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Ab8tract . 

We give tail estimates fo! the efliciener of IOme !udomised incremental algorithms 
for line segment inteneetion in the plane. In parlicu1ar, we 8how that there is a con­
stant C such that the plObability that the l'11DDiDg times of algorithms due to Mulmuley 
[Mul881 ud Clarbon and Shor [0889] exceed C time. the:ir expected time is bollDded by 
e-n(m/<_ba_» where n is the number of sep1enb, m is the number of intenecüODS, and 
m ~ nIn nIn(3) n. 

1 Introduction 

Randomized incremental algorithms have reeeived considerable attention reeentlYi d. [CS89], 
[Mul88] and [BDS+92]. They solve a !arge nmnber of geometrie problems, inclndiDg the 
construction of Voronoi diagrams and convex lmlls and the intersection of line segments, in 
optimal expected time and space. In this paper we wems the randomized line segment 
intersection algorithms of Clarkson and Shor [CS89], M1llmuley [Mul88] and Boissonnat et 
al. [BDS+92] and prove a taU estimate for the runDing time of two algorithms in [Mul88] and 
[CS89] and for the space efiiciency of the algorithms in [BDS+92]. More precise1y, we show 
that there is a eonstant C such that the probability that the runDiDg time (space efficiency) 
exceeds C times its upected value is e-O(m/(nlDn», where n is the number Of line segments, 

·Supponed in pan br GIF projec:t No. 1-136-113.8/89 ud br the ESPRIT n Basic Research Actions 
Prosnm o! the Be ader c:cmUact no. '11ß(project ALOOM). A preliminarr Yenion o! thia paper was 
presented at the 3m AOM-SIAM S1DlpoCum on Diac:rete Alsorlthma, 1992. 
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misthe number of intersections, and m ~ n ln n ln(3) n. The tail estimate is shown is Section 
3. In Seetion 2 a simple probabilistie lemmais proven; it extends alemma shown in [CMS92}. 
In the prelimin&ry version of this paper we only c1aim.ed a tail estUnate for the space effi.ciency 
of the algorithm in [BDS+92]. lirka Matouiek and Raimund Seidel have pointed out to 11S 

that our method. also implies a tail estimate for the rnnniDg time of two of the interseetion 
algorithms. A tail estimate for the rnnniDg time of Mulmuley's algorithm was also claimed 
in [MS92]. Unfommately, the argument in [MS92] ia llawed (personal communication by the 
authors). 

2 A Probabilistic Lemma 

Let JN de:note the set ofncmnegative integera and lat lB.>0 denote the set ofncmnegative reals. 
Par fanctiODI M : lN -t lB.~ and d: lN -t lB.~ and hltegers n and f' with n ~ f' ~ 0, ca1l 
a ·rooW tree T an (n,f'}-tNe rupccting M GM d jf either f' = 0 and T c:onaiJts of a siDgle 
nod.e, or f' > 0, the root of T hu n I11btrees each of whicb. is an (n -1, f' -1 )-tree respeeting 
M and d, &Ud the n edges incidem to the root are labeled with non-negative tDeiglW dt so 
that ~ S d(n) for 1 S i S ft and E1SiSR dt S M(n). . 

Par a path 11' in T, . let X = Xft be the sum of the weights of the edges along the path. The 
UDlform distn'bution on the n( ft ~ 1) ••• (ft - f' + 1) paths in T makes X a random variable 
with eipeetation 

. E(X) S L M(n-.i). 
0~i~,.-1 (n - ,) 

Lemma 1 : For Gll t > 0 tiM B ~ 0: 

Prob (X ~ B) S exp (-tB + L (~~~( i~ .) (etdCn-tI_1») . 
. 0~iS"-1 n , n , 

Remark: Lemma 1 is related to Asuma's inequality [ASE91, Section 7] for martingales but 
does not follow from that inequality. Note that one can easily derive a martingale from the 
tree T: Label each node 11 of T by E[Xft lll' goes through 11] and for i, 0 Si< f', let Yi be 
the label of a random node of depth i. Then Yo, 1'1, ••. ,1';. is a martingale. The proof of 
Lemma 1 is an adaptationofthe standard prooffor Hoeff'ding'. inequality, cf. [Roe63}. The 
cue f' = n and d(i) = M(i) for an i was previously treated in [CMS92}. 

