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Introduction 

One of the major differences between combinatorial computing and other areas of 

computing such as statistics, numerical analysis and linear programming is the use of 

complex data types. Whilst the built-in types, such as integers, re als , vectors, and 

matrices, usually suffice in the other areas, combinatorial computing relies heavily on 

types like stacks, queues, dictionaries, sequences, sorted sequences, priority queues, 

graphs, points, segments, ... In the fall of 1988, we started a project (called LEDA for 

Library of Efficient Data types and Algorithms) to build a small, but growing library 

of data types and algorithms in a form which allows them to be used by non-experts. 

We hope that the system will narrow the gap between algorithms research, teaching, 

and implementation. The main features of LEDA are: 

1. LEDA provides a sizable collection of data types and algorithms in a form which 

allows them to be used by non-experts. In the current version, this collection 

ineludes most of the data types and algorithms described in the text books of the 

area. 

2. LEDA gives a precise and readable specification for each of the data types and 

algorithms mentioned above. The specifications are short (typically, not more than 

a page), general (so as to allow several implementations), and abstract (so as to 

hide all details of the implementation). 

3. For many efficient data structures access by position is important. In LEDA, we 

use an item concept to cast positions into an abstract form. We mention that 

most of the specifications given in the LEDA manual use this concept, i.e., the 

concept is adequate for the description of many data types. 

4. LEDA contains efficient implementations for each of the data types, e.g., Fibonacci 

heaps for priority queues, skip lists and dynamic perfect hashing for dictionaries, 

5. LEDA contains a comfortable data type graph. It offers the standard iterations 

such as "for all nodes v of a graph G do" or "for all neighbors w of v do", it allows 

to add and delete vertices and edges and it offers arrays and matrices indexed 

by nodes and edges, ... The data type graph allows to write programs for graph 

problems in a form elose to the typical text book presentation. 

6. LEDA is implemented by a C++ elass library. It can be used with allmost any 

C++ compiler (e.g., cfront2, cfront3, g++-1, g++-2, bcc, ztc). 
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7. LEDA is available by anonymous ftp from 

ftp.cs.uni-sb.de (134.96.252.31) /pub/LEDA 

The Distribution contains all sourees, installation instructions, a technical report, 

and the LEDA user manual. 

8. LEDA is not in the public domain, but can be used freely for research and teaching. 

A commerciallicense is available from the autor. 

This manual contains the specifications of all data types and algorithms currently 

available in LEDA. Users should be familiar with the C++ programming language 

(see [S91] or [L89]). The main concepts and some implementation details of LEDA 

are described in [MN89] and [N92]; The manual is structured as follows: In chapter 

one, which is aprerequisite for all other chapters, we discuss the basic concepts and 

notations used in LEDA. The other chapters define the data types and algorithms 

available in LEDA and give examples of their use. These chapters can be consulted 

independently from one another. 

Version 3.0 

The most important changes with respect to previous versions are 

a) Parameterized data types are realized by C++ templates. In particular, declare 

macros used in previous versions are now obsolete and the syntax for a parameterized 

data type D with type parameters T1, ... ,Tk is D<T1, ... ,Tk> (cf. section 1.2). 

For C++ compilers not supporting templates there is still a non-template variant 

(LEDA-N-3.0) available. 

b) Arbitrary data types (not only pointer and simple types) can be used as actual 

type parameters (cf. section 1.2). 

c) For many of the parameterized data types (in the current version: dictionary, 

priority queue, d_array, and sortseq) there exist variants taking an additional data 

structure parameter for choosing a particular implementation (cf. section 1.3). 

d) The LEDA memory management system can be customized for user-defined classes 

(cf. section 7.3) 

e) The efficiency of many data types and algorithms has been improved. 

See also the "Changes" file in the LEDA root directory. 
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1. Basics 

1.1 A First Exam pIe 

The following program can be compiled and linked with LEDA's basic library libL.a 

(cf. section 1.10). When executed it reads a sequence of strings from the standard 

input and then prints the number of occurrences of each string on the standard output. 

More examples of LEDA programs can be found throughout this manual. 

#include <LEDA/ d_array.h> 

main() 

{ 
d..array<string,int> N(O)j 

string Sj 

while (ein » S ) N[s]++j 

foralLdefined(s, N) cout « s « " " « N[s] « endlj 

} 

The program above uses the parameterized data type dictionary array (d_array< I, E> ) 

from the library. This is expressed by the include statement (cf. section 1.9 for more 

details). The specification of the data type d_array can be found in section 4.4. We 

use it also as a running example to discuss the principles underlying LEDA in sections 

1.2 to 1.10. 

Parameterized data types in LEDA are realized by templates, inheritance and dynamic 

binding (see [N92] for details). For C++ compilers not supporting templates there is 

still available a non-template version of LEDA using declare macros as described in 

[N90]. 

1.2 Specifications 

In general the specification of a LEDA data type consists of four parts: adefinition of 

the set of objects comprising the (parameterized) abstract data type, a description of 

how to create an object of the data type, the definition of the operations available on the 

objects of the data type, and finally, information about the implementation. The four 

parts appear under the headers definition, creation, operations, and implementation 

respectively. 
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• Definition 

This part of the specification defines the objects (also called instances or elements) 

comprising the data type using standard mathematical concepts and notation. 

Example, the generic data type dictionary array: 

An object a of type d_array<I, E> is an injective function from the data type I to 

the set of variables of data type E. The types land E are called the index and the 

element type respectively, a is called a dictionary array from I to E. 

Note that the types land E are parameters in the definition above. Any built-in, 

pointer, item, or user-defined class type T can be used as actual type parameter of a 

parameterized data type. Class types however have to provide the following operations: 

a) a constructor taking no arguments T::TO 
b) a copy constructor T::T( const T &) 

c) an input function void Read(T&, istream&) 

d) an output function void Print(const T&, ostream&) 

A compare function "int compare(const T&, const T&)" (cf. section 1.6) has to be 

defined if the data type requires that T is linearly ordered. Section 1.4 contains a 

complete example . 

• Creation 

A variable of a data type is introduced by a C++ variable declaration. For all LEDA 

data types variables are initialized at the time of declaration. In many cases the 

user has to provide arguments used for the initialization of the variable. In general a 

declaration 

XYZ<t 1 , ••• ,tk> Y(ZI"'" Zt)j 

intro duces a variable y of the data type "XY Z <tb' .. , tk >" and uses the arguments 

ZI, ... , Zt to initialize it. For example, 

d_array<string, int> A(O) 

intro duces A as a dictionary array from strings to integers, and initializes A as 

follows: an injective function a from string to the set of unused variables of type int 
is constructed, and is assigned to A. Moreover, all variables in the range of aare 

initialized to O. The reader may wonder how LEDA handles an array of infinite size. 
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The solution is, of course, that only that part of A is explicitly stored which has been 

accessed already. 

For all data types, the assignment operator (=) is available for variables of that type. 

Note however that assignment is in general not a constant time operation, e.g., if LI and 

L2 are variables of type list<T> then the assignment LI = L2 takes time proportional 

to the length of the list L 2 times the time required for copying an object of type T. 

Remark: For most of the complex data types of LEDA, e.g., dictionaries, lists, and 

priority queues, it is convenient to interpret a variable name as the name for an object 

of the data type which evolves over time by means of the operations applied to it. 

This is appropriate, whenever the operations on a data type only "modify" the values 

of variables, e.g., it is more natural to say an operation on a dictionary D modifies D 
than to say that it takes the old value of D, constructs a new dictionary out of it, and 

assigns the new value to D. Of course, both interpretations are equivalent. From this 

more object-oriented point of view, a variable declaration, e.g., dictionary<string, int> 
D, is creating a new dictionary object with name D rather than introducing a new 

variable of type dictionary<string, int>; hence the name "creation" for this part of a 

specmcation . 

• Operations 

In this section the operations of the data types are described. For each operation the 

description consists of two parts 

a) The interface of the operation is defined using the C++ function declaration syntax. 

In this syntax the result type of the operation (void if there is no result) is followed 

by the operation name and an argument list specifying the type of each argument. 

For example, 

lisLitem L.insert (E :c, lisLitem it, reLpos p = after) 
defines the interface of the insert operation on a list L of elements of type E 
(cf. section 3.7). Insert takes as arguments an element :c of type E, a lisLitem it 
and an optional relative position argument p. It returns a lisLitem as result. 

E& A[l :c] 
defines the interface of the access operation on a dictionary array A. It takes an 

element of l as an argument and returns a variable of type E. 

b) The effect of the operation is defined. Often the arguments have to fulfill certain 

preconditions. If such a condition is violated the effect of the operation is undefined. 
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Some, but not all, of these cases result in error messages and abnormal termination 

ofthe program (see also section 7.5). For the insert operation on lists this definition 

reads: 

A new item with contents x is inserted after (if p = after) or before (if p = befare) 

item it into L. The new item is returned. (precondition: item it must be in L) 

For the access operation on dictionary arrays the definiti~n reads: 

returns the variable A( x) . 

• Implementation 

The implementation seetion lists the (default) data structures used to implement the 

data type and gives the time bounds for the operations and the space requirement. 

For example, 

Dictionary arrays are implemented by randomized search trees ([AS89]). Access oper­

ations A[x] take time O(log dom(A». The space requirement is O(dom(A». 

1.3 Implementation Parameters 

For many of the parameterized data types (in the current version: dictionary, priority 

queue, d_array, and sortseq) there exist variants taking an additional data structure 

parameter for choosing a particular implementation (cf. section 4). Since C++ does 

not allow to overload templates we had to use different names: the variants with an 

additional implementation parameters start with an underscore, e.g., _d_array<I,E,impl>. 

We can easily modify the example program from section 1.1 to use a dictionary array 

implemented by a particular data structure, e.g., skip lists ([Pu89]), instead of the 

default data structure (cf. section 4.4.5). 

#include <LEDA/d_array.h> 

#include <LEDA/impl/skiplist.h> 

mainO 
{ _d_array<string,int,skiplist> N(O)j 

string Sj 

while (ein » S ) N[s]++j 

foralLdefined(s, N) cout « S « " " « N[s] « endlj 

} 

Any type .-XYZ< Tl , ... , T/c, xyz_impl> is derived from the corresponding "normal" param­

eterized type XYZ<Tl , .. . ,T/c>, i.e., an instance oftype .-XYZ< Tl , ... ,T/c, xyz_impl> can 
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be passed as argument to functions with a formal parameter of type XYZ<T1 , ••• ,Tk>&. 
This provides a mechanism for choosing implementations of data types in pre-compiled 

algorithms. See "prog/graph/dijkstra.c" for an example. 

LEDA offers several implementations for each of the data types. For instance, skip 

lists, randomized search trees, and red-black trees for dictionary arrays. Users can 

also provide their own implementation. A data structure "xyzJ.mpl" can be used as 

actual implementation parameter for a data type -.XY Z if it provides a certain set 

of operations and uses certain virtual functions for type dependent operations (e.g. 

compare, initialize, copy, ... ). Section 9 lists all data structures contained in the 

current version and gives the exact requirements for implementations of dictionaries, 

priority _queues, sorted sequences and dictionary arrays. A detailed description of the 

mechanism for parameterized data types and implementation parameters used in LEDA 

can be found in [N92]. 

1.4 Arguments 

• Optional Arguments 

The trailing arguments in the argument list of an operation may be optional. If these 

trailing arguments are missing in a call of an operation the default argument values 

given in the specification are used. For example, if the relative position argument in the 

list insert operation is missing it is assumed to have the value after, i.e., L.insert( it, y) 

will insert the item <y> after item it into L . 

• Argument Passing 

There are two kinds of argument passing In C++ , by value and by reference. An 

argument x of type type specified by "type x" in the argument list of an operation 

or user defined function will be passed by value, i.e., the operation or function is 

provided with a copy of x. The syntax for specifying an argument passed by reference 

is "type& x". In this case the operation or function works directly on x ( the variable 

x is passed not its value). 

Passing by reference must always be used if the operation is to change the value of 

the argument. It should always be used for passing large objects such as lists, arrays, 

graphs and other LEDA data types to functions. Otherwise a complete copy of the 

actual argument is made, which takes time proportional to its size, whereas passing 

by reference always takes constant time. 
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• Functions as Arguments 

Some operations take functions as arguments. For instance the bucket sort operation 

on lists requires a function which maps the elements of . the list into an interval of 

integers. We use the C++ syntax to define the type of a function argument f: 

T (*f)(TI ,T2 , ... ,Tk) 

declares f to be a function taking k arguments of the data types Tl, ... , Tk, respectively, 

and returning a result of type T, i.e, f : Tl X ••• X Tk ---+ T . 

1.5 Overloading 

Operation and function names may be overloaded, i.e., there can be different interfaces 

for the same operation. An example is the translate operations for points (cf. section 6.1). 

point p.translate( vector v) 

point p.translate( double (t, double dist) 

It can either be called with a vector as argument or with two arguments of type double 

specifying the direction and the distance of the translation. 

An important overloaded function is discussed in the next section: Function compare, 

used to define linear orders for data types. 

1.6 Linear Orders 

Many data types, such as dictionaries, priority queues, and sorted sequences require 

linearly ordered subtypes. Whenever a type T is used in such a situation, e.g. in 

dictionary<T, ... > the function 

int compare(T, T) 

must be declared and must define a linear order on the data type T. 

A binary relation rel on a set T is called a linear order on T if for all x, y, z E T: 

1) x rel y 

2) x rel y and y rel z implies x rel z 

3) x rel y or y rel x 

4) x rel y and y rel x implies x = y 
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A function int compare(T, T) is said to define the linear order rel on T if 

{ 
< 0, ~ x rel y and x =1= y 

compare(x,y) =0, Ifx=y 
> 0, if y rel x and x =1= y 

For each of the simple data types char, short, int, long, float, double, string, and 

point a function compare is predefined and defines the so-called default ordering on 

that type. The default ordering is the usual ~ - order for the built-in numerical types, 

the lexicographic ordering for string, and for point the lexicographic ordering of the 

cartesian coordinates. For all other types T there is no default ordering, and the user 

has to provide a compare function whenever a linear order on T is required. 

Example: Suppose pairs of real numbers shall be used as keys in a dictionary with 

the lexicographic order of their components. First we dedare dass pair as the type 

of pairs of real numbers, then we define the 1/0 operations Read and Print and the 

lexicographic order on pair by writing an appropriate compare function. 

dass pair { 

double Xj 

double Yj 

pairO { x = y = Oj } 

pair( const pair& p) { x = p.Xj Y = p.Yj } 

}j 

friend void Read(pair& p, istream& is) { is » p.x » p.Yj } 

friend void Print( const pair& p, ostream& os) { os « p.x « " " « p.Yj } 

friend int compare( const pair&, const pair&)j 

int compare( const pair& p, const pair& q) 

{ if (p.x < q.x) return -lj 

if (p.x > q.x) return 1j 

if (p.y < q.y) return -lj 

if (p.y > q.y) return 1j 

return Oj } 

Now we can use dictionanes with key type pair, e.g., 

dictionary<pair,int> Dj 
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Sometimes, a user may need additional linear orders On a data type T which are 

different from the order defined by compare, e.g., he might want to order points in the 

plane by the lexicographic ordering of their cartesian coordinates and by their polar 

coordinates. In this example, the former ordering is the default ordering for points. 

The user can introduce an alternative ordering on the data type point (cf. section 6.1) 

by defining an appropriate comparing function int cmp( const point&, const point&) 

and then calling the macro DEFINE..LINEAR_ORDER(point, cmp, pointi). After this 

call point I is a new data type which is equivalent to the data type point, with the only 

exception that, if point I is used as an actual parameter e.g. in dictionary<point l , .•. >, 
the resulting data type is based on the linear order defined by cmp. 

In general the macro call 

DEFINE_LINEAR_ORDER(T,cmp,TI ) 

introduces a new type Tl equivalent to type T with the linear order defined by the 

compare function cmp. 

In the example, we first declare a function poLcmp and derive a new type poLpoint 

using the DEFINE..LINEAR_ORDER macro. 

int poLcmp( const point& x, cosnt point& y) 
{ / / lexicographic ordering on polar coordinates } 

DEFINE_LINEAR_ORDER(point,pol_cmp,poLpoint) 

N ow, dictionaries based on either ordering can be used. 

dictionary<poLpoint, int> D I ; / / polar ordering 

dictionary<point, int> Do; / / default ordering 

Remark: We have chosen to associate a fixed linear order with most of the simple 

types (by predefining the function compare). This order is used whenever operations 

require a linear order on the type, e.g., the operations on a dictionary. Alternatively, 

we could have required the user to specify a' linear order each time he uses a simple 

type in a situation where an ordering is needed, e.g., a user could define 

dictionary<point, lexicographic_ordering, ... > 

This alternative would handle the cases where two or more different orderings are 

needed more elegantly. However, we have chosen the first alternative because of the 

smaller implementation effort. 
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1.7 Items 

Many of the advanced data types in LEDA (e.g. dictionaries), are defined in terms of 

so-called items. An item is a container which can hold an object relevant for the data 

type. For example, in the case of dictionaries a dic_item contains a pair consisting of 

a key and an information. A general definition of items will be given at the end of 

this section. 

We now discuss the role of items for the dictionary example in some detail. A popular 

specification of dictionaries defines a dictionary as a partial function from some type 

K to some other type I, or alternatively, as a set of pairs from K x I, i.e., as the 

graph of the function. In an implementation each pair (k, i) in the dictionary is stored 

in some location of the memory. Efliciency dictates that the pair (k, i) cannot only 

be accessed through the key k but sometimes also through the location where it is 

stored, e.g., we might want to lookup the information i associated with key k (this 

involves a search in the data structure), then compute with the value i a new value i', 
and finally associate the new value with k. This either involves another search in the 

data structure or, if the lookup returned the location where the pair (k, i) is stored, 

can be done by direct access. Of course, the second solution is more eflicient and we 

therefore wanted to provide it in LEDA. 

In LEDA items play the role of positions or locations in data structures. Thus an 

object of type dictionary<K, I>, where K and I are types, is defined as a collection 

of items (type dic_item) where each item contains a pair in K x I. We use <k, i> to 

denote an item with key k and information i and require that for each k E K there 

is at most one i E I such that <k, i> is in the dictionary. In mathematical terms this 

definition may be rephrased as follows: A dictionary d is a partial function from the 

set dic_item to the set K xl. Moreover, for each k E K there is at most one i E I 
such that the pair (k, i) is in d. 

The functionality of the operations 

dic_item D .lookup( K k) 
I D .inf( dic_item it) · 
void D.changejnf( dic_item it, I i') 

is now as follows: D.lookup(k) returns an item it with contents (k, i), D.inf( it) extracts 

i from it, an<l a new value i' can be associated with k by D.changejnf(it,i'). 

Let us have a look at the insert operation for dictionaries next: 

dic_item D.insert(K k, I i) 

11 



There are two cases to consider. If D contains an item it with contents (k, i') then i' 
is replaced by i and it is returned. If D contains no such item, then a new item, i.e., 

an item which is not contained in any dictionary, is added to D, this item is made to 

contain (k, i) and is returned. In this manual (cf. section 4.3) all of this is abbreviated 
to 

dic_item D.insert(K k, I i) associates the information i with the key k. 

If there is an item <k,j> in D then j is 

replaced by i, else a new item <k, i> is added 

to D. In both cases the item is returned. 

We now turn to a general discussion. With some LEDA types XY Z there is an associated 

type XY Z _item of items. Nothing is known ab out the objects of type XY Z _item except 

that there are infinitely many of them. The only operations available on XY Z _items 
besides the one defined in the specification of type XY Z is the equality predicate 

"==" and the assignment operator "=" . The objects of type XY Z are defined as 

sets or sequences of XYZ_items containing objects of some other type Z. In this 

situation an XYZ_item containing an object z E Z is denoted by <z>. A new or 

unused XYZ_item is any XYZjtem which is not part of any object of type XYZ. 

Remark: For some readers it may be useful to interpret a dic_item as apointer to 

a variable of type K x I. The differences are that the assignment to the variable 

contained in a dic_item is restricted, e.g., the K -component cannot be changed, and 

that in return for this restrietion the access to dic_items is more flexible than for 

ordinary variables, e.g., access through the value of the K -component is possible. 

1.8 Iteration 

For many data types LEDA provides iteration macros. These macros can be used to 

iterate over the elements of lists, sets and dictionanes or the nodes and edges of a 

graph. Iteration macros can be used similarly to the C++ for statement. Examples 

are 

for all item based data types: 

foralLitems(it, D} { the items of D are successively assigned to variable it} 

for lists and sets: 

forall( z, L) { the elements of L are successively assigned to z} 
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for graphs: 

foralLnodes( v, G) { the nodes of Gare successively assigned to v} 

foralLedges( e, G) { the edges of G are successively assigned to e} 

foraILadj_edges( e, v) { all edges adjacent to v are successively assigned to e} 

1. 9 Header Files 

LEDA data types and algorithms can be used in any C++ program as described in this 

manual. The specifications (class declarations) are contained in header files. To use a 

specific data type its he ader file has to be included into the program. In general the 

header file for data type xyz is <LEDA/xyz.h>. Exceptions to this rule are described 

in Table 10.1 and 10.2. 

