MAX-PLANCK-INSTITUT

FUR
INFORMATIK

Reflection in Logical Systems

Sean Matthews

MPI-1-92-250 November 1992

an=i

INFORMATIK

Im Stadtwald
W 6600 Saarbriicken

Germany

Author’s Address
Max-Planck-Institut fiir Informatik,

Im Stadtwald, W-6600 Saarbriicken, Germany.
sean@mpi-sb.mpg.de

Publication Notes

Also in the proceedings of IMSA’92: International workshop on new models for software archi-
tecture, reflection and metalevel architecture, Tokyo, November 1992.

Acknowledgements

I would like to thank Alan Smaill and Alex Simpson for very helpful criticism of these, and other
ideas, and Fausto Giunchiglia, who encouraged me to become interested in this area in the first
place.

Abstract

I develop some of the theory of self-referential systems. I present the necessary
semantic ideas, and combine this with work in proof theory, on the necessary
properties of a proof predicate, to develop practical theories for reasoning about
such systems. I propose to use this to exploit the idea of a reflection principle
as a systematic way to extend such self-referential theories safely. I also try to
relate theoretical points to practical concerns.

Keywords

reflection, semantics, proof theory.

§1 Introduction

The theory of self-referential systems presents special problems. In this
paper I present a possible practical approach to the semantics and proof
theory of such systems.

In §2 I develop a semantics for self-referential systems. This is done
by taking the semantics of a non-self-referential system and extending it
with the facilities that characterise reflection. I also consider some of the
properties of such a system.

In §3 I look at ways that the proof theory of an ordinary (i.e., not
self-referential) system can be safely extended to include the idea of self
refence developed in the previous section. In the second part of this section
I also look at the idea of a ‘reflection principle’; this is a way that the proof
theory can be extended with new axioms not provable in the original theory,
but that on examining the semantics can be easily seen to be true. Such
reflection principles are doubly useful: first, they allow us to reason about
the system in ways that are are intuitively reasonable but not permissible in
the initial theory; second, they extend the theory so that it is able to prove
useful new facts about the system, including facts that have nothing to do
with self-reference.

In §4 I extend the discussion in §3 by considering ways of building
practical proof theories with self-referential properties and how they can be
extended with reflection principles. The previous section considered only
what was possible in theory, not what could be done in practice, and the
obvious way to extend a proof theory to be self referential is so labour
intensive and error prone to implement that it is not remotely practical.
Instead I propose that work by Lob on the necessary behaviour of such self-
referential proof facilities should be used. It turns out that Lob’s work is
not quite sufficient for present purposes, so a suitable extension is described.

In the last couple of sections I briefly look at how well my proposed
approach actually works, present some conclusions and, finally, discuss lim-
itations of current work and how it might be developed.

§2 The idea of reflection

The question of what it means to talk about reflection in a formal theory
has to be addressed as a prelude to everything else. An informal definition
is that it is the ability of a system to introspect. This is not, however, a
useful definition, thus a formal definition is presented here.

§2.1 Meaning We can think of a system % as consisting of the pair
(L£,2), where L is a language used to talk about . and 2 is a structure
that gives the meaning of terms and formulae in £'. Then we can use
2l to interpret ground terms ¢ in the language £ as referring to particular
objects; this is denoted 2A[¢t]. For instance in the system of arithmetic o/ =
(Lo, Agy), 1+ 2 and 0 + 3 might be ground terms of L., in which case
A1+ 2] and A, [0+ 3] would denote same value of three. In the same
way, a closed formula A of £ will denote either true or false; for example
A1+ 2 =0+ 3] is true, and A, [Fz(x = = + 1)] is false. This definition of
the meaning of formulae can be extended to apply also to open formulae by
saying that such a formula A is true (false) iff for arbitrary interpretations
of the variables as objects in 2[it is true (false); i.e., an open sentence can be
regarded as equivalent to its universal closure. Notice that it is not so easy
to give a definition of the meaning of non-ground terms (if x is a variable,
then what should 2, [x + 1] mean?), since there is no equivalent, for terms,
to universal closure.

