operation reversejtems this must hold after the execution of the operation.

2. Creation

a) sortseq<K, I> Si

b) _sortseq<K, I, seq_impl> S i

creates an instance S of type sortseq<K,I> and initializes it to the empty sorted

sequence. Variant a) chooses the default data structure (cf. 4.6.4), and variant b)

chooses dass seq_impl as the implementation of the sorted sequence (cf. section 9 for

a list of possible implementation parameters).

3. Operations

K S.key(seq_item it)

I S .inf(seq_item it)

seq_item S.lookup(K k)

returns the key of item it

Precondition: it is an item in S.

returns the information of item it

Precondition: it is an item in S.

returns the item with key k

(nil if no such item exists in S)

47

seq_item S .insert (K k, I i) associates information i with key k: H

there is an item < k,j > in S then j is

replaced by i, else a new item < k, i > is

added to S. In both cases the item is

returned.

seq_item S .insert_at(seq_item it, K k, I i)

seq_item S .locate(K k)

seq_item S .locate_pred(K k)

seq_item S.succ(seq_item it)

seq_item S.pred(seq_item it)

seq_item S .maxO

seq_item S .minO

void S .deUtem(seq_item it)

void S.del(K k)

Like insert(k, i), the item it gives the

position of the item < k, i > in the sequence .

Precondition: it is an item in S with either

key(it) is maximal with key(it) < k or

key(it) is minimal with key(it) > k

returns the item < k', i > in S such that

k' is minimal with k' >= k (nil if no

such item exists).

returns the item < k', i > in S such that

k' is maximal with k' <= k (nil if no

such item exi.sts) .

returns the successor item of it, Le., the

item < k, i > in S such that k is minimal

with k > key(it) (nil if no such item exists).

Precondition: it is an item in S.

returns the predecessor item of it, i.e., the

item < k, i > in S such that k is maximal

with k < key(it) (nil if no such item exists).

Precondition: it is an item in S.

returns the item with maximal key

(nil if S is empty).

returns the item with minimal key

(nil if S is empty).

removes the item it from S.
Precondition: it is an item in S.

removes the item with key k from S

(null operation if no such item exists).

void S .changejnf(seq_item it, I i) makes i the information of item it.

Precondition: it is an item in S.

void S .reversejtems(seq_item a, seq_item b)

the subsequence of S from a to b is reversed.

Precondition: a appears before b in S.

48

void S.split(seq_item it, sortseq < K,I > & SI, sortseq < K,I > & S2)

splits S at item it into sequenees SI and S2

and makes S empty. More precisely, if

S = Xl, ••• , Xk-1, it, Xk+1, ••• , X n then

SI = Xl, ••• ,Xk-1, it and S2 = Xk+1, • •• ,Xn

Precondition: it is an item in S.

sortseq <!Kc,cJnJ;(lurtseq < K,I > &Sd appends SI to S, makes SI emptyand

returns S. Precondition:

void

int

bool

S.clearO

S.sizeO

S.empty()

4. Implementation

S.key(S.max()) ~ Sl.key(Sl.min()).

makes S the empty sorted sequenee.

returns the size of S.

returns true if S is empty, false otherwise.

Sorted sequenees are implemented by (2,4)-trees. Operations lookup, loeate, insert, del,

split, eone take time O(1og n), operations suee, pred, max, min, key, inf, inserLatitem

and delitem take time 0(1). Clear takes time O(n) and reverseitems O(.e), where .e
is the length of the reversed subsequenee. The spaee requirement is O(n). Here n is

the eurrent size of the sequenee.

5. Example

U sing a sorted sequenee to list all elements in a sequenee of strings lying lexieographieally

between two given search strings.

#include <LEDAjsortseq.h>

mainO

{ sortseq<string,int> Si

string SI, S2;

while (ein> > SI && SI != "stop") S.insert(sl, 0);

while (ein » SI » S2)

}

{ seqitem stop = S.loeate(s2)i

}

for (seqitem it = S .loeate(SI); it != stOPi it = S .suee(it))

eout « S.key(it) « "\n";

49

4.7 Persistent Dictionaries (p_dictionary)

1. Definition

The difference between dictionaries (cf. section 4.3) and persistent dictionaries lies in

the fact that update operations performed on a persistent dictionary D do not change

D but create and return a new dictionary D'. For example, D.del(k) returns the

dictionary D' containing all items it of D with key(it) =1= k.

An instance D of the parameterized data type p_dictionary<K, I> is a set of items (type

p_dic_item). Every item in D contains a key from the linearly ordered data type K,

called the key type of D, and an information from data type I, called the information

type of D. The number of items in D is called the size of D. A dictionary of size

zero is called empty. We use < k, i > to denote an item with key k and information

i (i is said to be the information associated with key k). For each k E K there is at

most one item < k,i >E D.

2. Creation

p_dictionary<K, I> Dj

creates an instance D of type p_dictionary<K, I> and initializes D to an empty persistent

dictionary.

3. Operations

K

I

p_dic_item

I

D.key(p_dic_item it) returns the key of item it.

Precondition: it E D.

D.inf(p_dic_item it) returns the information of item it.

D.lookup(K k)

D .access(K k)

Precondition: it E D.

returns the item with key k (ni1 if no such

item exists in D).

returns the information associated with k
Precondition: there is an item with key k

in D.

p_dictionary(K, I) D .del(K k) returns { z ED I key(x) =1= k }.

p_dictionary(K, I) D.deUtem(p_dic_item it)

returns { x ED I x =1= it }.

p_dictionary(K,1) D.insert(K k, I i) returns D:del(k) U {< k, i >}.

50

p_didionary(K, I) D.changeinf(p_dic_item it, I i)

p_dictionary(K,I) D.clearO

bool D .emptyO

int D.sizeO

4. Implementation

Let k = key(it), returns D.delitem(it) u
{< k, i >}. Precondition: it E D.

returns an empty persistent dictionary.

returns true if D is empty, false otherwise.

returns the size of D.

Persistent Dictionaries are implemented by leaf oriented persistent red black trees

(cf. [DSST89]). Operations insert, lookup, deLitem, deI take time O(log n), key, inf,

empty, size, changeinf and clear take time 0(1). The space requirement is 0(1) for

each update operation.

51

5. Graphs and Related Data Types

5.1 Directed graphs (graph)

1. Definition

An instance G of the data type graph consists of a list of nodes V and a list of edges

E (node and edge are predefined data types). Every edge e E E is a pair of nodes

(v, w) E V X V, v is called the source of e and w is called the target of e. With every

node v the list of its adjacent edges adi_list(v) = { e E E Isource(e) = v }, called the

adjacency list of v, is associated.

2. Creation

graph Gi

creates an instance G of type graph and initializes it to the empty graph.

3. Operations

a) Access operations

int G .indeg(node v)

int G.outdeg(node v)

node G .source(edge e)

node G.target(edge e)

int G .number _oLnodesO

int G.number-<>LedgesO ·

list<node> G.all_nodesO

node G.first-Ilode()

node

node

node

G .lasLnodeO

G .succ-Ilode(node v)

G. pred-Ilode(node v)

list<edge> G.all_edgesO

edge G .firsLedgeO

returns the indegree of node v

returns the outdegree of node v

returns the source node of edge e

returns the target node of edge e

returns the number of nodes in G

returns the number of edges in G

returns the list V of all nodes of G

returns the first node in V

returns the last node in V

returns the successor of node v in V

(nil if it does not exist)

returns the predecessor of node v in V

(nil if it does not exist)

returns the list E of all edges of G

returns the first edge in E

53

edge

edge

edge

G .lasLedgeO

G.succ_edge(edge e)

G. pred_edge(edge e)

list<edge> G.adj_edges(node v)

list<node> G.adj...nodes(node v)

edg e G .firsLadj_edge(node v)

edg e G .lasLadj_edge(node v)

edge

edge

edge

edge

node

edge

G .adj_succ(edge e)

G.adj_pred(edge e)

G .cyclic_adj....succ(edge e)

G.cyclic_adj_pred(edge e)

G.choose...node()

G. choose_edge()

b) Update operations

node G .new ...no deO

void G .deLnode(node v)

edge G .new _edge(node v, w)

returns the last edge in E

returns the successor of edge e in E
(nil if it does not exist)

returns the predecessor of edge e in E
(nil if it does not exist)

returns the list of all edges adjacent to v

returns the list of all nodes adjacent to v

returns the first edge in the adjacency list of v

returns the last edge in the adjacency list of v

returns the successor of edge e in the

adjacency list of source(e)

(nil if it does not exist)

returns the predecessor of edge e in the

adjacency list of source(e)

(nil if i t does not exist)

returns the cyclic successor of edge e in the

adjacency list of source(e)

returns the cyclic predecessor of edge e in the

adjacency list of source(e)

returns anode of G (nil if G is empty)

returns an edge of G (nil if G is empty)

adds a new node to G and returns it

deletes v and all edges adjacent to v

from G. Precondition: indeg(v) = o.
adds a new edge (v, w) to G by appending

it to the adjacency list of v and returns it.

edge G.new_edge(edge e, node w, reLpos dir = after)

void

void

G.deLedge(edge e)

G .deLall_nodesO

adds a new edge e' = (source(e),w) to G by

inserting it after (dir=after) or before (dir

= before) edge e into the adjacency list of

source(e), returns e'.

deletes the edge e from G

deletes all no des from G

54

void

edge

void

G . deLalLedges 0
G .rev _edge(edg e e)

G.revO

deletes all edges from G

reverses the edge e = (v, w) by removing it

from G and inserting the edge e' = (w, v)
into G by appending it to the adjacency list

of w, returns e'

all edges in G are reversed

void G .sort..nodes(int(*cmp)(node&, node&))

the no des of Gare sorted according to the

ordering defined by the comparing function

cmp. Subsequent executions of forall_nodes

step through the no des in this order.

(cf. TOPSORT1 in section 8.1)

void G .sort..nodes(node_array< T> A)

the nodes of G are sorted according to the

entries of node_array A (cf. section 5.7)

Precondition: T must be linearly ordered

void G.sorLedges(int(*cmp)(edge&, edge&))

the edges of Gare sorted according to the

ordering defined by the comparing function

cmp. Subsequent executions of forall_edges

step through the edges in this order.

(cf. TOPSORT1 in section 8.1)

void G.sorLedges(edge_array<T> A)

list< edge> G .insert..reverse_edgesO

void G .make_undirected()

void G .make_directedO

void G.clearO

the edges of Gare sorted according to the

entries of edge_array A (cf. section 5.7)

Precondition: T must be linearly ordered

for every edge (v, w) in G the reverse edge

(w, v) is inserted into G. The list of all

inserted edges is returned.

every edge (v, w) in G is inserted into the

adjacency list of w.

every edge (v, w) in G is removed from the

adjacency list of w.

makes G the empty graph

55

c) Iterators

With the adjacency list of every node v is associated a list iterator called the adjacency

iterator of v (cf. list). There are operations to initialize, move, and read these iterators.

They are used to implement iteration statements (foralLadj_edges, forall_adj-D.odes).

void G.iniLadj..iterator(node v) assigns nil to the adjacency iterator of node v

bool G .currenLadj_edge(edge& e, node v)

if the adjacency iterator of v is defined (=1= nil)
its contents is assigned to e and true is returned

else false is returned.

bool G.nexLadj_edge(edge& e, node v)

moves the adjacency iterator of v forward (to the

first item of adi_list(v) if it is nil) and returns

G.current...adj_edge(e, v)

bool G .currenLadj-D.ode(node& w, node v)

if G.current...adj_edge(e, v) = true then assign

target(e) to w and return true, else return

false

bool G .nexLadj-D.ode(node& w, node v)

void G.resetO

d) Miscellaneous operations

if G.nexLadj_edge(e, v) = true then assign

target(e) to w and return true, else return

false

assign nil to all adjacency iterators in G

void G.write(ostream 0 = eout)writes a compressed representation of G to

void G. write(string s)

the output stream O.

writes a compressed representation of G to

the file with name s.

void G.read(istream I = ein) reads a compressed representation of G from

void G .read(stri ng s)

the input stream I.

reads a compressed representation of G from

the file with name s.

void G.print-D.ode(node v, ostream 0 = eout)

writes a readable representation of node v to

the output stream 0

56

void G.prinLedge(edge e, ostream 0 = cout)

writes a readable representation of edge e to

the output stream 0

void G.print(ostream · 0 = cout) writes a readable representation of G to the

output stream 0

4. Iteration

foralLnodes(v, G) { "the no des of G are successively assigned to v" }

foralLedges(e, G) { "the edges of Gare successively assigned to e" }

foralLadj_edges(e, w)
{ "the edges adjacent to node ware successively assigned to e" }

foralLadj_no des(v, w)
{ "the nodes adjacent to node ware successively assigned to v" }

5. Implementation

Graphs are implemented by doubly linked adjacency lists. Most operations take constant

time, except of alLnodes, alLedges, deLalLnodes, deLalLedges, dear, write, and read

which take time O(n + m), where n is the current number of nodes and m is the

current number of edges. The space requirement is O(n + m).

5.2 U ndirected graphs (ugraph)

1. Definition

An instance G of the data type ugraph consists of a set of nodes V and a set of

undirected edges E. Every edge e E E is a set of two nodes {v, w }, v and w are

called the endpoints of e. With every node v is associated the list of its adjacent edges

adj _list(v) = { e E E Iv E e }.

2. Creation

ugraph Gi

creates an instance G of type ugraph and initializes it to the empty undirected graph.

57

3. Operations

Most operations are the same as for directed graphs. The following operations are

either additional or have different effects.

node G.opposite(node v, edge e)

int G.degree(node v)

returns w if e = {v, w}, nil otherwise

returns the degree of node v.

edge G.new_edge(node v, node w) inserts the undirected edge {v,w} into G by

appending it to the adjacency lists of both

v and w and returns it

edge G.new_edge(node v, node w, edge e!, edge e2, dir! = after, dir2 = after)

edge G .adj_succ(edge e, node v)

inserts the undirected edge {v, w} after (if dir!