1.10 Libraries 

The implement ions of all LEDA data types and algorithms are precompiled and 

contained in 5 libraries (libL.a, libG.a, libP.a, lib W s.a, lib Wx.a) which can be linked 

with C++ application programs. In the following description it is assumed that these 

libraries are installed in one of the systems default library directories (e.g. /usr/lib), 

which allows to use the "-1. .. " compiler option. 

a) libL.a is the main LEDA library, it contains the implementations of all simple 

data types (section 2), basic data types (section 3), dictionaries and priority queues 

(section 4). A program prog.c using any of these data types has to be linked with the 

libL.a library like this: 

CC prog.c -lL 

b) libG.a is the LEDA graph library. It contains the implementations of all graph 

data types and algorithms (section 5). To compile a program using any graph data 

type or algorithm the libG.a and libL.a library have to be used: 

CC prog.c -lG -11 
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e) libP.a is the LEDA library for geometry in the plane. It eontains the implementations 

of all data types and algorithms for two-dimensional geometry (seetion 6). To eompile 

a program using two-dimensional data types or algorithms the libP.a, libG.a, libL.a 

and maths libranes have to be used: 

ce prog.c -lP -IG -lL -1m 

d) libWx.a, libWs.a are the LEDA libranes for graphie windows under the Xl! 
(xview) or SunView window systems. Applieation programs using data type window 
(cf. seetion 6.7) have to be linked with one of these libranes: 

a) For the Xl! (xview) window system: 

ce prog.c -IP -IG -IL -IWx -lxview -lolgx -lXl! -1m 

b) For the Sun View window system: 

ce prog.c -IP -IG -lL -IWs -lsuntool -lsunwindow -lpixreet -1m 

Note that the libraries must be given in the order -IP -IG -IL and that the window 

library (-IWx or -IWs) has to appear after the plane library (-lP). 
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2. Simple Data Types 

2.1 Boolean Values (bool) 

An instance of the data type bool has either the value true or false. The usual 

C++ logical operators && (and), 11 (or), ! (negation) are defined for bool. 

2.3 Strings (string) 

Data type string is the LEDA equivalent of char* in C++ . The differences to the 

char*-type are that assignment, compare and concatenation operators are defined and 

that argument passing by value works properly, i.e., there is passed a copy of the 

string and not only a copy of apointer. Furthermore a few useful operations for string 

manipulations are available. 

1. Creation of astring 

a) string s· , 

b) string s(char * p); 

b) string s(char c); 

introduces a variable s of type string. s is initialized with the empty string (variant 

a), the string constant p (variant b), or the one-character string "c" (variant c). 

2. Operations on astring s 

int 

char& 

string 

string 

string 

int 

s.length() 

s [int i] 

s (int i, int j) 

s.tail(int i) 

s.head( int i) 

s.pos( string SI) 

returns the length of string s 

returns the character at position i 

Precondition: 0 ~ i ~ s.lengthO-1 

returns the substring of s starting at 

position i and ending at position j 

Precondition: 0 ~ i ~ j ~ s.lengthO-1 

returns the last i characters of s 

returns the first i characters of s 

returns the first position of SI in s if SI 1S 
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int 

string 

string 

string 

string 

string 

string 

string 

string 

string 

void 

void 

void 

void 

string 

string& 

bool 

bool 

bool 

bool 

bool 

bool 

a substring of s, -1 otherwise 

s.pos(string SI, int i) returns the first position of SI in s right of 

position i (-1 if no such position exists) 

s.insert(string SI, int i) returns s(O,i -1) + SI + s(i,s.lengthO -1) 
Precondition: 0 ~ i < s.lengthO-1 

s.replace(string SI, string S2, int i-= 1) 

returns the string created from s by replacing 

the i-th occurence of SI in s by S2 

s.replace_all( string SI, string S2) 

returns the string created from S by replacing 

all occurences of SI in s by S2 

s.replace(int i, int j, string SI) 

s.replace( int i, string SI) 

returns the string created from s by replacing 

s(i,j) by SI 

returns the string created from s by replacing 

stil by SI 

s.del(string SI, int i = 1) returns s.replace(sl,"",i) 

s.deLall(string sd returns s.replace_all(sl' "") 

s.del(int i, int j) returns s.replace(i,j, "") 

s.del(int i) returns s.replace(i, "") 

s.read(istream I, char delim ,=' ') 

s.read( char delim =' ') 

s .readJine( istream I) 

s.readJineO 

s + 81 

s += SI 

8 81 

8 ! = sI 

8 < SI 

s > 81 

8 <= 81 

s >= SI 

reads characters from input stream I into s 

until the first occurence of character delim 

read( cin,delim) 

read(I,'\n') 

readJine( ein) 

returns the concatenation of s and SI 

appends SI to s and returns s 

true iff s and SI are equal 

true iff 8 and 81 are not equal 

true iff s is lexicographically smaller than SI 

true iff S is lexicographically greater than SI 

returns (8 < sd 11 (s == sd 

returns (s > sI) 11 (s == sd 
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ostream& 0 < < s 

istream& I > > s 

3. Implementation 

writes string s to the output stream 0 

read(I,' ') 

Strings are implemented by C++ character vectors. All operations on astring stake 

time O(s.lengthO). 

2.4 Real-Valued Vectors (vector) 

An instance of the data type vector is a vector of real variables. 

1. Creation 

a) vector v(int d)j 

b) vector v(double a, double b)j 

c) vector v(double a, double b, double c)j 

creates an instance v. of type vectorj v is initialized to the zero vector of dimension 

d (variant a), the two-dimensional vector (a, b) (variant b) or the three-dimensional 

vector (a, b, c) (variant c). 

2. Operations on a vector v 

int v.dimO 

double v.length() 

double v.angle(vector w) 

double& v [int i] 

vector v+ VI 

vector 

double v * 

returns the dimension of v. 

returns the Euclidean length of v 

returns the angle between v and w. 

returns i-th component of v. 

Precondition: 0 ~ i ~ v.dimO-l. 

Addition 

Precondition: v.dimO = vI.dimO. 

Subtraction 

Precondition: v.dimO = vI.dimO. 

Scalar multiplication 
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vector v * r 

baal v ---- VI 

baal v! = VI 

ostream& 0« v 

istream& I» v 

3. Implementation 

Precondition: v.dimO = vI.dimO. 

Componentwise multiplication with double r 

Test for equality 

Test for inequality 

writes v componentwise to the output streaIJ 

reads v componentwise from the input streal 

Vectors are implemented by arrays of real numbers. All operations on a vector t 

take time O(v.dimO), except of dim and [ ] which take constant time. The spac~ 

requirement is O(v.dimO). 

2.5 Re al-Valued Matrices (matrix) 

An instance of the data type matrix is a matrix of double variables. 

1. Creation 

matrix M( intn, int m)j 

creates an instance M of type matrix, M is initialized to the n x m - zero matrix. 

2. Operations on a matrix M 

int M.dim10 

int M.dim20 

vector M.row(int i) 

vector M.col(int i) 

matrix M.trans() 

double M.detO 

returns n, the number of rows of M. 

returns m, the number of cols of M. 

returns the i-th row of M· (an m-vector). 

Precondition: 0::::; i ::::; n - 1. 

returns the i-th column of M (an n-vector). 

Precondition: 0::::; i ::::; m - 1. 

returns MT (m x n - matrix). 

returns the determinant of M. 
Precondition: M is quadratic. 
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matrix M.invO 

vector M .solve( vector b) 

double& M (int i, int j) 

matrix 

matrix 

matrix 

matrix M * r 

vector M * v 

ostream& 0 < < M 

istream& I > > M 

3. Implementation 

returns the inverse matrix of M. 

Precondition: M.detO -1= o. 
returns vector x with M . x = b. 

Precondition: M.dim10 = M.dim20 = b.dimO 

and M .detO -1= o. 

returns Mi,j. 

Precondition: O:S i :S n - 1 and 0 < j :S m - 1. 

Addition 

Precondition: M.dim10 = M 1 .dim10 and 

M.dim20 = M1 .dim20. 

Subtraktion 

Precondition: M.dim10 = M 1 .dim10 and 

M.dim20 = M 1 .dim20. 

Multiplication 

Precondition: M.dim20 = M1 .dim10. 

Multiplication with double 

Multiplication with vector 

Precondition: M.dim20 = v.dimO. 

writes matrix M to the output stream 0 

reads matrix M from the input stream I 

Data type matrix is implemented by two-dimensional arrays of double numbers. 

Operations det, solve, and inv take time O(n3
), dim1, dim2, row, and col take constant 

time, all other operations take time O(nm). The space requirement is O(nm). 
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3. Basic Data Types 

3.1 One Dimensional Arrays (array) 

1. Definition 

An instance A of the parameterized data type array<E> is a mapping from an interval 

1= [a .. b] of integers, caIled the index set of A, to the set of variables of data type E, 

caIled the element type of A. A( i) is caIled the element at position i. 

2. Creation 

array<E> A(int a, int b); 

creates an instance A of type array<E> with index set [a .. b]. 

3. Operations 

E& 

int 

int 

void 

A [int i] 

A.lowO 

A.highO 

A.sort(int (*cmp)(E&, E&)) 

returns A(i). Precondition: a ~ i ~ b 

returns the minimal index a 

returns the maximal index b 

sorts the elements of A, using function cmp 

to compare two elements, i.e., if (in a , ••• ,inb) 

and (out a , ••• , outb) denote the values of the 

variables (A(a), ... , A(b)) before and after the 

caIl of sort, then cmp( outi, out;) ~ 0 for i ~ j 

and there is a permutation 'Ir of [a .. b] such that 

outi = in1f( i) for a ~ i ~ b. 

void A.sort(int (*cmp)(E&,E&), int 1, int h) 

applies the above defined sorting operations to 

the sub-array A[I .. h]. 

int A.binary_search(E z,int (*cmp)(E&,E&)) 

void A.read( istream I) 

performs a binary search for z. Returns i 
with A[i] = z if z in A, A.lowO - 1 

otherwise. Function cmp is used to compare 

two elements. Precondition: A must be sorted 

according to cmp. 

reads b - a + 1 objects of type E from the 
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void A.read() 

void A.read( string s) 

input stream I into the array A using the 

overloaded Read function (cf. section 1.5) 

Calls A.read( ein) to read A from the 

standard input stream ein. 

As above, uses string s as a prompt. 

void A.print(ostream 0, ehar spaee = ") 

void A.print(ehar spaee = ") 

Prints the contents of array A to the output 

stream 0 using the overload Print function 

(cf. section 1.5) to print each element. The 

elements are separated by the character spaee. 

Calls A.print( eout, spaee) to print A on 

the standard output stream eout. 

void A.print(string s, ehar spaee = ' ') 

As above, uses string s as a he ader . 

4. Implementation 

Arrays are implemented by C++ vectors. The access operation takes time 0(1), the 

sorting is realized by quicksort (time O( n log n)) and the binary.-Search operation takes 

time O(log n), where n = b - a + 1. The space requirement is 0(111). 
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3.2 Two Dimensional Arrays (array2) 

1. Definition 

An instance A of the parameterized data type array2<E> is a mapping from a set of 

pairs 1 = [a .. b] x [e .. d], called the index set of A, to the set of variables of data type E, 
called the element type of A, for two fixed intervals of integers [a .. b] and [b .. e]. A(i,j) 
is called the element at position (i,j). 

2. Creation 

array2<E> A( a, b, e, d); 

creates an instance A of type array2<E> with index set [a .. b] x [e .. d]. 

3. Operations 

E& A (int i, int j) returns A(i,j). 
Precondition: a S; i S; band e S; j S; d. 

int A.low10 returns a 

int A.high10 returns b 

int A.low20 returns e 

int A.high2O returns d 

4. Implementation 

Two dimensional arrays are implemented by C++ vectors. All operations take time 

0(1), the space requirement is 0(111). 
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3.3 Stacks (stack) 

1. Definition 

An instance S of the parameterized data type stack<E> is a sequence of elements of 

data type E, called the element type of S. lnsertions or deletions of elements take 

place only at one end of the sequence, called the top of S. The size of S is the length 

of the sequence, a stack of size zero is called the empty stack. 

2. Creation 

stack<E> Sj 

creates an instance S of type stack<E>. S is initialized with the empty stack. 

3. Operations 

E 

E 

void 

void 

int 

bool 

S.topO 

S.popO 

S.push(E z) 

S.clearO 

S.sizeO 

S.emptyO 

4. Implementation 

returns the top element of S 

Precondition: S is not empty. 

deletes and returns the top element of S 

Precondition: S is not einpty. 

adds z as new top element to S. 

makes S the empty stack. 

returns the size of S. 

returns true if S is empty, false otherwise. 

Stacks are implemented by singly linked linear lists. All operations take time 0(1), 
except clear which takes time O(n), where n is the size of the stack. 
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3.4 Queues (queue) 

1. Definition 

An instance Q of the parameterized data type queue<E> is a sequence of elements 

of data type E, called the element type of Q. Elements are inserted at one end (the 

rear) and deleted at the other end (the front) of Q. The size of Q is the length of the 

sequence, a queue of size zero is called the empty queue. 

2. Creation 

queue<E> Q; 

creates an instance Qof type queue<E>. Q is initialized with the empty queue. 

3. Operations 

E Q.topO returns the front element of Q 
Precondition: Q is not empty. 

E Q.popO deletes and returns the front element of Q 
Precondition: Q is not empty. 

void Q .append( E :z:) appends :z: to the rear end of Q. 

void Q.clearO makes Q the empty queue. 

int Q.sizeO returns the size of Q. 

bool Q.emptyO returns true if Q is empty, false otherwise. 

4. Implementation 

Queues are implemented by singly linked linear lists. All operations take time 0(1), 
except clear which takes time O(n), where n is the size of the queue. 
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3.5 Bounded Stacks (b-.Stack) 

1. Definition 

An instance S of the parmaterized data type b_stack<E> is a stack (see section 2.3) 

of bounded size. 

2. Creation 

b_stack<E> S(n); 

creates an instance S of type b_stack<E> that can hold up to n elements. S is initialized 

with the empty stack. 

3. Operations 

,E S.topO 

E S.popO 

void S.push(E :z:) 

void S.clearO 

int S.sizeO 

bool S.emptyO 

4. Implementation 

returns the top element of S 
Precondition: S is not empty. 

deletes and returns the top element of S 

Precondition: S is not empty. 

adds :z: as new top element to S 

Precondition: S .sizeO < n. 

makes S the empty stack. 

returns the size of S. 

returns true if S is empty, false otherwise. 

Bounded Stacks are implemented by C++ vectors. All operations take time 0(1). The 

space requirement is O(n). 

26 



3.6 Bounded Queues (b_queue) 

1. Definition 

An instance Q of the paramerized data type b_queue<E> is a queue (see section 2.4) 

of bounded size. 

2. Creation 

b_queue<E> Q(n); 

creates an instance Q of type b_queue<E> that can hold up to n elements. Q lS 

initialized with the empty queue. 

3. Operations 

E Q.topO returns the front element of Q 

Precondition: Q is not empty. 

E Q.popO deletes and returns the front element of Q 

Precondition: Q is not empty. 

void Q.append(E z) appends z to the rear end of Q 

Precondition: Q.sizeO< n. 

void Q.clearO makes Q the empty queue. 

int Q.size{) returns the size of Q. 

bool Q.emptyO returns true if Q is empty, false otherwise. 

4. Implementation 

Bounded Queues are implemented by circular arrays. All operations take time 0(1). 
The space requirement is O(n). 
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3.7 Linear Lists (list) 

1. Definition 

An instance L of the parameterized data type list<E> is a sequence of items (lisLitem). 
Each item in L contains an element of data type E, called the element type of L. The 

number of items in L is called the length of L. If L has length zero it is called the 

empty list. In the sequel < x > is used to denote a list item containing the element 

x and L[i] is used to denote the contents of list item i in L. 

2. Creation 

list<E> Li 

creates an instance L of type list<E> and initializes it to the empty list. 

3. Operations 

a) Access Operations 

int L.lengthO 

int L.sizeO 

bool L.emptyO 

lisLitem L.firstO 

lisLitem L.lastO 

lisLitem L.succ(lisLitem it) . 

lisLitem L.pred(lisLitem it) 

lisLitem L.cyclic_succ(lisLitem it) 

lisLitem L.cyclic_pred(lisLitem it) 

lisLitem L.search( Ex) 

returns the length of L. 

returns L.lengthO. 

returns true if L is empty, false otherwise. 

returns the first item of L. 

returns the last item of L. 

returns the successor item of item it, nil 
if it = L.lastO. 
Precondition: it is an item in L. 

returns the predecessor item of item it, nil 
if it = L.firstO. 

Precondition: it is an item in L. 

returns the cyclic successor of item it, i.e., 

L.firstO if it = L.lastO, L.succ( it) otherwise. 

returns the cyclic predecessor of item it, i.e, 

L.lastO if it . L.firstO, L.pred( it) otherwise. 

returns the first item of L that contains x, 

nil if x is not an element of L 
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E 

E 

E 

E 

int 

L.contents(lisLitem it) 

L.inf(lisLitem it) 

L.headO 

L.tailO 

L.rank(E z) 

b) Update Operations 

returns the contents L[it] of item it 
Precondition: it is an item in L. 

returns L.contents( it). 

returns the first element of L, i.e. the contents 

of L.firstO. 
Precondition: L is not empty. 

returns the last element of L, i.e. the contents 

of L.lastO. 
Precondition: . L is not empty. 

returns the rank of z in L, i.e. its first 

position in L as an integer from [1. .. ILI] 

(0 if x is not in L). 

lisLitem L.insert( E z,lisLitem it, direction dir = after) 

lisLitem L.push(E z) 

lisLitem L .append( E z) 

E L.deLitem(lisLitem it) 

E L.popO 

E L.PopO 

inserts a new item < z > after (if dir = after) 
or before (if dir = before) item it into Land 

returns it. Precondition: it is an item in L. 

adds a new item < z > at the front of L and 

returns it ( L.insert( z, L.firstO, before ) ) 

appends a new item < z > to Land returns 

it ( L.insert(z, L.lastO, after) ) 

deletes the item it from Land returns its 

contents L[it]. 
Precondition: it is an item in L. 

deletes the first item from L and returns its 

contents. 

Precondition: L is not empty. 

deletes the last item from Land returns its 

contents. 

Precondition: L is not empty. 

void L.assign(lisLitem it, E z) makes z the contents of item it. 
Precondition: it is an item in L. 

void L.conc(list& LI) appends list LI to list Land makes LI the 

empty list 

void L.split(lisLitem it,list& LI, L2) 

splits L at item it into lists LI and L2 

29 



and makes L the empty list. More precisely, 

if L = ZI, ... , Zk-l, it, Zk+l, ... , Zn then 

LI = ZI, ... ,Zk-l and L2 = it,Zk+l, ... ,Zn 
Precondition: it is an item in L. 

void L.apply( void (* f)( E&» for all items < Z > in L function 1 is 

called with argument Z (passed by reference). 

void L.sort(int (*cmp)(E&,E&)) sorts the items of L using the ordering defined 

by the compare function cmp : E x E ---+ int, 

< 0, if a< b 

with cmp(a, b) = 0, if a = b 
< 0, if a> b 

More precisely, if L = (ZI, ... , zn) before the sort 

then L = (Z1I'(1)' ... ,z1r{n)) for some permutation 

7r of [1..n] and emp(L[zj], L[Zj+l]) ::; ° for 

1 ::; i < n after the sort. 

void L .bucket...sort(int i, int j, int (*f)(E&» 

void 

void 

L.permuteO 

L.clearO 

c) Input and Output 

sorts the items of L using bucket sort, 

where 1 : E ---+ int with I(z) E [i .. j] for 

all elements Z of L. The sort is stable, 

i.e., if I(z) = I(y) and < Z > is before < y > in 
L then < Z > is before < y > after the sort. 

the items of L are randomly permuted. 

makes L the empty list 

void L .read(istream I, ehar delim =' \n') 
reads a sequence of objects of type E termmated 

by the delimiter delim from the input stream I 
using the overloaded Read nmction (section 1.5) 

L is made a list of appropriate length and the 

sequence is stored in L. 

void L.read( ehar delim =' \n') Calls L.read( ein, delim) to read L from 

the standard input stream ein. 

void L.read(string s, ehar delim =' \n') 
As above, but uses string s as a prompt. 

void L.print( ostream 0, ehar spaee =' ') 
Prints the contents of list L to the output 

stream 0 using the overload Print function 
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void L.print( char space =' ') 

(cf. section 1.5) to print each element. The 

elements are separated by the character space. 