Proof: Let 10, ••• ,11"-1 be independent random variables wherel., 0 S i 5 f' - 1, is 
unif'ormly distributed. on [l .. ft-i]. The Mables 10 , ••• ,1,._1 select a path 11' ofT in a natural. 
way: 10 .e1.ects the first edge of 11',11 se1.ects the second edge of 11', and so on. For i E [0 .. ,. -1} 
let Xi be the weight of the (i + l)-st edge on the path 11'. Then X = 2:o<i<,.-1 Xi and, for 
all t > 0, - -

Prob(X ~ B) = e-tB etBProb( etX ~ etB ) 

2 



~ e-tBE( eU
) = e-tBE (II e

U
')' 

°SiSt'-1 

using Markov'a inequ.ality in step two. We now prove for an j, 0 ~ j ~ ". -1, and all integers 
io, i1 , ••• ,4-1 with i, E [1..n - ~ 

E (II eU'IIo = io, ... , Ii-1 = ii-1) 
iSiSt'-1 

C ~ . M(n - i) (tG(ft-i) ») 
~ exp L.J ( _ .)d( _.) e - 1 . 

S'S"-1 n , n , 

Fm j = 0 this ia the claim of the lemma. We UJe backward inductioD on j. For j = ". both 
lides at'e equal to one. So asaume j ~ ". - 1. We have 

S := E (II eU'IIo = io, . .. , Ii-1 = ii-1) 
VSlSt'-1 

= ~ : .·E ( II eU'IIo = io, ... ,Ii-1 = ii-1,Ii = 1) . 
1S'Sft-i n 1 i~iSt'-1 

Let clt, .•• , dn-i be the weights of the edges emanating from the node corresponding to 
io, i1, .. ., ii-1. Then 10 = io, ... ,li-1 = ii-1,Ii = 1 implies Xi = d,. Thus 

where the inequality comes from the induction hypothesis. Sinee d, ~ d( n-j) for 1 ~ 1 ~ n-j 
and E1SlSn-i cl, ~ M(n - ;), and by the convmty of the exponential function, the last 
expression ja maxim;'ed when lM(n - ;)/d(n - ;)J weighta cl, an equal to d{n - ;), one 
weight is equal to M(n -;) - lM(n- ;)/d(n - ;)Jd(n -;) and the remaining weights are 
equa1 to zero. Let z = M(n-;)/d(n-;)-lM(n-;)/d{n-;)J. Then 0 S z < 1 and henee, 
by the conventy ofthe e%ponential funetion, exp(z·t .d(n - j» ~ 1- z+ zexp(t ·d(n- j». 
n follows that 

tda MCft-e etG(ft-,1 + n -1· - M(ft-5) ~ ~ ~ ti(ft-,_ . tl(ft-,_ 
1SlSft-i n - 1 n - 1 

= 1 + M(n - ;) (etG(ft-,1 - 1) 
(n - j) d( n - ;) 

< (M(n - i) (. tG(ft-i) 1») 
- exp (n - j)d( n _ j) e - , 
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where the last inequality follows from.l + 11 S e" for an real y. This completes the induction 
step and the proof of the lemma. I 

If d(.) is a non-dec:reaslng ftmction then the upper bo1m.d of Lemma 1 becomes more man­
ageable. 

Theorem 1 Let d( n) be " non-decrea.sing junction 0/ n lInd let 

A~ ~ M(n-.i). 
O~i~t'-l n - , 

( 
e )B/d(n) 

Prob(X~B)S I+B/A 

for tUl B ~ O. 

