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Abstract 

Abstract Voronoi diagrams were introduced by R . Klein [Kle89b, Kle88a, Kle88b] 
as an axiomatic basis ofVoronoi diagrams. We show how to construct abstract Voronoi 
diagrams in time O(nlogn) by a randomized algorithm, which is based on Clarkson 
and Shor's randomized incremental construction technique [CS89]. The new algorithm 
has the following advantages over previous algorithms: 

• It can handle a much wider dass of abstract Voronoi diagrams than the algorithms 
presented in [Kle89b, MM091J . 

• It can be adapted to a concrete kind ofVoronoi diagram by providing a single basic 
operation, namely the construction of a Voronoi diagram of five sites. Moreover, 
all geometrie decisions are confined to the basic operation, and using this oper­
ation, abstract Voronoi diagrams can be constructed in a purely combinatorial 
manner. 

1 Introduction 

The Voronoi diagram of a set of sites in the plaie partitions the plane into regions, called 
Voronoi regions, one to a site. The Voronoi region of a site s is the set of points in the plane 
for which s is the closest site among all the sites. 

The Voronoi diagram has many applications in diverse fields, cf. Leven and Sharir [LS86] 
or Aurenhammer [Aur91] for a list of applications and a history of Voronoi diagrams. Differ­
ent types of diagrams result from considering different not ions of distance, e. g., Euclidean or 
Lp-norm or convex distance functions, and different sorts of sites, e. g., points, line segments, 

• A preliminary version of this paper was presented at the SIGAL Symposium on Algorithms, Tokyo 1990. 
This work was supported in part by the ESPRIT Basic Research Actions Program of the EC under contract 
No. 7141 (ALCOM 11), by the BMFT (Förderungskennzeichen ITS 9103), and by the DFG grant Kl655/2-1. 
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or circles. For many types ofdiagrams efficient construction algorithms have been found, 
which are either based on the divide-and-conquer technique due to Shamos and Hoey [SH75], 
the sweepline technique due to Fortune [For87], geometrie transforms due to Brown [Bro79] 
and Edelsbrunner and Seidel [ES86], or the randomized incremental construction technique 
due to Clarkson and Shor [OS89]. 

A unifying approach to Voronoi diagrams has been proposed by Klein [Kle88a, Kle88b, 
Kle89a, Kle89b], cf. [:ES86] for a related approach. He does not use the concept of distance 
as the basic notion but rather the concept of bisecting curves, i. e., he assumes for each pair 
{p, q} of sites the existence of a bisector J(p, q), which is homeomorphic to a line and divides 
the plane into a p-region and a q-region. The intersection of all p-regions for different q's 
is then the Voronoi region of site p. He also postulates that Voronoi regions are simply­
connected and partition the plane. He shows that abstract Voronoi diagrams already have 
many of the properties of concrete Voronoi diagrams, cf. Section 2. 

At present there are two algorithms for the construction of abstract Voronoi diagrams. 
Both algorithms assume that certain elementary operations on bisecting curves, e. g., compu­
tation of the intersections, take 0(1) time, and both algorithms can handle only subclasses 
of abstract Voronoi diagrams. 

Klein [Kle89b] presented an off-spring of the Shamos and Hoey divide-and-conquer algo­
rithm. He has to assume that any set S of sites can be split in time O( I SI) into approximately 
equal sized subsets L and R such that the bisector between L and R (= the common bound­
ary of regions in L with regions in R) is acyclic and, under this assumption, constructs the 
Voronoi diagrams of n sites in time O(nlog n). There are cases, e. g., points with additive 
weights in the Euclidean plane, where it is not known if such partitions exist. 

Mehlhom, Meiser and 6' Dlinlaing [MM091] have presented an off-spring of the Clarkson 
and Shor randomized incremental algorithm. They have to assume that the set of bisectors is 
regular, i. e., no four of them share a point and any point of intersection of two bisectors is a 
proper crossing of the bisectors. Under these assumptions, their algorithm runs in expected 
time O( n log n), the average being taken over all permutations of the input. There are cases, 
e. g., point sites in the Manhattan metric, where this assumption does not hold. 

In this paper, we extend the randomized incremental algorithm and show that it can 
handle abstract Voronoi diagrams in (almost ) their full generalitYj cf. the remark following 
Definition 1 in Section 2 for the minor restrietion which we have to make. The algorithm 
runs in expected time O(nlog n) and is as simple as the algorithm in [MM091]. However, 
its correctness proof and running time analysis are more involved. The algorithm is uniform 
in the sense that only a single operation, namely the construction of a Voronoi diagram for 
5 sites, depends on the specific type of Voronoi diagram and has to be programmed in order 
to adapt the algorithm to the type of the diagram. Moreover, all numerical operations take 
place within this particular operation. 

In particular, comparisons only take place between objects which are related in the 
topology of the diagram. The incremental algorithm of Guibas and Stolfi [GS85] for Eu­
clidean diagrams also has this property but neither the Plane-Sweep- nor the Divide-and­
Oonquer-algorithm do. Both algorithms need to sort the sites by z-coordinates. Moreover, 
the Plane-Sweep-algorithm sorts the computed events by z-coordinatesj the Divide-and-
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Oonquer~algorithm sorts the nodes of the diagram by y-coordinates in its merge step. In 
both cases, objects that are not at all related in their topology are compared to each other. 
Therefore, it may be difficult to make geometrie decisions in a consistent manner. From a 
programmer's point of view, concentrating the numerical computations inside a single oper­
ation may facilitate the handling of approximate arithmetic. We want to emphasize that the 
fact that our basic operation operates on five sites does not imply that an implementation 
of the basic operation must use tests which involve five sites and therefore are likely to have 
high algebraic degree. We show in Section 6 that four sites suffice for simple families of 
bisectors, i. e., families of bisectors where the Voronoi diagram of any three sites has at most 
one vertex. 

As mentioned above, our algorithm is based on Clarkson and Shor's randomized in­
cremental construction technique [OS89]. We make use of the refinement proposed in 
[GKS92, BD89, BDT90, BDS+92]j in particular, we use the notion of history graph instead 
of the original con:ß.ict graph. 

An earlier version of the algorithm, which uses a conflict graph instead of a history graph, 
was implemented by N. Zimmer [Zim92]. We have used it to construct Powerdiagrams, 
Voronoi diagrams of line segments und er the Euclidean metric, and Voronoi diagrams of 
points under both the Euclidean and the L1-metric. The general, diagram-independent part 
of the algorithm thereby comprises circa 2700 lines of code. This should be compared to 
the amount of code needed to implement the diagram-specific part of the algorithm (basic 
operation and drawing routines). This part varies between 450 lines for points under the 
Euclidean metric and 3250 lines of code for line segment sites under the Euclidean metric. 
For Powerdiagrams and diagrams ofpoints under the L1-metric we needed 550 and 850 lines, 
respectively. Note that approximately one sixth of this is code for drawing the diagram on 
the screen. 