Calls L.print( cout, space) to print L on 

the standard output stream cout. 

void L.print(string s, char space =' ') 
As above, but uses string s as a header. 

d) Iterators 

Each list L has a special item called the iterator of L. There are operations to read 

the current value or the contents of this iterator, to move it (setting it to its successor 

or predecessor) and to test whether the end (head or tail) of the list is reached. If 

the iterator contains a lisLitem =I nil we call this item the position of the iterator. 

Iterators are used to implement iteration statements on lists. 

void L.set...iterator(lisLitem it) assigns item it to the iterator 

void L.iniLiteratorO 

lisLitem L.get...iteratorO 

Precondition: it is in L or it = nil. 

assigns nil to the iterator 

returns the current value of the iterator 

lisLitem L.move...iterator( direction dir = forward) 

bool L.currenLelement( E& x) 

bool L.nexLelement( E& x) 

bool L.prev_element(E& x) 

e) Operators 

E& L [lisLitem it] 

list<E>& L = L l 

moves the iterator to its successor (predecessor) 

if dir = forward (backward) and to the first 

(last) item if it is undefined (= nil), returns 

the iterator. 

if the iterator is defined (=I nil) its contents is 

assigned to x and true is returned else false 

is returned 

L.movejterator(forward) + 
return L.currenLelement( x) 

L.movejterator( backward) + 
return L.current_element( x) 

returns a reference to the contents of it. 

The assignment operator makes L a copy of 

list L l . More precisely if L l is the sequence 

of items Xl, x2, ... xn then L is made a 
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4. Iteration 

sequence of items Yl, Y2, ... Yn with 

L[Yil = LI [zil for 1 ::; i ::; n. 

foralUtems( it, L) { lethe items of L are successively assigned to it" } 

foraU( z, L) { "the elements of L are successively assigned to z" } 

5. Implementation 

The data type list is realized by doubly linked linear lists. All operations take constant 

time except for the following operations. Search and rank take linear time O(n), 
buckeL.sort takes time O( n + j - i) and sort takes time O( n . c . log n) where c is the 

time complexity of the compare function. n is always the current length of the list. 
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3.8 Sets (set) 

1. Definition 

An instance S of the parameterized data type set<E> is a collection of elements of the 

linearly ordered type E, called the element type of S. The size of S is the number of 

elements in S, a set of size zero is called the empty set. 

2. Creation 

set<E> Sj 

creates an instance S of type set<E> and initializes it to the empty set. 

3. Operations 

void S.insert(E x) 

void S.del(E x) 

bool S .member( Ex) 

E S.chooseO 

bool S.empty() 

int S.sizeO 

void S.clearO 

4. Iteration 

adds x to S 

deletes x from S 

returns true if x in S, false otherwise 

returns an element of S. 

Precondition: S is not empty. 

returns true if S is empty, false otherwise 

returns the size of S 

makes S the empty set 

forall(x, S) { "the elements of S are successively assigned to x" } 

5. Implementation 

Sets are impiemented by randomized search trees ([AS89]). Operations insert, deI, 

member take time O(logn), empty, size take time 0(1), and clear takes time O(n), 
where n is the current size of the set. 
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3.9 Integer Sets (int.ßet) 

1. Definition 

An instance S of the data type inLset is a subset of a fixed interval interval [a .. b] of 
the integers. 

2. Creation 

inLset S(a,b)j 

creates an instance S of type inLset for elements from [a .. b] and initializes it to the 
empty set. 

2." Operations 

void S .insert( int x) 

void S.del(int x) 

bool S .member( int x) 

void S .dearO 

inLset SI = S2 

inLset SI I S2 

inLset SI & S2 

inLset - S 

3. Implementation 

adds x to S 

Precondition: a ~ x ~ b. 

deletes x from S 

Precondition: a ~ x ~ b. 

returns true if x in S, false otherwise 

Precondition: a ~ x ~ b. 

makes S the empty set 

assignment 

returns the union of SI and S2 

returns the intersection of SI and S2 

returns the complement of S 

Integer sets are implemented by bit vectors. Operations insert, delete, member ,empty, 

and size take constant time. Clear, intersection, union and complement take time 

O(b - a + 1). 
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3.10 Partitions (partition) 

1. Definition 

An instance of the data type partition consists of a finite set of items (predefined type 

partition_item) and a partition of trus set into blocks. 

2. Creation 

partition Pj 

Creates an instance P of type partition and initializes it to the empty partition. 

2. Operations 

partition_item P .make_blockO 

partition_item P .find(partition_item p) 

returns a new partition_item it and adds 

the block {it} to partition P. 

returns a canonical item of the block that 

contains item p, i.e., if P .same_block(p, q) 
then P.find(p) = P.find(q). 

Precondition: p is an item in P. 

bool P .same_block(partition_item p, partition_item q) 
returns true if p and q belong to the same 

block of partition P. 
Precondition: p and q are items in P. 

void P .union_blocks(partition_item p, partition_item q) 

3. Implementation 

unites the blocks of partition P containing 

items p and q. 

Precondition: p and q are items in P. 

Partitions are implemented by the union find algorithm with weighted union and path 

compression (cf. [T83]). Any sequence of n make_block and m ~ nother operations 

takes time O(ma(m,n)). 

4. Example 

Spanning Tree Algorithms (cf. graph) 
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3.11 Dynamic collections oftrees (tree_collection) 

1. Definition 

An instance D of the parameterized data type tree_colledion<I> is a collection of vertex 

disjoint rooted trees, each of whose vertices has a double-valued cost and contains an 

information of type I, called the information type of D. 

2. Creation 

tree_collection<I> D; 

creates an instance D of type tree_collection<I>, initialized with the empty collection. 

3. Operations 

d_vertex D.maketree(I x) 

I D.inf( d_vertex v) 

Adds a new tree to D containing a single 

vertex v with cost zero and information x, 

and returns v. 

Returns the information of vertex v. 

d_vertex D.findroot(d_vertex v) Returns the root of the tree containing v. 

d_vertex D.findcost(d_vertex v, double& x) 

Sets x to the minimum cost of a vertex on the 

tree path from v to findroot( v) and returns 

the last vertex (dosest to the root) on this 

path of cost x. 

void D.addcost(d_vertex v, double x) 

Adds double number x to the cost of every vertex 

on the tree path from v tö findroot( v). 

void D.link(d_vertex v, d_vertex w) 

void D.cut( d_vertex v) 

Combines the trees containing vertices v and w 

by adding the edge (v,w). (We regard tree 

edges as directed from child to parent.) 

Precondition: v and ware in different trees 

and v is a root. 

Divides the tree containing vertex v into 

. two trees by deleting the edge out of v. 

Precondition: v is not a tree root. 
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4. Implementation 

Dynamic collections of trees are implemented by partitioning the trees into vertex 

disjoint paths and representing each path by a self-adjusting binary tree (see [T83]). All 

operations take amortized time O(log n) where n is the number of maketree operations. 
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4. Priority Queues and Dictionaries 

4.1 Priority Queues (priority _queue) 

1. Definition 

An instance Q of the parameterized data type priority_queue<K, I> is a collection of 

items (type pq_item). Every item contains a key from type K and an information 

from the linearly ordered type I. K is called the key type of Q and I is called the 

information type of Q. The number of items in Q is called the size of Q. If Q has 

size zero it is called the empty priority queue. We use < k, i > to denote a pq_item 

with key k and information i. 

2. Creation 

a) priority_queue<K, I> Qj 

creates an instance Q of type priority_queue<K, I> and initializes it with the empty 

priority queue. Variant a) chooses the default data structure (cf. 4.1.4), and variant 

b) chooses class prio_impl as the implementation of the queue (cf. section 9 for a list 

of possible implement at ion parameters). 

3. Operations 

K Q.key(pq_item it) 

I Q.inf(pq_item it) 

pq_item Q.insert(K k,I i) 

pq_item Q.find....minO 

void Q.deLitem(pq_item it) 

K Q.deLminO 

returns the key of item it. 
Precondition: it is an item in Q. 

returns the information of item it. 

Precondition: it is an item in Q. 

adds a new item < k, i > to Q and returns it. 

returns an item with minimal information 

(nil if Q is empty) 

removes the item it from Q. 
Precondition: it is an item in Q. 

removes the item it = Q .find-IDinO from Q 

and returns the key of it. 

Precondition: Q is not empty. 
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void Q.decreaseinf(pq_item it, I i) makes i the new information of item it 

Precondition: it is an item in Q and i 
is not larger then inf(it). 

void Q.change..key(pq_item it, K k) makes k the new key of item it 

void 

bool 

int 

Q.clearO 

Q.empty() 

Q.sizeO 

4. Implementation 

Precondition: it is an item in Q. 

makes Q the empty priority queue 

returns true, if Q is empty, false otherwise 

returns the size of Q. 

Priority queues are implemented by Fibonacci heaps ([FT84]. Operations insert, 

delitem, deLmin take time O(log n), find...min, decreaseinf, key, inf, empty take time 

0(1) and clear takes time O(n), where n is the size of Q. The space requirement is 

O(n). 

5. Example 

Dijkstra's Algorithm (cf. section 8.1) 
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4.2 Bounded Priority Queues (b_priority _queue) 

1. Definition 

An instance Q of the parameterized data type b_priority_queue<K> is a priority Aueue 

(cf. section 4.1) whose information type is a fixed interval [a .. b] of integers. 

2. Creation 

creates an instance Q of type b_priority_queue<K> with information type [a .. b] and 

initializes it with the empty priority queue. 

3. Operations on a b_priority _queue Q 

The operations are the same as for the data type priority_queue with the additional 

precondition that any information argument must be in the range [a .. b]. 

4. Implementation 

Bounded priority queues are implemented by arrays of linear lists. Operations insert, 

find...min, delitem, decrease-IDf, key, inf, and empty take time 0(1), deLmin ( = 

delitem for the minimal element) takes time O( d), where d is the distance of the 

minimal element to the next bigger element in the queue ( = O(b - a) in the worst 

case). clear takes time O(b-a+n) and the space requirement is O(b-a+n), where 

n is the current size of the queue. 
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4.3 Dictionaries (dictionary) 

1. Definition 

An instance D of the parameterized data type dictionary<K, I> is a collection of 

items (dic_item). Every item in D contains a key from the linearly ordered data type 

K, called the key type of D, and an information from the data type I, called the 

information type of D. The number of items in D is called the size of D. A dictionary 

of size zero is called the empty dictionary. We use < k, i > to denote an item with 

key k and information i (i is said to be the information associated with key k). For 

each k E K there is at most one i E I with < k, i >E D. 

2. Creation 

a) dictionary<K, I> D; 

b) _dictionary<K, I, dic_impl> D ; 

creates an instance D of type dictionary<K, I> and initializes it with the empty 

dictionary. Variant a) chooses the default data structure (cf. 4.3.4), and variant b) 

chooses dass dic_impl as the implementation of the dictionary (cf. section 9 for a list 

of possible implementation parameters). 

3. Operations 

K D .key( dic_item it) 

I D.inf( dic_item it) 

dic_item D.insert(K k, I i) 

dic_item D.lookup(K k) 

I D.access(K k) 

void D.del(K k) 

returns the key of item it. 

Precondition: it is an item in D. 

returns the information of item it. 

Precondition: it is an item in D. 

associates the information i with the key k. 

If there is an item < k,j > in D then j is 

replaced by i, else a new item < k, i > is added 

to D. In both cases the item is returned. 

returns the item with key k (nil if no such 

item exists in D). 

returns the information associated with key k 

Precondition: there is an item with key kinD. 

deletes the item with key k from D 
(null operation, if no such item exists). 
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void D.deLitem( dic_item it) removes item it from D. 

Precondition: it is an item in D. 

void D .changeinf( dic_item it, I i) makes i the information of item it. 

Precondition: it is an item in D. 

void D.clearO makes D the empty dictionary. 

bool D.empty() returns true if D is empty, false otherwise. 

int D.sizeO returns the size of D. 

4. Implementation 

Dictionaries are implemented by randomized search trees ([AS89]). Operations insert, 

lookup, deUtem, deI take time O(log n), key, inf, empty, size, changeinf take time 
0(1), and clear takes time O(n). Here n is the current size of the dictionary. The 

space requirement is O(n). 

5. Example 

U sing a dictionary to count the number of occurrences of the elements in a sequence 

of strings, terminated by string "stop". 

#include <LEDA/dictionary.h> 

mainO 
{ 

} 

dictionary<string,int> D; 

string S; 

dicitem it; 

w hile (ein > > s) 
{ it = D.lookup(s); 

if (it == nil) D.insert(s, 1); 

else D .changeinf( it,D .inf( it)+ 1); 

} 

foraILitems(it,D) cout « D.key(it) « " . " « D.inf(it) « "\n"; 
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4.4 Dictionary Arrays (d_array) 

1. Definition 

An instance A of the parameterized data type d_array<I ,E> (dictionary array) is an 

injective mapping from thelinearly ordered data type I, called the index type of A, to 

the set of variables of data type E, called the element type of A. 

2. Creation 

a) d_array<I, E> A(z)j 

b) _d_array<I, E, impl> A( z ) 

creates an injective function a from I to the set of unused variables of type E, assigns z 

to all variables in the range of a and initializes A with a. Variant a) chooses the default 

data structure (cf. 4.4.5), and variant b) chooses dass impl as the implementation of 

the dictionary (cf. section 9 for a list of possible implementation parameters). 

3. Operations 

E& 

bool 

A [I z] 

A.defined(I z) 

4. Iteration 

returns the variable A( z ) 

returns true if z E dom(A), false otherwise; here 

dom(A) is the set of all z E I for which A[z] has 

already been executed. 

foraILdefined(z, A) { "the elements from dom(A) are successively assigned to z" } 

5. Implementation 

Dictionary arrays are implemented by randomized search trees ([AS89]). Access oper­

ations A[z] take time O(1og dom(A)). The space requirement is O(dom(A)). 
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6. Example 

Program 1: Using a dictionary array to count the number of occurences of the 

elements in a sequence of strings. 

#include <LEDA/d_array.h> 

mainO 
{ 

d_array<string,int> N(O)j 

string Sj 

while (ein » s) N[s] + +j 
foralLdefined(s,N) cout « s « " " « N[s] « "\n"j 

} 

Program 2: Using a d_array to realize an english/german dictionary. 

#include <LEDA/ d_array.h> 

mainO 
{ 

d_array<string,string> trans; 

trans ["hello"] - "hallo"; 

trans ["world"] - "Welt"; 
trans["book"] - "Buch"; 

trans["key"] - "Schluessel"; 

string Sj 

foraILdefined(s, trans) cout « s « " " « trans[s] « "\n"j 

} 

45 



4.5 Hashing arrays (h_array) 

1. Definition 

An instance A of the parameterized data type h_array<l, E> (hashing array) is an 

injective mapping from the data type I, called the index type of A, to the set of 

variables of data type E, called the element type of A. I must be an integer, pointer, 

or item type. 

2. Creation 

h_array<l, E> A( z ); 

creates an injective function a from I to the set of unused variables of type E, assigns 

z to all variables in the range of a and initializes A with a. 

3. Operations 

E& 

bool 

A [I z] 

A.defined(1 z) 

4. Iteration 

returns the variable A( z ) 

returns true if z E dom(A), false otherwise; here 

dom(A) is the set of all z E I for which A[z] has 

already been executed. 

foraILdefined(z, A) { "the elements from dom(A) are successively assigned to z" } 

5. Implementation 

Hashing arrays are implemented by dynamic perfeet hashing ([DKMMRT88]). Access 

operations A[z] take time 0(1). Hashing arrays are more efficient than dictionary 

arrays. 
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4.6 Sorted Sequences (sortseq) 

1. Definition 

An instance S of the parameterized data type sortseq<K, I> is a sequence of items 

(seq_item). Every item contains a key from the linearly ordered data type K, called 

the key type of S, and an information from data type I, called the information type 

of S. The number of items in S is called the size of S. A sorted sequence of size zero 

is called empty. We use < k, i > to denote a seq_item with key k and information i 

(called the information associated with key k). For each k E K there is at most one 

item < k,i >E S. 

The linear order on K may be time-dependent, e.g., in an algorithm that sweeps 

an arrangement of lines by a vertical sweep line we may want to order the lines by 

the y-coordinates of their intersections with the sweep line. However, whenever an 

operation (except of reversejtems) is applied to a sorted sequence S, the keys of S 

must form an increasing sequence according to the currently valid linear order on K. 
For operation reversejtems this must hold after the execution of the operation. 

2. Creation 

a) sortseq<K, I> Si 

b) _sortseq<K, I, seq_impl> S i 

creates an instance S of type sortseq<K,I> and initializes it to the empty sorted 

sequence. Variant a) chooses the default data structure (cf. 4.6.4), and variant b) 

chooses dass seq_impl as the implementation of the sorted sequence (cf. section 9 for 

a list of possible implementation parameters). 

3. Operations 

K S.key(seq_item it) 

I S .inf( seq_item it) 

seq_item S.lookup(K k) 

returns the key of item it 

Precondition: it is an item in S. 

returns the information of item it 

Precondition: it is an item in S. 

returns the item with key k 

( nil if no such item exists in S ) 
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seq_item S .insert ( K k, I i) associates information i with key k: H 

there is an item < k,j > in S then j is 

replaced by i, else a new item < k, i > is 

added to S. In both cases the item is 

returned. 

seq_item S .insert_at( seq_item it, K k, I i) 

seq_item S .locate( K k) 

seq_item S .locate_pred( K k) 

seq_item S.succ(seq_item it) 

seq_item S.pred(seq_item it) 

seq_item S .maxO 

seq_item S .minO 

void S .deUtem( seq_item it) 

void S.del(K k) 

Like insert(k, i), the item it gives the 

position of the item < k, i > in the sequence . 

Precondition: it is an item in S with either 

key(it) is maximal with key(it) < k or 

key(it) is minimal with key(it) > k 

returns the item < k', i > in S such that 

k' is minimal with k' >= k ( nil if no 

such item exists). 

returns the item < k', i > in S such that 

k' is maximal with k' <= k ( nil if no 

such item exi.sts) . 

returns the successor item of it, Le., the 

item < k, i > in S such that k is minimal 

with k > key(it) (nil if no such item exists). 

Precondition: it is an item in S. 

returns the predecessor item of it, i.e., the 

item < k, i > in S such that k is maximal 

with k < key(it) (nil if no such item exists). 

Precondition: it is an item in S. 

returns the item with maximal key 

(nil if S is empty). 

returns the item with minimal key 

(nil if S is empty). 

removes the item it from S. 
Precondition: it is an item in S. 

removes the item with key k from S 

(null operation if no such item exists). 

void S .changejnf( seq_item it, I i) makes i the information of item it. 

Precondition: it is an item in S. 

void S .reversejtems( seq_item a, seq_item b) 

the subsequence of S from a to b is reversed. 

Precondition: a appears before b in S. 
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void S.split(seq_item it, sortseq < K,I > & SI, sortseq < K,I > & S2) 

splits S at item it into sequenees SI and S2 

and makes S empty. More precisely, if 

S = Xl, ••• , Xk-1, it, Xk+1, ••• , X n then 

SI = Xl, ••• ,Xk-1, it and S2 = Xk+1, • •• ,Xn 

Precondition: it is an item in S. 

sortseq <!Kc,cJnJ;(lurtseq < K,I > &Sd appends SI to S, makes SI emptyand 

returns S. Precondition: 

void 

int 

bool 

S.clearO 

S.sizeO 

S.empty() 

4. Implementation 

S.key(S.max()) ~ Sl.key(Sl.min()). 

makes S the empty sorted sequenee. 

returns the size of S. 

returns true if S is empty, false otherwise. 

Sorted sequenees are implemented by (2,4)-trees. Operations lookup, loeate, insert, del, 

split, eone take time O(1og n), operations suee, pred, max, min, key, inf, inserLatitem 

and delitem take time 0(1). Clear takes time O(n) and reverseitems O(.e), where .e 
is the length of the reversed subsequenee. The spaee requirement is O(n). Here n is 

the eurrent size of the sequenee. 

5. Example 

U sing a sorted sequenee to list all elements in a sequenee of strings lying lexieographieally 

between two given search strings. 

#include <LEDAjsortseq.h> 

mainO 

{ sortseq<string,int> Si 

string SI, S2; 

while ( ein> > SI && SI != "stop" ) S.insert(sl, 0); 

while ( ein » SI » S2 ) 

} 

{ seqitem stop = S.loeate(s2)i 

} 

for (seqitem it = S .loeate( SI); it != stOPi it = S .suee( it)) 

eout « S.key(it) « "\n"; 
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4.7 Persistent Dictionaries (p_dictionary) 

1. Definition 

The difference between dictionaries (cf. section 4.3) and persistent dictionaries lies in 

the fact that update operations performed on a persistent dictionary D do not change 

D but create and return a new dictionary D'. For example, D.del(k) returns the 

dictionary D' containing all items it of D with key(it) =1= k. 