= after) ot before (if dir! = before) the edge

e! into the adjacency list of v and after (if dir2

= after) or before (if dir2 = before) the edge

e2 into the adjacency list of w and returns it

returns the successor of edge e in the

adjacency list of v.

edge G.adj_pred(edge e, node v) returns the predecessor of edge e in the

adjacency list of v.

edge G.cyclic_adj_succ(edge e, node v)

returns the cyclic successor of edge e in the

adjacency list of v.

edge G .cyclic_adj_pred(edge e, node v)

4. Implementation

returns the cyclic predecessor of edge e in the

adjacency list of v.

Undirected graphs are implemented like directed graphs by adjacency lists. The

adjacency list of anode v contains all edges {v, w} of the graph. Most operations take

constant time, except of all_nodes, alLedges, deLall-nodes, deLall_edges, clear,write,

and read which take time O(n + m), where n is the current number of nodes and m

is the current number of edges. The space requirement is O(n + m).

58

5.3 Planar Maps (planar_map)

1. Definition

An instance M of the data type planar _map is the combinatorial embedding of a

planar graph.

2. Creation

planar_map M(graph G)j

creates an instance M of type planar _map and initializes it to the planar map represented

by the directed graph G. Precondition: G represents an undirected planar map, i.e.

for every edge (v, w) in G the reverse edge (w, v) is also in G and there is a planar

embedding of G such that for every node v the ordering of the edges in the adjacency

list of v corresponds to the counter-clockwise ordering of these edges around v in the

embedding.

3. Operations

Most operations are the same as for directed graphs. The following operations are

either additional or have different effects.

face M.adj_face(edge e)

list<face> M.alLfacesO

list<face> M.adjJaces(node v)

list<edge> M.adj_edges(face f)

list<node> M.adj_nodes(face f)

edge

edge

edge

edge

M .reverse(edg e e)

M .:firstJace_edge()

M .succJace_edge(edg e e)

M.predJace_edge(edge e)

returns the face of M to the right of e.

returns the list of all faces of M.

returns the list of all faces of M adjacent

to node v in counter-clockwise order.

returns the list of all edges of M bounding

face f in clockwise order.

returns the list of all no des of M adjacent

to face f in clockwise order.

returns the reversal of edge e in M .

returns the :first edge of face f in M.

returns the successor edge of e in face f
i.e., the next edge in clockwise order.

returns the predecessor edge of e in face f,
i.e., the next edge in counter-clockwise order.

59

edge M.new_edge(edge eI, edge e2)

edge M.dd_edge(edge e)

edge M.spliLedge(edge e)

node M .new _node(f ace f)

inserts the edge e = (source(eI), source(e2))

and its reversal edge into M. Precondition:

el and e2 are bounding the same face F.
The operation splits F into two new faces.

ddetes the edge e from M. The two faces

adjacent to e are united to one face.

splits edge e = (v,w) and its revers al r = (w,v)

into edges (v,u), (u,w), (w,u), and (u,v).

Returns the edge (u, w).

splits face f into triangles by inserting a new

node u and connecting it to all nodes of f.
Returns u.

node M.new-D.ode(list<edge> el) splits the face bounded by the edges in el by

list<edge> M.triangulateO

inserting a new node u and connecting it to all
source nodes of edges in el. Precondition:

all edges in el bound the same face.

triangulates all fa ces of M by inserting new

edges. The list of inserted edges is is returned.

int M .straightJine_embedding(node_array(int) zcoord, node_array(int) ycoord)

4. Iteration

computes a straight line embedding for M with

integer coordinates zcoord[v], ycoord[v]) in the

range 0 ... 2(n - 1) for every node v of M,
and returns the maximal used coordinate.

foralLfaces(f, M) { "the faces of Mare successively assigned to f" }

foralLadj_edges(e, f)
{ "the edges adjacent to face f are successively assigned to e" }

5. Implementation

Planar maps are implemented by parameterized directed graphs. All operations take

constant time, except of, new_edge and deLedge which take time O(f) where f is the

number of edges in the created faces, and triangulate and straightline_embedding take

time O(n) where n is the current size (number of edges) of the planar map.

60

5.4 Parameterized Graphs (GRAPH)

1. Definition

A parameterized graph G is a graph whose no des and edges contain additional (user

defined) data. Every node contains an element of a data type vtype, called the node

type of G and every edge contains an element of a data type etype called the edge

type of G. We use < v, w, y > to denote an edge (v, w) with information y and < x >
to denote anode with information x.

All operations defined on instances of the data type graph are also defined on instances

of any parameterized graph type G RAP H <vtype, etype>. For parameterized graphs

there are additional operations to access or update the information associated with its

nodes and edges. Instances of a parameterized graph type can be used wherever an

instance of the data type graph can be used, e.g., in assignments and 'as arguments to

functions with formal parameters of type graph&. Ha function f(graph& G) is called

with an argument Q of type G RAP H <vtype, etype> then inside f only the basic graph

structure of Q (the adjacency lists) can be accessed. The node and edge entries are

hidden. This allows the design of generic graph algorithms, i.e., algorithms accepting

instances of any parametrized graph type as argument.

2. Creation

GRAPH<vtype,etype> Gj

creates an instance G of type GRAPH <vtype, etype> and initializes it to the empty

graph.

3. Operations

In addition to the operations of the data type graph (see section 2):

vtype

etype

void

void

node

G .inf(node v) returns the information of node v

G .inf(edge e) returns the information of edge e

G .assign(node v, vtype x) makes x the information of node v

G .assign(edge e, etype y) makes y the information of edge e

G .new -D.ode(vtype x) adds a new node < x > to G and returns it

edge G .new _edge(node v, w, etype x)

adds a new edge e =< v,w,x > to G by

61

appending it to the adjacency list of v

and returns e.

edge G.new_edge(edge e, node w, etype z, dir = after)

void G .sorLnodesO

void G .sorLedgesO

void G. write(string fname)

int G .read(string fname)

4. Operators

vtype&

etype&

G [node v]

G [edge e]

5. Implementation

adds a new edge e' =< source(e),w,z > to G

by inserting it after (dir=after) or before (dir

=before) edge e into the adjacency list of

source(e) and returns e'.

the no des of G are sorted according to their

contents. Precondition: vtype is linearly

ordered.

the edges of G are sorted according to their

contents. Precondition: etype is linearly

ordered.

writes G to the file with name fname. The

output functions Print(vtype, ostream) and

Print(etype, ostream) (cf. section 1.6) must

be defined.

reads G from the file with name fname. The

input functions Read(vtype, istream) and

Read(etype, istream) (cf. section 1.6) must

be defined. Returns error code

1 if file fname does not exist

2 if graph is not of type G RAP H <vtype, etype>

3 if file fname does not contain a graph

o otherwise.

returns a reference to G.inf(v).

returns a reference to G .inf(e).

Parameterized graphs are derived from directed graphs. All additional operations for

manipulating the node and edge entries take constant time.

62

5.5 Parameterized undirected graphs (UGRAPH)

1. Definition

A parameterized undirected graph G is an undirected graph whose nodes and edges

contain additional (user defined) data. Every node contains an element of a data type

vtype, called the node type of G and every edge contains an element of a data type

etype called the edge type of G. We use < {v, w}, y > to denote the undirected edge

{ v, w} with information y and < z > to denote anode with information z.

2. Creation

UGRAPH<vtype,etype> G;

creates an instance Goftype UGRAPH<vtype, etype>and and initializes it to the

empty graph.

3. Operations

In addition to the operations of the data type ugraph (see section 5.3):

vtype

etype

void

void

node

G .inf(node v) returns the information of node v

G .inf(edge e) returns the information of edge e

G .assign(node v, vtype z) makes z the information of node v

G.assign(edge e, etype z) makes z the information of edge e

G .newnode(vtype z) adds a new node < z > to G and returns it

edg e G .new _edge(node v, node w, etype z)
inserts the undirected edge < {v, w }, z > into

G by appending it to the adjacency lists of

both v and wand returns it

edge G.new_edge(node v, node w, edge e!, edge e2, etype z, reLpos dir! =)
after, reLpos dir2 = after)

inserts the undirected edge < {v, w }, z > after

(if dir! = after) or before (if dir! = before)

the edge e! into the adjacency list of v and

after (if dir2 = after) or before (if dir2 =
before) the edge e2 into the adjacency list

of wand returns it.

63

4. Implementation

Parameterized undirected graphs are derived from undirected graphs. All additional

operations for manipulating the node and edge entries take constant time.

5.6 Parameterized planar maps (PLANAR_MAP)

1. Definition

A parameterized planar map M is a plan ar map whose nodes and faces contain

additional (user defined) data. Every node contains an element of a data type vtype,

called the node type of M and every face contains an element of a data type jtype

called the face type of M. All operations of the data type planar _map are also defined

for instances of any parameterized planar-Dl.ap type. For parameterized plan ar maps

there are additional operaations to access or update the node and face entries.

2. Creation

PLANAR_MAP<vtype,jtype> M(GRAPH(vtype,jtype) G);

creates an instance M of type PLAN AR_M AP<vtype, jtype> and initializes it to the

planar map represented by the parameterized directed graph G. The node entries of

G are copied into the corresponding nodes of M and every face j of M is assigned the

information of one of its bounding edges in G. Precondition: G represents a plan ar

map.

3. Operations

In addition to the operations of the data type planar _map:

vtype

jtype

void

void

M .inf(node v) returns the information of node v

M.inf(face f) returns the information of face j

M.assign(node v, vtype z) makes z the information of node v

M.assign(face j, jtype y) makes y the information of face j

edge M.new_edge(edge eI, edge e2, jtype y)

inserts the edge e = (source(ed, source(e2))

and its reversal edge e' into M. Precondition:

el and e2 are bounding the same face F.

64

4. Implementation

The operation splits F into two new faces j,

adjacent to edge e and j', adjacent to edge

e' with inf(f) = inf (F) and inf(f') = y.

Parameterized planar maps are derived from planar maps. All additional operations

for manipulating the node and edge contents take constant time.

5.7 Node and edge arrays (node_array, edge_array)

1. Definition

An instance A of the parameterized data type node_array< E> (edge_array<E» is a

partial mapping from the node set (edge set) of a (u)graph G to the set of variables

of data type E, called the element type of the array. The domain I of A is called the

iIidex set of A and A(x) is called the element at position x. A is said to be valid for

all nodes (edges) in I.

2. Creation

a) node I edge_array< E> A· ,

b) node I edge_array< E> A(graph G)j

c) node I edge_array< E> A(graph G, E x)j

d) nodel edge_array< E> A(graph G, int n, E x)j

creates an instance A of type node_array(E) or edge_array(E). Variant a) initializes

the index set of A to the empty set, Variants b) and c) initialize the index set of

A to be the entire node (edge) set of graph G, i.e., A is made valid for all nodes

(edges) currently contained in G. Variant c) in addition initializes A(i) with x for all

nodes (edges) i of G. Variant d) makes A a nodeledge_array(E) valid for up to n

nodes/edges of G, Precondition: n ~ lVI (IE!), this is useful if you want to use the
array for later inserted nodes/edges.

65

3. Operations

void A.init(graph G) sets the index set I of A to the node (edge)

set of G, i.e., makes A valid for all nodes

(edges) of G.

void A.init(graph G, E z) makes A valid for all no des (edges) of G

and sets A(i) = z for all nodes (edges) of G

void A.init(graph G, int n, E z)

E& A [node/edge i]

4. Implementation

makes A valid for at most n nodes (edges)

of G and sets A(i) = z for all nodes (edges)

of G. Precondition: n ~ lVI (n ~ lEI).
access the variable A(i).

Precondition: A must be valid for i.

Node (edge) arrays for a graph Gare implemented by C++ vectors and an internal

numbering of the nodes and edges of G. The access operation takes constant time,

init takes time O(n), where n is the number of nodes (edges) currently in G. The

space requirement is O(n).

Remark: Anode (edge) array is only valid for a bounded number of the no des

(edges) contained in G. This number is either the total number of nodes of G at

the moment of the array creation (variants a) ... c» or it is explicitely set by the

user (variant d». Access operations for additional later added nodes (edges) are not

allowed. Fully dynamic node and edge arrays can be realized by using hashing arrays,

e.g., h_array(node, ...) (cf. section 4.5).

66

5.8 Two dimensional node arrays (node_matrix)

1. Definition

An instance M of the parameterized data type node_matriz<E> is a partial mapping

from the set of node pairs V x V of a graph to the set of variables of data type E,

called the element type of M. The domain I of M is called the index set of M. M is

said to be valid for all node pairs in I. Anode matrix can also be viewed as anode

array with element type node_array(E) (node_array(node_array(E))).

2. Creation

a) node_matriz<E> M;

b) node_matriz<E> M(G);

c) node_matriz<E> M(G,z);

creates an instance M of type node_matriz<E>. Variant a) initializes the index set of

M to the empty set, Variants b) and c) initialize the index set of A to be the set of

all node pairs of graph G, i.e., M is made valid for all pairs in V x V where V is the

set of no des currently contained in G. Variant c) in addition initializes M(v,w) with

z for all nodes v, w E V.

3. Operations

void M .init(graph G)

void M.init(graph G, E z)

E& M (node v, node w)

node_array(E)& M[v]

4. Implementation

sets the index set of M to V xV, where

V is the set of all no des of G

sets the index set of M to V x V, where

V is the set of all no des of G and initializes

M(v,w) to z for all V,w E V.

returns the variable M(v,w).

Precondition: M must be valid for v and w.

returns the node_array M(v).

Node matrices for a graph G are implemented by vectors of node arrays and an

internal numbering of the nodes of G. The access operation takes constant time, the

init operation takes time O(n2), where n is the number of nodes currently contained

67

in G. The space requirement is 0(n2). Note that anode matrix is only valid for the

nodes contained in G at the moment of the matrix declaration or initialization (init).

Access operations for later added no des are not allowed.

5.9 Sets of nodes and edges (node_set, edgeJ;et)

1. Definition

An instance 5 of the data type node_set (edge_set) is a sub set of the nodes (edges) of

a graph G. 5 is said to be valid for the nodes (edges) of G.

