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Abstract

In this paper I establish a link between K1L-ONE-based knowledge representation
concerned with terminological representation and the work of P. Suppes (1976,
1979, 1981) and M. Bottner (1985, 1989) in computational linguistics. T show
how this link can be utilised for the problem of finding adequate terminological
representations for given information formulated in ordinary English.
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1 Introduction

KL-ONE (Brachman and Schmolze 1985) is a knowledge representation system that R. J.
Brachman started developing in the mid-seventies. KL-ONE has many variants. Examples
are KRYPTON (Brachman, Gilbert and Levesque 1985), NIKL (Schmolze and Mark 1991),
LOOM (MacGregor 1991), BACK (Nebel and von Luck 1988), cLassiC (Borgida, Brach-
man, McGuinness and Resnick 1989) and XRZS (Baader and Hollunder 1991). Early
research focussed on providing formal syntactic and semantic definitions for the different
systems (in accordance with the criticism of Woods (1975), Hayes (1977) and McDer-
mott (1978)). This led to the discovery that inference in NIKL (Patel-Schneider 1989)
and KL-ONE (Schmidt-Schaufl 1989) is undecidable. The debate on the tradeoff between
tractability of inference and expressiveness of language in, e.g., Levesque and Brachman
(1987) and Doyle and Patil (1991) initiated the analysis of the computational complexity
of the family of attributive concept description languages, also called AL-languages. The
investigations of Schmidt-Schaufl and Smolka (1991), Donini, Lenzerini, Nardi and Nutt
(1991) and also Nebel (1988), among others, give some indication on the effect that includ-
ing different syntactic operators in a representation language has on the computational
cost of inference. These investigations show that tractability can only be achieved at the
cost of considerably reducing the expressiveness of the representation language. How-
ever, expressively limited systems don’t seem to be very useful in practice. According to
Doyle and Patil (1991) and Schmolze and Mark (1991) users tend to find expressive but
intractable systems more useful than systems that are tractable but expressively impov-
erished. Especially Doyle and Patil (1991) argue against the bias towards computational
tractability. Instead they argue in favour of expressiveness of language. After all, usually
a domain of application is specified in ordinary natural language. And natural language
is expressively very powerful.

Reflecting on the history of knowledge representation and discussion future directions
in research Brachman (1990) notes that natural language specific issues have received less
attention than they should have. He says (p. 1091):

It would not hurt at this point to go back and spend some time thinking
about the relation of KR [knowledge representation| to natural language, for
example—after all, that was in part responsible for the birth of the field in
the first place.

In this paper I do just that. I relate terminological representation to natural language
and show how the work of P. Suppes (1976, 1979, 1981) and M. Béttner (1985, 1989) in
computational linguistics can be utilised.

The setting of my discussion is an algebraic one. In Brink and Schmidt (1992), Schmidt
(1991) and Brink, Britz and Schmidt (1992) we showed that terminological representation
languages can be interpreted algebraically. The algebras we use are Tarski’s (1941) re-
lation algebras, Brink’s (1981) Boolean modules and new algebras called Peirce algebras.
These algebras are closely related to the algebras Suppes (1976) uses in his semantic
analysis of a fragment of the English language. Suppes presents a system for translating
natural language phrases and sentences as relation algebraic expressions. As these can
be associated with terminological expressions I propose that the work of Suppes and also
Bottner be taken as a formal basis for finding adequate terminological representations
for domain information formulated in English, and vice versa, for finding the English
formulations for terminological expressions.

In Section 2 I give a brief account of the relation algebraic semantics of terminological
representation languages as presented in Brink and Schmidt (1992), Brink et al. (1992)



Figure 1: Algebraic Semantics for terminological constructs
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and Schmidt (1991). In Section 3 I outline the relation algebraic analysis of the English
language by Suppes (1976, 1979, 1981) and Bottner (1985, 1989). And in Section 4 I show
by way of examples how their analysis is relevant to terminological representation.

2 Terminological Representation and Relation Algebra

KL-ONE-based knowledge representation systems have two components: a TBox and an
ABox. Each component has its own representation language and inference system. Ter-
minological representation is concerned with the TBox which contains information defined
as interrelationships among concepts or roles. Concepts are interpreted as sets and roles
as binary relations. In this paper I denote concepts by C and D and roles by R and S.
The ABox contains assertional representations. It contains information about elements
of concepts and roles.