A further reasonable property of systems, that will be assumed in future,
is that there is no ‘junk’; i.e., it is possible using £ to talk about every thing
in A%

§2.2 Encoding Now I consider what facilities are needed for a system
to refer to itself.

I use the language L externally to query .. If . is to be able to query
itself it needs a similar language, and the obvious available candidate for
this is £. So there has to be some equivalent of the formulae and terms of £
among the objects in 2. Assuming that this is the case, then since there is no
junk in 2 there is some way of referring those objects using L; i.e., there are
ground terms in £ which mean those objects. At the moment I do not want
to extend the language £, so I will define a notational abbreviation for this:
for any formula A or term ¢, some ground term denoting the corresponding
object in 2 is written in abbreviated form as "A™ or Tt 3.

In mathematical logic, for instance, we would call .% a model; however we can equally
think of it as a computer system, especially one where the programming language is
closely allied to the operating system (e.g., a Lisp Machine), then £ is the programming
language/system language, and 2 is the software (the interpreter/compiler, the operating
system etc.) and hardware together.

2To pursue the idea of a system as a computer further, this is equivalent to the rea-
sonable demand that the language of the operating system is sufficient so that a user is
able to inquire after any part of the system.

3Since to do this I need to be able to map the set of all formulae and terms of £ onto

§2.3 Canonical forms The encoding facility just described is not quite
enough by itself. Encoding means that the language of £ is somehow mapped
onto the objects in 2; however, it is also necessary to be able to go in the
other direction; i.e., some way of mapping objects in 2 onto terms in L.

This is slightly tricky: since there is no junk in 2 there is at least one term
in L referring to each object in it. Unfortunately there may be more than
one way; e.g., 1 +2 and 0+ 3, for example, both refer to three. The problem
is that, while A1 +2 =04 3] is true, A, [1 +27="0+37] is false —
though since the two are different strings of symbols, this is exactly what
we would expect. What we need is some distinguished way of describing in
L any particular object in 2. We call this canonical form.

Definition 1 (Canonical Form) A Canonical form for objects is is de-
fined by a function c from objects in A to terms in L such that, for any
object a, ¢ returns an object a’ which encodes the term with the meaning a.

Thus we might have c¢([1+2]) = 737, or perhaps, if the language we
are using does not have decimal notation (e.g., Peano, or primitive recursive
arithmetic), then c¢(A[1 + 2]) = "s(s(s(0)))™

§2.4 Substitution With encoding and the definition of canonical form
in hand, the next thing to consider is substitution. Given a formula A,
with one free variable x, usually only some instances of A,[t] (where t is a
ground term) are true while some are false, A, itself being neither. Consider
when A, is the formula x = 3, here the particular instance where 3 is
substituted for z is true, and all other instances are false. In order to
consider whether A, is true for a particular object a in 2 we have to build
the instance where = has been replaced by a representation (canonical form)
of a. So what is needed is a substitution facility, and this can now be
defined. Given an . which supports encoding, and has a definition of
canonical forms, . supports substitution if there is some formula suby,,,.
in £ with only w, z, y, z free, such that, given a, b, ¢, d are ground terms, then
A[subyzy=[a, b, c,d]] iff a encodes some formula A, b encodes some variable
T2, ¢ denotes the object with canonical form ¢/, A* is A,[¢'] and d encodes
A*. In future the functional abbreviation of this will be used, i.e., sub(-,,-)
where A[subyy-[a,b, ¢, sub(a, b, c)]] Thus, for instance,

Ao fsub z=17,"27,14+ 1,72 =17]

a subset of itself (i.e., ground terms referring to distinct objects in 2), a first restriction
has been placed on possible self-referential systems: that they contain an infinite number
of objects.

is true, and, importantly,
Ay [subfz=1""27,14+1,"1+1=17]

is false.

I have not yet begun to discuss how . might interpret encoded strings
(i.e., query itself), but what has been discussed above is already enough so
that we can state some of the essential properties of self-referential systems.
I mean by this that this provides sufficient tools to prove the basic result
known as the diagonalisation lemma [1]:

Theorem 1 (Carnap) Given a system . which has encoding and substi-
tution, then for any formula A in £ with only one free variable x, there is a
sentence B for which A[A,["B7| <> B].