Proof: If d(.) is a nondecreasing fimction., then 

etcl(n-i) - 1 etcl(n) - 1 

d(n - i) S d(n) 

sinee (ee - 1) / ~ is an increasing fimction of ~ for ~ > 0 (compute the derivative). This 
simplliies Lemma 1 to 

eU(n) -1 
Prob (X ~ B) S exp(-tB + A· d(n) ). 

Put t = (l/d(n»1n(B/A + 1). Then 

( 
B A+B) 

Prob (X ~ B) ~ exp - d(n) In eA • 

I 

3 Tail Estimates for the Emciency of Randomized Line Seg­
ment Intersection Algorithms 

Randomized incremental algorithms for line segment interseetion were described by Clarkson 
and Shor [CS89], Mulmuley [Mul88], and Boissonnat et al. [BDS+92]. All these algoritbms 
have ex:peeted !'1J11nmg time O(nlogn + m), where n is the number of segments a.nd m is the 
number of intersections. We 1irst discuss an algorithm due to Mulmuley [Mul88] and prove 
a taU estimate for its time eomplexity. At the end of the seetion we brieft.y discuss the other 
algorithms. 

4 



Here is a Mief account of Mulmuley's algorithm (caUed llecond algorithm in [Mul88]). Let 
5 be a set of non-vertica1 line segments in the plane. We USlUDe for simplicity that the 
z-coordinates of an endpoints and an intersection points are distinct: For a subset R S; 5 
let T(R) be the trapezoidal decomposition defined bythe segments in R plus tbe endpoints 
of the segments in S \ R, d. Figure 1. T(R) is obtamed from the segments in R and the 
endpoints ofthe segments in 5 \ R by emanating an upward and a down ward vertical ray from 
each endpoint and each intersection point. The raysenend up to the nen segment. We call 
this a flertical bar. When we talk about an edge, then we mean an edge in the arrangment 
of R - such an edge may be touched by several vertica1 bars. Mulmuley constructs T( 5) 
incrementally starting with T(e) and adding the segments in 5 one by one in random. order. 
For R S; 5 and • E 5 \ R the decomposition T( Ru {II }) is constructed from T( R) U fonows. 
Starting at an endpoint of 11 wallt along. through T(R). The vertica1 bar enended from. thi. 
endpoint determmes the first trapezoid of T(R) entered by 11. Jf IIleaves a trapezoid through 
a vertica1 (bar) boandary then the trapezoid entered by • cau be determined in constant 
time since the vertica1 boundary of a trapezoid is incident to at most two other trapezoids. 
(by our general position USlUDption). Jf 11 leaves through a segment (edge) boundary the 
situation is more involved. AsltUlle for concreteneas that 11 leavea a trapezoid T through its 
upper boundary contained in edge e and that eispatt of the segment t E R. The waJk then 
proceeds from the intersection 11 n t to one of the endpoints of e (this is either an endpoint 
of t or an intersection t n .' forsome , E R) aud then along the other side of t back to • n t, 
d. Figure 1. When the walk reaches 11 n t at the other lide of t the trapezoid entered by • is 
known and the wa1k proceeds along •. At the end of the wa1k all trapezoidsintersected by • 
are known and T(RU {.}) is readlly constructed from T(R). It is not hard to see that the 
time for the walk dominates the time to construct T(E U {.}) from T(R). 
For R S; 5 and. E R \ S lett(R,.) be the time needed to construct T(R U {.t}) from. T(R). 
To be more concrete, we define t( R, .) as the number of vertical segments touching 8 or edges 
incident to • in T( Ru {. }) (this accounts also two for every intersection of 11 with R). Cleatly, 
this quamity is proportional to the insertion time for •• For the analysis of the total nmning 
time, we define a tree To U fonows. The nodes of depth i ofTo, 0 ~ i ~ n, have exactly n - i 
children. The nodea of depth i correspond to the subsets of S of size n - i in a natural way. 
The root corresponds to 5 and if anode fI corresponds to a subset R S; 5 then the children 
of fI correspond to the sets R - {z}, where z ranges over R. The edge connecting the nodes 
corresponding to Rand R - {z} is labeled by t(R - {z},z). For a path 1r in To,let X(1r) be 
the 111m of the ed.ge labelJ on path 1r. Then X (1r) is the total running time when the element. 
of 5 ate inserted in the order specifi.ed by 1r, i.e., a wa1k along 1r from leaf to root specifiea a 
permutation of 5 and X (1r) is the rnnning time of the algorithm for this insertion order. In 
other words, To represents an posSl'ble "backward" executions of the insertion process [Sei91]. 
Let X = X (1r) be the random variable defined by the uniform. distn'bution on the paths in 
To. 