2. Creation

node_set 5(G);

edge_set 5(G);

creates an instance 5 of type node_set (edge~set) valid for all nodes (edges) currently

contained in graph G and initializes it to the empty set.

3. Operations on a node/edge set S

void

void

bool

5 .insert(x)

5.del(x)

5 .member(x)

node/edge 5.chooseO

int 5.sizeO

bool 5.empty()

void 5.dearO

4. Implementation

adds node (edge) x to 5

removes node (edge) x from 5

returns true if x in 5, false otherwise

return anode (edge) of 5

returns the size of 5

returns true iff 5 is the empty set

makes 5 the empty set

Anode (edge) set 5 for a graph G is implemented by a combination of a list L of

nodes (edges) and anode (edge) array of lisLitems associating with each node (edge)

its position in L. All operations take constant time, except of dear which takes time

0(151). The space requirement is O(n), where n is the number of nodes (edges) of G.

68

5.10 Node partitions (node_partition)

1. Definition

An instance of the data type node_partition is a partition of the nodes of a graph G.

2. Creation

node_partition P(G)j

creates anode_partition P containing for every node v in Gablock {v}.

3. Operations on anode_partition P

bool P .same_block(node v, node w) returns true if v and w belong to the

same block of P.

void P.union_blocks(node v, node w) unites the blocks of P containing nodes

node P .find(node v)

4. Implementation

v and w.

returns a canonical representative node of

the block that contains node v.

Anode partition for a graph G is implemented by a combination of a partition P
and anode array of partition_item associating with each node in G a partition item

in P. lnitialization takes linear time, union~blocks takes time O(1) (worst-case), and

same_block and find take time O(a(n)) (amortized). The space requirement is O(n),
where n is the number of no des of G.

69

5.11 Node priority queues (node_pq)

1. Definition

An instance Q of the parameterized data type node_pq<I> is a partial function from

the nodes of a graph G to the linearly ordered type I.

2. Creation

node_pq<I> Q(G);

creates an instance Q ot type node_pq<I> for the nodes of graph G with dom (Q) = 0.

3. Operations

void

I

bool

void .

node

void

node

int

void

bool

Q .insert(node v, I i)

Q .inf(node v)

Q .member(node v)

Q .decrease.inf(node v, I i)

Q .findJIlin()

Q .del(node v)

Q.deLminO

Q.size()

Q.clearO

Q.emptyO

4. Implementation

adds the node v with information i to

Q. Precondition: v f/. dom(Q).

returns information of node v.

returns true if v in Q, false otherwise.

makes i the new information of node v

(Precondition: i ~ Q(v)).

returns anode with the minimal

information(nil if Q is empty)

removes the node v !rom Q

removes anode with the minimal

information !rom Q and returns it

(nil if Q is empty)

returns 1 dom(Q) I·
makes Q the empty node priority queue.

returns true if Q is the empty node

priority queue, false otherwise.

Node priority queues are implemented by fibonacci heaps and node arrays. Operations

insert, deLnode, deLmin take time O(log n), findJIlin, decrease.inf, empty take time

0(1) and clear takes time O(m), where m is the size of Q. The space requirement is

O(n), where n is the number of no des of G.

70

5.12 Graph Algorithms

This sections gives a summary of the graph algorithms contained in LEDA. All algorithms

are generic, i.e., they accept instances of any user defined parameterized graph type

GRAPH<vtype,etype> as arguments.

5.12.1 Basic Algorithms

• Topological Sorting

bool TOPSORT(graph& G, node_array<int>& ord)

TOPSORT takes as argument a directed graph G(V, E). It sorts G topologically (if G is

acyclic) by computing for every node v E V an integer ord[v] such that 1 :::; ord[v] :::; lVI
and ord[v] < ord[w] for all edges (v,w) E E. TOPSORT returns true if G is acyclic

and false otherwise.

The algorithm ([Ka62]) has running time O(IVI + lEI) .

• Depth First Search

list<node> DFS(graph& G, node s, node_array<bool>& reached)

DFS takes as argument a directed graph G(V, E), anode s of G and a node_array

reached of boolean values. It performs a depth first search starting at s visiting all

reachable nodes v with reached[v] = false. Por every visited node v reached[v] is

changed to true. DFS returns the list of all reached nodes.

The algorithm ([T72]) has running time O(IVI + lEI).

list<edge> DFS_NUM(graph& G, node_array<int>& df snum,

node_array<int>& compnum)

DFS...NUM takes as argument a directed graph G(V, E). It performs a depth first search

of G numbering the llodes of G in two different ways. df snum is a numbering with

respect to the calling time and compnum a numbering with respect to the completion

time of the recursive calls. DFS_NUM returns a depth first search forest of G (list of

tree edges).

The algorithm ([T72]) has running time O(IVI + lEI).

71

• Breadth First Search

list<node> BFS(graph& G, node s, node_array<int>& dist)

BFS takes as argument a directed graph G(V, E) and anode s of G. It performs

a breadth first search starting at s computing for every visited node v the distance

dist[vJ from s to v. BFS returns the list of all reached nodes.

The algorithm ([M84]) has running time O(IVI + lEI).

• Connected Components

int COMPONENTS(ugraph& G, node_array<int>& compnum)

COMPONENTS takes an undirected graph G(V, E) as argument and computes for

every node v E V an integer compnum[v] from [0 ... c - 1] where c is the number

of connected components of G and v belongs to the i-th connected component iff

compnum[vJ = i. COMPONENTS returns c.

The algorithm ([M84]) has running time O(IVI + lEI).

• Strong Connected Components

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)

STRONG_COMPONENTS takes a directed graph G(V, E) as argument and computes

for every node v E V an integer compnum[vJ from [0 ... c - 1J where c is the number

of strongly connected components of G and v belongs to the i-th strongly connected

component iff compnum[vJ = i. STRONG_COMPONENTS returns c.

The algorithm ([M84]) has running time O(IVI + lEI).

• Transitive Closure

graph TRANSITIVE_CLOSURE(graph& G)

TRANSITIVE_CLOSURE takes a directed graph G(V, E) as argument and computes

the transitive closure of G(V, E). It returns a directed graph G'(V' , E') with V' = V
and (v, w) E E' {::} there is a path form v to w in G.

The algorithm ([GK79]) has running time O(IVI ·IEI).

72

5.12.2 Network Algorithms

Most of the following network algorithms are overloaded. They work for both integer

and real valued edge costs .

• Single Source Shortest Paths

void DIJKSTRA(graph& G, node s, edge_array<int> cost, node_array<int> dist,

node_array<edge> pred)

void DIJKSTRA(graph& G, node s, edge_array<double> cost, node_array<double> dist,

node_array<edge> pred)

DIJKSTRA takes as arguments a directed graph G(V,E), a source node s and an

edge_array cost giving for each edge in G a non-negative cost. It computes for each

node v in G the distance dist [v] from s (cost of the least cost path from s to v) and

the predecessor edge pred[v] in the shortest path tree.

The algorithm ([Di59,FT87]) has running time O(IEI + lVI log lVI).

bool BELLMAN_FORD(graph& G, node s, edge_array<int> cost,

node_array<int> dist,

node_array<int> pred)

bool BELLMAN_FORD(graph& G, node s, edge_array<double> cost,

node_array<double> dist,

node_array<edge> pred)

BELLMAN_FORD takes as arguments a graph G(V,E), a source node sand an

edge_array cost giving for each edge in G a real (integer) cost. It computes for each

node v in G the distance dist[v] from s (cost of the least cost path from s to v) and the

predecessor edge pred[v] in the shortest path tree. BELLMAN_FORD returns false if

there is a negative cycle in G and true otherwise

The algorithm ([Be58]) has running time O(IVI . lEI) .

• All Pairs Shortest Paths

void ALL_PAIRS_SHORTEST..PATHS(graph& G, edge_array<int>& cost,

node_matriz<int>& dist)

void ALL_PAIRS_SHORTEST..PATHS(graph& G, edge_array<double>& cost,

node_matriz<double>& dist)

73

ALL_PAIRS-.SHORTES-P ATHS takes as arguments a graph G(V, E) and an edge_array

cost giving for each edge in G a real (integer) valued cost. It computes for each node

pair (v, w) of G the distance dist(v, w) from v to w (cost of the least cost path from
v to w).

The algorithm ([Be58,F162]) has running time O(IVI ·IEI + IVI2 log lVI).

• Maximum Flow

int MAX_FLOW(graph& G, node s, node t, edge_array<int>& cap,

edge_array< int>& flow)

int MAX_FLOW(graph& G, node s, node t, edge_array<double>& cap,

edge_array<double>& flow)

MAX_FLOW takes as arguments a directed graph G(V, E), a source node s, a sink

node t and an edge_array cap giving for each edge in G a capacity. It computes for

every edge e in G a flow flow[e] such that the total flow from s to t is maximal and

flow[e] ~ cap[e] for all edges e. MAX-FLOW returns the total flow from s to t.

The algorithm ([GT88]) has running time O(IVI 3) .

• Maximum Cardinality Matching

list<edge> MAX_CARD_MATCHING(graph& G)

MAX_CARD_MATCHING(G) computes a maximum cardinality matching of G, i.e., a

maximal set of edges M such that no two edges in M share an end point. It returns

M as a list of edges.

The algorithm ([E65,T83]) has running time O(IVI . lEI· a(IEI)).

• Maximum Cardinality Bipartite Matching

list<edge> MAX_CARD_BIPARTITE-11ATCHING(graph& G, list<node>& A,

list<node>& B)

MAX_CARD_BIPARTITE_MATCHING takes as arguments a directed graph G(V, E)
and two lists A and B of nodes. All edges in G must be directed from nodes in A to

nodes in B. It returns a maximum cardinality matching of G.

The algorithm ([HK75]) has running time O(IEIM).

74

• Maximum Weight Bipartite Matching
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,

list<node>& A,

list<node>& B,

edge_array<int>& weight)

list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,

list<node>& A,

list<node>& B,

edge_array<double>& weight)

MAX_WEIGHT_BIPARTITE...MATCHING takes as arguments a directed graph G,

two lists A and B of nodes and an edge_array giving for each edge an integer (real)
weight. All edges in G must be directed from nodes in A to nodes in B. It computes
a maximum weight bipartite matching of G, i.e., a set of edges M such that the sum

of weights of all edges in M is maximal and no two edges in M share an end point.
MAX_WEIGHT_BIPARTITE...MATCHING returns M as a list of edges.

The algorithm ([FT87]) has running time O(IVI ·IE/).

• Spanning Tree

list<edge> SPANNING_TREE(ugraph& G)

SPANNING_TREE takes as argument an undirected graph G(V, E). It computes a
spanning tree T of G, SPANNING_TREE returns the list of edges of T.

The algorithm ([M84]) has running time O(IVI + lEI).

• Minimum Spanning Tree

list<edge> MIN_SPANNING_TREE(ugraph&G, edge_array<int>& cost)

list<edge> MIN _SPANNIN G _ TREE(ugraph&G, edge_array< double>& cost)

MIN_SPANNING_TREE takes as argument an undirected graph G(V, E) and an
edge_array cost giving for each edge an integer cost. It computes a minimum spanning
tree T of G, i.e., a spanning tree such that the sum of all edge costs is minimal.
MIN_SPANNING_TREE returns the list of edges of T.

The algorithm ([Kr56]) has running time O(IEllog lVI).

75

5.12.3 Algorithms for Planar Graphs

• Planarity Test

bool PLAN AR(graph&G)

PLANAR takes as input a directed graph G(V, E) and performs a planarity test for G.

If G is a planar graph it is transformed into a planar map (a combinatorial embedding

such that the edges in all adjacency lists are in clockwise ordering). PLAN AR returns
true if G is planar and false otherwise.

The algorithm ([HT74]) has running time O(IVI + lEI).

• Triangulation

list<edge> TRIANGULATE_PLAN AR_MAP(graph& G)

TRIANGULATE_PLANAR_MAP takes a directed graph G representing a plan ar map.

It triangulates the faces of G by inserting additional edges. The list of inserted edges

is returned.

The algorlthm ([HU89]) has running time O(IVI + lEI).

• Straight Line Embedding
int STRAIGHT_LINE_EMBEDDING(graph& G, node_array<int>& xcoord,

node_array< int>& ycoord)

STRAIGHT_LINE-EMBEDDING takes as argument a directed graph G represent­

ing a planar map. It computes a straight line embedding of G by assigning non­

negative integer coordinates (xcoord and ycoord) in the range O .. 2(n - 1) to the nodes.

STRAIGHT_LINE_EMBEDDING returns the maximal coordinate.

The algorithm ([Fa48]) has running time O(IVI2
).

76

5.13 Miscellaneous

5.13.1 Some useful functions

void eomplete_graph(graph& G, int n)

ereates a eomplete graph G with n nodes.

void random..graph(graph& G, int n, int m)

void test_graph(graph& G)

ereates a random graph G with n nodes

and m edges.

ereates interaetively a user defined graph G.

void tesLbigraph(graph& G, nodelist& A, nodelist& B)
ereates interactively a user defined bipartite

graph G with sides A and B. All edges are

direeted from A to B.

bool eompute_eorrespondenee(graph& G, edge_array(edge)& reversal)

void eliminate_paralleLedges(graph& G)

eomputes for every edge e = (v,w) in G its

revers al reversal[e] = (w,v) iri G (nil if

not present). Returns true if every edge has a

reversal and false otherwise.

removes all parallel edges from G.

void emdline_graph(graph& G, int arge, ehar** argv)

builds graph G as speeified by the eommand line

arguments:

prog

prog n

prog n m

prog file

77

----+ test_graphO

----+ eom plete_graph(n)

----+ tesLgraph(n, m)

----+ G .read~raph(Jil e)

8.1.

6. Data Types For Two-Dimensional Geometry

6.1 Basic two-dimensional objects

LEDA provides a collection of simple data types for two-dimensional geometry, such

as points, segments, lines, circles, and polygons. All these types can be used as

type parameters in parameterized data types. Their declarations are contained in the

header file <LEDA/plane.h>. Furthermore, some basic algorithms (section 6.1.6)

are included.