An instance D of the parameterized data type p_dictionary<K, I> is a set of items (type 

p_dic_item). Every item in D contains a key from the linearly ordered data type K, 

called the key type of D, and an information from data type I, called the information 

type of D. The number of items in D is called the size of D. A dictionary of size 

zero is called empty. We use < k, i > to denote an item with key k and information 

i (i is said to be the information associated with key k). For each k E K there is at 

most one item < k,i >E D. 

2. Creation 

p_dictionary<K, I> Dj 

creates an instance D of type p_dictionary<K, I> and initializes D to an empty persistent 

dictionary. 

3. Operations 

K 

I 

p_dic_item 

I 

D.key(p_dic_item it) returns the key of item it. 

Precondition: it E D. 

D.inf(p_dic_item it) returns the information of item it. 

D.lookup(K k) 

D .access( K k) 

Precondition: it E D. 

returns the item with key k (ni1 if no such 

item exists in D). 

returns the information associated with k 
Precondition: there is an item with key k 

in D. 

p_dictionary( K, I) D .del( K k) returns { z ED I key(x) =1= k }. 

p_dictionary(K, I) D.deUtem(p_dic_item it) 

returns { x ED I x =1= it }. 

p_dictionary(K,1) D.insert(K k, I i) returns D:del(k) U {< k, i >}. 
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p_didionary(K, I) D.changeinf(p_dic_item it, I i) 

p_dictionary(K,I) D.clearO 

bool D .emptyO 

int D.sizeO 

4. Implementation 

Let k = key(it), returns D.delitem(it) u 
{< k, i >}. Precondition: it E D. 

returns an empty persistent dictionary. 

returns true if D is empty, false otherwise. 

returns the size of D. 

Persistent Dictionaries are implemented by leaf oriented persistent red black trees 

(cf. [DSST89]). Operations insert, lookup, deLitem, deI take time O(log n), key, inf, 

empty, size, changeinf and clear take time 0(1). The space requirement is 0(1) for 

each update operation. 
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5. Graphs and Related Data Types 

5.1 Directed graphs (graph) 

1. Definition 

An instance G of the data type graph consists of a list of nodes V and a list of edges 

E (node and edge are predefined data types). Every edge e E E is a pair of nodes 

(v, w) E V X V, v is called the source of e and w is called the target of e. With every 

node v the list of its adjacent edges adi_list(v) = { e E E Isource(e) = v }, called the 

adjacency list of v, is associated. 

2. Creation 

graph Gi 

creates an instance G of type graph and initializes it to the empty graph. 

3. Operations 

a) Access operations 

int G .indeg( node v) 

int G.outdeg(node v) 

node G .source( edge e) 

node G.target(edge e) 

int G .number _oLnodesO 

int G.number-<>LedgesO · 

list<node> G.all_nodesO 

node G.first-Ilode() 

node 

node 

node 

G .lasLnodeO 

G .succ-Ilode( node v) 

G. pred-Ilode( node v) 

list<edge> G.all_edgesO 

edge G .firsLedgeO 

returns the indegree of node v 

returns the outdegree of node v 

returns the source node of edge e 

returns the target node of edge e 

returns the number of nodes in G 

returns the number of edges in G 

returns the list V of all nodes of G 

returns the first node in V 

returns the last node in V 

returns the successor of node v in V 

(nil if it does not exist) 

returns the predecessor of node v in V 

(nil if it does not exist) 

returns the list E of all edges of G 

returns the first edge in E 
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edge 

edge 

edge 

G .lasLedgeO 

G.succ_edge(edge e) 

G. pred_edge( edge e) 

list<edge> G.adj_edges( node v) 

list<node> G.adj...nodes(node v) 

edg e G .firsLadj_edge( node v) 

edg e G .lasLadj_edge( node v) 

edge 

edge 

edge 

edge 

node 

edge 

G .adj_succ( edge e) 

G.adj_pred(edge e) 

G .cyclic_adj....succ( edge e) 

G.cyclic_adj_pred( edge e) 

G.choose...node() 

G. choose_edge() 

b) Update operations 

node G .new ...no deO 

void G .deLnode( node v) 

edge G .new _edge( node v, w) 

returns the last edge in E 

returns the successor of edge e in E 
(nil if it does not exist) 

returns the predecessor of edge e in E 
(nil if it does not exist) 

returns the list of all edges adjacent to v 

returns the list of all nodes adjacent to v 

returns the first edge in the adjacency list of v 

returns the last edge in the adjacency list of v 

returns the successor of edge e in the 

adjacency list of source( e) 

(nil if it does not exist) 

returns the predecessor of edge e in the 

adjacency list of source( e ) 

(nil if i t does not exist) 

returns the cyclic successor of edge e in the 

adjacency list of source( e) 

returns the cyclic predecessor of edge e in the 

adjacency list of source( e) 

returns anode of G (nil if G is empty) 

returns an edge of G (nil if G is empty) 

adds a new node to G and returns it 

deletes v and all edges adjacent to v 

from G. Precondition: indeg(v) = o. 
adds a new edge (v, w) to G by appending 

it to the adjacency list of v and returns it. 

edge G.new_edge(edge e, node w, reLpos dir = after) 

void 

void 

G.deLedge(edge e) 

G .deLall_nodesO 

adds a new edge e' = (source(e),w) to G by 

inserting it after (dir=after) or before (dir 

= before) edge e into the adjacency list of 

source( e), returns e'. 

deletes the edge e from G 

deletes all no des from G 
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void 

edge 

void 

G . deLalLedges 0 
G .rev _edge( edg e e) 

G.revO 

deletes all edges from G 

reverses the edge e = (v, w) by removing it 

from G and inserting the edge e' = (w, v) 
into G by appending it to the adjacency list 

of w, returns e' 

all edges in G are reversed 

void G .sort..nodes( int( *cmp)( node&, node&)) 

the no des of Gare sorted according to the 

ordering defined by the comparing function 

cmp. Subsequent executions of forall_nodes 

step through the no des in this order. 

(cf. TOPSORT1 in section 8.1) 

void G .sort..nodes( node_array< T> A) 

the nodes of G are sorted according to the 

entries of node_array A (cf. section 5.7) 

Precondition: T must be linearly ordered 

void G.sorLedges(int(*cmp)(edge&, edge&)) 

the edges of Gare sorted according to the 

ordering defined by the comparing function 

cmp. Subsequent executions of forall_edges 

step through the edges in this order. 

(cf. TOPSORT1 in section 8.1) 

void G.sorLedges( edge_array<T> A) 

list< edge> G .insert..reverse_edgesO 

void G .make_undirected() 

void G .make_directedO 

void G.clearO 

the edges of Gare sorted according to the 

entries of edge_array A (cf. section 5.7) 

Precondition: T must be linearly ordered 

for every edge (v, w) in G the reverse edge 

( w, v) is inserted into G. The list of all 

inserted edges is returned. 

every edge (v, w) in G is inserted into the 

adjacency list of w. 

every edge (v, w) in G is removed from the 

adjacency list of w. 

makes G the empty graph 
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c) Iterators 

With the adjacency list of every node v is associated a list iterator called the adjacency 

iterator of v (cf. list). There are operations to initialize, move, and read these iterators. 

They are used to implement iteration statements (foralLadj_edges, forall_adj-D.odes). 

void G.iniLadj..iterator(node v) assigns nil to the adjacency iterator of node v 

bool G .currenLadj_edge( edge& e, node v) 

if the adjacency iterator of v is defined (=1= nil) 
its contents is assigned to e and true is returned 

else false is returned. 

bool G.nexLadj_edge( edge& e, node v) 

moves the adjacency iterator of v forward (to the 

first item of adi_list(v) if it is nil) and returns 

G.current...adj_edge( e, v) 

bool G .currenLadj-D.ode( node& w, node v) 

if G.current...adj_edge( e, v) = true then assign 

target( e) to w and return true, else return 

false 

bool G .nexLadj-D.ode( node& w, node v) 

void G.resetO 

d) Miscellaneous operations 

if G.nexLadj_edge( e, v) = true then assign 

target( e) to w and return true, else return 

false 

assign nil to all adjacency iterators in G 

void G.write(ostream 0 = eout)writes a compressed representation of G to 

void G. write( string s) 

the output stream O. 

writes a compressed representation of G to 

the file with name s. 

void G.read(istream I = ein) reads a compressed representation of G from 

void G .read( stri ng s) 

the input stream I. 

reads a compressed representation of G from 

the file with name s. 

void G.print-D.ode(node v, ostream 0 = eout) 

writes a readable representation of node v to 

the output stream 0 
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void G.prinLedge( edge e, ostream 0 = cout) 

writes a readable representation of edge e to 

the output stream 0 

void G.print( ostream · 0 = cout) writes a readable representation of G to the 

output stream 0 

4. Iteration 

foralLnodes(v, G) { "the no des of G are successively assigned to v" } 

foralLedges( e, G) { "the edges of Gare successively assigned to e" } 

foralLadj_edges( e, w) 
{ "the edges adjacent to node ware successively assigned to e" } 

foralLadj_no des( v, w) 
{ "the nodes adjacent to node ware successively assigned to v" } 

5. Implementation 

Graphs are implemented by doubly linked adjacency lists. Most operations take constant 

time, except of alLnodes, alLedges, deLalLnodes, deLalLedges, dear, write, and read 

which take time O(n + m), where n is the current number of nodes and m is the 

current number of edges. The space requirement is O( n + m). 

5.2 U ndirected graphs (ugraph) 

1. Definition 

An instance G of the data type ugraph consists of a set of nodes V and a set of 

undirected edges E. Every edge e E E is a set of two nodes {v, w }, v and w are 

called the endpoints of e. With every node v is associated the list of its adjacent edges 

adj _list( v) = { e E E Iv E e }. 

2. Creation 

ugraph Gi 

creates an instance G of type ugraph and initializes it to the empty undirected graph. 
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3. Operations 

Most operations are the same as for directed graphs. The following operations are 

either additional or have different effects. 

node G.opposite(node v, edge e) 

int G.degree(node v) 

returns w if e = {v, w}, nil otherwise 

returns the degree of node v. 

edge G.new_edge(node v, node w) inserts the undirected edge {v,w} into G by 

appending it to the adjacency lists of both 

v and w and returns it 

edge G.new_edge(node v, node w, edge e!, edge e2, dir! = after, dir2 = after) 

edge G .adj_succ( edge e, node v) 

inserts the undirected edge {v, w} after (if dir! 

= after) ot before (if dir! = before) the edge 

e! into the adjacency list of v and after (if dir2 

= after) or before (if dir2 = before) the edge 

e2 into the adjacency list of w and returns it 

returns the successor of edge e in the 

adjacency list of v. 

edge G.adj_pred( edge e, node v) returns the predecessor of edge e in the 

adjacency list of v. 

edge G.cyclic_adj_succ( edge e, node v) 

returns the cyclic successor of edge e in the 

adjacency list of v. 

edge G .cyclic_adj_pred( edge e, node v) 

4. Implementation 

returns the cyclic predecessor of edge e in the 

adjacency list of v. 

Undirected graphs are implemented like directed graphs by adjacency lists. The 

adjacency list of anode v contains all edges {v, w} of the graph. Most operations take 

constant time, except of all_nodes, alLedges, deLall-nodes, deLall_edges, clear,write, 

and read which take time O( n + m), where n is the current number of nodes and m 

is the current number of edges. The space requirement is O(n + m). 
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5.3 Planar Maps (planar_map) 

1. Definition 

An instance M of the data type planar _map is the combinatorial embedding of a 

planar graph. 

2. Creation 

planar_map M(graph G)j 

creates an instance M of type planar _map and initializes it to the planar map represented 

by the directed graph G. Precondition: G represents an undirected planar map, i.e. 

for every edge (v, w) in G the reverse edge (w, v) is also in G and there is a planar 

embedding of G such that for every node v the ordering of the edges in the adjacency 

list of v corresponds to the counter-clockwise ordering of these edges around v in the 

embedding. 

3. Operations 

Most operations are the same as for directed graphs. The following operations are 

either additional or have different effects. 

face M.adj_face(edge e) 

list<face> M.alLfacesO 

list<face> M.adjJaces(node v) 

list<edge> M.adj_edges(face f) 

list<node> M.adj_nodes(face f) 

edge 

edge 

edge 

edge 

M .reverse( edg e e) 

M .:firstJace_edge() 

M .succJace_edge( edg e e) 

M.predJace_edge(edge e) 

returns the face of M to the right of e. 

returns the list of all faces of M. 

returns the list of all faces of M adjacent 

to node v in counter-clockwise order. 

returns the list of all edges of M bounding 

face f in clockwise order. 

returns the list of all no des of M adjacent 

to face f in clockwise order. 

returns the reversal of edge e in M . 

returns the :first edge of face f in M. 

returns the successor edge of e in face f 
i.e., the next edge in clockwise order. 

returns the predecessor edge of e in face f, 
i.e., the next edge in counter-clockwise order. 
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edge M.new_edge(edge eI, edge e2) 

edge M.dd_edge(edge e) 

edge M.spliLedge(edge e) 

node M .new _node(f ace f) 

inserts the edge e = (source( eI), source( e2)) 

and its reversal edge into M. Precondition: 

el and e2 are bounding the same face F. 
The operation splits F into two new faces. 

ddetes the edge e from M. The two faces 

adjacent to e are united to one face. 

splits edge e = (v,w) and its revers al r = (w,v) 

into edges (v,u), (u,w), (w,u), and (u,v). 

Returns the edge (u, w). 

splits face f into triangles by inserting a new 

node u and connecting it to all nodes of f. 
Returns u. 

node M.new-D.ode(list<edge> el) splits the face bounded by the edges in el by 

list<edge> M.triangulateO 

inserting a new node u and connecting it to all 
source nodes of edges in el. Precondition: 

all edges in el bound the same face. 

triangulates all fa ces of M by inserting new 

edges. The list of inserted edges is is returned. 

int M .straightJine_embedding( node_array( int) zcoord, node_array( int) ycoord) 

4. Iteration 

computes a straight line embedding for M with 

integer coordinates zcoord[v], ycoord[v]) in the 

range 0 ... 2(n - 1) for every node v of M, 
and returns the maximal used coordinate. 

foralLfaces(f, M) { "the faces of Mare successively assigned to f" } 

foralLadj_edges( e, f) 
{ "the edges adjacent to face f are successively assigned to e" } 

5. Implementation 

Planar maps are implemented by parameterized directed graphs. All operations take 

constant time, except of, new_edge and deLedge which take time O(f) where f is the 

number of edges in the created faces, and triangulate and straightline_embedding take 

time O(n) where n is the current size (number of edges) of the planar map. 
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5.4 Parameterized Graphs (GRAPH) 

1. Definition 

A parameterized graph G is a graph whose no des and edges contain additional (user 

defined) data. Every node contains an element of a data type vtype, called the node 

type of G and every edge contains an element of a data type etype called the edge 

type of G. We use < v, w, y > to denote an edge (v, w) with information y and < x > 
to denote anode with information x. 

All operations defined on instances of the data type graph are also defined on instances 

of any parameterized graph type G RAP H <vtype, etype>. For parameterized graphs 

there are additional operations to access or update the information associated with its 

nodes and edges. Instances of a parameterized graph type can be used wherever an 

instance of the data type graph can be used, e.g., in assignments and 'as arguments to 

functions with formal parameters of type graph&. Ha function f(graph& G) is called 

with an argument Q of type G RAP H <vtype, etype> then inside f only the basic graph 

structure of Q (the adjacency lists) can be accessed. The node and edge entries are 

hidden. This allows the design of generic graph algorithms, i.e., algorithms accepting 

instances of any parametrized graph type as argument. 

2. Creation 

GRAPH<vtype,etype> Gj 

creates an instance G of type GRAPH <vtype, etype> and initializes it to the empty 

graph. 

3. Operations 

In addition to the operations of the data type graph (see section 2): 

vtype 

etype 

void 

void 

node 

G .inf( node v) returns the information of node v 

G .inf( edge e) returns the information of edge e 

G .assign( node v, vtype x) makes x the information of node v 

G .assign( edge e, etype y) makes y the information of edge e 

G .new -D.ode( vtype x) adds a new node < x > to G and returns it 

edge G .new _edge( node v, w, etype x) 

adds a new edge e =< v,w,x > to G by 
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appending it to the adjacency list of v 

and returns e. 

edge G.new_edge( edge e, node w, etype z, dir = after) 

void G .sorLnodesO 

void G .sorLedgesO 

void G. write( string fname) 

int G .read( string fname) 

4. Operators 

vtype& 

etype& 

G [node v] 

G [edge e] 

5. Implementation 

adds a new edge e' =< source(e),w,z > to G 

by inserting it after (dir=after) or before (dir 

=before) edge e into the adjacency list of 

source( e) and returns e'. 

the no des of G are sorted according to their 

contents. Precondition: vtype is linearly 

ordered. 

the edges of G are sorted according to their 

contents. Precondition: etype is linearly 

ordered. 

writes G to the file with name fname. The 

output functions Print( vtype, ostream) and 

Print( etype, ostream) (cf. section 1.6) must 

be defined. 

reads G from the file with name fname. The 

input functions Read( vtype, istream) and 

Read( etype, istream) (cf. section 1.6) must 

be defined. Returns error code 

1 if file fname does not exist 

2 if graph is not of type G RAP H <vtype, etype> 

3 if file fname does not contain a graph 

o otherwise. 

returns a reference to G.inf( v). 

returns a reference to G .inf( e ). 

Parameterized graphs are derived from directed graphs. All additional operations for 

manipulating the node and edge entries take constant time. 
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5.5 Parameterized undirected graphs (UGRAPH) 

1. Definition 

A parameterized undirected graph G is an undirected graph whose nodes and edges 

contain additional (user defined) data. Every node contains an element of a data type 

vtype, called the node type of G and every edge contains an element of a data type 

etype called the edge type of G. We use < {v, w}, y > to denote the undirected edge 

{ v, w} with information y and < z > to denote anode with information z. 

2. Creation 

UGRAPH<vtype,etype> G; 

creates an instance Goftype UGRAPH<vtype, etype>and and initializes it to the 

empty graph. 

3. Operations 

In addition to the operations of the data type ugraph (see section 5.3): 

vtype 

etype 

void 

void 

node 

G .inf( node v) returns the information of node v 

G .inf( edge e) returns the information of edge e 

G .assign( node v, vtype z) makes z the information of node v 

G.assign( edge e, etype z) makes z the information of edge e 

G .new ....node( vtype z) adds a new node < z > to G and returns it 

edg e G .new _edge( node v, node w, etype z) 
inserts the undirected edge < {v, w }, z > into 

G by appending it to the adjacency lists of 

both v and wand returns it 

edge G.new_edge(node v, node w, edge e!, edge e2, etype z, reLpos dir! =) 
after, reLpos dir2 = after) 

inserts the undirected edge < {v, w }, z > after 

(if dir! = after) or before (if dir! = before) 

the edge e! into the adjacency list of v and 

after (if dir2 = after) or before (if dir2 = 
before ) the edge e2 into the adjacency list 

of wand returns it. 
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4. Implementation 

Parameterized undirected graphs are derived from undirected graphs. All additional 

operations for manipulating the node and edge entries take constant time. 

5.6 Parameterized planar maps (PLANAR_MAP) 

1. Definition 

A parameterized planar map M is a plan ar map whose nodes and faces contain 

additional (user defined) data. Every node contains an element of a data type vtype, 

called the node type of M and every face contains an element of a data type jtype 

called the face type of M. All operations of the data type planar _map are also defined 

for instances of any parameterized planar-Dl.ap type. For parameterized plan ar maps 

there are additional operaations to access or update the node and face entries. 

2. Creation 

PLANAR_MAP<vtype,jtype> M(GRAPH(vtype,jtype) G); 

creates an instance M of type PLAN AR_M AP<vtype, jtype> and initializes it to the 

planar map represented by the parameterized directed graph G. The node entries of 

G are copied into the corresponding nodes of M and every face j of M is assigned the 

information of one of its bounding edges in G. Precondition: G represents a plan ar 

map. 

3. Operations 

In addition to the operations of the data type planar _map: 

vtype 

jtype 

void 

void 

M .inf( node v) returns the information of node v 

M.inf(face f) returns the information of face j 

M.assign(node v, vtype z) makes z the information of node v 

M.assign(face j, jtype y) makes y the information of face j 

edge M.new_edge(edge eI, edge e2, jtype y) 

inserts the edge e = (source( ed, source( e2)) 

and its reversal edge e' into M. Precondition: 

el and e2 are bounding the same face F. 
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4. Implementation 

The operation splits F into two new faces j, 

adjacent to edge e and j', adjacent to edge 

e' with inf(f) = inf (F) and inf(f') = y. 