Let 
T(R) = L: t(R- {z},z) , 

ceR 

M(r) = max{T(R)j R S; 5, IRI = r}, 

and 
der) = max{t(R- {z},z)j R S; 5,IRI = r,Z: E R}. 
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Figure 1: A trapezoidal decomposition T(R) for a subset R of three segments (shown solid) of 
a set S of five segments. The segment I (shown dotted) and the segment with endpoints a and 
6 do not belong to R. When I is added to R the indicated walk (shown dashed) through T(R) 
is performed. 

Then To is an (n,n)-tree respecting M and d and hence Theorem 1 can be used to prove a 
tail estimate for the rnnnmg time. In order to apply Theorem 1 we need bounds· on d( r) and 
M(,.). These bounds are provided by Lemmas 2 and 3. 

Lemma 2 Let R ~ S and,. = IRI. Then d(,.) ~ ßna(n), 1Dhere a is the functional inverse 
0/ Ackermann', function and ß is ,ome con.stant independent 0/,.. 

Proof: Tms Lemma was a1ready"shown in [Mut88]. We enclose its proof for completeness. 
Let .A(R) be the arrangement defined by the segments in R. Let, ERbe arbitrary and let E 
be the set cf edges in the arrangement A(R) having at least ODe vertu: OD' (i.e. incident to 
,). B.eea11 that t( R \ {'}, {,} ) is the nmnber of vertiea1 bars touching , er an edge incident to 
s in T(R). 'lb count these verticalbars we distingaiah two kinds ofbars. The type I bara are 
incident to an endpoint of a segment in S \ R and the type n ·bars are not. There are cl.early 
only at most 2n type I bane 'lb count the number of type n bars eonsider an arrangement 
.A(R') obtained from A(R) ufonon: Split enrr:y segment in R \ {,} interaecting , at ita 
interaection with I and move the two new endpoints aIightly away from I. Then the number 
of type n ban is at most proportional to the eomplexity of the face of A(R') containing S. 

Since IR'I ~ 2,. this complexity is O(,.a(,.», cf. [GSS89, Theorem 3.1]. I 

For R ~ S, let m( R) be the number of pairs of intersecting segments in S. We have 

Lemma 3 (a) Let R ~ S. Then T(R) ~ '7(n + m(R») 1Dhere '7 is a constant independent 
0/ ,.. 
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(b) M(r) ~ 7(n+m.in{r2,m}) for All integer. 1', 0 ~ l' ~ n. 

Proof: Part (b) follows immediatelyfrompart (a) and the fact that m(R) ~ min{IRI2,m}. 
For part (a) we lay that an edge e of A(R) contnDutes to t(R\ {,},.t) for, E R if e ~, or e 
is incident to 'j the contnöution of eisthe number of vertica1 bars touching it (in this way 
the overall cODtnöution to t(R \ {,},,) is at least t(R \ {.t},.». Every edge contributes to 
t(R \ {,},,) for at most three segments, E R; a vertica1 bar touches at most three edges. 