6.1.1 Points (poirit)

1. Definition

An instance of the data type point is a point in the two-dimensional plane IR? We use

(a, b) to denote a point with first (or x-) coordinate a and second (or y-) coordinate b.

2. Creation

a) point p(double x, double y);

b) point Pi

introduces a variable p of type point initialized to the point (x, y). Variant b) initializes

p to the point (0,0).

3. Operations

double

double

double

double

point

p.xcoordO

p.ycoordO

p.distance(point q)

p.distance{)

p.translate(vector v)

returns the first coordinate of point p

returns the second coordinate of point p

returns the euclidean distance between p

and q.

returns the euclidean distance between p

and (0,0).

returns p + v, i.e., p translated by vector

v. Precondition: v.dimO = 2.

point p. translate{ doubl e a, doubl e d)

returns the point created by translating

p in direction a by distance d. The

79

direction is given by its angle with a

right oriented horizontal ray.

point p.rotate(point q, double o:,eturns the point created by a rotation of p

about point q by angle 0:.

point p.rotate(double 0:)

4. Operators

bool

bool

point

point == point

point != point

point + vector

Input and output operators:

ostream& ostream < < point

istream& istream > > point

6.1.2 Segments (segment)

1. Definition

returns p.rotate(point(O, 0), 0:).

test for equality

test for inequality

translation by vector

writes a point to an output stream

reads the coordinates of a point (two doubles)

from an input stream

An instance s of the data type segment is a directed straight line segment in the

two-dimensional plane, i.e., a straight line segment [p, q] connecting two points p, q E [R.2.

P is called the start point and q is called the end point of s. The length of s is the

euclidean distance between p and q. The angle between a right oriented horizontal ray

and s is called the direction of s. The segment [(0,0), (0,0)] is said to be empty.

2. Creation

a) segment s(point p, point q);

b) segment s(double Xl, double Y1, double X2, double Y2);

c) segment s(point p, double 0:, double d);

d) segment s· ,

intro duces a variable s of type segment. s is initialized to the segment from p to q

(variant a), to the segment from (x 1, yI) to (X2' Y2) (variant v), to the segment with

80

start point p, direction a, and length d (variap.t c), or to the empty segment (variant

d).

3. Operations

point

point

double

double

double

double

double

double

double

double

bool

bool

double

s.startO

s.end()

s.xcoordl0

s.ycoordl0

s.xcoord20

s.ycoord20

s.lengthO

s.directionO

s.angle(segment t)

s.angle()

s.horizontalO

s. vertical()

s.slopeO

returns the start point of segment s.

returns the end point of segment s.

returns the x-coordinate of s.startO.

returns the y-coordinate of s.startO.

returns the x-coordinate of s.endO.

returns the y-coordinate of s.endO.

returns the length of s.

returns the direction of s as an angle in

the intervall (-7r, 7r].

returns the angle between sand t, i.e.,

t.directionO - s.directionO.

returns s.directionO.

returns true iff s is horizontal.

returns true iff s is vertical.

returns the slope of s.

Precondition: s is not vertical.

bool s.intersection(segment t, point& p)

segment

segment

segment

segment

if s and t are not collinear and intersect the

intersection point is assigned to p and true is

returned, otherwise false is returned.

s.rotate(point q, double a)returns the segment created by a rotation of s

about point q by angle a.

s.rotate(double a) returns s.rotate(s.startO,a).

s.translate(vector v)

returns s + v, i.e., the segment created by

translating s by vector v. Precondition: v

has dimension 2.

s.translate(double alpha, double d)

returns the segment created by a translation of

s in direction a by distance d.

81

3. Operators

bool

bool

segment

segment == segment

segment != segment

segment + vector

Input and output operators:

ostream& ostream < < segment

istream& istream > > segment

6.1.3 Straight Lines (line) .
1. Definition

test for equality

test for inequality

translation by vector

writes a segment to an output stream.

reads the coordinates of a segment (four doubles)

from an input stream.

An instance 1 of the data type line is a directed straight line in the two-dimensional

plane. The angle between a right oriented horizontal line and 1 is called the direction

of l.

2. Creation

a)line l(point p, point q);

b) line l(segment s);

c) line l(point p, double a);

d) line l· ,

intro duces a variable 1 of type line. 1 is initialized to the line passing through points

p and q directed form p to q (variant a), to the line supporting segment s (variant

b), to the line passing through point p with direction a (variant c), or a line through

(0,0) with direction 0 (variant d) .

3. Operations

double

double

l.directionO

l.angle(line g)

returns the direction of l.

returns the angle between 1 and g, i.e.,

82

double

bool

bool

double

double

double

double

l.angleO

l.horizontalO

I. vertical()

l.slopeO

l.y _proj(double z)

l.x_proj(double y)

l.y_absO

g.directionO - l.directionO.

returns l.directionO.

returns true iff I is horizontal.

returns true iff I is vertical.

returns the slope of I.
Precondition: I is not vertical.

returns p.ycoordO, where p E I with p.xcoordO

= z. Precondition: I is not vertical.

returns p.xcoordO, where p E I with p.ycoordO

= y. Precondition: I is not horizontal.

returns the y-abscissa of I (l.y_proj(O)).

Precondition: I is not vertical.

bool l.intersection(line g, point& p)

if I and g are not collinear and intersect the

interseetion point is assigned to p and true is

returned, otherwise false is returned.

bool l.intersection(segment s, point& p)

Une l.translate(vector v)

if land s are not collinear and intersect the

intersection point is assigned to p and true is

returned, otherwise {alse is returned.

returns I + v, Le., the line created by

translating I by vector v. Precondition: v

has · dimension 2.

line l.translate(double a, double d)

returns the line created by a translation of

I in direction a by distance d.

line l.rotate(point q, double a)returns the line created by a rotation of I

about point q by angle a.

line l.rotate(double a) returns l.rotate(point(O,O), a).

segment l.perpendicular(point p) returns the nromal of p with respect to I.

4. Operators

bool

bool

line == line

line != line

test for equality

test for inequality

83

6.1.4 Polygons (polygon)

1. Definition

An instance P of the data type polygon is a simple polygon in the two-dimensional

plane defined by the sequence of its vertices in clockwise order. The number of vertices

is called the size of P. A polygon with empty vertex sequence is called empty.

2. Creation

a) polygon P(list<point> pI);

b) polygon Pj

intro duces a variable P of type polygon. P is initialized to the polygon with vertex

sequence pI. Precondition: The vertices in pI are given in clockwise order and define

a simple polygon. Variant b) creates the empty polygon and assigns it to P.

3. Operations

list <point> P.verticesO

list<segment>P .segmentsO

list<point> P.intersection(line I)

list<point> P .intersection(segment s)

list<polygon> P.intersection(polygon Q)

bool P .inside(point p)

bool

polygon

P.outside(point p)

P. translate(vector v)

returns the vertex sequence of P.

returns the sequence of bounding segments

of P in clockwise order.

returns P n I as a list of points.

returns P n s as a list of points.

returns P n Q as a list of points.

returns true if p lies inside of P,
false otherwise.

returns ! P .inside(p).

returns P + v, i.e., the polygon created by

translating P by vector v. Precondition: v

has dimension 2.

polygon P.translate(double a, double d)

polygon

returns the polygon created by a translation

of P in direction a by distance d

P.rotate(point q, double a,eturns the polygon created by a rotation of

P ab out point q by angle a.

84

double

bool

P.size()

P.emptyO

4. Operators

bool

bool

polygon == polygon

polygon != polygon

6.1.5 Circles (circle)

1. Definition

returns the size of P.

returns true if P is empty, false otherwise.

test for equality

test for inequality

An instance C of the data type circle is a circle in the two-dimensional plane, i.e., the

set of points having a certain distance r from a given point p. r is called the radius

and p is called the center of C. The circle with center (0,0) and radius 0 is called the

empty circle.

2. Creation

a) circle C(point p, double r)j

b) circle C(double z, double y, double r)j

c) circle C· ,

introduces a variable C of type circle. C is initialized to the circle with center p and

radius r (variant a), to the circle with center (z,y) and radius r (variant b), or to the
empty circle (variant c).

3. Operations

double

point

C.radiusO

C.centerO

list<point> C .intersection(line 1)

returns the radius of C.

returns the center of C.

returns C n 1 as a list of points.

list<point> C .intersection(segment s) returns C n s as a list of points.

list<point> C .intersection(circle D) returns C n D as a list of points.

segment C .lefLtangent(point p) returns the line segment starting in p tangent

85

segment

double

double

double

bool

bool

circle

circle

circle

C .righLt angent (point p)

C .distance(point p)

C .distance(line 1)

C .distance(circle D)

C .inside(point p)

C .outside(point p)

C. translate(vector v)

to C and left of segment [p, C.centerOl .

returns the line segment starting in p tangent

to C and right of segment [p, C.centerOl.

returns the distance between C and p

(negative if p inside C).

returns the distance between C and 1

(negative if 1 intersects C).

returns the distance between C and D

(negative if D intersects C).

returns true if P lies inside of C,
false otherwise.

returns !C .inside(p).

returns C + v, i.e., the circle created by

translating C by vector v. Precondition:

v.dim = 2.

C.translate(dou.ble a, dou.ble d)

returns the circle created by a translation of

C in direction a by distance d.

C.rotate(point q, double a)
returns the circle created by a rotation of C

about point q by angle a.

4. Operators

bool

bool

circle == circle

circle != circle

test for equality

test for inequality

86

6.1.6 Algorithms

• Line segment interseetion

void SEGMENT.lNTERSECTION(list<segment>& L, list<point>& P);

SEGMENT.lNTERSECTION takes a list of segments L as input and computes the

list of intersection points between an segments in L.

The algorithm ([B079]) has running time O«n + k)logn), where n is the number of

segments and k is the number of intersections.

• Convex huH of point set

polygon CONVEX_HULL(list<point> L);

CONVEX_HULL takes as argument a list ofpoints and returns the polygon representing

the convex hull of L. It is based on a randomized incremental algorithm.

Running time: O(n log n) (with high prob ability), where n is the number of points.

• Voronoi Diagrams

void VORONOI(list<point>& sites, double R, GRAPH<point,point>& G)

VORONOI takes as input a list of points sites and areal number R. It computes a

directed graph G representing the planar sub division defined by the Voronoi-diagram

of sites where an "infinite" edges have length R. For each node v G.inf(v) is the

corresponding Voronoi vertex (point) and for each edge e G .inf(e) is the site (point)

whose Voronoi region is bounded by e.

The algorithm ([De92]) has running time O(nlog n) (with high probability), where n
is the number of sites.

87

6.2 Two-dimensional dictionaries (d2_dictionary)

1. Definition

An instance D of the parameterized data type d2_dictionary<Kl, K2, I> is a eolleetion

of items (dic2_item). Every item in D contains a key from the linearly ordered data

type Kl, a key from the linearly ordered data type K2, and an information from data

type I. Kl and K2 are called the key types of D, and I is called the information type

of D. The number of items in D is ealled the size of D. A two-dimensional dietionary

of size zero is said to be empty. We use < k1 , k2 , i > to denote the item with first

key kll second key k2 , and information i. For each pair (k1 , k2) E Kl x K2 there is

at most one item < k1 , k2 , i > E D. Additionally to the normal dictionary operations,

the data type d2_dictionary supports reet angular range queries on Kl x K2.

2. Creation

d2_dictionary<Kl, K2, I> D;

creates an instance D of type d2_dictionary<Kl, K2, I> and initializes D to the empty

dietionary.

3. Operations

Kl

K2

I

dic2_item

dic2_item

dic2_item

dic2_item

dic2_item

D.keyl(dic2_item it)

D.key2(dic2_item it)

D.inf(dic2_item it)

D.max-.keylO

D . max-.key 2 0
D . min-.key 1 0
D .min-.key20

returns the first key of item it.

Precondition: it is an item in D.

returns the seeond key of item it.

Precondition: it is an item in D.

returns the information of item it.

Precondition: it is an item in D.

returns the item with maximal first key.

returns the item with maximal seeond key.

returns the item with minimal first key.

returns the item with minimal seeond key.

D.insert(Kl k1 , K2 k2 , I i)
assoeiates the information i with the keys

k1 and k2 • If there is an item < k1 ,k2 ,j >
in D then j is replaeed by i, else a new

item < k1 , k2 , i > is added to D. In both

88

cases the item is returned.

returns the item with keys k1 and k2

(nil if no such item exists in D).

list<dic2_item> D.range_search(Kl a, Kl b, K2 c, K2 d)

list<dic2_item> D .all_itemsO

void D.del(Kl k1 , K2 k2)

returns the list of all items < k1 , k2 , i > E D
with a :::; k1 :::; band c :::; k2 :::; d.

returns the list of all items of D.

deletes the item with keys k1 and k2

from D.

void D.deLitem(dic2_item it) removes item it from D.

Precondition: it is an item in D.

void D .change..inf(dic2_item it, I i)

void

bool

int

D.dearO

D.empty()

D.size()

4. Implementation

makes i the information of item it.
Precondition: it is an item in D.

makes D the empty d2_dictionary.

returns true if D is empty, false otherwise.

returns the size of D.

Two-dimensional dictionaries are implemented by dynamic two-dimensional range trees

[Wi85, Lu78] based on BB[a] trees. Operations insert, lookup, deUtem, deI take time

0(1og2 n), range...search takes time O(k + log2 n), where k is the size of the returned

list, key, inf, empty, size, change..inf take time 0(1), and dear takes time O(nlog n).
Here n is the current size of the dictionary. The space requirement is O(nlog n).

89

6.3 Sets of two-dimensional points (point_set)

1. Definition

An instance S of the parameterized data type poinLset<I> is a collection of items

(ps_item). Every item .in S contains a two-dimensional point as key (data type point),

and an information from data type I, called the information type of S. The number

of items in S is called the size of S. A point set of size zero is said to be empty. We

use < p, i > to denote the item with point p, and information i. For each point p there

is at most one item < p, i > ES. Beside the normal dictionary operations, the data

type poinLset provides operations for rectangular range queries and nearest neighbor

quenes.

2. Creation

poinLset<I> Si

creates an instance S of type poinLset<I> and initializes S to the empty set.