§2.5 Reflection Now it is possible to give a formal characterisation of
reflection:

Definition 2 (Reflection) A system .7 is reflective if it has encoding and
substitution, and there is some formula P in L such that for any sentence A
in L, the formula P,["A7] — A is true. In this case P is called a reflective
predicate.

There are obvious simple reflective predicates: L is one example, since for
any sentence A, clearly 1,["A7] — A is true*. This is not, however, very
interesting. At the other end of the scale a formula P that defined exactly
the true sentences about .7, i.e., A[P[" A7 <> A], would be very interesting;
however it is easy to show that such a formula does not exist: if it did,
then by theorem 1, it would be possible to find a sentence B such that
A[-P["B7| + B], resulting in a contradiction®. However, there is a lot of
room for mannoevre in the range between the extremes of 1 and a perfect
truth predicate. The question of what interesting reflective predicates we
can find in this range is addressed next.

§3 Provability

§3.1 Theories Consider a (true) sentence VzA of .#; we do not in gen-
eral show that this is true by finding its meaning directly; to do that we
would have to check separately for every object a of . that A[A,[a]] is

1t is, of course, possible to substitute arbitrary terms into L, though any substitution
will result simply in L.
This is a form of Tarski’s ‘no truth definition’ theorem [11].

true, and there may be an infinite number of possibilities that need check-
ing. Instead, we prove that VxA in some suitable theory. Informally, a
theory of a system .7 is a finite® description of .. This notion of a theory
is now formalised:

Definition 3 (Theories) A theory for a language L is defined as either
the closure of a set of formulae (called arioms) under a set of rules” R of a
theory T". A formula A is indicated to be in T by writing tz. A. For a system
S, if lp A implies A[A] then T is said to be true for ..

Definition 4 (Extensions) A theory Ty is an extension of a theory T if
Ty D T. In particular, if T is the theory defined as the closure under rules
R of the theory T, and C is a set of axioms, then T[C] is the extension of
T defined as the closure of T U C under R.

Usually some particular theory is given as the usual way to find out true
statements of ., and this is denoted T'»». In the case of &7, for instance, the
theory T, is often taken to be Peano, or even primitive recursive, arithmetic.

There is an important difference between a theory and the system it
represents: a system cannot be defined inside itself — that is clear from the
impossibility of a perfect truth predicate. The same is certainly not true for
theories: given a theory of a suitable system, it is very easy to build it inside
that system: building a proof checking system for an arbitrary theory on a
Lisp machine is an easy programming exercise.

§3.2 An interesting reflective predicate Given the observation in
the paragraph above, for a system ., an associated true theory T is an
obvious candidate for an interesting reflective predicate. Consider the fol-
lowing definitions:

Definition 5 (Definable theories) A theory T, with language L, is de-
finable in .7 if there is some formula P in L such that A[[P.["A7] if and
only if . A. P is said to define T.

Definition 6 (Proof Predicate) Given a theory T defined by P, where T
is sufficiently expressive so that we can show b A if and only if tz. P,["A7]
then P is called a proof predicate for T'. This is abbreviated to Pro(-).

5Finite here includes schemas; for instance Peano arithmetic is a theory of arithmetic
that cannot be defined with a finite number of axioms, but can be defined using a finite
number of schemata.

"Rules are taken here to be relations between finite sets of formulae, and formulae.

Clearly, for a system . with associated definable true theory T's, Prr,(+)
is also a reflective predicate (in which case it is called sound).

Above I suggested that a Lisp Machine is an example of a system for
which it would be easy to implement a useful proof predicate. This is not
really true — the only available semantics for a Lisp machine is the machine
itself, hardware and software together, and there is no way to check against
that whether any particular (remotely ambitious) theory of Lisp machines is
true. If instead, we are willing to start with a more abstract system though,
e.g. a programming system with a well defined semantics, then it it is re-
markable how little we actually need — Godel [3] provided a sound proof
predicate for 7 taking T, to be Peano arithmetic (in fact only a fragment
of primitive recursive arithmetic is actually needed — something which any
practical programming system one can imagine using would certainly con-
tain).