S1Jmm;ng up, we have that T(R) is bounded by 9 times the number of vertical bars; the 
number ofvertica1 bars is 2(2n+ m(R». I 

Substitutmg the bounds ofLemmy 2 and 3 into Theorem 1 gives us out first tail.estimate. 

Theorem 2 Let ß an.d 7. be defined aI in Lemmu ~ and 3 and let 

A = 27(nlnn + mln(n/vIm». 

Then for all c ~ 0 

( 
e )cA/(~("» 

Prob(X ~ cA) ~ 1 + c . 

Proof: We have · M( 1') ~ 7( n + m.in{ 1'2, m}) for an ,. and hence 

~ 7( ~ ~+ ~ 1'+ ~ !!!) 
l~~Sn l' ~~rm rm<~~n l' 

. ~ 7(nHn + m + m(H" - Hrm» 

~ 27 (nlnn + mln (J;n)) . 
The bound now follows direetly from Theorem 1. I 

The bound of Theorem 2 is quite good forsmaU m (m = O(n» and large m (m ~ n2). In 
these cases the quantity A is of the same order y the expected rnnning time. We w.ill next 
derive a better bound for intermediate ftlues of m. In the proof of Lemma 3 we bounded 
m(R) by (~I). However, the apected ftlue of m(R) for a random subset of R of S of lize 

l' = IRI is on1y m~::i~ [OS89, Lemma 4.1]. The idea is now to prove a taU estimate for (a 
quantity related to) m(R) and to argue that ODe can essentiany replace m(R) by its expected 
ftlue in the bound for M(r) without invalidating Theorem 1. 

Theorem 3 There are a,b.olute cmutanu C, 6 > 0 8UCh that 

. -6m (3) 
Prob(X ~ Cm) ~ exp(nlnn) form ~ nlnnlD n. 
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Proof: Put z = lnn. Let 41 ~ 4e2, 42 = 16e, let 7 be as in Lemma 3, and redefine M(r) 
as M( r) = 47( 41mr In + 42m/z). 

For r, 1 S r S n, define the random ftriable Y,. on the paths of To 80 that Y,. (1r) = 1 if 
7(n+ m(R» > M(r) for the set R corresponding to the node of depth n - r on path 1r, and 
o otherwise. Let Y = max Y,.. 

l~,.~ft 

Let Tl be the following (n, n )-tree respeeting M and d, where d( r) = ßna.( n) and ß is as 
in Lemma 2. Let tI be any node of To, let R be the set corresponding to tI, and let w be 
the node corresponding to tI in Tl. If 7(n + m(R» S MORI), then the labels of the edges 
emanating from 10 in Tl are identica1 to the labels of the edges emanating from tI in To; if 
7(n + m(R» > M(IRI), then thelabels of the edges emanating from w are arbitrary, but 
respect M and d. Let Xl be the random variable defined by the sum of the edge labels along 
the paths in Tl. 

The following three claims imply the theorem. 

Claim 1 Prob(X ~ B) S Prob(Xl ~ B) + Prob(Y = 1) IM 4ny B ~ o. 

Claim 2 Prob(Y = 1) S exp(-m/(nz». 

Claim 3 There Ü 4 con.ttant C Iuch that 

Prob(Xl ~ Cm) S exp (-0 (n;n»)) . 
We now prove the three claims in turn. 

Proof of Claim 1: For paths 1r with Y(1r) = 0 we have X(1r) = Xl (1r). Thus 

Prob(X ~ B) S Prob(Y = 1) + Prob(X ~ B and Y = 0) 

= Prob(Y = 1) + Prob(Xl~· B and Y = 0) 

S Prob(Y = 1) + Prob(Xl ~ B) . 

I 

Proof of Claim 3: The tree Tl respeets M(r) = 4;'(41mrln+ 42m/z) and d(r) = ßna.(n). 
Now apply Theorem 1 with A = Cim ~ El~,.~ft M(r)/r and Cl sufliciently large. I 

Proof of Claim 2: This claim ja the hardest to prove. We will first define a qUantity D( R) 
related to m(R) and then show that Y(1r') = 1 implies that D(R) ja latge for seme set R on 
the path 1r. We will then use Theorem 1 to boand theprobability thatD(R) is large. 