3. Operations

point S.key(ps_item it)

I S .inf(ps_item it)

ps_item S.insert(point p, I i)

ps_item S .10 okup (point p)

ps_item S .nearest...neighbor(point q)

returns the point of item it.
Precondition: it is an item in S.

returns the information of item it.

Precondition: it is an item in S.

associates the information i with point p.

H there is an item < p,j > in S then j

is replaced by i, else a new item < p, i >
is added to S. In both cases the item is

returned.

returns the item with point p (nil if no

such item exists in S).

returns the item < p, i > E S such that
the distance between p and q is minimal.

list<ps_item> S .range....search(double Xo, double Xl, double Yo, double Yd

list<ps_item> S .convex..b.ullO

90

returns all items < p, i > E S with

Xo :$ p.xcoordO :$ Xl and

Yo :$ p.ycoordO ~ Yl

returns the list of items containing all

void

void

S.del(point p)

S .deLitem(ps_itemit)

points of the convex hull of S in dock­

wise order.

deletes the item with point p from S

removes item it from S.

Precondition: it is an item in S.

void S .changeinf(ps_item it, I i) makes i the information of item it.

list<ps_item> S .alLitemsO

list<point> S .alLpointsO

void S .dearO

bool S .emptyO

int S.sizeO

4. Implementation

Precondition: it is an item in S.

returns the list of all items in S.

returns the list of all points in S.

makes S the empty poinLset.

returns true iff S is empty.

returns the size of S.

Point sets are implemented by a combination oftwo-dimensional range trees [Wi85, Lu78]

and Voronoi diagrams. Operations insert, lookup, deUtem, del take time 0(log2 n),
key, inf, empty, size, changeinf take time 0(1), and clear takes time O(nlog n). A

range_search operation takes time O(k + log2 n), where k is the size of the returned

list. A nearest...neighbor query takes time 0(n2), if it follows any update operation

(insert or delete) and O(logn) otherwise. Here n is the current size of the point set.

The space requirement is 0(n2).

91

6.4 Sets of intervals (intervaLset)

1. Definition

An instance S of the parameterized data type intervaLset<I> is a collection of items

(is_item). Every item in S contains a closed interval of the real numbers as key and

an information !rom data type I, called the information type of S. The number of

items in S is called the size of S. An interval set of size zero is said to be empty. We

use < x, y, i > to denote the item with interval [x, y] and information i, x (y) is called

the left (right) boundary of the item. For each interval [x, y] C [R there is at most one

item < x,y,i >E S.

2. Creation

intervaLset<I> Si

creates an instance S of type intervaLset<I> and initializes S to the empty set.

3. Operations

double

double

I

is_item

is_item

S.left(is_item it)

S .right(is_item it)

S .inf(is_item it)

returns the left boundary of item it.
Precondition: it is an item in S .

returns the right boundary of item it.

Precondition: it is an item in S.

returns the information of item it.

Precondition: it is an item in S.

S.insert(double x, double y, I i)
associates the information i with interval

[x,y]. If there is an item < x,y,j > in S

then j is replaced by i, else a new item

< x, y, i > is added to S. In both cases

the item is returned.

S.lookup(double x, double y)returns the item with interval [x,y]
(nil if no such item exists in S).

list<is_item> S.intersection(double a, double b)

void S.del(double x, double y)

returns all items < x, y, i > E S with

[x, y] n [a, b] =1= 0.

deletes the item with interval [x, y]

92

from S.

void S .deLitem(is_item it) removes item it from S.

Precondition: it is an item in S.

void S .changeJnf(is_item it, I i) makes i the information of item it.

void

bool

int

S.clearO

S.emptyO

S.sizeO

4. Implementation

Precondition: it is an item in S.

makes S the empty intervaLset.

returns true iff S is empty.

returns the size of S.

Interval sets are implemented by two-dimensional range trees [Wi85, Lu78]. Operations

insert, lookup, deLitem and del take time O(log2 n), intersection takes time O(k+log2 n),
where k is the size of the returned list. Operations left, right, inf, empty, and size

take time O(1), and dear O(n log n). Here n is always the current size of the interval

set. The space requirement is O(n log n).

93

6.5 Sets of parallel segments (segment-set)

1. Definition

An instance S of the parameterized data type segmenLset<I> is a collection of items

(seg_item). Every item in S contains as key a line segment with a fixed direction a

(see data type segment) and an information from data type I, called the information

type of S. a is called the orientation of S. We use < s,i > to denote the item with

segment sand information i. For each segment s there is at most one item < s, i > ES.

2. Creation

a) segmenLset<I> S(double a)j

b) segment--set<I> Sj

creates an empty instance S of type segmenLset<I> with orientation a. Variant b)

creates a segment set of orientation zero, i.e., for horizontal segments.

3. Operations

segment S.key(seg_item it)

I S .inf(seg_item it)

seg_item S .insert(segment s, I i)

ps_item S.lookup(segment s)

list<seg_item> S.intersection(segment q)

list<seg_item> S .intersection(line I)

void S .del(segment s)

94

returns the segment of item it.

Precondition: it is an item in S.

returns the information of item it.

Precondition: it is an item in S.

associates the information i with segment

s. If there is an item < s,j > in S

then j is replaced by i, else a new item

< s, i > is added to S. In both cases the

item is returned.

returns the item with segment s (nil
if no such item exists in S).

returns all items < s, i > E S with

s n q =1= 0. Precondition: q is

orthogonal to the segments in S.

returns all items < s, i > E S with

s n I =1= 0. Precondition: I is

orthogonal to the segments in S.

deletes the item with segment s

void S.deLitem(seg_itemit)

from S.

removes item it from S.

Precondition: it is an item in S.

void S .change...inf(seg_item it, I i)

void

bool

int

S.clearO

S.emptyO

S .size()

4. Implementation

makes i the information of item it.

Precondition: it is an item in S.

makes S the empty segment..set.

returns true iff S is empty.

returns the size of S.

Segment sets are implemented by dynamic segment trees based on BB[a] trees ([Wi85,

Lu78]) trees. Operations key, inf, changejnf, empty, and size take time 0(1), insert,

lookup, deI, and deLitem take time 0(log2 n) and an intersection operation takes time

O(k + log2 n), where k is the size of the returned list. Here n is the current size of

the set. The space requirement is O(nlog n).

95

6.6 Planar Subdivisions (subdivision)

1. Definition

An instance S of the parameterized data type subdivision<I> is a sub division of the

two-dimensional plane, i.e., an embedded planar graph with straight line edges (see

also sections 5.3 and 5.6). With each node v of S is associated a point, called the

position of v and with each face of S is associated an information from data type I,
called the information type of S.

2. Creation

subdivision<I> S(GRAPH(point,I) G)j

creates an instance S of type subdivision<I> and initializes it to the sub division

represented by the parameterized directed graph G. The node entries of G (of type

point) define the positions of the corresponding no des of S. Every face f of S is

assigned the information of one of its bounding edges in G. Precondition: G represents

a planar sub division, i.e., a straight line embedded plan ar map.

2. Operations

point

ftype

face

S. position(node v)

S .inf(f ace f)

S.locate_point(point p)

3. Implementation

returns the position of node v.

returns the information of face f.
returns the face containing point p.

Planar sub divisions are implemented by parameterized planar maps and an additional

data structure for point location based on persistent search trees ([DSST89]). Operations

position and inf take constant time, a locate_point operation takes time O(log2 n).
Here n is the number of nodes. The space requiremnt and the initialization time is

O(n2).

96

6.7 Graphie Windows (window)

1. Definition

The data type window provides an interface for the input and output of basic two­

dimensional geometrie objects (cf. section 5.1) using the XlI or Sun View window system.

There are two object code libraries libWx.a, and libWs.a containing implementations

for both the XlI (xview toolkit.) and the Sun View environments. Application programs

using data type window have to be linked with one of these libraries (cf. section 1.6):

a) For the XlI (xview) window system:

ce prog.c -lP -lG -lL -lWx -lxview -lolgx -lXlI -Im

b) For the Sun View window system:

ce prog.c -lP -lG -lL -lWs -lsuntool -lsunwindow -lpixrect -Im

An instance W of the data type window is an iso-oriented rectangular window in

the two-dimensional plane. The default representation of W on the screen is a 850 x

850 pixel square positioned in the upper right corner (cf. creation, variant c)). The

coordinates and scaling of W used for drawing operations are defined by three double

parameters: Zo, the x-coordinate of the left side, Zl, the x-coordinate of the right side,

and Yo, the y-coordinate of the bottom side. The y-coordinate of the top side of W

is determined by the current size and shape of the window on the screen, which can

be changed interactively. A graphic window supports operations for drawing points,

lines, segments, arrows, circles, polygons, graphs, .. , and for graphical input of all

these objects using the mouse input device. Most of the drawing operations have an

optional color argument. Possible colors are black (default), white, blue, green, red,

violet, and orange. On monochrome displays all colors different from white are turned

to black. There are 6 parameters used by the drawing operations:

1. The line width parameter (default value 1 pixel) defines the width of all kinds of

lines (segments, arrows, edges, circles, polygons).

2. The line style parameter defines the style of lines. Possible line styles are solid

(default), dashed, and dotted.

3. The node width parameter (default value 10 pixels) defines the diameter of nodes

created by the draw -D.ode and draw Jilled_node operations.

4. The text mode parameter defines how text is inserted into the window. Possible

values are transparent (default) and opaque.

97

5. The drawing mode parameter defines the logical operation that is used for setting

pixels in all drawing operations. Possible values are src_mode (default) and

xar _mode. In src_mode pixels are set to the respective color value, in xar _mode

the value is bitwise added to the current pixel value.

6. The redraw function parameter is used to redraw the entire window, whenever a

redrawing is necessary, e.g., if the window shape on the screen has been changed.

Its type is pointer to a void-function taking no arguments, i.e., void (*F)Oj

2. Creation

a) window W(int xpix, int ypix, int xpos, int ypos)j

b) window W(int xpix, int ypix)j

c) window W' ,

Variant a) creates a window W of physical size xpix x ypix pixels with its upper left

corner at position (xpos, ypos) on the screen, variant b) places W into the upper right

corner of the screen, and variant c) creates a 850 x 850 pixel window positioned into

the upper right corner.

All three variants initialize the coordinates of W to xO = 0, xl = 100 and yO = O. The

init operation (see below) can later be used to change the window coordinates and

scaling.

3. Operations

3.1 Initialization

void W.init(double Xo, double Xl, double yo)

sets the coordinates of W to Xo ,Xl, and Yo

void W .set_grid-Inode(int d)

Adds a rectangular grid with integer coordinates and

grid distance d to W, if d > O. Removes grid from

W, if d::; O.

void W.init(double Xo, double Xl, double Yo, int d)

like init(Xo, Xl, Yo) followed by seLgrid(d)

void W.clearO W is erased.

98

3.2 Setting parameters

int W.setJine_width(int pix)

Sets theline width parameter to pix pixels and

returns its previous value.

line_style W .setJine_style(linestyle s)

Sets the line style parameter to s and returns its

previous value.

int W .set..node_width(int pix)

Sets the node width parameter to pix pixels and

returns its previous value.

texLmode W.set_texLmode(texLmode m)
Sets the text mode parameter to m and returns

its previous value.

drawing_mMe.setJIlode(drawing_mode m)
Sets the drawing mode parameter to m and returns

its previous value.

void W .seLredraw(void (*F)O)

Sets theredraw function parameter to F.

3.3 Reading parameters and window coordinates

int W.getJine_widthO returns the current line width.

line_style W.getJine_styleO returns the current line style.

int W.get..node_widthO returns the current node width.

texLmode W.geLtexLmodeO returns the current text mode.

drawing_mMe.getJIlode()

double W .xmin()

double W.yminO

double W.xmax()

double W.ymaxO

double W.scale()

returns the current drawing mode.

returns Xo, the minimal x-coordinate of W.

returns Yo, the mininial y-coordinate of W.

returns Xl, the maximal x-coordinate of W.

returns YI, the maximal y-coordinate of W.

returns the number of pixels of a unit length

line segment.

99

3.4 Drawing points

void W.draw_point(double x, double y, color c = black)

draws the point (x, y) as a cross of a vertical

and a horizontal segment intersecting at (x,y).

void W .draw _point (point p, c = black)

draws point (p.xcoordO,p.ycoordO).

3.5 Drawing line segments

void W.draw..segment(double xl, double Yl, double X2, double Y2, color c = black)

draws a line segment from (Xl'Yl) to (X2'Y2)'

void W.draw..segment(point p, point q, color c = black)

draws a line segment from point p to point q.

void W.draw..segment(segment s, color c = black)

draws line segment s.

3.6 Drawing lines

void W .draw Jine(double X 1, double Yl, double X2, double Y2, color c = black)

draws a straight line passing through points

(XllYl) and (X2'Y2)'

void W .draw Jine{point p, point q, color c = black)

draws a straight line passing through points

p and q.

void W.drawJine(line I, color c = black)

draws line I.

void W.draw-.hline(double y, color c = black)

draws a horizontal line with y-coordinate y.

void W.draw_vline(double x, color c = black)

draws a vertical line with x-coordinate x.

3.7 Drawing arrows

void W.draw..arrow(double Xi, double YI, double X2, double Y2, color c= black)

draws an arrow pointing from (xllyd to (X2,Y2)'

100

void W .draw -3.rrow(point p, point q, color c = black)

draws an arrow pointing from point p to point q.

void W.draw_arrow(segment s, colorc = black)

draws an arrow pointing from s.startO to s.endO.

3.8 Drawing circles

void W.draw_circle(double z, double y, double r, color c = black)

draws the circle with center (z, y) and radius r.

void W.draw_circle(point p, double r, color c = black)

draws the circle with center p and radius r.

void W.draw_circle(circle C, color c = black)

draws circle C.

3.9 Drawing discs

void W.draw_disc(double z, double y, double r, color c=black)

draws a filled circle with center (z, y) and radius r.

void W.draw_disc(point p, double r, color c = black)

draws a filled circle with center p and radius r.

void W.draw_disc(circle C, color c = black)

draws filled circle C.