The present paper is not quite in line with a popular trend in computational geometry: 
to use symbolic perturbation to establish general position, then to use an algorithm which 
can only handle inputs in general position (e.g., the algorithm of [MM091]), and finally 
to produce the true output by a limit process (essentially by shrinking some edges and 
collapsing vertices). We cannot follow this approach for several reasons. Firstly, there is 
no efficient perturbation technique available for abstract Voronoi diagrams. Klein [Kle89a] 
showed that any admissible family cf bisectors can be perturbed to general position, but his 
perturbation technique can require exponential time and needs to know the Voronoi diagram. 
Secondly, we did not want to use aperturbation technique which is outside our algorithm, 
e. g., one which lises properties of the particular kind of diagram under construction, because 
this would require programming the limit process for each particular kind of diagram. We 
believe that it is better to make the algorithm as uniform as possible and to confine the 
dependency on the particular kind of diagram to a single subroutine (here, the construction 
of a five sites diagram ). Thirdly, perturbation and limit process are not always a trivial task. 
Oonsider for example the Voronoi diagram of a point and four open line segments touching 
in this point, cf. Figure 1. The perturbation is non-trivial, since it should not introduce 
intersections between the segments. The limit process is non-trivial, since it must collapse 
the point with the four end points of the segments. But these features are not directly linked 
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Figure 1: The Voronoi diagram for adegenerate and a perturbed input. 

in a typical data structure for the perturbed diagram. Finally, perturbation might increase 
the running time by niore than a constant factor. The expected running time of our algorithm 
is proportional to Ei<n 4( n - i), where fi is the expected number of edges in a diagram for - , 
a random subset of i sites from the n given sites. Since regions in abstract Voronoi diagrams 
may be empty, we may have fi = o( i). In such a situation, the running time of the algorithm 
can be o(nlog n). Perturbation creates general position and may increase fi to 9(i). Finally, 
we believe that despite the handling ofdegenerate cases the algorithm presented in this paper 
is still very simple. Degenerate cases complicate the discussion of correctness and running 
time, but affect the algorithm itself only to a small extent. 

The paper is organized as follows: In Section 2 we introduce abstract Voronoi diagramsj 
we give the relevant definitions and state some properties. In Section 3 we investigate the 
Voronoi diagram of five sites and present the basic operation of our algorithm. The algorithm 
is then given in Section 4. Section 5 contains the analysis of the algorithm's running time 
and space requirements. In Section 6 we inspect the basic operation for a subclass of abstract 
Voronoi diagrams in more detail. 

Throughout the paper, we use the following notation: For a subset X ~ IR 2 the closure, 
boundary and interior of X are denoted by X, bd X and int X, respectively. 

2 Abstract Voronoi Diagrams 

Let nEIN, and for every pair of integers p, q such that 1 ~ p i= q < n let D(p, q) be either 
empty or an open unbounded sub set of IR2 and let J(p, q) be the boundary of D(p, q). We 
postulate: 

1. J(p, q) = J(q,p) and for each p, q such that p i= q the regions D(p, q),J(p, q) and 
D(q,p) form a partition of[R2 into three disjoint sets. 

2. If 0 i= D(p, q) i= lR? then J(p, q) is homeomorphic to the open interval (0,1). 

We call J(p, q) the bisecting curve for sites p and q and D(p, q) the region of dominance 
of p over q. Following [Kle89b], the abstract Voronoi diagram is now defined as follows: 
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Definition 1 Let S = {l, ... , n - l} and 

R(p, q) := {~~:::~ u J(p, q) ~~: ~ : . 

EVR(p, S):= n R(p, q) 
· qES 

q'#p 

VR(p, S) := int EVR(p, S) 

V(S) := U bd EVR(p, S) 
pES 

VR(p, S) is called the Voronoi region 0/ p or p-region w.r.t. to S, EVR(p, S) is called the 
extended Voronoi region 0/ p w.r.t. S, and V(S) is called the Voronoi diagram 0/ S. The 
elements 0/ S are re/erred to as sites. 

We require the Voronoi regions and the bisecting curves to satisfy the following two 
condi tions: 

3. Any two bisecting curves intersect in only a finite number of connected components. 

4. For all non-empty subsets S' of S 

(a) for all pES' for which EVR(p, S') is non-empty: VR(p, S') is non-empty and 
EVR(p, S') and VR(p, S') are path-connected, 

(b) [R2 = UPEsI EVR(p, S') 

Abstract Voronoi diagrams include a large number of concrete Voronoi diagrams, e. g., 
Voronoi diagrams for point sites under any Lp-metric, 1 ::; p ::; 00, or under any convex 
distance function, whose unit circle is semi-algebraic. They furthermore comprise Power­
diagrams, and Voronoi diagrams for line segments or circles under the Euclidean metric. 
The line segments may even touch at their endpoints, thus possibly forming polygons, and 
the circles are allowed to intersect. Voronoi diagrams for disjoint convex figures under a 
convex distance function are also included, provided their bisectors satisfy our Condition 3. 
Df course, there are also negative examples: Euclidean Voronoi diagrams for point sets with 
multiplicative weights or Euclidean Voronoi diagrams for non-convex figures, e. g., circu­
lar arcs. In both cases there may be circular bisecting curves violating our Condition 2. 
Figures 2 and 3 show two abstract Voronoi diagrams. 

Abstract Voronoi diagrams are defined by means of bisecting curves. Depending on 
the concrete Voronoi diagram, the complexity of the bisectors may vary considerably. For 
the sake of simplicity we assume however that bisectors are computationally simple (see 
Section 3). We will show that under these assumptions abstract Voronoi diagrams can be 
constructed in time O(nlog n)by a randomized algorithm. 
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b C 

a 
blC 

bla alc 

Figure 2: A family of three bisectors for sites a, b and c, and the induced Voronoi diagram . . 
For each bisector the two sites separated by the bisector are indicated near to the bisector. 

a 

C 

Figure 3: A family of three bisectors arising from two line segment sites a and C and one 
point site b under the Euclidean metric. The bisectors are drawn as thin curves, the segments 
are fat. 
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Remarks: 

1. In [Kle89b] Condition 4b is shown to be equivalent to the following transitivity prop­
erty: R(p, q) n R( q, r) ~ R(p, r) for any three pairwise distinct sites p, q, rES. 

2. The union in 4b is disjoint by the definition of Voronoi regions. 

3. Our Definition of an abstract Voronoi diagram differs in two respects from Klein's 
original definition in [Kle89b]. Firstly, we also allow empty Voronoi regions which 
does not harm Klein's theory. Secondly, our Condition 4a is slightly more restrictive 
than the one in [Kle89b]. There, only the extended Voronoi regions are required to be 
path-connected, but not their interior. Figure 4 shows a system of bisectors for three 
sites p, q, r, which satisfies Klein's assumptions if p < q and p < r. Our assumptions, 
however, exclude this example since its p-region is disconnected. 

q 

r 

Figure 4: Adegenerate case. 

Definition 2 An edge e 0/ V(S) is a maximal connected subset 0/ V(S) such that every 
point x E e lies on bd VR(p, S) /or exactly two sites p 0/ S. The edge is said to separate the 
regions 0/ these two sites. A vertex v 0/ V(S) is a point x E V(S) which lies on bd VR(p, S) 
/or at least three sites p 0/ S. 

Fact 1 (piece of pie fact) 
V(S). 