Parameterized planar maps are derived from planar maps. All additional operations 

for manipulating the node and edge contents take constant time. 

5.7 Node and edge arrays (node_array, edge_array) 

1. Definition 

An instance A of the parameterized data type node_array< E> (edge_array<E» is a 

partial mapping from the node set (edge set) of a (u )graph G to the set of variables 

of data type E, called the element type of the array. The domain I of A is called the 

iIidex set of A and A( x) is called the element at position x. A is said to be valid for 

all nodes (edges) in I. 

2. Creation 

a) node I edge_array< E> A· , 

b) node I edge_array< E> A(graph G)j 

c) node I edge_array< E> A(graph G, E x)j 

d) nodel edge_array< E> A(graph G, int n, E x)j 

creates an instance A of type node_array(E) or edge_array(E). Variant a) initializes 

the index set of A to the empty set, Variants b) and c) initialize the index set of 

A to be the entire node (edge) set of graph G, i.e., A is made valid for all nodes 

(edges) currently contained in G. Variant c) in addition initializes A(i) with x for all 

nodes (edges) i of G. Variant d) makes A a nodeledge_array(E) valid for up to n 

nodes/edges of G, Precondition: n ~ lVI (IE!), this is useful if you want to use the 
array for later inserted nodes/edges. 
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3. Operations 

void A.init(graph G) sets the index set I of A to the node (edge) 

set of G, i.e., makes A valid for all nodes 

(edges) of G. 

void A.init(graph G, E z) makes A valid for all no des (edges) of G 

and sets A( i) = z for all nodes (edges) of G 

void A.init(graph G, int n, E z) 

E& A [node/edge i] 

4. Implementation 

makes A valid for at most n nodes (edges) 

of G and sets A( i) = z for all nodes (edges) 

of G. Precondition: n ~ lVI (n ~ lEI). 
access the variable A(i). 

Precondition: A must be valid for i. 

Node (edge) arrays for a graph Gare implemented by C++ vectors and an internal 

numbering of the nodes and edges of G. The access operation takes constant time, 

init takes time O(n), where n is the number of nodes (edges) currently in G. The 

space requirement is O(n). 

Remark: Anode (edge) array is only valid for a bounded number of the no des 

(edges) contained in G. This number is either the total number of nodes of G at 

the moment of the array creation (variants a) ... c» or it is explicitely set by the 

user (variant d». Access operations for additional later added nodes (edges) are not 

allowed. Fully dynamic node and edge arrays can be realized by using hashing arrays, 

e.g., h_array(node, ... ) (cf. section 4.5). 
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5.8 Two dimensional node arrays (node_matrix) 

1. Definition 

An instance M of the parameterized data type node_matriz<E> is a partial mapping 

from the set of node pairs V x V of a graph to the set of variables of data type E, 

called the element type of M. The domain I of M is called the index set of M. M is 

said to be valid for all node pairs in I. Anode matrix can also be viewed as anode 

array with element type node_array(E) (node_array(node_array(E))). 

2. Creation 

a) node_matriz<E> M; 

b) node_matriz<E> M( G); 

c) node_matriz<E> M(G,z); 

creates an instance M of type node_matriz<E>. Variant a) initializes the index set of 

M to the empty set, Variants b) and c) initialize the index set of A to be the set of 

all node pairs of graph G, i.e., M is made valid for all pairs in V x V where V is the 

set of no des currently contained in G. Variant c) in addition initializes M(v,w) with 

z for all nodes v, w E V. 

3. Operations 

void M .init(graph G) 

void M.init(graph G, E z) 

E& M (node v, node w) 

node_array(E)& M[v] 

4. Implementation 

sets the index set of M to V xV, where 

V is the set of all no des of G 

sets the index set of M to V x V, where 

V is the set of all no des of G and initializes 

M(v,w) to z for all V,w E V. 

returns the variable M(v,w). 

Precondition: M must be valid for v and w. 

returns the node_array M(v). 

Node matrices for a graph G are implemented by vectors of node arrays and an 

internal numbering of the nodes of G. The access operation takes constant time, the 

init operation takes time O(n2 ), where n is the number of nodes currently contained 
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in G. The space requirement is 0(n2 ). Note that anode matrix is only valid for the 

nodes contained in G at the moment of the matrix declaration or initialization (init). 

Access operations for later added no des are not allowed. 

5.9 Sets of nodes and edges (node_set, edgeJ;et) 

1. Definition 

An instance 5 of the data type node_set (edge_set) is a sub set of the nodes (edges) of 

a graph G. 5 is said to be valid for the nodes (edges) of G. 

2. Creation 

node_set 5( G); 

edge_set 5( G); 

creates an instance 5 of type node_set (edge~set) valid for all nodes (edges) currently 

contained in graph G and initializes it to the empty set. 

3. Operations on a node/edge set S 

void 

void 

bool 

5 .insert( x) 

5.del(x) 

5 .member( x ) 

node/edge 5.chooseO 

int 5.sizeO 

bool 5.empty() 

void 5.dearO 

4. Implementation 

adds node (edge) x to 5 

removes node (edge) x from 5 

returns true if x in 5, false otherwise 

return anode (edge) of 5 

returns the size of 5 

returns true iff 5 is the empty set 

makes 5 the empty set 

Anode (edge) set 5 for a graph G is implemented by a combination of a list L of 

nodes (edges) and anode (edge) array of lisLitems associating with each node (edge) 

its position in L. All operations take constant time, except of dear which takes time 

0(151). The space requirement is O(n), where n is the number of nodes (edges) of G. 
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5.10 Node partitions (node_partition) 

1. Definition 

An instance of the data type node_partition is a partition of the nodes of a graph G. 

2. Creation 

node_partition P( G)j 

creates anode_partition P containing for every node v in Gablock {v}. 

3. Operations on anode_partition P 

bool P .same_block( node v, node w) returns true if v and w belong to the 

same block of P. 

void P.union_blocks(node v, node w) unites the blocks of P containing nodes 

node P .find( node v) 

4. Implementation 

v and w. 

returns a canonical representative node of 

the block that contains node v. 

Anode partition for a graph G is implemented by a combination of a partition P 
and anode array of partition_item associating with each node in G a partition item 

in P. lnitialization takes linear time, union~blocks takes time O( 1) (worst-case), and 

same_block and find take time O(a(n)) (amortized). The space requirement is O(n), 
where n is the number of no des of G. 
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5.11 Node priority queues (node_pq) 

1. Definition 

An instance Q of the parameterized data type node_pq<I> is a partial function from 

the nodes of a graph G to the linearly ordered type I. 

2. Creation 

node_pq<I> Q( G); 

creates an instance Q ot type node_pq<I> for the nodes of graph G with dom ( Q) = 0. 

3. Operations 

void 

I 

bool 

void . 

node 

void 

node 

int 

void 

bool 

Q .insert( node v, I i) 

Q .inf( node v) 

Q .member( node v) 

Q .decrease.inf( node v, I i) 

Q .findJIlin() 

Q .del( node v) 

Q.deLminO 

Q.size() 

Q.clearO 

Q.emptyO 

4. Implementation 

adds the node v with information i to 

Q. Precondition: v f/. dom(Q). 

returns information of node v. 

returns true if v in Q, false otherwise. 

makes i the new information of node v 

(Precondition: i ~ Q( v )). 

returns anode with the minimal 

information( nil if Q is empty) 

removes the node v !rom Q 

removes anode with the minimal 

information !rom Q and returns it 

(nil if Q is empty) 

returns 1 dom( Q) I· 
makes Q the empty node priority queue. 

returns true if Q is the empty node 

priority queue, false otherwise. 

Node priority queues are implemented by fibonacci heaps and node arrays. Operations 

insert, deLnode, deLmin take time O(log n), findJIlin, decrease.inf, empty take time 

0(1) and clear takes time O(m), where m is the size of Q. The space requirement is 

O(n), where n is the number of no des of G. 
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5.12 Graph Algorithms 

This sections gives a summary of the graph algorithms contained in LEDA. All algorithms 

are generic, i.e., they accept instances of any user defined parameterized graph type 

GRAPH<vtype,etype> as arguments. 

5.12.1 Basic Algorithms 

• Topological Sorting 

bool TOPSORT(graph& G, node_array<int>& ord) 

TOPSORT takes as argument a directed graph G(V, E). It sorts G topologically (if G is 

acyclic) by computing for every node v E V an integer ord[v] such that 1 :::; ord[v] :::; lVI 
and ord[v] < ord[w] for all edges (v,w) E E. TOPSORT returns true if G is acyclic 

and false otherwise. 

The algorithm ([Ka62]) has running time O(IVI + lEI) . 

• Depth First Search 

list<node> DFS(graph& G, node s, node_array<bool>& reached) 

DFS takes as argument a directed graph G(V, E), anode s of G and a node_array 

reached of boolean values. It performs a depth first search starting at s visiting all 

reachable nodes v with reached[v] = false. Por every visited node v reached[v] is 

changed to true. DFS returns the list of all reached nodes. 

The algorithm ([T72]) has running time O(IVI + lEI). 

list<edge> DFS_NUM(graph& G, node_array<int>& df snum, 

node_array<int>& compnum) 

DFS...NUM takes as argument a directed graph G(V, E). It performs a depth first search 

of G numbering the llodes of G in two different ways. df snum is a numbering with 

respect to the calling time and compnum a numbering with respect to the completion 

time of the recursive calls. DFS_NUM returns a depth first search forest of G (list of 

tree edges). 

The algorithm ([T72]) has running time O(IVI + lEI). 
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• Breadth First Search 

list<node> BFS(graph& G, node s, node_array<int>& dist) 

BFS takes as argument a directed graph G(V, E) and anode s of G. It performs 

a breadth first search starting at s computing for every visited node v the distance 

dist[vJ from s to v. BFS returns the list of all reached nodes. 

The algorithm ([M84]) has running time O(IVI + lEI). 

• Connected Components 

int COMPONENTS(ugraph& G, node_array<int>& compnum) 

COMPONENTS takes an undirected graph G(V, E) as argument and computes for 

every node v E V an integer compnum[v] from [0 ... c - 1] where c is the number 

of connected components of G and v belongs to the i-th connected component iff 

compnum[vJ = i. COMPONENTS returns c. 

The algorithm ([M84]) has running time O(IVI + lEI). 

• Strong Connected Components 

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum) 

STRONG_COMPONENTS takes a directed graph G(V, E) as argument and computes 

for every node v E V an integer compnum[vJ from [0 ... c - 1J where c is the number 

of strongly connected components of G and v belongs to the i-th strongly connected 

component iff compnum[vJ = i. STRONG_COMPONENTS returns c. 

The algorithm ([M84]) has running time O(IVI + lEI). 

• Transitive Closure 

graph TRANSITIVE_CLOSURE(graph& G) 

TRANSITIVE_CLOSURE takes a directed graph G(V, E) as argument and computes 

the transitive closure of G(V, E). It returns a directed graph G'(V' , E') with V' = V 
and (v, w) E E' {::} there is a path form v to w in G. 

The algorithm ([GK79]) has running time O(IVI ·IEI). 
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5.12.2 Network Algorithms 

Most of the following network algorithms are overloaded. They work for both integer 

and real valued edge costs . 

• Single Source Shortest Paths 

void DIJKSTRA(graph& G, node s, edge_array<int> cost, node_array<int> dist, 

node_array<edge> pred) 

void DIJKSTRA(graph& G, node s, edge_array<double> cost, node_array<double> dist, 

node_array<edge> pred) 

DIJKSTRA takes as arguments a directed graph G(V,E), a source node s and an 

edge_array cost giving for each edge in G a non-negative cost. It computes for each 

node v in G the distance dist [v] from s (cost of the least cost path from s to v) and 

the predecessor edge pred[v] in the shortest path tree. 

The algorithm ([Di59,FT87]) has running time O(IEI + lVI log lVI). 

bool BELLMAN_FORD(graph& G, node s, edge_array<int> cost, 

node_array<int> dist, 

node_array<int> pred) 

bool BELLMAN_FORD(graph& G, node s, edge_array<double> cost, 

node_array<double> dist, 

node_array<edge> pred) 

BELLMAN_FORD takes as arguments a graph G(V,E), a source node sand an 

edge_array cost giving for each edge in G a real (integer) cost. It computes for each 

node v in G the distance dist[v] from s (cost of the least cost path from s to v) and the 

predecessor edge pred[v] in the shortest path tree. BELLMAN_FORD returns false if 

there is a negative cycle in G and true otherwise 

The algorithm ([Be58]) has running time O(IVI . lEI) . 

• All Pairs Shortest Paths 

void ALL_PAIRS_SHORTEST..PATHS(graph& G, edge_array<int>& cost, 

node_matriz<int>& dist) 

void ALL_PAIRS_SHORTEST..PATHS(graph& G, edge_array<double>& cost, 

node_matriz<double>& dist) 
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ALL_PAIRS-.SHORTES-P ATHS takes as arguments a graph G(V, E) and an edge_array 

cost giving for each edge in G a real (integer) valued cost. It computes for each node 

pair (v, w) of G the distance dist( v, w) from v to w (cost of the least cost path from 
v to w). 

The algorithm ([Be58,F162]) has running time O(IVI ·IEI + IVI2 log lVI). 

• Maximum Flow 

int MAX_FLOW(graph& G, node s, node t, edge_array<int>& cap, 

edge_array< int>& flow) 

int MAX_FLOW(graph& G, node s, node t, edge_array<double>& cap, 

edge_array<double>& flow) 

MAX_FLOW takes as arguments a directed graph G(V, E), a source node s, a sink 

node t and an edge_array cap giving for each edge in G a capacity. It computes for 

every edge e in G a flow flow[e] such that the total flow from s to t is maximal and 

flow[e] ~ cap[e] for all edges e. MAX-FLOW returns the total flow from s to t. 

The algorithm ([GT88]) has running time O(IVI 3 ) . 

• Maximum Cardinality Matching 

list<edge> MAX_CARD_MATCHING(graph& G) 

MAX_CARD_MATCHING( G) computes a maximum cardinality matching of G, i.e., a 

maximal set of edges M such that no two edges in M share an end point. It returns 

M as a list of edges. 

The algorithm ([E65,T83]) has running time O(IVI . lEI· a(IEI)). 

• Maximum Cardinality Bipartite Matching 

list<edge> MAX_CARD_BIPARTITE-11ATCHING(graph& G, list<node>& A, 

list<node>& B) 

MAX_CARD_BIPARTITE_MATCHING takes as arguments a directed graph G(V, E) 
and two lists A and B of nodes. All edges in G must be directed from nodes in A to 

nodes in B. It returns a maximum cardinality matching of G. 

The algorithm ([HK75]) has running time O(IEIM). 
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• Maximum Weight Bipartite Matching 
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G, 

list<node>& A, 

list<node>& B, 

edge_array<int>& weight) 

list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G, 

list<node>& A, 

list<node>& B, 

edge_array<double>& weight) 

MAX_WEIGHT_BIPARTITE...MATCHING takes as arguments a directed graph G, 

two lists A and B of nodes and an edge_array giving for each edge an integer (real) 
weight. All edges in G must be directed from nodes in A to nodes in B. It computes 
a maximum weight bipartite matching of G, i.e., a set of edges M such that the sum 

of weights of all edges in M is maximal and no two edges in M share an end point. 
MAX_WEIGHT_BIPARTITE...MATCHING returns M as a list of edges. 

The algorithm ([FT87]) has running time O(IVI ·IE/). 

• Spanning Tree 

list<edge> SPANNING_TREE(ugraph& G) 

SPANNING_TREE takes as argument an undirected graph G(V, E). It computes a 
spanning tree T of G, SPANNING_TREE returns the list of edges of T. 

The algorithm ([M84]) has running time O(IVI + lEI). 

• Minimum Spanning Tree 

list<edge> MIN_SPANNING_TREE(ugraph&G, edge_array<int>& cost) 

list<edge> MIN _SPANNIN G _ TREE( ugraph&G, edge_array< double>& cost) 

MIN_SPANNING_TREE takes as argument an undirected graph G(V, E) and an 
edge_array cost giving for each edge an integer cost. It computes a minimum spanning 
tree T of G, i.e., a spanning tree such that the sum of all edge costs is minimal. 
MIN_SPANNING_TREE returns the list of edges of T. 

The algorithm ([Kr56]) has running time O(IEllog lVI). 
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5.12.3 Algorithms for Planar Graphs 

• Planarity Test 

bool PLAN AR(graph&G) 

PLANAR takes as input a directed graph G(V, E) and performs a planarity test for G. 

If G is a planar graph it is transformed into a planar map (a combinatorial embedding 

such that the edges in all adjacency lists are in clockwise ordering). PLAN AR returns 
true if G is planar and false otherwise. 

The algorithm ([HT74]) has running time O(IVI + lEI). 

• Triangulation 

list<edge> TRIANGULATE_PLAN AR_MAP(graph& G) 

TRIANGULATE_PLANAR_MAP takes a directed graph G representing a plan ar map. 

It triangulates the faces of G by inserting additional edges. The list of inserted edges 

is returned. 

The algorlthm ([HU89]) has running time O(IVI + lEI). 

• Straight Line Embedding 
int STRAIGHT_LINE_EMBEDDING(graph& G, node_array<int>& xcoord, 

node_array< int>& ycoord) 

STRAIGHT_LINE-EMBEDDING takes as argument a directed graph G represent­

ing a planar map. It computes a straight line embedding of G by assigning non­

negative integer coordinates (xcoord and ycoord) in the range O .. 2( n - 1) to the nodes. 

STRAIGHT_LINE_EMBEDDING returns the maximal coordinate. 

The algorithm ([Fa48]) has running time O(IVI2
). 
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5.13 Miscellaneous 

5.13.1 Some useful functions 

void eomplete_graph(graph& G, int n) 

ereates a eomplete graph G with n nodes. 

void random..graph(graph& G, int n, int m) 

void test_graph(graph& G) 

ereates a random graph G with n nodes 

and m edges. 

ereates interaetively a user defined graph G. 

void tesLbigraph(graph& G, nodelist& A, nodelist& B) 
ereates interactively a user defined bipartite 

graph G with sides A and B. All edges are 

direeted from A to B. 

bool eompute_eorrespondenee(graph& G, edge_array( edge)& reversal) 

void eliminate_paralleLedges(graph& G) 

eomputes for every edge e = (v,w) in G its 

revers al reversal[e] = (w,v) iri G (nil if 

not present). Returns true if every edge has a 

reversal and false otherwise. 

removes all parallel edges from G. 

void emdline_graph(graph& G, int arge, ehar** argv) 

builds graph G as speeified by the eommand line 

arguments: 

prog 

prog n 

prog n m 

prog file 
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6. Data Types For Two-Dimensional Geometry 

6.1 Basic two-dimensional objects 

LEDA provides a collection of simple data types for two-dimensional geometry, such 

as points, segments, lines, circles, and polygons. All these types can be used as 

type parameters in parameterized data types. Their declarations are contained in the 

header file <LEDA/plane.h>. Furthermore, some basic algorithms (section 6.1.6) 

are included. 

6.1.1 Points (poirit) 

1. Definition 

An instance of the data type point is a point in the two-dimensional plane IR? We use 

(a, b) to denote a point with first (or x-) coordinate a and second (or y-) coordinate b. 

2. Creation 

a) point p(double x, double y); 

b) point Pi 

introduces a variable p of type point initialized to the point (x, y). Variant b) initializes 

p to the point (0,0). 

3. Operations 

double 

double 

double 

double 

point 

p.xcoordO 

p.ycoordO 

p.distance(point q) 

p.distance{ ) 

p.translate( vector v) 

returns the first coordinate of point p 

returns the second coordinate of point p 

returns the euclidean distance between p 

and q. 

returns the euclidean distance between p 

and (0,0). 

returns p + v, i.e., p translated by vector 

v. Precondition: v.dimO = 2. 

point p. translate{ doubl e a, doubl e d) 

returns the point created by translating 

p in direction a by distance d. The 
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direction is given by its angle with a 

right oriented horizontal ray. 

point p.rotate(point q, double o:,eturns the point created by a rotation of p 

about point q by angle 0:. 

point p.rotate( double 0:) 

4. Operators 

bool 

bool 

point 

point == point 

point != point 

point + vector 

Input and output operators: 

ostream& ostream < < point 

istream& istream > > point 

6.1.2 Segments (segment) 

1. Definition 

returns p.rotate(point(O, 0), 0:). 

test for equality 

test for inequality 

translation by vector 

writes a point to an output stream 

reads the coordinates of a point (two doubles) 

from an input stream 

An instance s of the data type segment is a directed straight line segment in the 

two-dimensional plane, i.e., a straight line segment [p, q] connecting two points p, q E [R.2. 