3.10 Drawing polygons

void W.draw_polygon(list<point> lp, color c = black)

draws the polygon with vertex sequence lp.

void W .draw _polygon(polygon P, color c = black)

draws polygon P.

void W.draw..filled_polygon(list<point> lp, color c = black)

draws the filled polygon with vertex sequence lp.

void W .draw ..filled_polygon(polygon P, color c = black)

draws filled polygon P.

101

3.11 Drawing functions

void W.plot...xy(double Xo, double Xl, (double)(*F)(double), color c = black)

draws function F in range [xo, Xl], i.e., all points

(X, y) with y = F(x) and Xo :s; X :s; Xl

void W.ploLyx(double Yo, double Yl, (double)(*F)(double), color c = black)

3.12 Drawing text

draws function F in range [Yo, YI], i.e., all points

(x,y) with X = F(y) and Yo:S; y:S; YI

void W.draw_text(double x, double y, string s, color c = black)

writes string s starting at position (x, y).

void W.draw_text(point p, string s, color c = black)

writes string s starting at position p.

void W.draw_ctext(double x, double y, string s, color c = black)

writes string s centered at position (x,y).

void W.draw_ctext(point p, string s, color c = black)

writes string s centered at position p.

3.13 Drawing no des

void W.draw...node(double Xo, double Yo, color c = black)

draws anode at position (xo,Yo).

void W .draw ...node(point p, color c = black)

draws anode at position p.

void W.draw..1illed_node(double Xo, double Yo, color c = black)

draws a filled node at position (xo,Yo).

void W .draw Jilled_node(point p, color c = black)

draws a filled node at position p.

void W.draw_texLnode(double x, double y, string s, color c = black)

draws anode with label s at position (xo,Yo).

void W.draw_texLnode(point p, string s, color c = black)

draws anode with label s at position p.

void W.drawinLnode(double x, double y, int i, color c= black)

102

draws anode with integer label i at position

(xo,Yo).

void W .draw JnLnode(point p, int i, color c = black)

draws anode with integer label i at position p.

3.14 Drawing edges

void W.draw_edge(double Xl, double YI, double X2, double Y2, color c = black)

draws an edge from (Xl, Yd to (X2' Y2).

void W.draw_edge(point p, point q, color c = black)

draws an edge from p to q.

void W .draw _edge(segment s, color c = black)

draws an edge from s.startO to s.endO.

void W .draw _edge_arrow(double Xl, double YI, double X2, double Y2, color c = black)

draws a directed edge from (xI,Yd to (X2,Y2)'

void W.draw_edge_arrow(point p, point q, color c = black)

draws a directed edge from p to q.

void W.draw_edge_arrow(segment s, color c = black)

3.15 Mouse Input

"int W .read..mouse()

draws a directed edge from s.startO to s.endO.

displays the mouse cursor until a button is pressed.

Returns integer 1 for the left, 2 for the middle, and

3 for the right button (-1,-2,-3, if the shift key is

pressed simultaneously).

int W.read..mouse(double& X, double& y)
displays the mouse cursor on the screen until a

button is pressed. Whena button is pressed the

current position of the cursor is assigned to

to (x,y) and the pressed button is returned.

int W.read..mouse...seg(double Xo, double Yo, double& X, double& y)
displays a line segment from (xo, Yo) to the

current cursor position until a mouse button is

pressed. When a button is pressed the current

position is assigned to (x, y) and the pressed

103

button is returned.

int W.read-Dlouse..rect(double Zo, double Yo, double& z, double& y)
displays a rectangle with diagonal from (zo, yo)

to the current cursor position until . a mouse button

is pressed. When a button is pressed the current

position is assigned to (z, y) and the pressed

button is returned.

int W.read-Dlouse_circle(double Zo, double Yo, double& z, double& y)
displays a circle with center (zo, yo) passing

through the current cursor position until a mouse

button is pressed. When a button is pressed the

current position is assigned to (z,y) and the

pressed button is returned.

bool W .confirm(string s) displays string s and asks for confirmation.

Returns true Hf the answer was "yes".

void W .acknowledge(string s)

displays string sand asks for acknowledgement.

int W .read_panel(string h, int n, string * S)

displays a panel with he ader h and an array S[l..n]
of n string buttons, returns the index of the selected

button.

int W.read_vpanel(string h, int n, string * S)

like read_panel with vertical button layout

int W.readint(string p)

double

string

displays a panel with prompt p for integer input,

returns the input

W .read..real(string p)
displays a panel with prompt p for real input

returns the ,input

W .read..string(string p)

displays a panel with prompt p for string input,

returns the input

void W .message(string s) displays message s (each call adds a new line).

void W .del-Dlessage() deletes the text written by all previous message

operations.

104

3.16 Input and output operators

For input and output of basic geometrie objects in the plane such as points, lines, line

segments, cirdes, and polygons the < < and > > operators can be used. Similar to

C++ input streams windows have an internal state indicating whether there is more

input to read or not. Its initial value is true and it is turned to false if an input

sequence is terminated by clicking the right mouse button (similar to ending stream

input by the eof character). In conditional statements objects of type window are

automatically converted to boolean by returning this internal state. Thus, they can be

used in conditional statements in the same way as C++ input streams. For example, to

read a sequence of points terminated by a right button click, use " w hile (W > > p)
{ ... } ".

3.16.1 Output

window& W « point p

window& W « segment s

window& W « line I

window& W « circle C

window& W « polygon P

3.16.2 Input

window& W» p

window& W» s

window& W» I

window& W» C

window& W» P

like W .draw _point(p)

like W.draw-segment(s)

like W.drawJine(l)

like W .draw _cirde(C)

like W.draw_polygon(P)

reads a point p: clicking the left button

assigns the current cursor position to p.

reads a segment s: use the left button to input

the start and end point of s.

reads a line I: use the left button to input

two different points on I

reads a cirde C: use the left button to input

the center of C and a point on C

reads a polygon P: use the left button to input

the sequence of vertices of P, end the sequence

by clicking the middle button.

As long as an input operation has not been completed the last read point can be erased

by simultaneously pressing the shift key and the left mouse button.

105

6.8 Panels (panel)

1. Definition

Panels are windows used for displaying text messages and updating the values of

variables. A panel P consists of a set of panel items and a set of buttons. With each

item (except of text items) is associated a variable of a certain type (int, bool, string,

double, color) whose value can be manipulated through the item and astring label.

2. Creation

panel P(string h);

creates an empty panel P with he ader h.

3. Operations

void P.textJ.tem(string s) adds a textJ.tem s to P.

void P. boolJ.tem(string s, bool& x)

adds a boolean item with label s and variable x to P.

void P .realJ.tem(string s, doubel& x)

adds areal item with label sand variable x to P.

void P.coloritem(string s, color& x)

adds a color item with label s and variable x to P.

void P.intitem(string s, int& x)
adds an integer item with label sand variable x to P.

void P.intitem(string s, int& x, int min, int max)
adds an integer slider item with label s, variable x, and

range min, . .. ,max to P.

void P.intitem(string s, int& x, int low, inthigh, int step)
adds an integer choice item with label s, variable x,

range low, ... , high, and step size step to P.

void P.stringitem(string s, string& x)

adds astring item with label sand variable x to P.

void P .stringitem(string s, string& x,list<string> L)

adds astring item with label s, variable x, and menu L
to P.

106

void P.choiceitem(string s, int& :c, list<string> L)
adds an integer item with label s, variable :c, and choices

from L to P

void P.choiceitem(string s, int&:c, stringsl, string S2, ••• ,SA:)

adds an integer item with label s, variable :c, and choices

SI, ••• , SA: to P (k ~ 5)

int P.button(string s) adds a button with label s to P and returns its number

void P.new_buttonJineO starts a new line of buttons

int P.openO P is displayed on the screen until a button of P is

selected. Returns the number of the button.

107

801

7. Miscellaneous

This section describes some additional useful data types, functions and macros of

LEDA. They can be used in any program that includes the <LEDA/basic.h> he ader

file.

7.1 Streams

The stream data types described in this section are all derived from the C++ stream

types istream and ostream. Some of these types may be obsolete in combination with

the latest vers ions of the standard C++ 1/0 library.

7.1.1 File input streams (fileJstream)

1. Definition

An instance J of the data type file_istream is an C++ istream connected to a file F,

i.e., all input operations or operators applied to J read from F.

2. Creation

file_istream J(string s)j

creates an instance J of type file-istream connected to the file with name s.

3. Operations

All operations and operators (> » defined for C++ istreams can be applied to file

input streams as weIl.

7.1.2 File output streams (file_ostream)

1. Definition

An instance 0 of the data type file_ostream is an C++ ostream connected to a file

F, i.e., all output operations or operators applied to 0 write to F.

109

2. Creation

file_ostream O(string s);

creates an instance 0 of type file_ostream connected to the file with name s.

3. Operations

All operations and operators « <) defined for C++ ostreams can be applied to file

output streams as weIl.

7.1.3 String input streams (stringjstream)

1. Definition

An instance I of the data type string_istream is an C++ istream connected to astring

s, i.e., all input operations or operators applied to I read from s.

2. Creation

string_istream I(string s);

creates an instance I of type stringistream connected to the string s.

3. Operations

All operations and operators (> » defined for C++ istreams can be applied to string

input streams as weIl.

7.1.4 String output streams (string_ostream)

1. Definition

An instance 0 of the data type string_ostream is an C++ ostream connected to an

internal string buffer, i.e., all output operations or operators applied to 0 write into

this internal buffer. The current value of the buffer is called the contents of o.

2. Creation

string _ostream 0;

creates an instance 0 of type string_ostream.

110

3. Operations

string

string

O.dearO

O.strO

dears the contents of 0

returns the current contents of 0

All operations and operators « <) defined for C++ ostreams can be applied to string

output streams as weIl.

1.1.5 Command input streams (cmd...istream)

1. Definition

An instance I of the data type cmd_istream is an C++ istream connected to the output

of a shell command emd, i.e., all input operations or operators applied to I read from

the standard output of command emd.

2. Creation

cmd_istream I(string emd);

creates an instance I of type cmdistream connected to the output of command emd.

3. Operations

All operations and operators (> >) defined for C++ istreams can be applied to command

input streams as weIl.

1.1.6 Command output streams (cmd_ostream)

1. Definition

An instance 0 of the data type emd_ostream isan C++ ostream connected to the

input of a shell command emd, i.e., all output operations or operators applieCl to 0

write into the standard input of command emd.

2. Creation

emd_ostream O(string emd);

creates an instance 0 of type cmd_ostream connected to the input of command emd.

111

3. Operations

All operations and operators (< <) defined for C++ ostreams can be applied to command

output streams as weil.

7.2 Some useful functions and macros

int readint(string s = "") prints sand reads an integer

char read_char(string s = "") prints s and reads a character

double read...real(string s = "") prints sand reads areal number

string read~tring(string s = "") prints s and reads a line of input

bool Yes(string s = "") returns (read_char(s) == 'y')

void iniLrandomO

double randomO

int random(int a, int b)

float used_time()

float used_time(float& T)

void print~tatistics()

newline cout < < "\n"

forever for(jj)

initializes the random number generator.

returns areal valued random number in [0,1]

returns a random integer in [a .. b]

returns the currently used cpu time in seconds.

returns the cpu time used by the program from

T up to this moment and assings the current

time to T.

prints a summary of the currently used memory

loop(a,b,c) for (a = bj a <= Cj a + +)

inJange(a,b,c) (b <= a && a <= c)

Max(a,b) ((a> b) ? a b)

Min(a,b) ((a> b) ? b a)

112

7.3 Memory Management

LEDA offers an efficient memory management system that is used internally for all

node, edge and item types. This system can easily be customized for user defined

dasses by the "LEDA-11EMORY" macro. You simply have to add the macro call

"LEDA_MEMORY(T)" to the dedaration of a dass T. This creates new and delete

operators for type T allocating and deallocating memory using LEDA's interna! memory

manager. We continue the example from section 1.5:

struct pair {
double Zj

double y;

pairO { Z = Y = 0; }

pair(const pair& p) { Z = p.z; y = p.y; }

friend ostream&

friend istream&

friend int

operator«(ostream&,const pair&) { ... }
operator»(istream&,pair&) { ... }
compare(const pair& p, const pair& q) { ... }

LEDA_MEMORY(pair)

}j

dictionary<pair,int> Dj

7.4 Error Handling

LEDA tests the preconditions of many (not all!) operations. Preconditions are never

tested, if the test takes more than constant time. If the test of a precondition falls

an error handling routine is called. It takes an integer error number i and a char*

error message string s as arguments. It writes s to the diagnostic output (cerr) and

terminates the program abnormally if i =f. o. Users can provide their own error handling

function handler by calling

set_error -handler(handl er).

After this function call handler is used instead of the default error handler. handler

must be a function of type void handler(int, char*). The parameters are replaced by

the error number and the error message respectively.

113

vII

8. Programs

8.1 Graph and network algorithms

In this section we list the C++ sources for some of the graph algorithms in the library

(cf. section 5.12).