1. All but finitely many points 0/ V (S) belong to an edge 0/ 

2. For each point x E V(S) there are arbitrarily small neighborhoods U 0/ x having the 
/ollowing properties: V(S) n bd U consists 0/ finitely many points. Let Wl, . .. , Wh 
denote these points as encountered in a clockwise traversal 0/ bd U. Then h ~ 2 and 
V (S) n U is the union 0/ curve segments ßl, ... ,ßh where ßi connects x to Wi and the 
ßi 's are disjoint except at their common endpoint x. For each i, 1 ~ i ~ h, there is a 
site Pi E S s.uch that the open "piece 0/ pie" bordered by ßi, ßi+l (read indices mod h) 
is contained in VR(Pi, S). Then Pi =1= Pi /or i =1= j. For each ßi there is a site qi ES, 
such that ßi - x ~ EVR(qi, S). We have qi ~ min{Pi-l, Pi}. The point x belongs 
to EVR(p, S), where p = min{Pl"" ,Ph, ql, ... , qh}. Also, only the extended Voronoi 
region 0/ site p can be encountered more than once on the march around bd U. 
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W4/'" P4 "'~ WI 

J
'----- , , , , " , \ 

" PI \ I , 

: z : , , 
\ , 
'. 1'2 " " , 

........ _-_ ... -,,' 

a vertex z 
a point z on an edge 

z E EVR(min{PllP2}, S) 

Figure 5: illustration of Fact 1. 

,,_ ... --- .... , , 
/' PI ", , \ , \ 

:~ 
~<'P - / /~ 

" 2,' P 
, ' ........ " --_ ... -

z E EVR(p, S) and 

P < min{PbP2} 

Figure 5 illustrates Fact 1. Fact 1 is an immediate derivative of Theorem 2.3.5 of [Kle89b]. 
There only Pi-l =1= Pi was claimed. The claim Pi =1= Pi for i =1= j made here follows from our 
strengthened Condition 4a and Lemma 2.2.4 of [Kle89b]. 

For the sequel, it is helpful to restrict attention to the "finite part" of V(S). Let r 
be a simple closed curve such that in the outer domain of r the curve segments of any two 
bisectors are either disjoint or identical. We add a site 00 to S, define J(p, (0) = J( 00, p) = r 
for all p, 1 ::; P < n, and D( 00, p) to be the outer domain of r for each p, 1 ::; P < n. 

Fact 2 V( S) is connected. The extended Voronoi region 0/ a site pES - {oo} is simply­
connected, each non-empty Voronoi region VR(p, S), pES - {oo}, is homeomorphic to an 
open disc and its boundary is a simple closed curve. The Voronoi region 0/ site 00 is not 
simply connected but it has only one hole being the inner domain 0/ r. A Voronoi diagram 
can be represented as a planar graph in a natural way. The vertices and edges 0/ the graph 
are the vertices and edges 0/ V(S), respectively; the /aces 0/ the graph correspond to the 
non-empty Voronoi regions. We use V(S) also to denote this graph. 

For a proof of Fact 2 see Lemma 2.2.4 and Theorems 2.3.5 and 2.5.5 [Kle89b]. 

The extended Voronoi region EVR(p, S) for a site pES - {oo}, consists of its Voronoi 
region, some vertices and edges on the boundary of VR(p, S), and some other vertices and 
edges of V(S). The other edges and vertices form trees rooted at bd VR(p, S), cf. Figure 6. 

We will next return to the example in Figure 2 in order to illustrate the concepts intro­
duced so far. We will use this example as our running example throughout the paper. 

Example: Figure 7 shows V ( {a, b, oo}) and V( {a, b, c, 00 }) for the bisectors defined in 
Figure 2. Assume a < b < c < 00. Then edges e2 and e3 belong to EVR( a, {a, b, oo}) and 
edges e4, es, er and es belong to EVR( a, {a, b, c, oo}). 

Inserting a new site 

The algorithm presented in Section 4 constructs the Voronoi diagram V( S) by adding one 
site after the other. In this section we investigate the part of a Voronoi diagram that is "cut 
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Figure 6: An extended Voronoi region EVR(p, S). 

00 00 

V( {a, b, oo}) V( {a, b, c, 00 } ) 

Figure 7: The enclosing circle represents r. Edges el and e3 are part of J(b, 00) = r and 
J (a, 00) = r, respectively. 
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off" by the insertion of a new site. For the remainder of the section, let R ~ S, 00 E R, 
sES - R, :f = VR(s, Ru {s}), and & = V(R) n :f. Then, according to Fact 2, bd:f = bd :f 
is a simple closed curve. 

Lemma 1 1/:f =1= 0 then & is a non-empty connected set which intersects bd :f. Moreover, 
& is not just a single point. 

Proof: If & were empty, then :f ~ VR(p; R) for some pER - {oo}. Consequently, 
VR(p, R U {s}) would not be simply connected. Now let &}, &2, ... , &Ie be the connected 
components of & for some k. Observe that no &j can be entirely contained inside :f because 
otherwise V( R) would not be connected, a contradiction. 

Assume k 2: 2. Then a path 'P ~ :f - & exists, connecting two points x and y on 
the boundary of :f and separating &1 from &2, cf. Figure 8. From 'P n & = 0 we have 

x 

y 

Figure 8: Path'P and two connected components of &. 

'P n V(R) = 0 and thus 'P ~ VR(r,R) for a site r E R - {oo}. x,y E 'P implies that 
all sufficiently small neighborhoods U(x) and U(y) are entirely contained in VR(r,R) . The 
points in the intersection of these neighborhoods with the complement of :f thus lie in 
VR(r, R U {s}) and can be connected by a path Q ~ VR(r, R U {s}) ~ VR(r, R). The cyde 
'P 0 Q is therefore entirely contained in VR(r, R) and contains &1 or &2 in its interior. This 
is a contradiction. 

At this point we have shown that & is a non-empty connected set which intersects bd :f. 
Assume now that & is a single point. This point, say v, is either a vertex of V(R) or lies on 
an edge of V(R). In either case, one of the regions of V(R) incident to v in V(R) is split by 
:f in a neighborhood of v and hence represented twice at v in V(R U {s}), cf. Figure 9, a 
contradiction to the piece of pie fact. 0 

Note that Lemma 1 implies in particular, that if :f =1= 0, then :f intersects an edge of 
V(R). Lemma 2 discusses the various forms which an intersection between :f and an edge e 
of V(R) can have. 

Lemma 2 Let e be an edge o/V(R). I/ e n:f =1= 0, then either e n:f = V(R) n:f and e n:f 
is a single component or e - :f is a single component (possibly empty). 
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Figure 9: r-region is represented twice at v, a contradiction to Fact 1. 

Proof: Assume first that e n :f == V(R) n :f. Since V(R) n :f is connected according to 
Lemma 1, e n :f is also connected. Assume next that e n :f i= V(R) n :f. Then for every 
point :z: E e n :f one of the subpaths of e connecting :z: to an endpoint of e must be contained 
in :f, since V(R) n :f is a connected set . Hence e - :f is a single component. 0 

Figure 10 shows some possible and impossible configurations for e n :f according to 
Lemma 2. Figure 11, which also illustrates the following Definition 3, shows that cases (a) 
and (d) of Figure 10 arise even for Euclidean diagrams of line segment sites. 