The different terminological representation languages distinguish themselves by the
syntactic operators they provide for constructing complex concept and role descriptions.
In column one of Figure 1 I list a subset of operators available in the language U of Patel-
Schneider (1987) and the language L of Woods and Schmolze (1992). These are very
expressive terminological languages. Most terminological languages like the AL-languages
provide only a selection of these operators.

Concepts can be interrelated by the subsumption relation. Subsumption is interpreted
as the subset relation (or, depending on the point of view as the superset relation). I write
C C D if Cis subsumed by D. Concepts can also be defined to be equivalent or disjoint.
Two concepts C and D are said to equivalent, written C = D, if they mutually subsume
each other. Disjoint concepts C and D, specified with (disjoint C D), are interpreted as
disjoint sets. Interrelating concepts by subsumption, equivalence and disjointness is often
limited in some way. The left hand side of a subsumption or equivalence specification
is commonly restricted to be a primitive concept, that is, a concept not defined as a
compound concept term. Also, usually only primitive concepts can be defined to be
disjoint. For roles subsumption, equivalence and disjointness are defined similarly.

I now discuss the algebraic semantics. An interpretation of a terminological represen-
tation language is given as usual by a pair (U,-Z). U is the domain of interpretation and -~
is the interpretation function, mapping any concept C to a subset of U (i.e., to an element
in 2V, the powerset of U) and any role to a binary relation over U (i.e., to an element
in 2U2). I abbreviate C* and RZ by C and R, respectively. Now, instead of defining the
meaning of the terminological operators model-theoretically (in terms of first-order logic),
as it is usually done, Brink and Schmidt (1992) and Brink et al. (1992) show that the
semantics can be equivalently defined in terms of algebraic operations. The alternative
algebraic semantics is given in the second column of Figure 1 in which each terminological
operator is associated with a set-theoretic operation. The Figure is subdivided according
to the different kinds of operators with which new concepts and roles arise from primitive
ones:

Concept-forming operators on concepts: These include the designated concepts top
and bottom (here regarded as nullary operators) and the conjunction, disjunction, and
negation operators. Each is associated with a set-theoretic constant or operation. Namely,
the top concept with the domain of interpretation U, the bottom concept with the empty
set (), conjunction with intersection N, disjunction with union U and negation with comple-
mentation ’ taken with respect to U. Just as the set-theoretic operations are characterised
in Boolean algebras, their corresponding terminological operators are also characterised in
Boolean algebras. For the set of concepts is partially ordered with respect to the subsump-
tion relation in a concept taxonomy. If each pair of concepts has a meet and a join (that
is, both their conjunction and disjunction exist) the concept taxonomy forms a lattice. It
forms a Boolean algebra if each concept has a complement (that is, the negation exists)
and meet and join distribute over each other.

The conjunction operator is available in most terminological systems. But few termi-
nological representation systems provide also the disjunction and negation operators.

Role-forming operators on roles: Even fewer terminological representation languages
provide conjunction, disjunction and negation also for roles. As for concepts the Boolean
operators on roles are interpreted by their Boolean counterparts, this time applied to
binary relations. Other operators on roles forming new roles are inverse and composi-
tion. For these, the respective relation-theoretic counterparts are the converse relation
(denoted ) and relational composition (denoted ;). Given two binary relations R and
S the converse of R is defined by



(1) R™=A(zy)|(y,z) € R}

and the composition of R and S is given by
(2)  R;S5=A{(z,9)[(F)[(x,2) € R& (2,y) € 5]}

The designated role self has the identity relation Id over U as relation-theoretic counter-
part. The characterising algebra for binary relations interacting in this way is Tarski’s
(1941) relation algebra. A relation algebra is a Boolean algebra endowed with a nullary
operation (the identity), a unary operation (the converse operation) and a binary op-
eration (the composition) satisfying certain equational axioms. A formal definition of
relation algebra can be found in introductory material by Jénsson (1982) and Maddux
(1991a, 1991b). Relation algebras provide then also a characterisation of role-forming
operators on roles.

Concept-forming operators on roles: New concepts also arise through interactions
with roles. The commonly available operators of this kind are existential restriction some
and universal restriction all. (Commonly used alternative notations for (some R C) and
(all R C) are 3R:C and VR:C, respectively.) These operators have algebraic versions
as well. The algebraic version of the some operator is the Peirce product (denoted :).
Applied to a relation R and a set C the Peirce product yields the set

(3) R:C={x|(3y)(z,y) € R&yecCl}.