P is called the start point and q is called the end point of s. The length of s is the 

euclidean distance between p and q. The angle between a right oriented horizontal ray 

and s is called the direction of s. The segment [(0,0), (0,0)] is said to be empty. 

2. Creation 

a) segment s(point p, point q); 

b) segment s( double Xl, double Y1, double X2, double Y2); 

c) segment s(point p, double 0:, double d); 

d) segment s· , 

intro duces a variable s of type segment. s is initialized to the segment from p to q 

(variant a), to the segment from (x 1, yI) to (X2' Y2) (variant v), to the segment with 
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start point p, direction a, and length d (variap.t c), or to the empty segment (variant 

d). 

3. Operations 

point 

point 

double 

double 

double 

double 

double 

double 

double 

double 

bool 

bool 

double 

s.startO 

s.end() 

s.xcoordl0 

s.ycoordl0 

s.xcoord20 

s.ycoord20 

s.lengthO 

s.directionO 

s.angle( segment t) 

s.angle() 

s.horizontalO 

s. vertical() 

s.slopeO 

returns the start point of segment s. 

returns the end point of segment s. 

returns the x-coordinate of s.startO. 

returns the y-coordinate of s.startO. 

returns the x-coordinate of s.endO. 

returns the y-coordinate of s.endO. 

returns the length of s. 

returns the direction of s as an angle in 

the intervall (-7r, 7r]. 

returns the angle between sand t, i.e., 

t.directionO - s.directionO. 

returns s.directionO. 

returns true iff s is horizontal. 

returns true iff s is vertical. 

returns the slope of s. 

Precondition: s is not vertical. 

bool s.intersection( segment t, point& p) 

segment 

segment 

segment 

segment 

if s and t are not collinear and intersect the 

intersection point is assigned to p and true is 

returned, otherwise false is returned. 

s.rotate(point q, double a )returns the segment created by a rotation of s 

about point q by angle a. 

s.rotate(double a) returns s.rotate(s.startO,a). 

s.translate( vector v) 

returns s + v, i.e., the segment created by 

translating s by vector v. Precondition: v 

has dimension 2. 

s.translate(double alpha, double d) 

returns the segment created by a translation of 

s in direction a by distance d. 
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3. Operators 

bool 

bool 

segment 

segment == segment 

segment != segment 

segment + vector 

Input and output operators: 

ostream& ostream < < segment 

istream& istream > > segment 

6.1.3 Straight Lines (line) . 
1. Definition 

test for equality 

test for inequality 

translation by vector 

writes a segment to an output stream. 

reads the coordinates of a segment (four doubles) 

from an input stream. 

An instance 1 of the data type line is a directed straight line in the two-dimensional 

plane. The angle between a right oriented horizontal line and 1 is called the direction 

of l. 

2. Creation 

a)line l(point p, point q); 

b) line l(segment s); 

c) line l(point p, double a); 

d) line l· , 

intro duces a variable 1 of type line. 1 is initialized to the line passing through points 

p and q directed form p to q (variant a), to the line supporting segment s (variant 

b), to the line passing through point p with direction a (variant c), or a line through 

(0,0) with direction 0 (variant d) . 

3. Operations 

double 

double 

l.directionO 

l.angle(line g) 

returns the direction of l. 

returns the angle between 1 and g, i.e., 
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double 

bool 

bool 

double 

double 

double 

double 

l.angleO 

l.horizontalO 

I. vertical() 

l.slopeO 

l.y _proj( double z) 

l.x_proj( double y) 

l.y_absO 

g.directionO - l.directionO. 

returns l.directionO. 

returns true iff I is horizontal. 

returns true iff I is vertical. 

returns the slope of I. 
Precondition: I is not vertical. 

returns p.ycoordO, where p E I with p.xcoordO 

= z. Precondition: I is not vertical. 

returns p.xcoordO, where p E I with p.ycoordO 

= y. Precondition: I is not horizontal. 

returns the y-abscissa of I (l.y_proj(O)). 

Precondition: I is not vertical. 

bool l.intersection( line g, point& p) 

if I and g are not collinear and intersect the 

interseetion point is assigned to p and true is 

returned, otherwise false is returned. 

bool l.intersection( segment s, point& p) 

Une l.translate( vector v) 

if land s are not collinear and intersect the 

intersection point is assigned to p and true is 

returned, otherwise {alse is returned. 

returns I + v, Le., the line created by 

translating I by vector v. Precondition: v 

has · dimension 2. 

line l.translate( double a, double d) 

returns the line created by a translation of 

I in direction a by distance d. 

line l.rotate(point q, double a)returns the line created by a rotation of I 

about point q by angle a. 

line l.rotate(double a) returns l.rotate(point(O,O), a). 

segment l.perpendicular(point p) returns the nromal of p with respect to I. 

4. Operators 

bool 

bool 

line == line 

line != line 

test for equality 

test for inequality 
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6.1.4 Polygons (polygon) 

1. Definition 

An instance P of the data type polygon is a simple polygon in the two-dimensional 

plane defined by the sequence of its vertices in clockwise order. The number of vertices 

is called the size of P. A polygon with empty vertex sequence is called empty. 

2. Creation 

a) polygon P( list<point> pI); 

b) polygon Pj 

intro duces a variable P of type polygon. P is initialized to the polygon with vertex 

sequence pI. Precondition: The vertices in pI are given in clockwise order and define 

a simple polygon. Variant b) creates the empty polygon and assigns it to P. 

3. Operations 

list <point> P.verticesO 

list<segment>P .segmentsO 

list<point> P.intersection(line I) 

list<point> P .intersection( segment s) 

list<polygon> P.intersection(polygon Q) 

bool P .inside(point p) 

bool 

polygon 

P.outside(point p) 

P. translate( vector v) 

returns the vertex sequence of P. 

returns the sequence of bounding segments 

of P in clockwise order. 

returns P n I as a list of points. 

returns P n s as a list of points. 

returns P n Q as a list of points. 

returns true if p lies inside of P, 
false otherwise. 

returns ! P .inside(p ). 

returns P + v, i.e., the polygon created by 

translating P by vector v. Precondition: v 

has dimension 2. 

polygon P.translate( double a, double d) 

polygon 

returns the polygon created by a translation 

of P in direction a by distance d 

P.rotate(point q, double a,eturns the polygon created by a rotation of 

P ab out point q by angle a. 
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double 

bool 

P.size() 

P.emptyO 

4. Operators 

bool 

bool 

polygon == polygon 

polygon != polygon 

6.1.5 Circles (circle) 

1. Definition 

returns the size of P. 

returns true if P is empty, false otherwise. 

test for equality 

test for inequality 

An instance C of the data type circle is a circle in the two-dimensional plane, i.e., the 

set of points having a certain distance r from a given point p. r is called the radius 

and p is called the center of C. The circle with center (0,0) and radius 0 is called the 

empty circle. 

2. Creation 

a) circle C(point p, double r)j 

b) circle C(double z, double y, double r)j 

c) circle C· , 

introduces a variable C of type circle. C is initialized to the circle with center p and 

radius r (variant a), to the circle with center (z,y) and radius r (variant b), or to the 
empty circle (variant c). 

3. Operations 

double 

point 

C.radiusO 

C.centerO 

list<point> C .intersection( line 1) 

returns the radius of C. 

returns the center of C. 

returns C n 1 as a list of points. 

list<point> C .intersection( segment s) returns C n s as a list of points. 

list<point> C .intersection( circle D) returns C n D as a list of points. 

segment C .lefLtangent(point p) returns the line segment starting in p tangent 
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segment 

double 

double 

double 

bool 

bool 

circle 

circle 

circle 

C .righLt angent (point p) 

C .distance(point p) 

C .distance(line 1) 

C .distance( circle D) 

C .inside(point p) 

C .outside(point p) 

C. translate( vector v) 

to C and left of segment [p, C.centerOl . 

returns the line segment starting in p tangent 

to C and right of segment [p, C.centerOl. 

returns the distance between C and p 

(negative if p inside C). 

returns the distance between C and 1 

(negative if 1 intersects C). 

returns the distance between C and D 

(negative if D intersects C). 

returns true if P lies inside of C, 
false otherwise. 

returns !C .inside(p). 

returns C + v, i.e., the circle created by 

translating C by vector v. Precondition: 

v.dim = 2. 

C.translate(dou.ble a, dou.ble d) 

returns the circle created by a translation of 

C in direction a by distance d. 

C.rotate(point q, double a) 
returns the circle created by a rotation of C 

about point q by angle a. 

4. Operators 

bool 

bool 

circle == circle 

circle != circle 

test for equality 

test for inequality 
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6.1.6 Algorithms 

• Line segment interseetion 

void SEGMENT.lNTERSECTION(list<segment>& L, list<point>& P); 

SEGMENT.lNTERSECTION takes a list of segments L as input and computes the 

list of intersection points between an segments in L. 

The algorithm ([B079]) has running time O«n + k)logn), where n is the number of 

segments and k is the number of intersections. 

• Convex huH of point set 

polygon CONVEX_HULL(list<point> L); 

CONVEX_HULL takes as argument a list ofpoints and returns the polygon representing 

the convex hull of L. It is based on a randomized incremental algorithm. 

Running time: O( n log n) (with high prob ability ), where n is the number of points. 

• Voronoi Diagrams 

void VORONOI(list<point>& sites, double R, GRAPH<point,point>& G) 

VORONOI takes as input a list of points sites and areal number R. It computes a 

directed graph G representing the planar sub division defined by the Voronoi-diagram 

of sites where an "infinite" edges have length R. For each node v G.inf(v) is the 

corresponding Voronoi vertex (point) and for each edge e G .inf( e) is the site (point) 

whose Voronoi region is bounded by e. 

The algorithm ([De92]) has running time O(nlog n) (with high probability), where n 
is the number of sites. 
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6.2 Two-dimensional dictionaries (d2_dictionary) 

1. Definition 

An instance D of the parameterized data type d2_dictionary<Kl, K2, I> is a eolleetion 

of items (dic2_item). Every item in D contains a key from the linearly ordered data 

type Kl, a key from the linearly ordered data type K2, and an information from data 

type I. Kl and K2 are called the key types of D, and I is called the information type 

of D. The number of items in D is ealled the size of D. A two-dimensional dietionary 

of size zero is said to be empty. We use < k1 , k2 , i > to denote the item with first 

key kll second key k2 , and information i. For each pair (k1 , k2 ) E Kl x K2 there is 

at most one item < k1 , k2 , i > E D. Additionally to the normal dictionary operations, 

the data type d2_dictionary supports reet angular range queries on Kl x K2. 

2. Creation 

d2_dictionary<Kl, K2, I> D; 

creates an instance D of type d2_dictionary<Kl, K2, I> and initializes D to the empty 

dietionary. 

3. Operations 

Kl 

K2 

I 

dic2_item 

dic2_item 

dic2_item 

dic2_item 

dic2_item 

D.keyl( dic2_item it) 

D.key2(dic2_item it) 

D.inf( dic2_item it) 

D.max-.keylO 

D . max-.key 2 0 
D . min-.key 1 0 
D .min-.key20 

returns the first key of item it. 

Precondition: it is an item in D. 

returns the seeond key of item it. 

Precondition: it is an item in D. 

returns the information of item it. 

Precondition: it is an item in D. 

returns the item with maximal first key. 

returns the item with maximal seeond key. 

returns the item with minimal first key. 

returns the item with minimal seeond key. 

D.insert(Kl k1 , K2 k2 , I i) 
assoeiates the information i with the keys 

k1 and k2 • If there is an item < k1 ,k2 ,j > 
in D then j is replaeed by i, else a new 

item < k1 , k2 , i > is added to D. In both 
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cases the item is returned. 

returns the item with keys k1 and k2 

(nil if no such item exists in D). 

list<dic2_item> D.range_search(Kl a, Kl b, K2 c, K2 d) 

list<dic2_item> D .all_itemsO 

void D.del(Kl k1 , K2 k2 ) 

returns the list of all items < k1 , k2 , i > E D 
with a :::; k1 :::; band c :::; k2 :::; d. 

returns the list of all items of D. 

deletes the item with keys k1 and k2 

from D. 

void D.deLitem(dic2_item it) removes item it from D. 

Precondition: it is an item in D. 

void D .change..inf( dic2_item it, I i) 

void 

bool 

int 

D.dearO 

D.empty() 

D.size() 

4. Implementation 

makes i the information of item it. 
Precondition: it is an item in D. 

makes D the empty d2_dictionary. 

returns true if D is empty, false otherwise. 

returns the size of D. 

Two-dimensional dictionaries are implemented by dynamic two-dimensional range trees 

[Wi85, Lu78] based on BB[a] trees. Operations insert, lookup, deUtem, deI take time 

0(1og2 n), range...search takes time O(k + log2 n), where k is the size of the returned 

list, key, inf, empty, size, change..inf take time 0(1), and dear takes time O(nlog n). 
Here n is the current size of the dictionary. The space requirement is O(nlog n). 
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6.3 Sets of two-dimensional points (point_set) 

1. Definition 

An instance S of the parameterized data type poinLset<I> is a collection of items 

(ps_item). Every item .in S contains a two-dimensional point as key (data type point), 

and an information from data type I, called the information type of S. The number 

of items in S is called the size of S. A point set of size zero is said to be empty. We 

use < p, i > to denote the item with point p, and information i. For each point p there 

is at most one item < p, i > ES. Beside the normal dictionary operations, the data 

type poinLset provides operations for rectangular range queries and nearest neighbor 

quenes. 

2. Creation 

poinLset<I> Si 

creates an instance S of type poinLset<I> and initializes S to the empty set. 

3. Operations 

point S.key(ps_item it) 

I S .inf(ps_item it) 

ps_item S.insert(point p, I i) 

ps_item S .10 okup (point p) 

ps_item S .nearest...neighbor(point q) 

returns the point of item it. 
Precondition: it is an item in S. 

returns the information of item it. 

Precondition: it is an item in S. 

associates the information i with point p. 

H there is an item < p,j > in S then j 

is replaced by i, else a new item < p, i > 
is added to S. In both cases the item is 

returned. 

returns the item with point p (nil if no 

such item exists in S). 

returns the item < p, i > E S such that 
the distance between p and q is minimal. 

list<ps_item> S .range....search( double Xo, double Xl, double Yo, double Yd 

list<ps_item> S .convex..b.ullO 
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returns all items < p, i > E S with 

Xo :$ p.xcoordO :$ Xl and 

Yo :$ p.ycoordO ~ Yl 

returns the list of items containing all 



void 

void 

S.del(point p) 

S .deLitem(ps_itemit) 

points of the convex hull of S in dock­

wise order. 

deletes the item with point p from S 

removes item it from S. 

Precondition: it is an item in S. 

void S .changeinf(ps_item it, I i) makes i the information of item it. 

list<ps_item> S .alLitemsO 

list<point> S .alLpointsO 

void S .dearO 

bool S .emptyO 

int S.sizeO 

4. Implementation 

Precondition: it is an item in S. 

returns the list of all items in S. 

returns the list of all points in S. 

makes S the empty poinLset. 

returns true iff S is empty. 

returns the size of S. 

Point sets are implemented by a combination oftwo-dimensional range trees [Wi85, Lu78] 

and Voronoi diagrams. Operations insert, lookup, deUtem, del take time 0(log2 n), 
key, inf, empty, size, changeinf take time 0(1), and clear takes time O(nlog n). A 

range_search operation takes time O(k + log2 n), where k is the size of the returned 

list. A nearest...neighbor query takes time 0(n2 ), if it follows any update operation 

(insert or delete) and O(logn) otherwise. Here n is the current size of the point set. 

The space requirement is 0(n2 ). 
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6.4 Sets of intervals (intervaLset ) 

1. Definition 

An instance S of the parameterized data type intervaLset<I> is a collection of items 

(is_item). Every item in S contains a closed interval of the real numbers as key and 

an information !rom data type I, called the information type of S. The number of 

items in S is called the size of S. An interval set of size zero is said to be empty. We 

use < x, y, i > to denote the item with interval [x, y] and information i, x (y) is called 

the left (right) boundary of the item. For each interval [x, y] C [R there is at most one 

item < x,y,i >E S. 

2. Creation 

intervaLset<I> Si 

creates an instance S of type intervaLset<I> and initializes S to the empty set. 

3. Operations 

double 

double 

I 

is_item 

is_item 

S.left(is_item it) 

S .right( is_item it) 

S .inf( is_item it) 

returns the left boundary of item it. 
Precondition: it is an item in S . 

returns the right boundary of item it. 

Precondition: it is an item in S. 

returns the information of item it. 

Precondition: it is an item in S. 

S.insert(double x, double y, I i) 
associates the information i with interval 

[x,y]. If there is an item < x,y,j > in S 

then j is replaced by i, else a new item 

< x, y, i > is added to S. In both cases 

the item is returned. 

S.lookup(double x, double y)returns the item with interval [x,y] 
(nil if no such item exists in S). 

list<is_item> S.intersection(double a, double b) 

void S.del(double x, double y) 

returns all items < x, y, i > E S with 

[x, y] n [a, b] =1= 0. 

deletes the item with interval [x, y] 
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from S. 

void S .deLitem( is_item it) removes item it from S. 

Precondition: it is an item in S. 

void S .changeJnf( is_item it, I i) makes i the information of item it. 

void 

bool 

int 

S.clearO 

S.emptyO 

S.sizeO 

4. Implementation 

Precondition: it is an item in S. 

makes S the empty intervaLset. 

returns true iff S is empty. 

returns the size of S. 

Interval sets are implemented by two-dimensional range trees [Wi85, Lu78]. Operations 

insert, lookup, deLitem and del take time O(log2 n), intersection takes time O(k+log2 n), 
where k is the size of the returned list. Operations left, right, inf, empty, and size 

take time O( 1 ), and dear O( n log n). Here n is always the current size of the interval 

set. The space requirement is O( n log n). 
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6.5 Sets of parallel segments (segment-set) 

1. Definition 

An instance S of the parameterized data type segmenLset<I> is a collection of items 

(seg_item). Every item in S contains as key a line segment with a fixed direction a 

(see data type segment) and an information from data type I, called the information 

type of S. a is called the orientation of S. We use < s,i > to denote the item with 

segment sand information i. For each segment s there is at most one item < s, i > ES. 

2. Creation 

a) segmenLset<I> S(double a)j 

b) segment--set<I> Sj 

creates an empty instance S of type segmenLset<I> with orientation a. Variant b) 

creates a segment set of orientation zero, i.e., for horizontal segments. 

3. Operations 

segment S.key(seg_item it) 

I S .inf( seg_item it) 

seg_item S .insert( segment s, I i) 

ps_item S.lookup(segment s) 

list<seg_item> S.intersection(segment q) 

list<seg_item> S .intersection(line I) 

void S .del( segment s) 
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returns the segment of item it. 

Precondition: it is an item in S. 

returns the information of item it. 

Precondition: it is an item in S. 

associates the information i with segment 

s. If there is an item < s,j > in S 

then j is replaced by i, else a new item 

< s, i > is added to S. In both cases the 

item is returned. 

returns the item with segment s (nil 
if no such item exists in S). 

returns all items < s, i > E S with 

s n q =1= 0. Precondition: q is 

orthogonal to the segments in S. 

returns all items < s, i > E S with 

s n I =1= 0. Precondition: I is 

orthogonal to the segments in S. 

deletes the item with segment s 



void S.deLitem(seg_itemit) 

from S. 

removes item it from S. 

Precondition: it is an item in S. 

void S .change...inf( seg_item it, I i) 

void 

bool 

int 

S.clearO 

S.emptyO 

S .size() 

4. Implementation 

makes i the information of item it. 

Precondition: it is an item in S. 

makes S the empty segment..set. 

returns true iff S is empty. 

returns the size of S. 

Segment sets are implemented by dynamic segment trees based on BB[a] trees ([Wi85, 

Lu78]) trees. Operations key, inf, changejnf, empty, and size take time 0(1), insert, 

lookup, deI, and deLitem take time 0(log2 n) and an intersection operation takes time 

O(k + log2 n), where k is the size of the returned list. Here n is the current size of 

the set. The space requirement is O(nlog n). 
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6.6 Planar Subdivisions (subdivision) 

1. Definition 

An instance S of the parameterized data type subdivision<I> is a sub division of the 

two-dimensional plane, i.e., an embedded planar graph with straight line edges (see 

also sections 5.3 and 5.6). With each node v of S is associated a point, called the 

position of v and with each face of S is associated an information from data type I, 
called the information type of S. 

2. Creation 

subdivision<I> S(GRAPH(point,I) G)j 

creates an instance S of type subdivision<I> and initializes it to the sub division 

represented by the parameterized directed graph G. The node entries of G (of type 

point) define the positions of the corresponding no des of S. Every face f of S is 

assigned the information of one of its bounding edges in G. Precondition: G represents 

a planar sub division, i.e., a straight line embedded plan ar map. 