(a) (b) 

allowed 

not allowed 

(c) (d) 

Figure 10: Four situations as allowed by Lemma 2 and an impossible one. 

We elose this section with some notations that we need in the forthcoming sections. 

Definition 3 Let e be an edge 0/ V(R) and let v be an endpoint 0/ e. Then 

1. s intersects e with respect to R iff e n f i= 0. 

2. s clips e at v with respect to R iff e n :f contains a component incident to v. 
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site s intersects edge e without clipping site s clips e at both endpoints 

Figure 11: The Euclidean Voronoi diagram of two line segment sites and one point site. Two 
sites form an edge e. The third site s is inserted into the diagram of the other two sites and 
thereby intersects edge e. The Voronoi region of site s is shown shaded. 

3 The Basic Operation 

Computing the intersection between an edge and the region of a new site is the fundamental 
operation in our algorithm. We have already seen in Lemma 2 that there are only a few 
types of such intersections. In this section we show that a particular type of intersection can 
be extracted from the Voronoi diagram of only five sites and therefore computed in constant 
time. The five sites involved are the newly added site and four sites "defining" the edge. We 
first specify how sites "define" edges. As above let R ~ Sand 00 E R. 

Definition 4 Let p, q, rand t be sites in R. 

1. A vertex v 01 V(R) is called a pqr-vertex, il v is incident to the p-, q-, and r-regions, 
and there is a clockwise traversal 01 the regions incident to v which encounters p-region 
belore q-region belore r-region belore p-region. 

2. An edge e 0/ V( R) is called a prqt-edge, il e separates p- and q-region, and its endpoints 
are prq- and qtp-vertices. 

Example (continued): We continue our running example. Let vI, V2, eI, e2, and e3 be 
defined as in the left picture of Figure 7. Then the vertex V2 is an aboo-vertex and the 
vertex VI is a baoo-vertex. Edgeel is a baooa-edge, e2 is a booaoo-edge and e3 is an 
aboolredge. 

Lemma 3 Let R ~ Sand let p, q, rand t be sites in R. Then V(R) contains at most one 
pqr-vertex and at most one prqt-edge. 
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q 

p 

Figure 12: A pqr-vertex and a prqt~dge. 

Proof: We first show that there is at most one pqr-vertex. Assume otherwise that, say, v 
and ware two distinct pqr-vertices. Since VR(p, R) and VR( q, R) are path-connected, there 
are paths P and Q connecting v and wand running completely (except at their endpoints ) 
inside p- and q-region respectively. The cycle P 0 Q then contains r-region in its interior 
and its exterior, a contradiction to the fact that VR(r, R) is homeomorphic to a disco Thus 
there is at most one pqr-vertex. 
The existence of two prqt~dges clearly contradicts the existence of at most one prq-vertex: 

o 

Four-tuples of sites not only allow us to distinguish between different edges of the same 
diagram, they furthermore capture all information necessary to compute the intersection of 
an edge with a new region: 

Lemma 4 (basic operation lemma) Let e be a prqt-edge of V(R). Then the point set 
e also constitutes a prqt-edge of V(R') for all R' with {p, r, q, t} .~ R' ~ R. Moreover, 
e n VR( s, R U {s}) = e n VR( s, R' U {s}) for any s f/. R. 

Proof: Since VR( 0, R') 2 VR( 0, R) for 0 E R', the point set e is incident to the Voronoi 
regions of p, q, r and t w.r.t. R', too. In particular the ordering of these Voronoi regions 
around e does not change. Thus e is a prqt~dge in V( R') as weil. Let sES - R be arbitrary. 
Observe first that e n VR(s, R U {s}) ~ e n VR(s, R' U {s}) follows from VR(s, Ru {s}) ~ 
VR( s, R' U {s}). For the converse, let x E e n VR( s, R' U {s}) be arbitrary. Since e is 
an edge of V(R) separating p- and q-region with respect to R, there are arbitrarily small 
neighborhoods U of.x such that U - e ~ VR(p, R) U VR( q, R) . Since x E VR( s, R' U {s}), 
for each such U there is a point y E U - e for which y E VR(s, R' U {s}). On the other hand 
y E U - e implies y E VR(p, R') U VR(q, R'). We conclude y E D(s,p) or y E D(s, q). Since 
y E VR(p, R) U VR(q, R) this implies y E VR(s, Ru {s}). The claim x E VR(s, R U {s}) 
follows because we can assume U to be arbitrarily small. 0 

By Lemmas 3 and 4 a prqt~dge e of V(R) is also the unique prqt~dge of V( {p, r, q, t}) 
and the intersection between e and the region of site s is the same in V( R U {s}) as in 
V( {p, r, q, t, s}). We therefore define the following operationas the basic operation of our 
algorithm: 
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Basic Operation 

Input: a five-tuple (p, T, q, t, s) such that 
1) V( {p, T, q, t}) contains a pTqt-edge e, and 
2) s ~ {P,T,q,t}. 

Output: The combinatorial structure of e n VR( s, {p, T, q, t, s}), i. e., one of the following: 
1) intersection is empty 
2) intersectionis non-empty and consists of a single component: 

a) e itself 
b) a segment of e adjacent to the prq-endpoint 
c) a segment of e adjacent to the qtp-endpoint 
d) a segment not adjacent to anyendpoint of e 

3) intersection is non-empty and consists of exact1y two components 

Each call of basic_op will be charged one time unit. Note that the input to the basic 
operation is a combinatorial object, namely the 5-tuple (p, T, q, t, s), and that the output is 
a combinatorial object, namely a symbol in {1, 2a, 2b, 2c, 2d, 3}. Also note that the six cases 
specified exhaust all possible cases by Lemma 2 and that in case 3 the two components are 
incident to one endpoint of e each. We use basic_op(p, T, q, t, s) to denote the output of the 
basic operation on input (p, T, q, t, s). 

It is dear that the basic operation can also be used to decide whether an edge is in­
tersected or clipped by a site. Let e be a prqt-edge of V(R) and sES - R. Then s 
intersects e iff basic_op(p, T, q, t, s) E {2a, 2b, 2c, 2d, 3} and s clips e at the prq-endpoint iff 
basic_op(p, T, q, t, s) E {2a, 2b, 3}. 

Example (continued): In V(R), R = {a, b, oo}, ofFigure 7 wehave basic_op(b, 00, a, 00, c) = 
2b, basic_op(a,b,oo,b,c) = 2c and basic_op(b,a,oo,a,c) = 1. Thus site c intersects edges e2 

and e3 and clips edges e2 and e3 at their endpoint V2 with respect to R = {a, b, oo}. 

We have seen that four sites uniquely define an edge in the sense that there is no other 
edge defined by the same tuple of sites. However, an edge may in this way be defined by 
several different four-tuples of sites. In the analysis of our algorithm in Section 5 and for the 
presentation of the algorithm we need a stronger combinatorial characterization of edges. 