For a line segment , E 5, let deg(,) be the number of interseetiom between , and the other 
segments in 5. Fot R ~ 5, let D(R) = E,ERdeg(,). Then, clearly, D(R) ~ 2m(R); in fact, 
D(R) counts all interaeetiona between segments in Rand segments in 5, where interseetions 
between two segments in R are counted twice. 
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Claim 4 Let ?I' be 4 path in To. I/Y(1r) = 1 then there iI ,enne ,. = 2' ~ n/2, I E IN, lUch 

that D(R) ~ 4lm,./n + 42m/z, 'fDhere R iI the ,et C01TeIpOfUling to the node 0/ depth n -,. 
on path 'Ir. 

Proof: If'Y('Ir) = .1 then there is an ,.',1 S ,.' ~ n, such that "Y(n+m(R'» > M(,.'), where R' 
is the set eorresponding to the node of depth n-,.' on?l'. Let,. = 2(101"'1. Then,. ~ n/2, smce 
"Y( n + m( R'» ~ M( ,.') far an ,.t ~ n/4. Let R be the set correIponding to the node of depth 
n -,. on path?l'. Then R' ~ R and hence "Y(n + m(R» ~ "Y(n + m(R'» > M(,.') ~ M(,.)/2. 
The claim. now foDows from. D(R) ~ 2m(R), m/z ~ n, and 42 ~ 1. I 

Claim 6 Let 1 S ,. S n. Then 

where R iI 4 random lUb,et 0/ S 0/ ftze ,.. 

Proof: For,. ~ 2n/4l there is nothing to prove smee D(R) S 2m always holds. For,. < 
2n/4l ~ n/2, we use Theorem 1, as.foDows. Consider the foDowing (n,,.)-tree T. The no des 
of T of depth i, 0 S i ~ ,., eorrespond to suhsets of S of eardinality i; the eorrespondenee is 
many to one (the eorrespondence between nodes and permutations of subseta is one to one). Ir 
node 170fT eorresponds toR' ~ S then the n-IR'I ehildrenOf17 correspond tothe sets R'u{,}, 
where, E S-R'. Also, theedge ccmnectiDg R' and R'u{,} islabe1ed with deg(,). In this way, 
the edge labela on a leaf'-t~root path sum. to D(R), where R is the subset of S corresponding to 
the leaf. Also, with d{i) = n and M(i) = 2m, the tree T respeds d and M and, by symmetry, 
each subset R ~ S with IRI = ,. corresponds to the same number ofleaves ofT. We now apply 
Theorem 1 with A = 4m,./n. Note that 1:0<,<,.-1 M(n - i)/(n - i) = 2m En-r+1<'<" 1/i 
and Ewa-r+1<'<" 1/i ~ J:-r(1/i)di S m(n/(n:"'-;'» S m(1 +,./(n -,.» S 2,./n where 1he last 
inequality foÜöws from,. ~ n/2 and m(1 + z) ~ z. 

Let B = 4lm,./n+ 42m/z. Then 

Prob(D(R) ~ B) S (e/(B/A»B/n 

S min { ezp( -4lm,./n2), (::) Cl2m/(ftC)} , 

where the first bound foDows from. B ~ 41m,./n and 41 = 4e2 and the seeond bound follows 
!rom B ~ 42m/z and 42 = 16e, and that this bound is relevant omy if z,./4n < 1. I 

We ean now eomplete the proof of Claim. 2. Let 

Then 

if ,. ~ n/z 
if ,. < n/z 

L1ocnJ-l 
Prob(Y = 1) S ~ f(i) 

1=0 
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according to the two preceding claims. Next observe that this sum can be split into two 
subSUl:m, the first is 