2. Operations 

point 

ftype 

face 

S. position( node v) 

S .inf(f ace f) 

S.locate_point(point p) 

3. Implementation 

returns the position of node v. 

returns the information of face f. 
returns the face containing point p. 

Planar sub divisions are implemented by parameterized planar maps and an additional 

data structure for point location based on persistent search trees ([DSST89]). Operations 

position and inf take constant time, a locate_point operation takes time O(log2 n). 
Here n is the number of nodes. The space requiremnt and the initialization time is 

O(n2 ). 
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6.7 Graphie Windows (window) 

1. Definition 

The data type window provides an interface for the input and output of basic two­

dimensional geometrie objects (cf. section 5.1) using the XlI or Sun View window system. 

There are two object code libraries libWx.a, and libWs.a containing implementations 

for both the XlI (xview toolkit.) and the Sun View environments. Application programs 

using data type window have to be linked with one of these libraries (cf. section 1.6): 

a) For the XlI (xview) window system: 

ce prog.c -lP -lG -lL -lWx -lxview -lolgx -lXlI -Im 

b) For the Sun View window system: 

ce prog.c -lP -lG -lL -lWs -lsuntool -lsunwindow -lpixrect -Im 

An instance W of the data type window is an iso-oriented rectangular window in 

the two-dimensional plane. The default representation of W on the screen is a 850 x 

850 pixel square positioned in the upper right corner (cf. creation, variant c)). The 

coordinates and scaling of W used for drawing operations are defined by three double 

parameters: Zo, the x-coordinate of the left side, Zl, the x-coordinate of the right side, 

and Yo, the y-coordinate of the bottom side. The y-coordinate of the top side of W 

is determined by the current size and shape of the window on the screen, which can 

be changed interactively. A graphic window supports operations for drawing points, 

lines, segments, arrows, circles, polygons, graphs, .. , and for graphical input of all 

these objects using the mouse input device. Most of the drawing operations have an 

optional color argument. Possible colors are black (default), white, blue, green, red, 

violet, and orange. On monochrome displays all colors different from white are turned 

to black. There are 6 parameters used by the drawing operations: 

1. The line width parameter (default value 1 pixel) defines the width of all kinds of 

lines (segments, arrows, edges, circles, polygons). 

2. The line style parameter defines the style of lines. Possible line styles are solid 

( default), dashed, and dotted. 

3. The node width parameter (default value 10 pixels) defines the diameter of nodes 

created by the draw -D.ode and draw Jilled_node operations. 

4. The text mode parameter defines how text is inserted into the window. Possible 

values are transparent (default) and opaque. 
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5. The drawing mode parameter defines the logical operation that is used for setting 

pixels in all drawing operations. Possible values are src_mode (default ) and 

xar _mode. In src_mode pixels are set to the respective color value, in xar _mode 

the value is bitwise added to the current pixel value. 

6. The redraw function parameter is used to redraw the entire window, whenever a 

redrawing is necessary, e.g., if the window shape on the screen has been changed. 

Its type is pointer to a void-function taking no arguments, i.e., void (*F)Oj 

2. Creation 

a) window W(int xpix, int ypix, int xpos, int ypos)j 

b) window W(int xpix, int ypix)j 

c) window W' , 

Variant a) creates a window W of physical size xpix x ypix pixels with its upper left 

corner at position (xpos, ypos) on the screen, variant b) places W into the upper right 

corner of the screen, and variant c) creates a 850 x 850 pixel window positioned into 

the upper right corner. 

All three variants initialize the coordinates of W to xO = 0, xl = 100 and yO = O. The 

init operation (see below) can later be used to change the window coordinates and 

scaling. 

3. Operations 

3.1 Initialization 

void W.init(double Xo, double Xl, double yo) 

sets the coordinates of W to Xo ,Xl, and Yo 

void W .set_grid-Inode( int d) 

Adds a rectangular grid with integer coordinates and 

grid distance d to W, if d > O. Removes grid from 

W, if d::; O. 

void W.init(double Xo, double Xl, double Yo, int d) 

like init( Xo, Xl, Yo) followed by seLgrid( d) 

void W.clearO W is erased. 
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3.2 Setting parameters 

int W.setJine_width(int pix) 

Sets theline width parameter to pix pixels and 

returns its previous value. 

line_style W .setJine_style( linestyle s) 

Sets the line style parameter to s and returns its 

previous value. 

int W .set..node_width( int pix) 

Sets the node width parameter to pix pixels and 

returns its previous value. 

texLmode W.set_texLmode(texLmode m) 
Sets the text mode parameter to m and returns 

its previous value. 

drawing_mMe.setJIlode( drawing_mode m) 
Sets the drawing mode parameter to m and returns 

its previous value. 

void W .seLredraw( void (*F)O) 

Sets theredraw function parameter to F. 

3.3 Reading parameters and window coordinates 

int W.getJine_widthO returns the current line width. 

line_style W.getJine_styleO returns the current line style. 

int W.get..node_widthO returns the current node width. 

texLmode W.geLtexLmodeO returns the current text mode. 

drawing_mMe.getJIlode() 

double W .xmin() 

double W.yminO 

double W.xmax() 

double W.ymaxO 

double W.scale() 

returns the current drawing mode. 

returns Xo, the minimal x-coordinate of W. 

returns Yo, the mininial y-coordinate of W. 

returns Xl, the maximal x-coordinate of W. 

returns YI, the maximal y-coordinate of W. 

returns the number of pixels of a unit length 

line segment. 
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3.4 Drawing points 

void W.draw_point(double x, double y, color c = black) 

draws the point (x, y) as a cross of a vertical 

and a horizontal segment intersecting at (x,y). 

void W .draw _point (point p, c = black) 

draws point (p.xcoordO,p.ycoordO). 

3.5 Drawing line segments 

void W.draw..segment(double xl, double Yl, double X2, double Y2, color c = black) 

draws a line segment from (Xl'Yl) to (X2'Y2)' 

void W.draw..segment(point p, point q, color c = black) 

draws a line segment from point p to point q. 

void W.draw..segment(segment s, color c = black) 

draws line segment s. 

3.6 Drawing lines 

void W .draw Jine( double X 1, double Yl, double X2, double Y2, color c = black) 

draws a straight line passing through points 

(XllYl) and (X2'Y2)' 

void W .draw Jine{point p, point q, color c = black) 

draws a straight line passing through points 

p and q. 

void W.drawJine(line I, color c = black) 

draws line I. 

void W.draw-.hline(double y, color c = black) 

draws a horizontal line with y-coordinate y. 

void W.draw_vline( double x, color c = black) 

draws a vertical line with x-coordinate x. 

3.7 Drawing arrows 

void W.draw..arrow(double Xi, double YI, double X2, double Y2, color c= black) 

draws an arrow pointing from (xllyd to (X2,Y2)' 
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void W .draw -3.rrow(point p, point q, color c = black) 

draws an arrow pointing from point p to point q. 

void W.draw_arrow(segment s, colorc = black) 

draws an arrow pointing from s.startO to s.endO. 

3.8 Drawing circles 

void W.draw_circle(double z, double y, double r, color c = black) 

draws the circle with center (z, y) and radius r. 

void W.draw_circle(point p, double r, color c = black) 

draws the circle with center p and radius r. 

void W.draw_circle(circle C, color c = black) 

draws circle C. 

3.9 Drawing discs 

void W.draw_disc(double z, double y, double r, color c=black) 

draws a filled circle with center (z, y) and radius r. 

void W.draw_disc(point p, double r, color c = black) 

draws a filled circle with center p and radius r. 

void W.draw_disc(circle C, color c = black) 

draws filled circle C. 

3.10 Drawing polygons 

void W.draw_polygon(list<point> lp, color c = black) 

draws the polygon with vertex sequence lp. 

void W .draw _polygon(polygon P, color c = black) 

draws polygon P. 

void W.draw..filled_polygon(list<point> lp, color c = black) 

draws the filled polygon with vertex sequence lp. 

void W .draw ..filled_polygon(polygon P, color c = black) 

draws filled polygon P. 
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3.11 Drawing functions 

void W.plot...xy(double Xo, double Xl, (double)(*F)(double), color c = black) 

draws function F in range [xo, Xl], i.e., all points 

(X, y) with y = F(x) and Xo :s; X :s; Xl 

void W.ploLyx(double Yo, double Yl, (double)(*F)(double), color c = black) 

3.12 Drawing text 

draws function F in range [Yo, YI], i.e., all points 

(x,y) with X = F(y) and Yo:S; y:S; YI 

void W.draw_text(double x, double y, string s, color c = black) 

writes string s starting at position (x, y). 

void W.draw_text(point p, string s, color c = black) 

writes string s starting at position p. 

void W.draw_ctext(double x, double y, string s, color c = black) 

writes string s centered at position (x,y). 

void W.draw_ctext(point p, string s, color c = black) 

writes string s centered at position p. 

3.13 Drawing no des 

void W.draw...node(double Xo, double Yo, color c = black) 

draws anode at position (xo,Yo). 

void W .draw ...node(point p, color c = black) 

draws anode at position p. 

void W.draw..1illed_node(double Xo, double Yo, color c = black) 

draws a filled node at position (xo,Yo). 

void W .draw Jilled_node(point p, color c = black) 

draws a filled node at position p. 

void W.draw_texLnode(double x, double y, string s, color c = black) 

draws anode with label s at position (xo,Yo). 

void W.draw_texLnode(point p, string s, color c = black) 

draws anode with label s at position p. 

void W.drawinLnode(double x, double y, int i, color c= black) 
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draws anode with integer label i at position 

(xo,Yo). 

void W .draw JnLnode(point p, int i, color c = black) 

draws anode with integer label i at position p. 

3.14 Drawing edges 

void W.draw_edge(double Xl, double YI, double X2, double Y2, color c = black) 

draws an edge from (Xl, Yd to (X2' Y2 ). 

void W.draw_edge(point p, point q, color c = black) 

draws an edge from p to q. 

void W .draw _edge( segment s, color c = black) 

draws an edge from s.startO to s.endO. 

void W .draw _edge_arrow( double Xl, double YI, double X2, double Y2, color c = black) 

draws a directed edge from (xI,Yd to (X2,Y2)' 

void W.draw_edge_arrow(point p, point q, color c = black) 

draws a directed edge from p to q. 

void W.draw_edge_arrow(segment s, color c = black) 

3.15 Mouse Input 

"int W .read..mouse() 

draws a directed edge from s.startO to s.endO. 

displays the mouse cursor until a button is pressed. 

Returns integer 1 for the left, 2 for the middle, and 

3 for the right button (-1,-2,-3, if the shift key is 

pressed simultaneously). 

int W.read..mouse(double& X, double& y) 
displays the mouse cursor on the screen until a 

button is pressed. Whena button is pressed the 

current position of the cursor is assigned to 

to (x,y) and the pressed button is returned. 

int W.read..mouse...seg(double Xo, double Yo, double& X, double& y) 
displays a line segment from (xo, Yo) to the 

current cursor position until a mouse button is 

pressed. When a button is pressed the current 

position is assigned to (x, y) and the pressed 
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button is returned. 

int W.read-Dlouse..rect(double Zo, double Yo, double& z, double& y) 
displays a rectangle with diagonal from (zo, yo ) 

to the current cursor position until . a mouse button 

is pressed. When a button is pressed the current 

position is assigned to (z, y) and the pressed 

button is returned. 

int W.read-Dlouse_circle(double Zo, double Yo, double& z, double& y) 
displays a circle with center (zo, yo) passing 

through the current cursor position until a mouse 

button is pressed. When a button is pressed the 

current position is assigned to (z,y) and the 

pressed button is returned. 

bool W .confirm( string s) displays string s and asks for confirmation. 

Returns true Hf the answer was "yes". 

void W .acknowledge( string s) 

displays string sand asks for acknowledgement. 

int W .read_panel( string h, int n, string * S) 

displays a panel with he ader h and an array S[l..n] 
of n string buttons, returns the index of the selected 

button. 

int W.read_vpanel(string h, int n, string * S) 

like read_panel with vertical button layout 

int W.readint(string p) 

double 

string 

displays a panel with prompt p for integer input, 

returns the input 

W .read..real( string p) 
displays a panel with prompt p for real input 

returns the ,input 

W .read..string( string p) 

displays a panel with prompt p for string input, 

returns the input 

void W .message( string s) displays message s (each call adds a new line). 

void W .del-Dlessage() deletes the text written by all previous message 

operations. 
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3.16 Input and output operators 

For input and output of basic geometrie objects in the plane such as points, lines, line 

segments, cirdes, and polygons the < < and > > operators can be used. Similar to 

C++ input streams windows have an internal state indicating whether there is more 

input to read or not. Its initial value is true and it is turned to false if an input 

sequence is terminated by clicking the right mouse button (similar to ending stream 

input by the eof character). In conditional statements objects of type window are 

automatically converted to boolean by returning this internal state. Thus, they can be 

used in conditional statements in the same way as C++ input streams. For example, to 

read a sequence of points terminated by a right button click, use " w hile (W > > p) 
{ ... } ". 

3.16.1 Output 

window& W « point p 

window& W « segment s 

window& W « line I 

window& W « circle C 

window& W « polygon P 

3.16.2 Input 

window& W» p 

window& W» s 

window& W» I 

window& W» C 

window& W» P 

like W .draw _point(p ) 

like W.draw-segment(s) 

like W.drawJine(l) 

like W .draw _cirde( C) 

like W.draw_polygon(P) 

reads a point p: clicking the left button 

assigns the current cursor position to p. 

reads a segment s: use the left button to input 

the start and end point of s. 

reads a line I: use the left button to input 

two different points on I 

reads a cirde C: use the left button to input 

the center of C and a point on C 

reads a polygon P: use the left button to input 

the sequence of vertices of P, end the sequence 

by clicking the middle button. 

As long as an input operation has not been completed the last read point can be erased 

by simultaneously pressing the shift key and the left mouse button. 
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6.8 Panels (panel) 

1. Definition 

Panels are windows used for displaying text messages and updating the values of 

variables. A panel P consists of a set of panel items and a set of buttons. With each 

item (except of text items) is associated a variable of a certain type (int, bool, string, 

double, color) whose value can be manipulated through the item and astring label. 

2. Creation 

panel P( string h); 

creates an empty panel P with he ader h. 

3. Operations 

void P.textJ.tem(string s) adds a textJ.tem s to P. 

void P. boolJ.tem( string s, bool& x) 

adds a boolean item with label s and variable x to P. 

void P .realJ.tem( string s, doubel& x) 

adds areal item with label sand variable x to P. 

void P.coloritem(string s, color& x) 

adds a color item with label s and variable x to P. 

void P.intitem(string s, int& x) 
adds an integer item with label sand variable x to P. 

void P.intitem(string s, int& x, int min, int max) 
adds an integer slider item with label s, variable x, and 

range min, . .. ,max to P. 

void P.intitem(string s, int& x, int low, inthigh, int step) 
adds an integer choice item with label s, variable x, 

range low, ... , high, and step size step to P. 

void P.stringitem(string s, string& x) 

adds astring item with label sand variable x to P. 

void P .stringitem( string s, string& x,list<string> L) 

adds astring item with label s, variable x, and menu L 
to P. 
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void P.choiceitem(string s, int& :c, list<string> L) 
adds an integer item with label s, variable :c, and choices 

from L to P 

void P.choiceitem(string s, int&:c, stringsl, string S2, ••• ,SA:) 

adds an integer item with label s, variable :c, and choices 

SI, ••• , SA: to P (k ~ 5) 

int P.button(string s) adds a button with label s to P and returns its number 

void P.new_buttonJineO starts a new line of buttons 

int P.openO P is displayed on the screen until a button of P is 

selected. Returns the number of the button. 
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7. Miscellaneous 

This section describes some additional useful data types, functions and macros of 

LEDA. They can be used in any program that includes the <LEDA/basic.h> he ader 

file. 

7.1 Streams 

The stream data types described in this section are all derived from the C++ stream 

types istream and ostream. Some of these types may be obsolete in combination with 

the latest vers ions of the standard C++ 1/0 library. 

7.1.1 File input streams (fileJstream) 

1. Definition 

An instance J of the data type file_istream is an C++ istream connected to a file F, 

i.e., all input operations or operators applied to J read from F. 

2. Creation 

file_istream J( string s)j 

creates an instance J of type file-istream connected to the file with name s. 

3. Operations 

All operations and operators (> » defined for C++ istreams can be applied to file 

input streams as weIl. 

7.1.2 File output streams (file_ostream) 

1. Definition 

An instance 0 of the data type file_ostream is an C++ ostream connected to a file 

F, i.e., all output operations or operators applied to 0 write to F. 
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2. Creation 

file_ostream O( string s); 

creates an instance 0 of type file_ostream connected to the file with name s. 

3. Operations 

All operations and operators « <) defined for C++ ostreams can be applied to file 

output streams as weIl. 

7.1.3 String input streams (stringjstream) 

1. Definition 

An instance I of the data type string_istream is an C++ istream connected to astring 

s, i.e., all input operations or operators applied to I read from s. 

2. Creation 

string_istream I( string s); 

creates an instance I of type stringistream connected to the string s. 

3. Operations 

All operations and operators (> » defined for C++ istreams can be applied to string 

input streams as weIl. 

7.1.4 String output streams (string_ostream) 

1. Definition 

An instance 0 of the data type string_ostream is an C++ ostream connected to an 

internal string buffer, i.e., all output operations or operators applied to 0 write into 

this internal buffer. The current value of the buffer is called the contents of o. 

2. Creation 

string _ostream 0; 

creates an instance 0 of type string_ostream. 
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3. Operations 

string 

string 

O.dearO 

O.strO 

dears the contents of 0 

returns the current contents of 0 

All operations and operators « <) defined for C++ ostreams can be applied to string 

output streams as weIl. 

1.1.5 Command input streams (cmd...istream) 

1. Definition 

An instance I of the data type cmd_istream is an C++ istream connected to the output 

of a shell command emd, i.e., all input operations or operators applied to I read from 

the standard output of command emd. 

2. Creation 

cmd_istream I( string emd); 

creates an instance I of type cmdistream connected to the output of command emd. 

3. Operations 

All operations and operators (> > ) defined for C++ istreams can be applied to command 

input streams as weIl. 

1.1.6 Command output streams (cmd_ostream) 

1. Definition 

An instance 0 of the data type emd_ostream isan C++ ostream connected to the 

input of a shell command emd, i.e., all output operations or operators applieCl to 0 

write into the standard input of command emd. 

2. Creation 

emd_ostream O( string emd); 

creates an instance 0 of type cmd_ostream connected to the input of command emd. 
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3. Operations 

All operations and operators ( < <) defined for C++ ostreams can be applied to command 

output streams as weil. 

7.2 Some useful functions and macros 

int readint(string s = "") prints sand reads an integer 

char read_char( string s = "") prints s and reads a character 

double read...real(string s = "") prints sand reads areal number 

string read~tring(string s = "") prints s and reads a line of input 

bool Yes(string s = "") returns (read_char(s) == 'y') 

void iniLrandomO 

double randomO 

int random(int a, int b) 

float used_time( ) 

float used_time(float& T) 

void print~tatistics( ) 

newline cout < < "\n" 

forever for(jj) 

initializes the random number generator. 

returns areal valued random number in [0,1] 

returns a random integer in [a .. b] 

returns the currently used cpu time in seconds. 

returns the cpu time used by the program from 

T up to this moment and assings the current 

time to T. 

prints a summary of the currently used memory 

loop(a,b,c) for (a = bj a <= Cj a + +) 

inJange(a,b,c) (b <= a && a <= c) 

Max(a,b) ((a> b) ? a b) 

Min(a,b) ((a> b) ? b a) 
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7.3 Memory Management 

LEDA offers an efficient memory management system that is used internally for all 

node, edge and item types. This system can easily be customized for user defined 

dasses by the "LEDA-11EMORY" macro. You simply have to add the macro call 

"LEDA_MEMORY(T)" to the dedaration of a dass T. This creates new and delete 

operators for type T allocating and deallocating memory using LEDA's interna! memory 

manager. We continue the example from section 1.5: 

struct pair { 
double Zj 

double y; 

pairO { Z = Y = 0; } 

pair( const pair& p) { Z = p.z; y = p.y; } 

friend ostream& 

friend istream& 

friend int 

operator«(ostream&,const pair&) { ... } 
operator»( istream&,pair&) { ... } 
compare( const pair& p, const pair& q) { ... } 

LEDA_MEMORY(pair) 

}j 

dictionary<pair,int> Dj 

7.4 Error Handling 

LEDA tests the preconditions of many (not all!) operations. Preconditions are never 

tested, if the test takes more than constant time. If the test of a precondition falls 

an error handling routine is called. It takes an integer error number i and a char* 

error message string s as arguments. It writes s to the diagnostic output (cerr) and 

terminates the program abnormally if i =f. o. Users can provide their own error handling 

function handler by calling 

set_error -handler( handl er). 