Definition 5 1. Let e be an edge 0/ V( R) separating p- and q-region. Let /1' and g1' be the 
edges preceding and /ollowing e in a clockwise traversal 0/ the boundary 0/ VR(p, R), 
and let /q and gq be the edges preceding and /ollowing e in a counter-clockwise traversal 
o/the boundary 0/ VR(q, R), cf. Figure 13. Assume further that /1' separates p- and T1' -
region, g1' separates p- and t1'-region, and gq separates q- and tq-region, and /q separates 
q- andTq-region. ThenDR(e) = {(Tq,q,p,T1'),(t1',p,q,tq)} is called the descnption of 
e with respect to R. By set(DR(e)) we denote the set {p,q,T1',Tq,t1',tq}. 

2. Let D be the description 0/ an edge e 0/ V(R), and let sES - set(D). Then site s 
intersects description D iff e n VR( s, set( D) U {s }) i= 0. 
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Figure 13: An edge with description {(Tq,q,p,Tp),(tp,p,q,tq)}. 

Example (continued): In VeR), R = {a,b,oo}, of Figure 7 the edges have the following 
descriptions: DR ( eJ) = {( a, b, 00, a), (a, 00, b, a)}, DR ( e2) = {( 00, b, a, 00), (00, a, b, oo)}, and 
DR (e3) = {(b,a,oo,b),(b,oo,a,b)}. 

Remarks: 

1. The basic operation lemma has the following consequence: An edge e of VeR) with 
description D is also an edge of V(set(D)), and site sES - R intersects edge e with 
respect to Riffs intersects e with respect to set(D) iff s intersects D. Moreover, using 
our basic operation we can decide in constant time whether or not a site sES - set( D) 
intersects description D. 

2. In the caseof general position, i. e., if Voronoi vertices have degree 3, the four-tuple 
"defining" an edge and the description of the edge contain the same set of sites. In fact, 
in that case, the whole analysis could also be done with four-tuples as descriptions. 
Descriptions are only introduced für the handling of degenerate cases, especially in the 
analysis of the algorithm in Section 5. 

4 The Incremental Algorithm 

In this section, we describe the incremental construction algorithm. The algorithm starts 
with the set R3 = {oo,p,q}, where p and q are chosen uniformly at random from S - {oo}, 
and then adds the remaining sites in random order, i. e., R lc+1 = Rlc U {s}, where s is chosen 
uniformly at random from S - R lc • The following data structures are maintained for the 
current set R = Rlc of sites: 

1. The Voronoi diagram VeR): It is stored as a planar mapi with every face of VeR) the 
corresponding site in R is stored. 

2. The history graph H(R): It is a directed acyclic graph with a single source. Its vertex 
set is given by 

{sOUTce} U U {DRi(e) leis an edge of V(~)}. 
39:5lc 
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The following history-graph invariants are maintained: 

1. Every vertex of 'H(R) has outdegree at most 5 and the vertices in {DR(e) I e edge of 
V(R)} have outdegree 0, i. e., are leaves of the graph. 

2. Every edge e of V( R) is linked to its corresponding description DR ( e) of 'H( R) and 
Vlce versa. 

3. For every site s E 8- Rand every leaf D of 'H(R) that is intersected by s there is a 
path from source to D whose vertices are all intersected by s. 

We now discuss how to construct V(R U {s}) and 'H(R U {s}) from V(R) and 'H(R). 
To this aim let E$ = {e leis an edge of V(R) and eis intersected by s}. We first show 
how to construct E. (Step 1), from 'H(R) and V(R) in time proportional to the number c of 
vertices of 'H(R) which are intersected by s. Given E$' it is then easy to construct V(RU {s}) 
(Step 2), and 'H(R U {s}) (Step 3) in time O(IE$I). 

Step 1: Construction of Es 

Starting at the source of'H(R) we explore all descriptions in 'H(R) which are intersected by s. 
Since the outdegree of 'H(R) is bounded by 5, the number of visited vertices is proportional 
to c. Note that we can decide in constant time whether or not a description is intersected 
by a site by using our basic operation. Thus the search takes time O(c). Also, by the 
third history-graph invariant, it identifies allleaves of 'H(R) intersected by s. By the second 
history-graph invariant this set immediately gives the set of edges of V( R) whose descriptions 
are intersected by s. By the basic operation lemma this is set E •. We conclude: 

Lemma 5 The set E$ can be computed in time O(c). 

Step 2: Construction of V(R U {s}) 

As above, let f = VR(s,RU {s}). We know from Lemma 1 that f =j:. 0 iff E. =j:. 0. So, 
V(RU {s}) = V(R) and 'H(RU {s}) = 'H(R) if E$ = 0. We therefore assume from now on 
that E$ =j:. 0. For an edge e E E$' e - f consists of at most two subsegments of e. Also, 
if eis a prqt-edge of V(R) basic_op(p,r,q,t,s) teIls us the structure of e - f. We call a 
point v an endpoint of e - .f if it is an endpoint of one of the subsegments of e. In this way, 
e - f may have 0, 2, or 4 endpoints. These endpoints are distinct by Lemma 2. We first 
characterize the vertices of V(R U {s}). Let V be the set of vertices of V(R) and let 

Vdel = {v I v E V and all edges incident to v are clipped at v by s} 
Vunck = {v I v E V and no edge incident to v is clipped at v by s} 
Vckang = {v I v E V and some but not all edges incident to v are clipped at v by s} 
Vnew = {v I v ft V and v is endpoint of e - f for some e E E$} 

Example (continued): Let R = {a,b,oo} and s = c. Then Vdel = 0, Vunck = {vd, 
Vckang = {V2}, and Vnew = {va, V4}. Note that our basic operation tells us that e2 - f 
connects VI and Va and ea - f connects VI and V4, cf. Figure 14. 

16 



Figure 14: V(R) n .:f is shown dashed. 

Lemma 6 Every vertex v 0/ V (R U {s}) is contained in Vunch U Vchclng U Vnew . 

Proof: For every vertex v of V( R U {s}) there are two sites p and q different from s such 
that an edge e' of V( R U {s}) separating p- and q-region is incident to v. Also, there is an 
edge e of V(R) with e' ~ e. Thus v is either a vertex of V(R) or v lies on edge e of V(R). 
In the latter case, v is an endpoint of e -.:f and hence v E Vnew . In the former case, eis not 
clipped at v by s and hence v E Vunch U Vchclng ' 0 

Lemma 7 Let v E Vunch . Then U n V(R) = U n V(R U {s}) for all suffieiently small 
neighborhoods U of v i in particular, visa vertex of V (R U {s} ). 

Proof: If.v E Vunch then no edge of V(R) incident to v is clipped at v by s. Thus 
U n V(R) n .:f ~ v for all sufficiently small neighborhoods of v. Lemma 1 thus implies 
U n V(R) n.:f = 0 and hence U n V(R) = U n V(RU {s}). 0 

Lemma 8 Let v E Vchcang' 

1. In the cloekwise ordering of edges of V( R) around v I there are edges f" and f' (I' = f" 
is possible) such that all edges between f" and f' (inclusive) are not clipped at v by s 
and all edges between f' and f" (exclusive) are clipped at v by s. 