The algebraic version of the all operator is a variant of Peirce product (called involution).
Namely:

4)  (R:C") = {z|(VW)[(z,y) e R=y € C]}.

Algebras that axiomatise the Peirce product are Boolean modules. A Boolean module
is a two-sorted algebra of a Boolean algebra and a relation algebra endowed with an
operation (corresponding to Peirce product) from the relation algebra to the Boolean
algebra satisfying certain equational axioms. A formal definition can be found in Brink
(1981) where Boolean modules are introduced. This context also provides an algebraic
characterisation for the some and the all operator. Other concept-forming operators on
roles that can be accommodated in Boolean modules are role value maps and structural
descriptions. For more details, see Brink et al. (1992) and Schmidt (1991).

Role-forming operators on concepts: Concepts and roles can also be combined to
form new roles. An example of such a combination is role restriction. Its algebraic
version is range restriction (denoted |). The restriction of a relation R to a range C' is
given by:

®) RIC={(zy)|(z,y)e R&yecC}.

Algebras formalising this kind of interaction, in particular, range restriction and also role
restriction, are Peirce algebras which are introduced in Brink et al. (1992). A Peirce
algebra is a Boolean module with an additional operation from the Boolean algebra to
the relation algebra satisfying certain equational axioms. Other terminological operators
that can be accommodated in this context are the operators domain and range of KL
(Woods and Schmolze 1992).

The corresponding relationships to the subsumption ( C ) and the equivalence ( =)
relations for concepts (respectively for roles) are inclusion and equality in Boolean algebra
(respectively in relation algebra). Disjointness corresponds to an inequality of a meet with
the zero element (interpreted as the empty set) of the relevant algebra.



Figure 2: Grammatical derivation trees for male vegetarian and John loves Mary
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3 Natural Language and Relation Algebra

In (1976) and other papers (1973, 1979, 1981) Suppes aims at a systematic analysis of
the model-theoretic semantics of fragments of natural language. In Suppes (1979, p. 49)
he says:

The central idea is that the syntax of first-order logic is too far removed from
that of any natural language, to use it in a sensitive analysis of the meaning
of ordinary utterances.

Instead he proposes an algebraic approach, using so-called extended relation algebras. An
extended relation algebra £(U) over a domain U (a non-empty set), is a subset of 2V U2V”
closed under the operations of union, complementation, converse, relational composition,
image and domain restriction. Complementation of sets is taken with respect to U and
complementation of relations with respect to U?. The image of a relation R from a set C
is the set

(6) R”C={y[(@)[(z,y) e R&x €T},

or equivalently, R~ :C. The domain restriction of a relation R to a set C is given by
R~ | C. Extended relation algebras are of model-theoretic nature. As both image and
domain restriction can be expressed with Peirce product and range restriction extended
relation algebras provide standard models for Peirce algebras.

With extended relation algebras Suppes characterises the semantics of English lan-
guage sentences and phrases. The syntax of natural language is defined by a phrase
structure grammar G. A grammar is specified in terms of a set of production rules like,
for example:

(7) (i) S— NP+ VP

(i) VP — TV + NP

(ili) NP — Adj+ N

(iv) NP — PN.
The symbols S, NP, VP, TV, Adj, N and PN denote ‘start symbol’, ‘noun phrase’, ‘verb
phrase’, ‘transitive verb’, ‘adjective’, ‘noun’ and ‘proper noun’, respectively. Accordingly
the syntactic structure of the phrase male vegetarian and the sentence John loves Mary
are represented by the respective syntactic derivation trees of Figures 2.

Suppes defines the semantics in two steps. First, he extends the grammar G to a
so-called (potentially) denoting grammar. This is done by associating each production
rule of G with a semantic function. The denoting grammar then determines the meaning
of phrases and sentences. For example, the semantics of the phrase male vegetarian and
the sentence John loves Mary are determined by the following semantic associations of



Figure 3: Semantic trees for male vegetarian and John loves Mary
NP: [male] N [vegetarian]
Adj: [male] 1‘\1: [vegetarian)

male: [male] wvegetarian: [vegetarian]

S: [John] C [love]: [Mary]

/\

N‘P: [John] VP: [love] : [Mary]
PN: [John] TV: [love] N‘P: [Mary]
PN: [Mary]

John: [John]  loves: [love] Mary: [Mary]

the above production rules.