A proof predicate for Ty immediately uncovers limitations with T's» as
a characterisation of .%: by theorem 1 there is a sentence B such that
A[-Prr,("B7) <» B], and Ty cannot distinguish whether B is true or
false®. This might not be a problem, since there might not be any ‘in-
teresting’ true formulae that T, cannot prove. Unfortunately this is not so:
one obvious useful class of true formulae, given a proof predicate Pr(-), is
Pr("A7) — A; but it is not the case that 7, Pry, (TA7) — A%

§3.3 Reflective extension Since T'» is the tool used to identify true
sentences of .7, it should be as complete a characterisation of .7 as possible.
But once it is possible to build a proof predicate, any characterisation is
necessarily incomplete by the results just mentioned, and in fact incomplete
in a directly inconvenient way.

However, a corollary of the observation is that that there is a general
method for building extensions to T's» that are more complete. For instance
T, = Ty [Prr,(TA7) — A] is an extension of T» that is true for ., and
7, Pro, (TAT) — A0,

This is the application of what is known as a reflection principle, defined
by Feferman [2] as follows:

Definition 7 (Reflection Principle) ‘By a reflection principle we under-
stand a description of a procedure for adding to any set of axioms C certain

8This is Godel’s first incompleteness theorem [3].

9This is a generalisation of Godel’s second incompleteness theorem, which states that
W, Prr, ("L7) —L.

107t is important to distinguish this from kr;, PTT; (TA™) — A, which is not true.

new axioms whose validity follow from the validity of axioms C and which
formally express within the language of C' evident consequences of the as-
sumption that all the theorems of C' are valid.’

There are two questions here: first, ‘what are candidates for a reflective
extension?’; and second, ‘what are the effects of doing such a thing?’

The most obvious candidate is the one that has so far been mentioned,
and which is known as the local reflection schema

(R7) Prr("TAT) — A

However Feferman has proposed a more interesting possibility, subsuming
R, called uniform reflection:

(RT) Va(Pro(sub(TA™, "2, x)) — VzA.

It is interesting to consider the differences between, and implications of, the
two: R does not obviously introduce new provable sentences. With R,
on the other hand, the fact that each individual instance A,[n] is provable
is no reason to believe that Vx A is provable, even if it is clearly true.

If we think in terms of the Curry Howard isomorphism between proofs
and types, then a useful interpretation is to see that (at least in a construc-
tive logic) a reflection principle amounts to an interpreter for the program-
ming language corresponding to the logic. We can think of R} as a function
taking a proof (program) that there is something satisfying A, and normal-
ising (executing) it, so as to recover that something. The meaning of R}
is more complex: a functional that takes a proof (program) that there is
something satisfying A for every instance of the free variable x, and returns
a function that, given any term ¢ will return something that satisfies A, [¢]'!.

§3.4 Effects of reflective extension The effect of extending a theory
with uniform reflection can be quite dramatic. For instance, given, as an
example, o7, then irrespective of what theory we use to characterise it, we
can easily find a formula that is true, but not provable in the theory. How-
ever, if we start from even a very small theory, such as primitive recursive
arithmetic (PRA), if we extend it repeatedly using reflection then for any
formula true in &/ we will eventually produce a theory where it is provable

[2].

"This interpretation suggests a formal analogue of self-referential programming lan-
guages such as, for instance, 3-Lisp [9], where the interpreter (i.e., the proof predicate) is
available as part of the language itself.

This is an impressive result, though its importance should not be over-
stated, since in order to get to some of the more ‘difficult to prove’ true
sentences we need to make use of ‘transfinite’ extensions, and the precise
way that the theory is extended is no longer clear, even though the method
appears, at first sight, systematic. However even finite extensions can pro-
duce large jumps in the power of a theory to describe its associated system.
The result of single extensions using uniform reflection have been analysed.
For instance PRA[R},,] = PA, and PA[R},] provides induction over the
ordinal €, [5].

At least as important as any gross increase in the strength of the proof
system is simply that reflective extension allows us to make proper and
intuitive use of reflective facilities'?.

§4 Implementation

If a proof predicate is available, it can provide interesting facilities, but
the question of how to make it available still has to be addressed. Godel’s
method in [3], for instance, is not practical: it is difficult to imagine actually
doing, in a proof development system, what Godel describes even once, for
arithmetic, never mind for every particular case. Even if we allow a more
practical programming language than pure arithmetic, it does not become
much more practical. Some other method is needed.