2. Let e' be the edge following f' and let eil be the "edge preeeding f" in the cloekwise 
ordering of edges of V(R) around v, cf. Figure 15. Let f' and e' border p-region and 
eil and f" border q-region. Then visa vertex of V( R U {s}) in eide nt to the following 
edges: all edges between f" and f' (inclusive), an edge separating p- and s-region, and 
an edge separating s- and q-region. 

Proof: a) Since some but not all edges incident to v are clipped at v by s, v must lie on 
bd .:f. Since bd .:f is a simple closed curve passing through v, the edges clipped at v by s and " 
the edges not clipped at v by s must form contiguous subsequences in the clockwise ordering . 
of edges around v. This proves a). 
b )T"his iso an immediate consequence of part a) and the piece of pie fact. 0 
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bd f 

Figure 15: Anode v E Vchang' 

Lemma 9 Let v E Vnew and let v lie on an edge e 01 V(R) separating p- and q-region. 
Then visa vertex 01 degree three in V( R U {s} ). The three edges incident to v separate p­
and q-, q- and s-, and s- and p-region respectively. 

Proof: Obvious. CI 

Example (continued): By Lemmas 6 to 9, the vertices V2, V3 and V4 become incident to 
two new edges each, cf. Figure 16. 

c/ 
al ..... 

00 

V4 

V2 

V4 

V(R) n f 

Figure 16: On the left, for each vertex v E Vchang U Vnew the two new edges incident to v 
are indicated by dots. The deleted part of V(R) is shown on the right. 

At this point, we have characterized the vertex set of V (R U { s }) and also the set of edges 
incident to each vertex of V (R U {s}) in their clockwise ordering around v. It remains to 
link the two occurrences of each edge. As above, let & = V(R) n f. 

We know an embedding of & into the plane. The boundary of the outer face of & is a 
elosed curve since & is connected. Also, the vertices on bd f lie on & and bd f is a simple 
closed curve. Hence a clockwise traversal of the boundary of the outer face of & yields the 
cyclic ordering of the "half-edges" of bd f, cf. Figure 17. This allows us to link the two 
occurrences of each edge. We conclude: 
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bd .f 

Figure 17: Walking along the boundary of the out er face of &. 

Lemma 10 GivenE", V(RU{s}) can be construttedfrom V(R) in time O(IE"I). 

Proof: Given E", one can determine the sets Vdez, VCAClfLg, and V fLew in time O(IE"I). In 
the same time bound, one can update the cyclic adjacency lists of these vertices. Finally the 
traversal of & takes time O(IE"I) . 0 

Example (continued): The clockwise march around & and joining the two occurrences of 
each edge yields V(R U {c}) as shown in Figure 7. 

Step 3: Computation of 1-l(R U {s}) 

We first characterize the set of vertices 1-l(R U {s}) which are not already vertices of 1-l(R). 
Call an edge e of V( R U {s }) new if it is not a subset of any edge of V (R), shortened if it is 
a proper subset of some edge of V(R), affetted if e is an edge of V(R) and there is a vertex 
v E VCAClfLg such that eis one of the edges f' or f" defined in Lemma 8, cf. Figure 18. 

new 

Figure 18: A characterization of edges. 
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Lemma 11 Let V11 (R) and V11(R U {s}) be the vertex sets o/1-l(R) and 1-l(R U {s}) respec­
tively. Then V11( RU {s} ) - V11 ( R) = {DRU{"}( e) leis a new, shortened, or affected edge 0/ 
V(RU {s})}. 

Proof: Let e be an edge of V (R U {s} ) which is neither new, shortened, nor affected. Then 
e has already been an edge of V(R) and hence its endpoints must lie in V~mch U Vchcmg. Also, 
if an endpoint v of e belongs to Vchang then e lies strictly between the edges f" and f' defined 
in Lemma 8. Thus e's descriptions with respect to V(R) and V(RU {s}) are identicaL 

Conversely, if e is new, shortened or affected, then s contributes to e's description D and 
therefore D cannot be contained in V11(R). 0 

We next discuss which edges have to be added to 1-l( R U {s}) in order to maintain the 
history-graph invariants. . 

Lemma 12 Let e be a shortened or affected edge 0/ V(R U {s}), let e' be the edge 0/ V(R) 
with e ~ e', and let t E S - R - {s} intersect e with respect to R U {s}. Then t intersects e' 
with respect to R. 

Proof: The lemma follows immediately from e n VR( t, R U {s, t} ) ~ e' n VR( t, R U {t}). 0 

Thus for each shortened or affected edge e we add the edge (DR(e'),DRU{,,}(e)) to the 
history graph, where e' is the edge of V(R) with e ~ e'. 

For a new edge e of V (R U {s}) the situation is more complicated. We show that it is 
suffieient to make e a child of all edges traversed during e's construction. To this end, let 
Xl and X2 be the endpoints of e, and let pER be such that e separates p- and s-region in 
V(RU {s}). By Lemma 1 there must be a path P in V(R) nf connecting Xl to X2' Without 
loss of generality we may assume that Pis part of bd VR(p, R). Pis the part of V(R) n .f 
traversed during the construction of e. Furthermore define the edges el and e2 of V(R) as 
follows. If Xl E Vnew , then let el be the edge of bd VR(p, R) containing Xl· If Xl E Vchang, 
then let el be the edge of bd VR(p, R) ineident to Xl and not contained in P. The edge e2 is 
defined analogously with respect to X2' The reader may think of el and e2 as prolongations 
of P outside f. See Figure 19 for an illustration of these definitions. 

Lemma 13 Let e, el, e2 and P be defined as above. Let t E S - R - {s} intersect e w.r.t. 
R U {s}. Then there is an edge 9 E el U P U e2 such that t intersects 9 with respect to R. 

Proof: We assume for the sake of a contradiction that t does not intersect any edge 
9 E el U P U e2. By the definition of el and e2 there are unique edges e~ and e~ of V (R U { s } ) 
such that e~ ~ el and e~ ~ e2. 

Claim 1 t does not clip e, e~ or e~ at Xl or X2 with respect to R U {s}. 

Proof: We first deal with edge e. Assume the contrary, say t clips e at Xl w.r.t. Ru {s}. 
Assume first that Xl E Vnew . Then el is the edge of V(R) containing Xl and Xl E el n 
VR(t, R U {S, t}) ~ el n VR(t, R U {t}) and hence t intersects el, a contradiction. Assume 
next that Xl E Vchang' Then Xl E VR(t,RU{s,t}) ~ VR(t, Ru {t}). In V(R), t thus 
clips one of the two edges of bd VR(p, R) incident to Xl, because VR( t, R U {t}) cannot 
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VR(p, R) 

Figure 19: The path 'P and edges el and e2. 

contain an isolated point Xl, due to Lemma 1. Since both edges belong to el U 'P, we have 
a contradiction. 
Since ei ~ el and e~ ~ e2 and because t does not intersect el or e2 by assumption, t cannot 
li ' , c p el or e2 • 0 

Claim 2 'P ~ .f and there is a point X E e n VR( t, R U {s, t}) which does not lie on 'P. 