(8) Lexical Production Rule  Semantic Association
(i) S— NP+ VP [NP] C [VP]
(ii) VP — TV + NP [TV]: [NP]
(i) NP — Adj + N [Adj] N [N]
(iv) NP — PN [PN]

The square brackets indicate the interpretation function. If the adjective male is inter-
preted as the set of male people and the noun vegetarian as the set of vegetarians, the
intersection [male] N [vegetarian] defines the meaning of male vegetarian. This can also
be read off at the root of the annotated grammatic derivation tree for male vegetarians
in Figure 3. This tree is called a semantic tree. It is derived from the syntactic derivation
tree by annotating each node with the appropriate semantic assignment. According to
(8) (ii) the verb phrase loves Mary is interpreted as the set of lovers of Mary, given by
the Peirce product [love]: [Mary|. The interpretation [love] of loves is a binary relation
and the interpretation [Mary| of Mary is a singleton set. (In (ii) Suppes actually uses a
variant of the image operation, which coincides with Peirce product.) The semantics of
the sentence John loves Mary is therefore given by:

(9) [John] C [love]:[Mary).

It is also given by the relevant semantic tree in Figure 3. This illustrates how meaning
is assigned to a phrase or sentence by converting its grammatic definition, viewed as a
grammatic derivation tree, to a semantic definition, viewed as a semantic tree, via the
denotational assignments to the production rules which determine the syntax of the phrase
or sentence.

In the second step a model structure (U, v) is defined for the phrase structure grammar
G. U is any non-empty set regarded as the domain or universe and v, called a valuation, is
a (partial) function from the vocabulary of terminal symbols in G to the extended relation
algebra £(U). That is, v maps terminal symbols to either sets in 2V or binary relations
in 2U°. As we have seen in the two examples above, nouns and adjectives are mapped to



subsets of U, with proper nouns being mapped to singleton sets, and (transitive) verbs
are mapped to binary relations.

This algebraic approach has the advantage that it is free of variables and quantifiers
over variables. Consequently, according to Suppes (1981, p. 405) the analysis of the
semantics of natural language fragments can be carried out directly in English, avoiding
the translation into another language (e.g., into the first-order language). Furthermore, it
allows the development of a syntactic derivation system for direct inference in the English
language. I won’t elaborate on this system, but see Suppes (1981).

Since Suppes and Bottner translate English language phrases and sentences as alge-
braic expressions which, as is evident from Section 2, can be associated with terminologi-
cal expressions, their work is relevant to the problem of finding adequate terminological
representations for information formulated in English and vice versa, for finding English
translations for terminological expressions.

In (1976, 1981) Suppes also demonstrates how phrases and sentences with quantifier
words (such as all, some and no) in object and subject position are interpreted in the
framework of extended relation algebras. For example, the following verb phrases

(10) Verb phrase Algebraic interpretation
(i) eat all fruit ([eat]: [fruit])’
(ii) eat (some) fruit [eat] : [fruit]
(iii) eat no fruit ([eat] : [frudt])

are interpreted by variants of the image operation, here appropriately translated as vari-
ants of Peirce product. When each of these verb phrases is combined with quantified
subjects the semantics of the resulting sentences is of the form similar to that of the
sentences

(11) Sentence Algebraic interpretation
(i) Some persons eat (some) fruit — [persons| N [eal]: [fruit] # 0

(ii)  All persons eat (some) fruit [persons| C [eat]: |fruif]
(iii)  No person eats (some) fruit [persons] N [eal] : [fruit] = 0

This gives rise to nine forms of quantified sentences. In (1979) Suppes investigates the
algebraic interpretation of negation in verb phrases. The meaning of negated verb phrase
like do not eat (some) fruit is ambiguous and depends on which word is stressed. For
example, if the word eat is stressed the interpretation is [eat]”: [fruit]. Or, if the word not
is stressed it is ([ead] : [fruit])’. In (1981) Suppes also defines the semantics of sentences
that begin with a demonstrative verb, e.g., there as in There are some birds and There are
no birds, and of sentences in which a noun is modified by a relative clause as in Triangles
that cover squares that are projections are isosceles.

Of particular interest to terminological representation (in particular to the interpre-
tation of the all construct) is the semantics of phrases of the form

(12) eat only fruit.
Bottner (1985) interprets this phrase by [eat] : [fruit] — [eal] : [fruit]’, or equivalently,
(13) [eat]:[fruit] N ([eat]: [fruit]") .