After this function call handler is used instead of the default error handler. handler 

must be a function of type void handler( int, char*). The parameters are replaced by 

the error number and the error message respectively. 
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8. Programs 

8.1 Graph and network algorithms 

In this section we list the C++ sources for some of the graph algorithms in the library 

(cf. section 5.12). 

Depth First Search 

#include <LEDA/ graph.h> 

#include <LEDA/stack.h> 

list<node> DFS(graph&G, node v, node_array<bool>&reached) 

{ 

} 

list<node> L; 
stack<node> S; 

node W; 

if ( ! reached[v] ) 

{ reached[v] = true; 

L.append( v); 
S.push(v); 

} 

while ( !S.einptyO ) 

{ v = S.popO; 

foralLadj-Ilo des( w, v) 
if ( !reached[w] ) 

} 

{ reached[w] = true; 

L.append( w); 
S.push(w); 

} 

return L; 

115 



Breadth First Search 

#include <LEDA/graph.h> 

#include <LEDA/queue.h> 

void BFS(graph& G, node v, node_array<int>& dist) 

{ 

} 

queue<node> Q; 
node Wj 

foraILnodes(w, G) dist[w] = -lj 

dist[v] = 0; 

Q.append(v)j 

while ( !Q.emptyO ) 

{ v = Q.popO; 

foralLadj_nodes( w, v) 
if (dist[w] < 0) 

} 

{ Q .append( w )j 

dist[w] = dist[v] + 1; 

} 

Connected Components 

#include <LEDA/graph.h> 

int COMPONENTS(ugraph& G, node_array<int>& compnum) 

{ 

} 

node v, Wj 

list<node> Sj 

int count = Oj 

node_array(bool) reached( G, false)j 

foralLnodes (v, G) 
if ( !reached[v] ) 

{ S = DFS( G, v, reached)j 

forall (w, S) compnum[w] = countj 

count + +j 
} 

return countj 
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Depth First Search Numbering 

#include <LEDA/ graph.h> 

void d..Ls(node v, node_array<bool>& S, node_array<int>& dfsnum, 

node_array<int>& compnum, 

list<edge> T ) 

{ / / recursive DFS 

node Wi 

} 

edge ei 

S[v] = truei 

dfsnum[v] = + + dfs.countli 

foralLadj_edges (e, v) 
{ w = G.target(e)i 

if ( !S[w] ) 

{ T .append( e) i 
d_Ls( w, S, df snum, compnum, T)i 

} 
} 

compnum[v] = + + df s_count2i 

list<edge> DFS~UM(graph& G, node_array<int>& df snum, node_array<int>& compnum ) 

{ 

} 

list<edge> Ti 

node_array<bool> reached( G, false)i 

node V; 

df s_countl = df s_count2 = 0; 

forall_nodes (v, G) 
if ( !reached[v] ) d_Ls(v, reached, df snum, compnum, T); 

return T; 
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Topological Sorting 

#include <LEDAjgraph.h> 

bool TOPSORT(graph& G, node_array<int>&ord) 

{ 

} 

node_array<int> INDEG( G)j 

list<node> ZEROINDEGj 

int count = Oj 

node v, Wj 

edge e; 

foralLnodes(v, G) 

if ((INDEG[v]=G.indeg(v))==O) ZEROINDEG.append(v); 

while (!ZEROINDEG.emptyO) 

{ v = ZEROINDEG.popO; 

ord[v] = + + count; 

foralLadj_nodes( w, v) 
if (--INDEG[w]==O) ZEROINDEG.append(w); 

} 

return (count==G.number_of...nodesO); 

j jTOPSORTl sorts node and edge lists according to the topological ordering: 

bool TOPSORTl(graph& G) 
{ node_array<int> node_ord( G); 

edge_array<int> edge_ord( G); 

if (TO PSO RT( G ,node_ord)) 

{ edge e; 

foralLedges( e, G) edge_ord[e]=node_ord[target( e )]; 

G .sort...nodes( node_ord); 
G .sort-edges( edge_ord) j 

ret urn truej 

} 
return false; 

} 
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Strongly Connected Components 

#include <LEDA/ graph.h> 

#include <LEDA/ array.h> 

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum) 

{ 

} 

node V,Wj 

int n = G.number_oLnodesOj 

int count = Oj 
int ij 

array<node> V(l, n)j 

list<node> Sj 

node_array<int> df .Lnum( G), compLnum( G)j 

node_array<bool> reached( G, f alse) j 

DFS..NUM( G, df .Lnum, compLnum)j 

foralLnodes (v, G) V[compLnum[v]] = Vj 

G.revOj 

for (i = nj i > Oj i - - ) 

if ( !reached[V[i]] ) 

{ S = DFS( G, V[i], reached)j 

forall (w, S) compnum[w] = countj 

count + +j 
} 

return countj 
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Dijkstra 's Algorithm 

#include <LEDA/ graph.h> 

#include <LEDA/node_pq.h> 

void DIJKSTRA(graph& G, node s, edge_array<int>& cost, 
node_array<int>& dist, node_array<edge>& pred ) 

{ node_pq<int> PQ( G); 

} 

int c; 

node U,Vj 

edge e; 

foralLnodes( v, G) 
{ pred[v] = 0; 

} 

dist[v] = infinity; 
PQ.insert( v, dist[v]); 

dist[s] = 0; 
PQ.decreaseinf( s, 0); 

while ( ! PQ .emptyO) 

{ U = PQ.del-min() 

foralLadj_edges( e, u) 
{ v = G.target(e); 

c = dist[u] + cost[e]; 
if ( c < dist[v]) 

{ dist[v] = c; 

} 

pred[v] = e; 

PQ.decreaseinf(v, c); 

} / * foralLadj_edges * / 
} /* while */ 
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Bellman/Ford Algorithm 

#include <LEDA/graph:h> 

#include <LEDA/queue.h> 

bool BELLMAN_FORD(graph& G, node s, edge_array<int>& cost, 
node_array<int>& dist, node_array<edge>& pred) 

{ node_array<bool> in_Q( G, false); 
node_array<int> count( G, 0); 

} 

int n = G.number_oLnodesO; 

queue<node> Q(n); 

node u,v; 
edge e; 

int c; 

foralLnodes (v, G) {pred[v] = 0; 
dist[v] = infinity; 

} 
dist[s] = 0; 

Q .append( s); 
in_Q[s] = true; 

while (!Q.emptyO) 

{u = Q.popO; 

in_Q[u] = false; 

if (+ + count[u] > n) return false; / /negative cycle 

foralLadj_edges (e, u) 

{ v = G.target( e)j 

c = dist[u] + cost[e]; 

if (c < dist [v]) 
{ dist[v] = c; 

pred[v] = ej 

if (!in_Q[v]) 

} 

{ Q.append(v)j 

in_Q[v] = truej 

} 

} / * foraJLadj_edges * / 
} /* while */ 

ret urn true; 
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All Pairs Shortest Paths 

#include <LEDA/graph.h> 

void alLpairs-shortest_paths(graph& G, edge_array<double>& cost, 
node...matri.x<double>& DIST) 

{ 

} 

/ / computes for every node pair (v,w) DIST(v,w) = cost of the least cost 

/ / path from v to w, the single source shortest paths algorithms BELLMAN_FORD 

/ / and DIJKSTRA are used as subroutines 

edge ej 

node Vj 

double C = Oj 

foralLedges(e,G) C+ = fabs(cost[e])j 
node s = G.new...nodeOj 

foraILnodes(v,G) G.new_edge(s,v)j 

node_array<double> dis tl ( G)j 

node_array<edge> pred( G)j 

edge_array<double> costl( G)j 

/ / add s to G 

/ / add edges (s,v) to G 

for~ll_edges(e,G) costl[e) = (G.source(e) == s) ? C: cost[e)j 

BELLMAN_FORD( G, s, costl, distl,pred)j 

G . del...node( s)j / / delete s from G 

edge_array( double) cost2( G)j 

foralLedges(e, G) cost2[e) = distl[G.source(e)) + cost[e) - distl[G.target(e))j 

foralLnodes(v, G) DIJKSTRA(G, v, cost2, DIST[v],pred)j 

foraILnodes(v, G) 

foralLnodes(w, G) DIST(v,w) = DIST(v,w) - distl[v) + distl[w)j 
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Minimum Spanning Tree 

#include <LEDA/graph.h> 
#include <LEDA/node_partition.h> 

void MIN_SPANNING_TREE(graph& G, edge_array<double>& cost, list<edge>& EL) 
{ 

} 

node v,w; 
edge e; 

node_partition Q( G); 

G .sort_edges ( cost); 

EL.clearO; 
foralLedges( e, G) 

{ v = G.source(e); 
w = G.target(e); 

} 

if (!(Q.same_block(v,w)) 

{ Q.union_blocks(v,w); 
E L.append( e); 

} 
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8.2 Geometry 

U sing a persistent dictionary (cf. section 4.7) for plan ar point location (sweep line 
algorithm) . 

#include <LEDA/plane.h> 

#include <LEDA/prio.h> 

#include <LEDA/sortseq.h> 

#include <LEDA/p_dictionary.h> 

double X_POS; // current position of sweep line 

int compare(segment s1,segment s2) 

{ line l1(s1); 

} 

line l2(s2); 

double y1 = l1.y_proj(I_POS); 

double y2 = l2.y_proj(X_POS); 

return compare(y1,y2); 

typedef priority_queue<segment,point> I_structure; 

typedef p_dictionary<segment,int> Y_structure; 

sortseq<double,Y_structure> HISTORY; 

void SWEEP(list<segment>& L) 

{ // Precondition: L is a list of non-intersecting 

// from left to right directed line segments 

I_structure 
Y_structure 
segment 

forall(s,L) 

X; 
Y; 
s; 

{ I.insert(s,s.start()); 

X.insert(s,s.end()); 

} 

// initialize the X_structure 

HISTORY.insert(-MAXDOUBLE,Y); // insert empty Y_structure at -infinity 

while( ! I.empty() ) 

{point p; 
segment s; 
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// next event: endpoint p of segment s 

X_POS = p.xcoord()j 

if (s.start()==p) 

Y = Y.insert(s,O)j // p is left end of s 

else 
Y = Y.del(s)j // p is right end of s 

HISTORY.insert(X_POS,Y)j // insert Y into history sequence 

} 

HISTORY.insert(MAIDOUBLE,Y)j // insert empty Y_structure at +infinity 

} 

segment LOCATE(point p) 

{ X_POS = p.xcoord()j 

} 

Y_structure Y = HISTORY.inf(HISTORY.pred(X_POS))j 

p_dic_item pit = Y.succ(segment(p,O,1))j 

if (pit != nil) 

return Y.key(pit)j 

else 
return segment(O)j 
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9. Implementations 

9.1 List of data structures 

This seetion lists the data struetures for dietionaries, dietionary arrays, priority queues, 

and geometrie data types eurrently eontained in LEDA. For eaeh of the data struetures 

its name and type, the list of LEDA data types it ean implement, and a literat ure 

referenee are given. Before using a data struetures xyz the eorresponding header file 

<LEDA/impl/xyz.h> has to be included (cf. seetion 1.2 for an example). 

9.1.1 Dictionaries 

ab_tree a-b tree 

avLtree AVL tree 

bb_tree BB[a] tree 

ch..hashing hashing with ehaining 

dp_hashing dyn. perf. hashing 

pers_tree persistent tree 

rb_tree red-blaek tree 

rs_tree rand. seareh tree 

skiplist skip lists 

9.1.2 Priority Queues 

f_heap 

p_heap 

k..heap 

m_heap 

eb_tree 

Fibonnaeei heap 

pairing heap 

k-nary heap 

monotonie heap 

Emde-Boas tree 

9.1.3 Geometry 

range_tree range tree 

seg_tree segment tree 

ps_tree priority seareh tree 

iv_tree interval tree 

delaunay_tree delaunay tree 

dietionary, d_array, sortseq 

dietionary, d_array 

dietionary, d_array, sortseq 

dietionary, d_array 

h_array 

p_dictionary 

dictionary, d_array, sortseq 

dictionary, d_array, sortseq 

dietionary, d_array, sortseq 

priority _queue 

priority _queue 

priority _queue 

priority _queue 

priority _queue 

d2_dictionary, poinLset 

seg-.Set 

intervaLset 

poinLset 
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9.2 User Implementations 

In addition to the data structures listed in the previous section user-defined data 

structures can also be used as actual implementation parameters provided they fulfill 

certain requirements. 

9.2.1 Dictionaries 

Any dass dic_impl that provides the following operations can be used as actual implemen­

tation parameter for the _dictionary<K, I, dic_impZ> and the _d_array< I, E, dic_impZ> 
data types (cf. sections 4.3 and 4.4). 

typedef ... dic_impl_item; 

class dic_impl { 

virtual int cmp(GenPtr, GenPtr) const = 0; 

virtual int int_typeO 

virtual void clear_key(GenPtr&) 

virtual void clear_inf(GenPtr&) 

virtual void copy_key(GenPtr&) 

virtual void copy_inf(GenPtr&) 

public: 

dic_implO; 

dic_impl(const dic_impl&); 

virtual -dic_impl()j 

const = Oj 

const = Oj 

const = 0; 

const = Oj 

const = Oj 

dic_impl& operator=(const dic_impl&)j 

GenPtr key(dic_impl_item) constj 

GenPtr inf(dic_impl_item) constj 

dic_impl_item insert(GenPtr,GenPtr)j 

dic_impl_item lookup(GenPtr) constj 

dic_impl_item first_item() const; 

dic_impl_item next_item(dic_impl_item) const; 

dic_impl_item item(void* p) const { return dic_impl_item(p)j } 

void change_inf(dic_impl_item,GenPtr)j 

void del_item(dic_impl_item); 
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void del(GenPtr)j 

void clearO j 

int size() constj 

}j 

9.2.2 Priority Queues 

Any dass prio_impl that provides the following operations can be used as actual 

implementation parameter for the _priority_queue<K, I, prio_impl> data type (cf. sec­

tion 4.1). 

class prio_impl { 

virtual int cmp(GenPtr, GenPtr) 

virtual int int_typeO 

virtual void clear_key(GenPtrt) 

virtual void clear_inf(GenPtrt) 

virtual void copy_key(GenPtrt) 

virtual void copy_inf(GenPtrt) 

public: 

prio_implO; 

prio_impl(int)j 

prio_impl(int,int)j 

prio_impl(const prio_implt); 

virtual -prio_impl()j 

const 

const 

const 

const 

const 

const 

prio_implt operator=(const prio_implt)j 

prio_impl_item insert(GenPtr,GenPtr)j 

prio_impl_item find_mine) constj 

= Oj 

= Oj 

= Oj 

= O· , 
= Oj 

= Oj 

prio_impl_item first_item() constj 

prio_impl_item next_item(prio_impl_item) const; 

GenPtr key(prio_impl_item) constj 

GenPtr inf(prio_impl_item) constj 
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void del_min(); 

void del_item(prio_impl_item); 

void decrease_key(prio_impl_item,GenPtr); 

void change_inf(prio_impl_item,GenPtr); 

void clearO; 

int size() const; 

}; 

9.2.3 Sorted Sequences 

Any dass seq_impl that provides the following operations can be used as actual 

implementation parameter for the _sortseq<K, I, seq_impl> data type (cf. section 4.6). 

typedef ... seq_impl_item; 

class seq_impl { 

virtual int cmp(GenPtr, GenPtr) const = 0; 

virtual int int_typeO 

virtual void clear_key(GenPtr&:) 

virtual void clear_inf(GenPtr&:) 

virtual void copy_key(GenPtr&:) 

virtual void copy_inf(GenPtr&:) 

public: 

seq_implO; 

seq_impl(const seq_impl&:); 

virtual ·seq_impl(); 

const = 0; 

const = 0; 

const = 0; 

const = 0; 

const = 0; 

seq_impl&: operator=(const seq_impl&:); 

seq_impl&: conc(seq_impl&:); 

seq_impl_item insert(GenPtr,GenPtr); 

seq_impl_item insert_at_item(seq_impl_item,GenPtr,GenPtr); 

seq_impl_item lookup(GenPtr) const; 

seq_impl_item locate(GenPtr) const; 

seq_impl_item locate_pred(GenPtr) const; 

seq_impl_item succ(seq_impl_item) const; 

seq_impl_item pred(seq_impl_item) const; 

seq_impl_item item(void* p) const { return seq_impl_item(p); } 
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GenPtr key(seq_impl_item) constj 

GenPtr inf(seq_impl_item) constj 

void del(GenPtr)j 

void del_item(seq_impl_item)j 

void change_inf(seq_impl_item,GenPtr); 

void split_at_item(seq_impl_item,seq_implt,seq_implt); 

void reverse_items(seq_impl_item,seq_impl_item)j 

void clear(); 

int size() const; 
}j 
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10. Tables 

10.1 Data Types 

Name Item Reader Library Page 

array array.h libL.a 21 

array2 array.h libL.a 23 

b_priority _queue b_pqJ.tem b_prio.h libL.a 41 

b_queue bAueue.h libL.a 27 

b_stack b_stack.h libL.a 26 

bool basic.h libL.a 15 

circle plane.h libP.a 85 

cmdjstream stream.h libL.a 110 

cmd_ostream stream.h libL.a 110 

d2_dictionary d2_dicJ.tem d2_dictionary.h libP.a 88 

d_array d_array.h libL.a 44 

dictionary dicJ.tem dictionary.h libL.a 42 

edge_array graph.h libG.a 65 

edge_set edge-set.h libG.a 68 

fileJ.stream stream.h libL.a 109 

file_ostream stream.h libL.a 109 

graph node/edge graph.h libG.a 53 

GRAPH node/edge graph.h libG.a 61 

h_array h_array.h libL.a 46 

inLset inLset.h libL.a 34 

intervaLset isJ.tem intervaLset.h libP.a 92 

line plane.h libP.a 82 

list listJ.tem list.h libL.a 28 

matrix matrix.h libL.a 19 

node_array graph.h libG.a 65 

node..matrix graph.h libG.a 67 

node_partition node_partition.h libG.a 69 

node_pq node_pq.h libG.a 70 

node_set node_set.h libG.a 68 

panel window.h libP.a/lib Wx.a 106 

partition partitionJ.tem partition.h libL.a 35 

planar..map node/ edge/face planar ..map.h libG.a 59 

point plane.h libP.a 79 

point_set psJ.tem point_set.h libP.a 90 

polygon plane.h libP.a 84 
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priority _queue pq...item prio.h libP.a 39 
p_dictionary p_dic...item p_dictionary.h libL.a 50 
PLANAR_MAP node/edge/face planar..map.h libG.a 64 
queue queue.h libL.a 25 
segment plane.h libP.a 80 
segment...set seg...item segment...set .h libP.a 94 
set set.h libL.a 33 
sortseq seq...item sortseq.h libL.a 47 
stack stack.h libL.a 24 
string basic.h libL.a 15 
string...istream stream.h libL.a 111 
string_ostream stream.h libL.a 111 
sub division node/face subdivision.h libP.a 96 
tree_collection d_vertex tree_collection.h libL.a 36 
ugraph node/edge ugraph.h libG.a 57 
UGRAPH node/edge ugraph.h libG.a 63 
vector vector.h libL.a 17 
window window.h libP.a/lib Wx.a 97 
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10.2 Algorithms 

Name Header Library Page 

ALL_PAIRS_SH ORTEST -P ATHS graph..alg.h libG.a 73 
BELLMAN_FORD graph_alg.h libG.a 73 
BFS graph_alg.h libG.a 72 
COMPONENTS graph..alg.h libG.a 72 
CONVEX_HULL plane_alg.h libP.a 87 
DFS graph_alg.h libG.a 71 

DFSßUM graph..alg.h libG.a 71 

DIJKSTRA graph..alg.h libG.a 73 
MAX_CARD_MATCHING graph..alg.h libG.a 74 
MAX_CARD_BIPARTITE-MATCHING graph_alg.h libG.a 74 
MAX_FLOW graph_alg.h libG.a 74 
MAX_WEIGHT_BIPARTITE-MATCHING graph_alg.h libG.a 75 
MIN _SPANNIN G_ TREE graph..alg.h libG.a 75 
PLANAR graph_alg.h libG.a 76 
SEGMENT ...INTERSECTION plane_alg.h libP.a 87 
SPANNING_TREE graph..alg.h libG.a 75 
STRAIGHT _LINE_EMBEDDING graph..alg.h libG.a 76 
STRONG_COMPONENTS graph..alg.h libG.a 72 
TOPSORT graph_alg.h libG.a 71 

TRANSITIVE_CLOSURE graph_alg.h libG.a 72 
TRIANGULATE_PLANAR_MAP graph..alg.h libG.a 76 
VORONOI plane_alg.h libP.a 87 
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