Depth First Search

#include <LEDA/ graph.h>

#include <LEDA/stack.h>

list<node> DFS(graph&G, node v, node_array<bool>&reached)

{

}

list<node> L;
stack<node> S;

node W;

if (! reached[v])

{ reached[v] = true;

L.append(v);
S.push(v);

}

while (!S.einptyO)

{ v = S.popO;

foralLadj-Ilo des(w, v)
if (!reached[w])

}

{ reached[w] = true;

L.append(w);
S.push(w);

}

return L;

115

Breadth First Search

#include <LEDA/graph.h>

#include <LEDA/queue.h>

void BFS(graph& G, node v, node_array<int>& dist)

{

}

queue<node> Q;
node Wj

foraILnodes(w, G) dist[w] = -lj

dist[v] = 0;

Q.append(v)j

while (!Q.emptyO)

{ v = Q.popO;

foralLadj_nodes(w, v)
if (dist[w] < 0)

}

{ Q .append(w)j

dist[w] = dist[v] + 1;

}

Connected Components

#include <LEDA/graph.h>

int COMPONENTS(ugraph& G, node_array<int>& compnum)

{

}

node v, Wj

list<node> Sj

int count = Oj

node_array(bool) reached(G, false)j

foralLnodes (v, G)
if (!reached[v])

{ S = DFS(G, v, reached)j

forall (w, S) compnum[w] = countj

count + +j
}

return countj

116

Depth First Search Numbering

#include <LEDA/ graph.h>

void d..Ls(node v, node_array<bool>& S, node_array<int>& dfsnum,

node_array<int>& compnum,

list<edge> T)

{ / / recursive DFS

node Wi

}

edge ei

S[v] = truei

dfsnum[v] = + + dfs.countli

foralLadj_edges (e, v)
{ w = G.target(e)i

if (!S[w])

{ T .append(e) i
d_Ls(w, S, df snum, compnum, T)i

}
}

compnum[v] = + + df s_count2i

list<edge> DFS~UM(graph& G, node_array<int>& df snum, node_array<int>& compnum)

{

}

list<edge> Ti

node_array<bool> reached(G, false)i

node V;

df s_countl = df s_count2 = 0;

forall_nodes (v, G)
if (!reached[v]) d_Ls(v, reached, df snum, compnum, T);

return T;

117

Topological Sorting

#include <LEDAjgraph.h>

bool TOPSORT(graph& G, node_array<int>&ord)

{

}

node_array<int> INDEG(G)j

list<node> ZEROINDEGj

int count = Oj

node v, Wj

edge e;

foralLnodes(v, G)

if ((INDEG[v]=G.indeg(v))==O) ZEROINDEG.append(v);

while (!ZEROINDEG.emptyO)

{ v = ZEROINDEG.popO;

ord[v] = + + count;

foralLadj_nodes(w, v)
if (--INDEG[w]==O) ZEROINDEG.append(w);

}

return (count==G.number_of...nodesO);

j jTOPSORTl sorts node and edge lists according to the topological ordering:

bool TOPSORTl(graph& G)
{ node_array<int> node_ord(G);

edge_array<int> edge_ord(G);

if (TO PSO RT(G ,node_ord))

{ edge e;

foralLedges(e, G) edge_ord[e]=node_ord[target(e)];

G .sort...nodes(node_ord);
G .sort-edges(edge_ord) j

ret urn truej

}
return false;

}

118

Strongly Connected Components

#include <LEDA/ graph.h>

#include <LEDA/ array.h>

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)

{

}

node V,Wj

int n = G.number_oLnodesOj

int count = Oj
int ij

array<node> V(l, n)j

list<node> Sj

node_array<int> df .Lnum(G), compLnum(G)j

node_array<bool> reached(G, f alse) j

DFS..NUM(G, df .Lnum, compLnum)j

foralLnodes (v, G) V[compLnum[v]] = Vj

G.revOj

for (i = nj i > Oj i - -)

if (!reached[V[i]])

{ S = DFS(G, V[i], reached)j

forall (w, S) compnum[w] = countj

count + +j
}

return countj

119

Dijkstra 's Algorithm

#include <LEDA/ graph.h>

#include <LEDA/node_pq.h>

void DIJKSTRA(graph& G, node s, edge_array<int>& cost,
node_array<int>& dist, node_array<edge>& pred)

{ node_pq<int> PQ(G);

}

int c;

node U,Vj

edge e;

foralLnodes(v, G)
{ pred[v] = 0;

}

dist[v] = infinity;
PQ.insert(v, dist[v]);

dist[s] = 0;
PQ.decreaseinf(s, 0);

while (! PQ .emptyO)

{ U = PQ.del-min()

foralLadj_edges(e, u)
{ v = G.target(e);

c = dist[u] + cost[e];
if (c < dist[v])

{ dist[v] = c;

}

pred[v] = e;

PQ.decreaseinf(v, c);

} / * foralLadj_edges * /
} /* while */

120

Bellman/Ford Algorithm

#include <LEDA/graph:h>

#include <LEDA/queue.h>

bool BELLMAN_FORD(graph& G, node s, edge_array<int>& cost,
node_array<int>& dist, node_array<edge>& pred)

{ node_array<bool> in_Q(G, false);
node_array<int> count(G, 0);

}

int n = G.number_oLnodesO;

queue<node> Q(n);

node u,v;
edge e;

int c;

foralLnodes (v, G) {pred[v] = 0;
dist[v] = infinity;

}
dist[s] = 0;

Q .append(s);
in_Q[s] = true;

while (!Q.emptyO)

{u = Q.popO;

in_Q[u] = false;

if (+ + count[u] > n) return false; / /negative cycle

foralLadj_edges (e, u)

{ v = G.target(e)j

c = dist[u] + cost[e];

if (c < dist [v])
{ dist[v] = c;

pred[v] = ej

if (!in_Q[v])

}

{ Q.append(v)j

in_Q[v] = truej

}

} / * foraJLadj_edges * /
} /* while */

ret urn true;

121

All Pairs Shortest Paths

#include <LEDA/graph.h>

void alLpairs-shortest_paths(graph& G, edge_array<double>& cost,
node...matri.x<double>& DIST)

{

}

/ / computes for every node pair (v,w) DIST(v,w) = cost of the least cost

/ / path from v to w, the single source shortest paths algorithms BELLMAN_FORD

/ / and DIJKSTRA are used as subroutines

edge ej

node Vj

double C = Oj

foralLedges(e,G) C+ = fabs(cost[e])j
node s = G.new...nodeOj

foraILnodes(v,G) G.new_edge(s,v)j

node_array<double> dis tl (G)j

node_array<edge> pred(G)j

edge_array<double> costl(G)j

/ / add s to G

/ / add edges (s,v) to G

for~ll_edges(e,G) costl[e) = (G.source(e) == s) ? C: cost[e)j

BELLMAN_FORD(G, s, costl, distl,pred)j

G . del...node(s)j / / delete s from G

edge_array(double) cost2(G)j

foralLedges(e, G) cost2[e) = distl[G.source(e)) + cost[e) - distl[G.target(e))j

foralLnodes(v, G) DIJKSTRA(G, v, cost2, DIST[v],pred)j

foraILnodes(v, G)

foralLnodes(w, G) DIST(v,w) = DIST(v,w) - distl[v) + distl[w)j

122

Minimum Spanning Tree

#include <LEDA/graph.h>
#include <LEDA/node_partition.h>

void MIN_SPANNING_TREE(graph& G, edge_array<double>& cost, list<edge>& EL)
{

}

node v,w;
edge e;

node_partition Q(G);

G .sort_edges (cost);

EL.clearO;
foralLedges(e, G)

{ v = G.source(e);
w = G.target(e);

}

if (!(Q.same_block(v,w))

{ Q.union_blocks(v,w);
E L.append(e);

}

123

8.2 Geometry

U sing a persistent dictionary (cf. section 4.7) for plan ar point location (sweep line
algorithm) .

#include <LEDA/plane.h>

#include <LEDA/prio.h>

#include <LEDA/sortseq.h>

#include <LEDA/p_dictionary.h>

double X_POS; // current position of sweep line

int compare(segment s1,segment s2)

{ line l1(s1);

}

line l2(s2);

double y1 = l1.y_proj(I_POS);

double y2 = l2.y_proj(X_POS);

return compare(y1,y2);

typedef priority_queue<segment,point> I_structure;

typedef p_dictionary<segment,int> Y_structure;

sortseq<double,Y_structure> HISTORY;

void SWEEP(list<segment>& L)

{ // Precondition: L is a list of non-intersecting

// from left to right directed line segments

I_structure
Y_structure
segment

forall(s,L)

X;
Y;
s;

{ I.insert(s,s.start());

X.insert(s,s.end());

}

// initialize the X_structure

HISTORY.insert(-MAXDOUBLE,Y); // insert empty Y_structure at -infinity

while(! I.empty())

{point p;
segment s;

124

// next event: endpoint p of segment s

X_POS = p.xcoord()j

if (s.start()==p)

Y = Y.insert(s,O)j // p is left end of s

else
Y = Y.del(s)j // p is right end of s

HISTORY.insert(X_POS,Y)j // insert Y into history sequence

}

HISTORY.insert(MAIDOUBLE,Y)j // insert empty Y_structure at +infinity

}

segment LOCATE(point p)

{ X_POS = p.xcoord()j

}

Y_structure Y = HISTORY.inf(HISTORY.pred(X_POS))j

p_dic_item pit = Y.succ(segment(p,O,1))j

if (pit != nil)

return Y.key(pit)j

else
return segment(O)j

125

9Z1

9. Implementations

9.1 List of data structures

This seetion lists the data struetures for dietionaries, dietionary arrays, priority queues,

and geometrie data types eurrently eontained in LEDA. For eaeh of the data struetures

its name and type, the list of LEDA data types it ean implement, and a literat ure

referenee are given. Before using a data struetures xyz the eorresponding header file

<LEDA/impl/xyz.h> has to be included (cf. seetion 1.2 for an example).

9.1.1 Dictionaries

ab_tree a-b tree

avLtree AVL tree

bb_tree BB[a] tree

ch..hashing hashing with ehaining

dp_hashing dyn. perf. hashing

pers_tree persistent tree

rb_tree red-blaek tree

rs_tree rand. seareh tree

skiplist skip lists

9.1.2 Priority Queues

f_heap

p_heap

k..heap

m_heap

eb_tree

Fibonnaeei heap

pairing heap

k-nary heap

monotonie heap

Emde-Boas tree

9.1.3 Geometry

range_tree range tree

seg_tree segment tree

ps_tree priority seareh tree

iv_tree interval tree

delaunay_tree delaunay tree

dietionary, d_array, sortseq

dietionary, d_array

dietionary, d_array, sortseq

dietionary, d_array

h_array

p_dictionary

dictionary, d_array, sortseq

dictionary, d_array, sortseq

dietionary, d_array, sortseq

priority _queue

priority _queue

priority _queue

priority _queue

priority _queue

d2_dictionary, poinLset

seg-.Set

intervaLset

poinLset

127

[BC72]

[AVL62]

[BM80]

[M84]

[DKMMRT88,W92]

[DSST89]

[GS78]

[AS89]

[Pu90]

[FT87]

[SV87]

[M84]

[M84]

[EKZ77,W92]

[Wi85,Lu78]

[B79,Ed82]

[MC81]

[M C80 ,Ed82]

[De92]

9.2 User Implementations

In addition to the data structures listed in the previous section user-defined data

structures can also be used as actual implementation parameters provided they fulfill

certain requirements.

9.2.1 Dictionaries

Any dass dic_impl that provides the following operations can be used as actual implemen­

tation parameter for the _dictionary<K, I, dic_impZ> and the _d_array< I, E, dic_impZ>
data types (cf. sections 4.3 and 4.4).

typedef ... dic_impl_item;

class dic_impl {

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual int int_typeO

virtual void clear_key(GenPtr&)

virtual void clear_inf(GenPtr&)

virtual void copy_key(GenPtr&)

virtual void copy_inf(GenPtr&)

public:

dic_implO;

dic_impl(const dic_impl&);

virtual -dic_impl()j

const = Oj

const = Oj

const = 0;

const = Oj

const = Oj

dic_impl& operator=(const dic_impl&)j

GenPtr key(dic_impl_item) constj

GenPtr inf(dic_impl_item) constj

dic_impl_item insert(GenPtr,GenPtr)j

dic_impl_item lookup(GenPtr) constj

dic_impl_item first_item() const;

dic_impl_item next_item(dic_impl_item) const;

dic_impl_item item(void* p) const { return dic_impl_item(p)j }

void change_inf(dic_impl_item,GenPtr)j

void del_item(dic_impl_item);

128

void del(GenPtr)j

void clearO j

int size() constj

}j

9.2.2 Priority Queues

Any dass prio_impl that provides the following operations can be used as actual

implementation parameter for the _priority_queue<K, I, prio_impl> data type (cf. sec­

tion 4.1).

class prio_impl {

virtual int cmp(GenPtr, GenPtr)

virtual int int_typeO

virtual void clear_key(GenPtrt)

virtual void clear_inf(GenPtrt)

virtual void copy_key(GenPtrt)

virtual void copy_inf(GenPtrt)

public:

prio_implO;

prio_impl(int)j

prio_impl(int,int)j

prio_impl(const prio_implt);

virtual -prio_impl()j

const

const

const

const

const

const

prio_implt operator=(const prio_implt)j

prio_impl_item insert(GenPtr,GenPtr)j

prio_impl_item find_mine) constj

= Oj

= Oj

= Oj

= O· ,
= Oj

= Oj

prio_impl_item first_item() constj

prio_impl_item next_item(prio_impl_item) const;

GenPtr key(prio_impl_item) constj

GenPtr inf(prio_impl_item) constj

129

void del_min();

void del_item(prio_impl_item);

void decrease_key(prio_impl_item,GenPtr);

void change_inf(prio_impl_item,GenPtr);

void clearO;

int size() const;

};

9.2.3 Sorted Sequences

Any dass seq_impl that provides the following operations can be used as actual

implementation parameter for the _sortseq<K, I, seq_impl> data type (cf. section 4.6).