As Bottner pointed out in (1990), ([eat]: [fruit]’)’ alone inadequately interprets (12). If
eat only fruit were to be interpreted as ([eat]: [fruif]’)’ one would not be able to deduce
that persons who eat only fruit are also persons who eat (some) fruit, since in general



(14) ([eat] : [fruit]) < [eat]: [fruit].

For suppose [fruit] is empty. Then [eat] : [fruit] is empty, but ([eat] : [fruit]’)’ is not neces-
sarily empty, since ([eat] : ') = ([eat] :U)" = (dom([eat]))’. (For R a relation, dom(R)
denotes the domain of R.) We can show the following:

(15)  ([eat] : [fruit]’)’ C [eat]:[frui] iff dom([eat]) = U.

But to decree that the domain of each relation must be the entire universe of discourse
does not seem feasible. For example, we would not want to include the instances of [fruit|
in the domain of [eaf]. However the interpretation (13) suggested by Bottner is contained
in [eat] : [fruit], ensuring that persons eating only fruit also eat some fruit.

In the paper (1985) Bottner not only analyses the semantics of sentences like John loves
only Mary with only in object position, but also of sentences like Only John loves Mary
and also like All boys except John love Mary. In other papers (1989, 1992) he investigates
the algebraic interpretation of anaphoric expressions and English imperatives. Examples
of anaphoric expressions are John loves himself, John and Mary like each other and John
likes his toys. In his most recent work (1991) he also accommodates sentences with verbs
in passive form, which he interprets as converse relations.

4 Terminological Representation and Natural Language

Finding adequate terminological representations for the fragment of the English language
Suppes and Bottner accommodate in the relation algebraic framework is now straightfor-
ward. Words and phrases that Suppes interprets as sets can be represented as concepts.
And those he interprets as binary relations can be represented as roles. Take for exam-
ple the phrase male vegetarians. According to Figure 3 its algebraic representation is
[male] N [vegetarian] which according to Figure 1 translates to (and male vegetarian) with
male and vegetarian denoting concepts respectively representing the set of males and the
set of vegetarians.

As subset relations correspond to subsumption relations and Peirce product corre-
sponds to a some term, a terminological representation of the sentence John loves Mary
as interpreted in (9) is

(16) John L (some love Mary).

Recall that proper nouns are mapped to singleton sets. Accordingly, John and Mary
denote concepts interpreted as singleton sets. As an aside, (9) can also be represented as
an ABox statement. Namely:

(17) (assert-ind John Mary love).

This representation is equivalent to the terminological representation in (16). Here, John
and Mary denote ABox elements, that is, elements of concepts. In general, an assertional
statement of the form (assert-ind a b R) is interpreted as (a,b) € R, where a,b € U are
the interpretations of the ABox elements a and b.

Terminological formulations for the quantified verb phrases in (10) are:

(18) Verb phrase Terminological representation
(i) eat all fruit (not (some (not eat) fruit))
(ii) eat (some) fruit (some eat fruit)
(iii) eat no fruit (not (some eat fruit))



Observe that the algebraic interpretation (10) (i) of verb phrases quantified with all is not
the variant (4) of Peirce product that is associated with the all operator. For representing
verb phrase of this form we need a representation language that provides for roles to be
negated. With the exception of the languages &/ and KL most terminological languages
(including ALC, BACK, CLASSIC and KRZS) don’t.

The all construct is useful for representing verb phrases such as eat only fruit. Accord-
ing to the semantics given in (13) a linguistically adequate terminological representation
is the conjunction:

(19) (and (some eat fruit) (all eat fruit)).

Quantified sentences like those in (11) can be formulated as subsumption, equiva-
lence and disjointness relations on concepts. The terminological representations for (11)
are:

(20) Sentence Terminological representation
(i) Some persons eat (some) fruit  (and persons (some eat fruit)) # L
(ii)  All persons eat (some) fruit persons C (some eat fruit)

(iii)  No person eats (some) fruit (disjoint persons (some eat fruit))

The inequality in (i) is strictly speaking not a well-formed terminological definition. How-
ever, for any concept C, C # | is semantically equivalent to

(21) (some V C) =T.