As alternative to actually building a proof predicate, it might be possible
to find a theory that captures the necessary behaviour of any such predicate.
This is the idea that will be considered now.

§4.1 The derivability conditions A characterisation of the properties
of the proof predicate was first attempted by Bernays, in his proof of the
second incompleteness theorem [4]. However, his list of derivability condi-
tions was designed for a particular proof, not as a proper characterisation
of the proof predicate. This was done by Léb [6], who gave an alternative
list of three derivability conditions. If Pr(-) is a proof predicate then:

(D) FA implies + Pr("A7)
(D») +Pr("fA— B") — Pr("A") — Pr("B")
(D3) FPr(TA7) — Pr("Pr(TAM)).

12Tn fact it is possible to argue that arguments about how strong a proof system is are
not, in practice, very important, since if a function cannot be shown to terminate using
facilities already available in PRA, then it is either not guaranteed to terminate (which
does not mean it is not useful), or unlikely to be very practical anyway.

These are obvious properties that a proof predicate should have. They do
not, however, describe completely its behaviour; for this it is necessary to
add Lob’s theorem:

(LT) FPr(TAT) = A iff F A

This list of properties suggests that Pr(-) can be interpreted as O in
a modal propositional logic where the correspondents of the derivability
conditions and Lob’s theorem are used as the defining rules and axioms
(call this theory PRL — for PRovability Logic). Then Solovay has shown
[10] that if an interpretation of formulae in the language of arithmetic is
defined to be a translation * where

Px (P atomic) some sentence of arithmetic
1% L
(AoB) = (A%)o(B)
(OA)x = Pr("Ax")

(where o € {A,V,—1}), then PRL defines exactly the sentences provable in
every formulation of primitive recursive arithmetic, * where Pr(-) is a proof
predicate.

Since the derivability conditions define the provable schemata for the
proof predicate, would it not be possible to define a proof predicate using
them? The problem is that they describe the behaviour of Pr(-) applied to
ground terms and a slightly more general characterisation is needed if uni-
form reflection is to be implemented. Parametrised forms of the derivability
conditions are needed, and these are defined as follows:

(DY) FA implies + Pr(TA.[f]7)
(D)) F Pr(T(A— B),[t]") —

’ Pr("A,[t]7) = Pr("B,[t]")
(D5) = Pr(TALE]T) = Pr("Pr("Ag[Z]). [£]7)

where " A, [{]™ is an abbreviation for sub("A™,"z7,t), and in D/ the variable
x does not have to occur free in A (if it does not, then substitution for it is
simply an identity operation). Lob’s theorem could be parametrised in the
same way, but it turns out that it can be derived from the others given the
quotation and substitution facilities already defined, and the parametrised
forms of the derivability conditions.

§4.2 Substitution and Encoding Before defining a proof predicate
using even the modified form of the derivability conditions, I have to deal
with a further problem: the theory has to provided with some way of dealing
with encoded formulae and terms, and (more tricky) I have to define the
behaviour of substitution for non-ground terms. In §2.4 I discussed the
meaning of sub(-,-,-) in a system; however that discussion did not consider
the proof theory of substitution — tools for reason about it. That is what
I will do now.

Consider the behaviour of sub("A™,"z7,t) where ¢ is a ground term
denoting a. In a suitable true theory we can show this to be equal to "A*
where a has canonical form ¢’ and A* is A,[t']. To extend this discussion to
non-ground terms, definition 1 has to be generalised.

Definition 8 (Non-Ground Canonical Form) In a true theory, a non-
ground term tgp.. is in canonical form if, given any ground canonical terms
ti,ta, ..., the ground term tu,. [ti,ts,...] is the canonical form of the object
it denotes.

So, for the theory PRA, s(s(z)) would be in canonical form (at least
for one of the common ways of representing integers). On the other hand,
s(z)+ s(y) is not in canonical form; this is, though, equivalent to s(s(z+v))
— a canonical form into which has been substituted the term x + y.

Now I can axiomatize the behaviour of sub(,-,-). If ¢/, is in canonical
form, then for any terms t,t,, ...