typedef ... seq_impl_item;

class seq_impl {

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual int int_typeO

virtual void clear_key(GenPtr&:)

virtual void clear_inf(GenPtr&:)

virtual void copy_key(GenPtr&:)

virtual void copy_inf(GenPtr&:)

public:

seq_implO;

seq_impl(const seq_impl&:);

virtual ·seq_impl();

const = 0;

const = 0;

const = 0;

const = 0;

const = 0;

seq_impl&: operator=(const seq_impl&:);

seq_impl&: conc(seq_impl&:);

seq_impl_item insert(GenPtr,GenPtr);

seq_impl_item insert_at_item(seq_impl_item,GenPtr,GenPtr);

seq_impl_item lookup(GenPtr) const;

seq_impl_item locate(GenPtr) const;

seq_impl_item locate_pred(GenPtr) const;

seq_impl_item succ(seq_impl_item) const;

seq_impl_item pred(seq_impl_item) const;

seq_impl_item item(void* p) const { return seq_impl_item(p); }

130

GenPtr key(seq_impl_item) constj

GenPtr inf(seq_impl_item) constj

void del(GenPtr)j

void del_item(seq_impl_item)j

void change_inf(seq_impl_item,GenPtr);

void split_at_item(seq_impl_item,seq_implt,seq_implt);

void reverse_items(seq_impl_item,seq_impl_item)j

void clear();

int size() const;
}j

131

10. Tables

10.1 Data Types

Name Item Reader Library Page

array array.h libL.a 21

array2 array.h libL.a 23

b_priority _queue b_pqJ.tem b_prio.h libL.a 41

b_queue bAueue.h libL.a 27

b_stack b_stack.h libL.a 26

bool basic.h libL.a 15

circle plane.h libP.a 85

cmdjstream stream.h libL.a 110

cmd_ostream stream.h libL.a 110

d2_dictionary d2_dicJ.tem d2_dictionary.h libP.a 88

d_array d_array.h libL.a 44

dictionary dicJ.tem dictionary.h libL.a 42

edge_array graph.h libG.a 65

edge_set edge-set.h libG.a 68

fileJ.stream stream.h libL.a 109

file_ostream stream.h libL.a 109

graph node/edge graph.h libG.a 53

GRAPH node/edge graph.h libG.a 61

h_array h_array.h libL.a 46

inLset inLset.h libL.a 34

intervaLset isJ.tem intervaLset.h libP.a 92

line plane.h libP.a 82

list listJ.tem list.h libL.a 28

matrix matrix.h libL.a 19

node_array graph.h libG.a 65

node..matrix graph.h libG.a 67

node_partition node_partition.h libG.a 69

node_pq node_pq.h libG.a 70

node_set node_set.h libG.a 68

panel window.h libP.a/lib Wx.a 106

partition partitionJ.tem partition.h libL.a 35

planar..map node/ edge/face planar ..map.h libG.a 59

point plane.h libP.a 79

point_set psJ.tem point_set.h libP.a 90

polygon plane.h libP.a 84

133

priority _queue pq...item prio.h libP.a 39
p_dictionary p_dic...item p_dictionary.h libL.a 50
PLANAR_MAP node/edge/face planar..map.h libG.a 64
queue queue.h libL.a 25
segment plane.h libP.a 80
segment...set seg...item segment...set .h libP.a 94
set set.h libL.a 33
sortseq seq...item sortseq.h libL.a 47
stack stack.h libL.a 24
string basic.h libL.a 15
string...istream stream.h libL.a 111
string_ostream stream.h libL.a 111
sub division node/face subdivision.h libP.a 96
tree_collection d_vertex tree_collection.h libL.a 36
ugraph node/edge ugraph.h libG.a 57
UGRAPH node/edge ugraph.h libG.a 63
vector vector.h libL.a 17
window window.h libP.a/lib Wx.a 97

134

10.2 Algorithms

Name Header Library Page

ALL_PAIRS_SH ORTEST -P ATHS graph..alg.h libG.a 73
BELLMAN_FORD graph_alg.h libG.a 73
BFS graph_alg.h libG.a 72
COMPONENTS graph..alg.h libG.a 72
CONVEX_HULL plane_alg.h libP.a 87
DFS graph_alg.h libG.a 71

DFSßUM graph..alg.h libG.a 71

DIJKSTRA graph..alg.h libG.a 73
MAX_CARD_MATCHING graph..alg.h libG.a 74
MAX_CARD_BIPARTITE-MATCHING graph_alg.h libG.a 74
MAX_FLOW graph_alg.h libG.a 74
MAX_WEIGHT_BIPARTITE-MATCHING graph_alg.h libG.a 75
MIN _SPANNIN G_ TREE graph..alg.h libG.a 75
PLANAR graph_alg.h libG.a 76
SEGMENT ...INTERSECTION plane_alg.h libP.a 87
SPANNING_TREE graph..alg.h libG.a 75
STRAIGHT _LINE_EMBEDDING graph..alg.h libG.a 76
STRONG_COMPONENTS graph..alg.h libG.a 72
TOPSORT graph_alg.h libG.a 71

TRANSITIVE_CLOSURE graph_alg.h libG.a 72
TRIANGULATE_PLANAR_MAP graph..alg.h libG.a 76
VORONOI plane_alg.h libP.a 87

135

91:1

11. References

[AS89]

[AHU83]

[AVL62]

[B79]

[Be58]

[BC72]

[BM80]

[B079]

[CLR90]

[CT76]

[De92]

C. Aragon, R. Seidel: "Randomized Seareh Trees", Proe. 30th IEEE

Symposium on Foundations of Computer Scienee, 540-545, 1989

A.V. Aho, J.E. Hoperoft, J.D. Ullman: "Data Structures and AIgo­

rithms", Addison-Wesley Publishing Company, 1983

G.M. Adelson-Veslkü, Y.M. Landis: "An Algorithm for the Organi­

zation of Information", Doklady Akademi Nauk, Vol. 146, 263-266,

1962

J .L. Bentley: "Deeomposable Searehing Problems" , Information Pro­
eessing Letters, Vol. 8, 244-252, 1979

R.E. Bellman: "On a Routing Problem", Quart. Appl. Math. 16,

87-90, 1958

R. Bayer, E. MeCreight: "Organizatino and Maintenanee of Large

Ordered Indizes", Aeta Informatiea, Vol. 1, 173-189, 1972

N. Blum, K. Mehlhorn: "On the Average Number of Rebalancing
Operations in Weight-Balaneed Trees", Theoretieal Computer Scienee

11, 303-320, 1980

J .L. Bentley, Th. Ottmann: "Algorithms for Reporting and Counting

Geometrie Intersections", IEEE Trans. on Computers C 28, 643-647,

1979

T .H. Cormen, C.E. Leiserson, R.L. Rivest: "Introduetion to Algo­

rithms", MIT Press/MeGraw-Hill Book Company, 1990

D. Cheriton, R.E. Tarjan: "Finding MiI;Ümum Spanning Trees" , SIAM

Journal of Computing, Vol. 5, 724-742, 1976

O. Devillers: "Robust and Efficient Implementation of the Delaunay

Tree", Teehnieal Report, INRIA, 1992

137

[Di59] E.W. Dijkstra: "A Note on Two Problems in Conneetion With

Graphs", Num. Math., VoL 1, 269-271, 1959

[DKMMRT88] M. Dietzfelbinger, A. Karlin, K.Mehlhorn, F. Meyer auf der Heide,

H. Rohnert, R. Tarjan: "Upper and Lower Bounds for the Dietionary

Problem", Proe. ofthe 29th Annual IEEE Symposium on Foundations

of Computer Seienee, 1988

[DSST89]

[E65]

[Ed82]

[EKZ77]

[Fa48]

[FI62]

[FT87]

[GK79]

[GOP90]

J.R. Driseoll, N.Sarnak, D. Sleator, R.E. Tarjan: "Making Data

Struetures Persistent", Proe. of the 18th Annual ACM Symposium

on Theory of Computing, 109-121, 1986

J. Edmonds: "Paths, Trees, and Flowers", Canad. J. Math., Vol.

17,449-467,1965

H. Edelsbrunner: "Interseetion Problems in Computational Geome­

try", Ph.D. thesis, TU Graz, 1982

P.v. Emde Boas, R. Kaas, E. ZijIstra: "Design andImplementationof

an Effieient Pririty Queue", Math. Systems Theory, VoL 10, 99-127,

1977

I. Fary: "On Straight Line Representing of Planar Graphs", Acta.

Sei. Math. Vol. 11, 229-233, 1948

F.W. Floyd: "Algorithm 97: Shortest Paths", Communcieation of

the ACM, Vol. 5, p. 345, 1962

M.L. Fredman, and R.E. Tarjan: "Fibonaeei Heaps and Their Uses in

Improved Network Optimization Algorithms", Journal of the ACM,

Vol. 34, 596-615, 1987

A. Goraleikova, V. Konbek: "A Reduet and Closure Algorithm for

Graphs", Mathematieal Foundations of Computer Seienee, LNCS 74,

301-307, 1979

K.E. Gorlen, S.M. Orlow, P.S. Plexieo: "Data Abstraetion and Objeet­

Oriented Programming in C++ ", John Wiley & Sons, 1990

138

[GS78]

[GT88]

[HK75]

[HT74]

[HU89]

[Ka62]

[Kr56]

[Li89]

[Lu78]

[M84]

[MC80]

[MC8t]

L.J. Guibas, R. Sedgewick: "A Dichromatic Framework for Balanced

Trees", Proceedings of the 19th IEEE Symposium on Foundations of

Computer Science, 8-21, 1978

Goldberg, R.E.Tarjan: "A New Approach to the Maximum Flow

Problem", Journal of the ACM, Vol. 35, 921-940, 1988

J.E. Hopcroft, R.M. Karp: "An O(n2 •5) Algorithm for Matching in

Bipartite Graphs", SIAM Journal of Computing, Vol. 4, 225-231,

1975

J .E. Hopcroft, R.E. Tarjan: "Efficient Planarity Testing", Journal of

the ACM, Vol. 21, 549-568, 1974

T. Hagerup, C. Uhrig: "Triangulating a Plan ar Map Without Intro­

ducing multiple Arcs", unpublished, 1989

A.B. Kahn: "Topological Sorting of Large Networks", Communica­

tions of the ACM, Vol. 5, 558-562, 1962

J.B. Kruskal: "On the Shortest Spanning Subtree of a Graph and

the Travelling Salesman Problem", Proc. American Math. Society

7, 48-50, 1956

S.B. Lippman: "C++ Primer" , Addison-Wesley, Publishing Company,

1989

G.S. Luecker: "A Data Structure for Orthogonal Range Queries",

Proc. 19th IEEE Symposium on Foundations of Computer Science,

28-34, 1978

K. Mehlhom: "Data Structures and Algorithms", Vol. 1-3, Springer

Publishing Company, 1984

D.M. McCreight: "Efficient Algorithms for Enumerating Intersecting

Intervals" , Xerox Parc Report, CSL-80-09, 1980

D.M. McCreight: "Priority Search Trees", Xerox Parc Report, CSL-

81-05, 1981

139

[MN89]

[N90]

[N92]

[Pu90]

[S91]

[SV87]

[T72]

[T83]

[We92]

[Wi85]

K. Mehlhorn, S. Näher: "LEDA, a Library of Efficient Data Types

and Algorithms", TR A 04/89, FB10, Universität des Saarlandes,
Saarbrücken, 1989

S.Näher: "LEDA2.0 User Manual", technischer Bericht A 17/90,
Fachbereich Informatik, Universität des Saarlandes, Saarbrücken,

1990

S. Näher: "Parameterized Data Types in LEDA", in preparation

W. Pugh: "Skip Lists: A Probabilistic Alternative to Balanced

Trees", Communications of the ACM, Vol. 33, No. 6, 668-676,

1990

B. Stroustrup: "The C++ Programming Language, Second Edition",

Addison-Wesley Publishing Company, 1991

J. T. Stasko, J.S. Vitter: "Pairing Heaps: Experiments and Analysis" ,

Communications of the ACM, Vol. 30, 234-249, 1987

R.E. Tarjan: "Depth First Search an Linear Graph Algorithms",

SIAM Journal of Computing, Vol. 1, 146-160, 1972

R.E. Tarjan: "Data Structures and Network Algorithms", CBMS­

NSF Regional Conference Series in Applied Mathematics, Vol. 44,

1983

M. Wenzel: "Wörterbücher für ein beschränktes Universum", Diplo­

marbeit, Fachbereich Informatik, Universität des Saarlandes, 1992

D.E. Willard: "New Data Structures for Orthogonal Queries", SIAM

Journal of Computing, 232-253, 1985

140

	93-1090001
	93-1090002
	93-1090003
	93-1090004
	93-1090005
	93-1090006
	93-1090007
	93-1090008
	93-1090009
	93-1090010
	93-1090011
	93-1090012
	93-1090013
	93-1090014
	93-1090015
	93-1090016
	93-1090017
	93-1090018
	93-1090019
	93-1090020
	93-1090021
	93-1090022
	93-1090023
	93-1090024
	93-1090025
	93-1090026
	93-1090027
	93-1090028
	93-1090029
	93-1090030
	93-1090031
	93-1090032
	93-1090033
	93-1090034
	93-1090035
	93-1090036
	93-1090037
	93-1090038
	93-1090039
	93-1090040
	93-1090041
	93-1090042
	93-1090043
	93-1090044
	93-1090045
	93-1090046
	93-1090047
	93-1090048
	93-1090049
	93-1090050
	93-1090051
	93-1090052
	93-1090053
	93-1090054
	93-1090055
	93-1090056
	93-1090057
	93-1090058
	93-1090059
	93-1090060
	93-1090061
	93-1090062
	93-1090063
	93-1090064
	93-1090065
	93-1090066
	93-1090067
	93-1090068
	93-1090069
	93-1090070
	93-1090071
	93-1090072
	93-1090073
	93-1090074
	93-1090075
	93-1090076
	93-1090077
	93-1090078
	93-1090079
	93-1090080
	93-1090081
	93-1090082
	93-1090083
	93-1090084
	93-1090085
	93-1090086
	93-1090087
	93-1090088
	93-1090089
	93-1090090
	93-1090091
	93-1090092
	93-1090093
	93-1090094
	93-1090095
	93-1090096
	93-1090097
	93-1090098
	93-1090099
	93-1090100
	93-1090101
	93-1090102
	93-1090103
	93-1090104
	93-1090105
	93-1090106
	93-1090107
	93-1090108
	93-1090109
	93-1090110
	93-1090111
	93-1090112
	93-1090113
	93-1090114
	93-1090115
	93-1090116
	93-1090117
	93-1090118
	93-1090119
	93-1090120
	93-1090121
	93-1090122
	93-1090123
	93-1090124
	93-1090125
	93-1090126
	93-1090127
	93-1090128
	93-1090129
	93-1090130
	93-1090131
	93-1090132
	93-1090133
	93-1090134
	93-1090135
	93-1090136
	93-1090137
	93-1090138
	93-1090139
	93-1090140
	93-1090141
	93-1090142
	93-1090143
	93-1090144
	93-1090145
	93-1090146
	cover-hinten_2099-2897-300dpi