This follows as for any set C the following is true: C' # () iff U?:C = U. Hence we may
use the inequality of (20) (i) as an abbreviation for

(22) (some V (and persons (some eat fruit))) = T.

The work of Suppes and Bottner can also be utilised to provide valuable assistance
for the reverse translation process from given terminological expressions (formulated with
those operators that have algebraic associations), into their English formulations. For
example, given the terminological statement

(23) (disjoint boys (not (some love girls)))
its algebraic representation is
(24) [boys] N ([love] : [girls]) = O

which translates to No boy loves no girls according to Suppes’ denoting grammar. Note
that there are algebraic representations without corresponding natural language formu-
lations. Examples are algebraic representations of the form [noun]’ and [verb]: [noun]'.
Thus, not every terminological expression has a English translation in the fragment anal-
ysed by Suppes and Bottner.

Nevertheless, I believe the work of Suppes and Bottner provides a useful link between
natural language and terminological representation. Their work provides a formal basis
for simplifying the translation process between representational expressions and natural
language. It shows the extent to which English formulations can be expressed with the
set of terminological operators listed in Section 2. And it contributes to a better under-
standing of the different terminological operators. For example, from a linguistic point
of view the all construct is often used incorrectly. Here is a typical example from the
literature. In Patel-Schneider (1990, p. 14) the term

(25) (and person (all child lawyer))



is said to define ‘the class of people whose children are all lawyers’. This description is
ambiguous. People whose children are all lawyers could refer to people who are parents of
all lawyers, that is, people who for each person who is a lawyer are parents of that person.
Or it could refer to people who are parents only of lawyers. The intended meaning is
the latter. But according to Bottner, the representation (25) is not adequate. See the
discussion on the semantics of eat only fruit in Section 3 according to which a linguistically
adequate representation of the set of ‘people who are parents only of lawyers’ is

(26) (and person (some parent lawyer) (all parent lawyer)).

Note that the assumed reading of the role child in (25) is different from the reading I
assume in this paper. In (25) child represents the relation ‘has as child’ (and not ‘is a
child of’) whereas in (26) parent represents ‘is a parent of’.

I conclude with some loose observations. First, I believe the translation processes
from natural language statements of the kind accommodated in the algebraic context to
terminological representations could be automated. I envisage an implementation with
three components. Given some natural language expression one component computes the
syntactic structure (in the form of a syntactic derivation tree, for example) in accordance
with a phrase-structure grammar. The second component then constructs the semantic
representation (in the form of a semantic tree, for example) thus deriving the algebraic
representation. And in the third component the algebraic representation is transformed
into a terminological representation. Of course, as natural language is ambiguous the
derived terminological representations needn’t be unique. Negated verb phrases, for ex-
ample, have more than one possible representation. The reverse process of generating the
English language formulations for terminological representations would proceed in the
opposite direction. Note however, as not every terminological expression has a natural
English language formulation this process will be incomplete.

Second, the fragments of the English language representable in the representation lan-
guages U and KL are supersets of that fragment representable in the algebraic language.
In U and KL we can also define number restrictions of the form John loves at least 3 girls,
John loves at most 2 girls and John loves exactly 1 girl. These have no relation-algebraic
representations.

Third, in (1981) Suppes proposes a natural deduction calculus for ‘direct inference
in English’. Whether terminological reasoners exist that may be used for this purpose
requires further investigation. Systems with expressive terminological languages like U
and L are candidates. However, to my knowledge neither U nor KL are implemented
in a knowledge representation system. Inference in such a system would be undecidable.
Schild (1988) showed that there is no algorithm for deciding whether a subsumption
relationship of U is true.

Fourth, the work of Suppes and Bottner may also be relevant in other areas besides
KL-ONE-based knowledge representation. There is a link to the work of McAllester and
Givan (1989) and Givan, McAllester and Shalaby (1991) who (similar to Suppes (1981))
aim at the development of a formalism for direct inference in natural language. Their re-
presentation language is related to the language of Montague (1974) and provides separate
operators for quantification of the kind in (10) (i).

Finally, I want to stress that not every linguistic phenomenon can be characterised in
the algebraic framework. This was not Suppes’ intention. His intention was to analyse
the extent to which natural language can be accomodated in the context of (extended)
relation algebra. As there is a direct link between relation algebra and terminological
representation Suppes’ and Bottner’s investigations also cast some light on the extent to
which natural language can be accomodated in the context of terminological representa-

10



tion formalisms.
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