Fsub(TAY T2t [t ta, .])
= sub(--- (sub(sub("A* ", Tat1), b ts),...) .. .)

where A* is A,[t/,]. Other axioms are equally easy to provide.

I can then provide encoding straightforwardly: I simply extend the def-
inition of £ with the square quotation marks that I have been using up to
now as an abbreviation mechanism, then £* is the smallest extension of £
closed under the rule that if A (or ¢) is a formula (or term) of £* then "A™
(or t7) is a constant term of L£*.

§4.3 Reflective extension Now a proof predicate can be added to the
theory. Notice that the derivability conditions on the proof predicate cannot
be considered simply as axioms defining its behaviour: D] is a rule, not an
implication — if it is written as an implication it reads as a statement of
completeness for the theory that is not even true, never mind provable. The
other two however, can be used as axioms.

10

Given a theory T defined as the closure of a theory 7" under rules R, it
is possible to extend this to a theory with a proof predicate as follows: the
language £ of T' is extended to L* as described above and with the addition
also of a new one place predicate Prr.(-). Then if Az, is the set of axioms
for substitution and Axp,.,. is the axioms for D) and Dy, then there is still
the question of how give Prs(-) the behaviour required by D7. This is done
by adding a new rule to the system. So the extension T™* of T' with quotation,
substitution and a predicate Pry.(-) defined by the derivability conditions,
is T"U Azgypy U Az p,.,. closed under RU {{A} — Prp.(TA™)}.

T* is (hopefully) a conservative extension of T, that is 7™ proves nothing
(that does not involve Pry«(-)) that T cannot already prove. Now we have
to add a reflection schema to the theory as a new class of axioms. However
we cannot do this simply by adding new axioms to 7™, to get the theory
T*[R%.], since by D) then e (r) Pro.(TRE.T) which is not true'®. So at
the same time as the reflection schema is added to the theory, D’ has to be
taken out. Thus T is defined as the closure of T* U Rf. under R.

§4.4 The truth of Tt An important issue is whether 7" is true or not.
We cannot just throw new axioms into a theory as we feel like it and expect
that the result will be consistent, nevermind meaningful; especially when
we are discussing an area as subtle as self-reference. Unless the theory I
have produced is not only consistent, but also an accurate (if not complete)
description of the system, then there is no point in using it.

However, I can show that the new theory is true, and therefore consistent,
at least for systems . with theories T'e» O PRA, as follows: Assume T is a
true theory for ., and T' > PRA. Then by [3] I can can define encoding,
substitution and a proof predicate P in T} i.e., so that A[P["A7]] if and
only if iz A and 7 P["A™] if and only if i A. Thus T is also true, since
the new constants for the quoted terms in L£* can be interpreted as the
Godel numbers of the appropriate terms and formulae, the new substitution
operator by the defined substitution function since the definition satisfies
the axioms, and finally, by Lob’s results, the rules and axioms for Prr- are
satisfied by P. Thus T* is a true conservative extension of T'. In the same
way, for any A, 7+ A implies 7 z1) A, thus T is also true.

And since any programming facility that we are likely to encounter in
practice easily includes PRA, this proof is sufficent for most practical ap-
plications.

131t is another instance of the second incompleteness theorem.

11

§5 Non-Conservativity

Having suggested a way to extend a theory with a proof predicate, while
avoiding the work of the usual approach, I have still to show that this pro-
duces the wanted non-conservative effects. But it is quite easy to show that
the following result holds:

Theorem 2 The theory PRA" contains PA.

In fact PRAY and PA prove exactly the same theorems (the details, includ-
ing the issues involved in a machine implementation, are in [7]).

§6 Conclusions

I have proposed a method for adding a proof predicate to a theory that is
based on the necessary behaviour of such a thing, rather than being a ‘Godel-
style’ encoding of the proof theory, and I have shown that this captures many
of the properties of a Godel-style proof predicate, at least for simple theories.