L: 
llos{=/2)J 

1(") ~ e-(41m/n2).(n/=). L: e-(41m/ n2 )2i 

toE[,,'.,./2) 
.. 2' f'or.ome , 

and the second is 

llos(n/_)J-1 
L I('J!) 
1=0 

(because (tl' < e-). Hence 

i=0 

Prob(Y = 1) ~ log(2z), e-4e2m/(n:) • 

5ince m ~ nzlnlnz, we have -4e2m/(nz) +lnlog(2z) ~ -m/(nz), 10 that Prob(Y = 1) ~ 
e-m/(n:). This completes the procf of Claim 2 and hence the proof of Theorem 3. I 

We now discuss the other randomized line segment intersection algorithma. Clarkaon and 5hor 
[C589] descn'be two algorithms. Both algorithms maintain the trapezoidal decomposition 
V(R) defined by the segments in R. When a segment & E 5 \ R is to be added, the two 
algorithms use dift'erent methods to find the trapezoids intersected by &. The firat algorithm 
maintains for each & E 5 \ R the set of trapezoids of V(R) interaected by & and for each 
trapezoid the set cf segments intersecting it (the so-called conflict graph.). Our methods do 
not seem to imply anything for this algorithm. The second algorithm maintains for each 
trapezoid the set of segment endpoints contained in it. When a trapezoid is split during 
execution cf the algoritbm this !ist of points is sca.nned and the points are distributed among 
the resulting trapezoids. When a segment & E 5 \ R is to be added to V(R) the set of 
trapezoids intersected by & is determ.ined by a walk through V(R) as described above for 
T(R). The wallt through V(R) takes no longer than the walk through T(R) since T(R) is 
a refinement of 1>(R). We still need to estimate the time needed to maintain the conffict 
information. 

Lemma 4 Let p E JI{J be arbitrclry and let X be the number of time" p change" trapezoidl 
duf'ing the incremental comtruction 011>(5). Then Prob(X ~ 6eHn ) ~ (e/e)e1I· for cll 
e~ O. 

Proof: We use Theorem 1 with M(i) = 6 and d(i) = 1 far an i. Consider the tree T 
representing the backwaTds execution of the algoritbm. Label the. edge connecting vertices 
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associated with sets R and R \ {z} by 1 if the segment z is incident to the trapezoid of 1)( R) 
containing p and by 0 otherwise. Then at most sn edges incident to any vertu are labeled 
1 and hence T is an (n, n }-tree respecting M and d. Also X is the sum of the edge labels 
along a random path ofT and El~~~nM(i)/i = 6En. Thus Prob(X ~ 6eEn ) ~ (e/e)t:H .... I 

Let X be the time needed to maintain the con1liet information. Then X = O(Xl + .. . Xn ) 

where Xi is the number of times the endpoints of the i-th segment ~ S changes trapezoids. 
Thus Prob{X ~ eynHn ) ~ (e/e)eH. far a suitable constant 7 and hence Prob{X ~ 7m) ~ 
(enEn/m)m/n ~ e-m/n far m ~ e2nEn• Thus Theorem 3 holds far the second algorithmin 
[CS89]. 

The algorithm ~ [BDS+92] maintains 1)(R) and the so-ca1led hiatory of the construction. It 
determmu the .et ot mpesoida inteneeted by , by determinmg an trapuoida in the history 
interseeted by I. Our results do not seem to yie1.d a taU estimate far the "nning of this 
algorithms. The expeeted space compl~ty of thia algorithm is O(n + m). It is easy to see 
that the inc:remental space cost after adding a segment , E S \ R to 1)( R) is no larger than 
the time needed to add I to T(R). Thus Theorem 3 holds far th.e space complexity ofthis 
algorithm. 

Finally, Mulmuley's fi.rst algorithm [Mul88] maintains a subdiagram of T( R) in which vertical 
rays only emanate from. the endpoints of the segments but not from the. intersection points. 
Our results do not give a taU estimate for this algorithm. 
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