Proof: 'P ~ f holds by definition. Sincet intersects e but does not clip e at Xl or X2, 

the intersection e n VR( t, R U {s, t}) is a non-empty sub segment of e not extending to either 
endpoint of e. This subsegment must contain a point X not in 'P since t does not intersect 
any edge on path 'P. 0 

Now consider the wedge at Xl formed by e and ei. According to the above claim, t does 
not clip e at Xl in V(RU{s}). Thus all points in the wedge belong to VR(p,RU{s,t}). The 
same holds true for the wedge at X2. Since VR(p, R U {s, t} ) is connected, there is a path Q 
from Xl to X2 running completely inside VR(p, R U {s, t}) ~ VR(p, R U {t}) except at the 
endpoints, cf. Figure 20. We may assume that Q does not touch bd .f (and therefore X does 
not lie on Q). Thus X lies in the interior oft he cycle Xl 07>OX2 0 Qj otherwise VR(p, R) would 
not be simply connected. The point X belongs to VR( t, R U {t}). Since VR(p, R U {t}) is 
simply connected, the region VR(t, Ru {t}) cannot be contained in the cycle Xl 0'POX20 Q. 
Since Q n VR( t, R U {t}) = 0, we conclude 'P n VR( t, R u {t}) =J 0. The intersection cannot 
consist of a single point and hence t must intersect an edge 9 E el u'P U e2, a contradiction. 
This completes the proof of Lemma 13. 0 

In view ofLemma 13 we add edges (DR(e'),DRU{.}(e)) for any new edge e ofV(RU{s}) 
and all e' E el U 'P U e2. 

Lemma 14 The history-graph invariants hold for 'H.( R U {s} ). 

Proof: Part 3) of the history-graph invariant is maintained by Lemmas 12 and 13. Part 2) 
is trivial. For part 1) first observe that only leaves of 'H.(R) can get new children. Thus 
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:f 

Figure 20: The path Q and the wedges at Xl and X2' 

the outdegree of inner nodes of 1i(R) does not change. We now show that a leaf of 1i(R) 
gets at most five children. We distinguish several cases. Let e' be an edge of V(R). If e' is 
also an edge of V(RU {s}) and DR(e') = DRU{$}(e'), then no edges out of DR(e') have been 
added to the history graph. Otherwise, either e' ~ :f or there is a shortened or affected 
edge e of V(R U {s}) with e ~ e'. In the former case, e' belongs to at most two paths 'P. 
In the latter case, e' assumes the role of el or e2 at most four times and is also parent of e, 
i. e., the outdegree of e' is at most 5. It remains to prove that the descriptions of edges in 
V(R U {s}) are leaves of 1i(R U {s}). This follows from the fact that only those leaves of 
1i(R) get children that are no longer descriptions of edges of V(R). 0 

Figure 21 shows a situation where the outdegree is actually 5. 

.............. 

V(R) 

........... 

............................ e 
...... "'~ " ..... ~ 

.................................................................. 

". 
el ~ 

4 .. ~ 

.,/ ./ 
"'" ............................... . ........ .. 

.. ' .... 

V(RU{s}) 

e4 

Figure 21: DR ( e') has five children in the history graph. e" ~ e' is a shortened edge. el, ... , e4 
are new edgeson bd :f. Observe that e2 #- ea is possible. 

Lemma 15 Given E", 1i(RU{s}) can be constructed /rom V(R) and 1i(R) in time O(IE"I). 
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Proof: Following from the discussion above. o 
We summarize in: 

Theorem 1 a) Let 00 E Rand s E 5 - R. Then V(R U {s}) and 1i(R U {s}) can be 
constructed /rom V(R) and 1i(R) in time O(c) where c is the number 0/ vertices o/1i(R) 
intersected by s. 
b) For R ~ 5, IRI = 3 and 00 E R, the data structures V(R) and 1i(R) can be set up in 
time 0(1). 

Proof: a) Comprises Lemmas 5, 10 and 15. 
b) The Voronoi diagram V(R) for three sites 00, p and q has the structure shown in Figure 22. 
The history graph 1i( {oo, p, q}) for these three sites simply consists of anode for the sour ce 
and each of the three edges of V( {oo, p, q}). The descriptions of the 3 edges of V( {oo, p, q} ) 
are made children of the source. Both structures can certainly be set up in time 0(1). 0 

00 

V({p,q,oo}) 
1i( {p, q, oo}) 

Figure 22: Initialization of Voronoi diagram and his tory graph. 

5 Analysis 

The analysis of randomized incremental algorithms is always done in terms of objects, re­
gions and conflicts between them. In our case the objects are the sites and the regions are 
. descriptions. 

Definition 6 Let R ~ 5. 

1. A description D over R is a set {(Tq,q,p,Tp), (tp,p,q,tq)}, where {p,q,Tp,Tq,tp,tq} ~ 
R, and V({p,q,rp,rq,tp,tq}) contains a bounded edge with description D. F(R) de­
notes the set 0/ all descriptions over Rand set(D) denotes the set {p, q, rp, rq, tp , tq}. 

2. Let D be a description over Rand let s E 5 - set(D) be a site. 5ite s conflicts 
with D iJJ there is no bounded edge in V(set(D) U {s}) with description D. Define 
Fo(R) = {D E F(R) I D does not conflict with any site s E R - set(D)}. 
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If a site s intersects a description D, then it also con:Bicts with description D. The 
converse is not true. Namely, if in Figure 13 a site s clips any of the edges 9p, 9q, Ip, Iq at 
their common endpoint with e, then s con:Bicts with DR( e). The sole motivation for defining 
the not ion of con:Bict is the foilowing bijection lemma. It makes the general results about 
randomized incremental constructions available for the analysis of our algorithm. 

Lemma 16 (bijection lemma) Let 00 E R ~ S. Then e I----t DR( e) is a bijection between 
the edges 01 V(R) and the descriptions in Fo(R). 

Proof: Note first that all edges of V(R) are bounded since 00 E R. Let e be an edge of 
V(R), let D = DR( e), and let s E R - set(D). By the basic operation lemma, eis also an 
edge of V(set(D)) and V(set(D) U {s}). The same argument shows that the description of 
e in V (set( D)) and V (set( D) U {s } ) is still D. In particular s does not conftict with D, i. e., 
D E Fo(R). We have now shown that the mapping e I----t DR(e) maps the set of edges of 
V(R) into Fo(R). The mapping is injective since the existence of two different edges with 
the same description clearly contradicts Lemma 3. It remains to show surjectivity. 
Let D E Fo(R) be arbitrary. We show that there is an edge in V(R) with description D. 
Assume the contrary. Then there are a set R', set(D) ~ R' ~ R, and a site s E R - R' 
such that V(R') contains an edge e with description D, but V(R' U {s}) does not. Since 
D E Fo(R) there is an edge with description D in V(set(D)) as weil as in V(set(D) U {s}). 
By the basic operation lemma both edges are equal to edge e. We now consider e with 
respect to V( R') and distinguish several cases according to whether or not s intersects 
e w.r. t. R'. Thus let e n VR( s, R' U { s }) f= 0. By the basic operation lemma we have 
en VR(s,set(D) U {s}) f= 0 in contradiction to the claim that eis edge of V(set(D) U {s}). 
Thus let now e n VR(s,R' U {s}) = 0. Then eis also edge of V(R' U {s}). But then the 
description of e w.r.t. R' U {s} must be different from D, say D'. By the basic operation 
lemma ethen also has description D' in V(set(D) U {s}), a contradiction. D 

Let SI, S2, • .• , Sn be the sequence in which the algorithm processes the sites and let R,. = 
{SI, S2, .•• , S,.}, for 1 ~ r ~ n. The bijection lemma provides an alternative characterization 
of the vertex set of the history graph. 