The advantages of my approach seem to be severalfold: it provides a
uniform method for developing the theory of a self-referential system by
starting from a simple non-self-referential system, and the facilities that are
provided are equally usable by the system itself, thus providing a safe logical
foundation for systems to ‘reason about themselves’. The strengthening of
the theory that occurs is an substantial further benefit, offering the pos-
sibility of shorter proofs, and proofs of previously unprovable facts. This
strengthening means that the initial theory can be very simple, since it can
be strengthened to whatever level is necessary by iterating the reflective ex-
tension, so that we can avoid the work involved in having to build theories
that try to capture as much as possible of the properties of a system all at
once.

Finally, this approach can be used to provide an interesting formal ana-
logue, if we consider proofs as programs, of the idea of a self referential
programming language/system. And this can offer insights into the ex-
pected behaviour of such a system. This especially applies if we want to
provide a machine with a self-referential facilities: in the same way that
we have to provide a machine with formal tools for reasoning about, say,
uncertain information if we want it to be able to treat such information in
a sophisticated manner, we have to provide a machine with formal tools for
self-referential reasoning if we want it to be safely/sensibly self-referential.

There remain obvious questions though: a theory like PRA can easily
be extended to PA, but what is the effect of iterated extensions compared
with using the full Godel style approach.

12

One apparent criticism of the approach is that it does not allow the same
sort of meta-level reasoning that is possible with a ‘proper’ proof predicate:
a Godel style proof predicate for a theory can be used for much more general
meta-theoretic applications. To do this, however, a full proof predicate really
is needed; an abstraction of it is no longer enough. I tend to think that a
better approach here is to use a special generic meta-theory (or ‘framework’),
in which the language, axioms and rules of the object theory can be described
formally, and which is designed specifically for the purpose of doing meta-
theory. This approach is discussed in [8], and [7] where meta-theoretic and
reflective reasoning are combined.

Another criticism is that the development here concentrates on systems
that are close to the traditional mathematical idea of such things, i.e., state-
less; this is fine as long as we are thinking of functional or applicative pro-
gramming systems such as pure Lisp or pure Prolog. However it is an unfor-
tunate but unavoidable fact that the real world involves, a lot of the time,
a changing state; if we want to be able to supply such systems with intro-
spective facilities, then we need some idea of a changing state too. Thus it
would be very interesting to consider how the ideas here can be applied to
systems based on temporal, rather than classical or constructive logics.

Addendum A second paper is planned as a followup to this work; it will
look at some of the questions raised and try to answer them. The authors
will be me and Alex Simpson, and it will appear as MPI-93-201.

References

[1] Rudolf Carnap. Logische Syntaz der Sprache. Julius Springer, Vienna,
1934.

[2] Solomon Feferman. Transfinite recursive progressions of axiomatic the-
ories. Journal of Symbolic Logic, 56:259-316, 1962.

[3] Kurt Godel. Uber formal unentscheidbare Satz der Principia Mathe-
matica. Monatshefte fiir Mathematik und Physik, 38:173-198, 1931.

[4] David Hilbert and Paul Bernays. Grundlagen der Mathematik, Band
2. Julius Springer, Berlin, 1939.

[5] Georg Kreisel and Azriel Lévy. Reflection principles and their use for
establishing the complexity of axiomatic systems. Zeitschrift fir Math-
ematische Logik, 14:97-142, 1968.

13

[6]

[7]

Martin Lob. Solution of a problem of Leon Henkin. Journal of Symbolic
Logic, 20:115-118, 1955.

Sean Matthews. Metatheoretic and Reflerive Reasoning in Mechanical
Theorem Proving. PhD thesis, University of Edinburgh, 1992.

Sean Matthews, Alan Smaill, and David Basin. Experience with F'S
as a framework theory. In Gerard Huet and Gordon Plotkin, editors,
Logical Frameworks II. Cambridge University Press, 1992. (Provisional
title; to appear).

Brian Cantwell Smith. Reflection and Semantics in a Procedural Lan-
guage. PhD thesis, Massachusetts Institute of Technology, 1982.

Robert Solovay. Provability interpretations of modal logic. Israel Jour-
nal of Mathematics, 25:287-304, 1976.

Alfred Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen.
Studia Philosophica, 1:261-405, 1936. English translation, The concept
of truth in formalised languages, in [12].

Alfred Tarski. Logic, Semantics, Metamathematics. Oxford University
Press, 1956.

14