Lemma 17 The set 01 nodes 01 1-l( R,.) equals {source} U U3~i~" Fo( ~). 

Proof: Obvious. D 

Lemma 17 characterizes the vertex set of the history graph as a set of combinatorial 
objects defined by a small number of input sites. We can therefore apply the results of 
[CS89, BDS+92, CMS92] to the analysis of our algorithm. To do so assume that the algorithm 
processes the sites in random order. [CS89, BDS+92, CMS92] give bounds on the expected 
size of the history graph and the number of its vertices in con:Bict with a input site in terms 
of I,., the expected size of Fo(R) for a random subset R ~ s, IRI = r. 

Lemma 18 ([CMS92], Theorems 3 and 4) 1. The expected size 011-l( R,.) is O(~i<" i!.). - . 
2. The expected number olvertices ol1-l(R,.-d in conflict with site s,. is O(~i~" i(i~l)). 
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Since a Voronoi diagram of i sites has at most 3i - 6 edges the bijection lemma implies 
h = O(i). 

Theorem 2 An abstract Voronoi diagram 0/ n sites can be computed by a randomized algo­
rithm in expected time O( n log n) and expected space O( n). M oreover, the expected time tor 
inserting the r-th object is O(log r). Randomization here only concerns the order in which 
the sites are inserted. 

Proof: At any time the size of the history graph clearly dominates the size of the Voronoi 
diagram . . Thus the expected space used by the algorithm is O( n) by Lemma 18. 
By Theorem 1 the time needed to insert the r-th site S1' is proportional to the number c,. of 
vertices in 1{(~-1) which are intersected by S1" Since each intersection implies a conflict we 
have c,. = O(log r) by Lemma 18. This yields the claimed time bounds. 0 

6 Simple Voronoi diagrams 

In this seCtion we introduce a subclass of abstract Voronoi diagrams for which the basic 
operation can be replaced by two operations each requmng only four sites as input. 

Definition 7 A system 0/ bisectors is called simple i/ tor any three (finite) sites the induced 
Voronoi diagram contains at most one vertex. 

Observe that in general three sites p, q and r can produce two vertices, a pqr- and a prq­
vertex, see Figure 3 for an example. Simple systems of bisectors are generated, for instance, 
by point sites under the Euclidean metric or under the L1-metric (as defined by Lee [Lee80]), 
and by Powerdiagrams (see [Aur87]). 

Now consider a Voronoi diagram V(R), 00 E R ~ S, generated by a simple system of 
bisectors. As in the previous seCtions let sES - R. We investigate again the type of 
interseCtion between an edge of V(R) and site s. For this investigation edges on r must be 
treated separately. 

To this purpose, let e be a prqt-edge of V(R) not on r, i. e., p, q =1= 00. Since V( {p, q, s}) 
contains at most one vertex,cases 2d and 3 of our basic operation are excluded. Furthermore 
cases 1, 2a, 2b, and 2c can be distinguished simply by deciding whether s clips e at its prq­
or qtp-endpoint. 

basic_op(p, r, q, t, s) = { 
1 iff s does not clip e at either endpoint 

2a iff s clips e at both endpoints 
2b iff s clips e only at the prq-endpoint 
2c iff s clips e only at the qtp-endpoint 

However, clipping can be decided by looking at only four sites: 

Lemma 19 Let e be a prqt-edge 0/ V(R) and let sES - R. Let e' be the unique edge 0/ 
V( {p, q, r}) incident to the prq-vertex 0/ V( {p, q, r}) and separating p-region /rom q-region. 
Then e ~ e' and s clips e at the prq-endpoint w.r.t. R iff s clips e' at the prq-endpoint w.r.t. 
{p,q,r}. 
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Proof: First observe that by the basic operation lemma eis also a prqt-edge of V( {p, q, r, t}) 
and that e n VR( s, {p, q, r, s, t})= e n VR( s, R U {s}). By removing t from {p, q, r, t} edge e 
cannot shrink, but possibly grow at its qtp-endpoint. Thus e ~ e'. For the remaining claim 
note that t has no infiuence on whether s clips e at its prq-endpoint or not. D 

Thus, for edges not on r the basic operation on five sites is reduced to a four sites clipping 
operation. 

Let us now turn to edges on r. For these edges cases 2d and 3 of our basic operation are 
also possible. Thus the basic operation cannot be reduced to clipping as before. However, 
for all these edges, one of the four "defining" sites is always 00. Moreover, if e is a prqt-edge 
on r the either p = 00 or q = 00. Since eachprqt-edge is also a qtpr-edge, we can assume 
p = 00. Computing the outcome of the basic operation for a prqt-edge on r can thus be 
handled by a special basic_op-I' operation that inputs only the four sites q, r, t and s. 

To give an impression of the amount of programming hidden inside the basic operation, 
we sketch the implementation for a Voronoi diagram of points under the Euclidean metric. 
Let e be a prqt-edge not on r, and furthermore let r =I 00. Then s clips e at its prq-endpoint 
iff s lies inside the circumcircle of p, r and q, or s lies on the circumcircle of p, r and q and 
p, q and s form a rightturn. If r = 00 then eis an "unbounded" edge of V(R -{ oo}). The 
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Figure 23: s clips e at the prq-endpoint. 

circumcircle of p, rand q then becomes the "infinite circle" through p, 00 and q, i. e., the 
line through p and qj point s lies inside the "infinite circle" iff s lies to the right of the line 
through p and q directed from p to q. Furthermore, if s lies on the line through p and q then 
s clips e iff s lies between p and q. 

Let e now be an oorqt-edge on r. Cases 2d and 3 of our basic operation can occur only 
if r = t and q, r and s are collinear, see Figure 24. If r =I t or q, rand s are not collinear 
then the outcome of the basic operation is once again completely determined by the way s 
clips e at its endpoints. Here s clips e at its oorq-endpoint iff r, q and s form a rightturn, 
or s lies on the line through rand q between rand q. 

The test whether a point lies inside, on, or outside the circumcircle of three other points, 
and the test whether three points are collinear, or form a left- or rightturn are fundamental 
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Figure 24: Site s intersects an edge e on r. 

tests in computational geometry. Observe that all algorithms which use only the incircle-test 
do not handle four cocircular or three collinear points. 

For Powerdiagrams the implementation is very similar, for diagrams of points under the 
L1-metric it is more involved. 

7 Conclusion 

We have shown that the construction of abstract Voronoi diagrams can be reduced efficiently 
and purely combinatorially to the construction of abstract Voronoi diagrams for five sites, 
respectively four sites in some cases. This is also true for furthest site abstract Voronoi 
diagrams, see [MMR92]. Many previously considered types of Voronoi diagrams can thus be 
handled by the same simple algorithm. 
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