
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
Logic Program Synthesis via Proof

Planning

Ina Kraan
David Basin
Alan Bundy

MPI–I–92–244 October 1992

���
�

�� k

I N F O R M A T I K

Im Stadtwald

W 6600 Saarbrücken

Germany

Authors’ Addresses

Ina Kraan, Department of Artificial Intelligence, University of Edinburgh, Edinburgh, Scotland, U.K.
inak@ai.ed.ac.uk

David Basin, Max-Planck-Institut für Informatik, Saarbrücken, Germany. basin@mpi-sb.mpg.de
Alan Bundy, Department of Artificial Intelligence, University of Edinburgh, Edinburgh, Scotland, U.K.
bundy@ai.ed.ac.uk

Publication Notes

A version of this paper will appear in the proceedings of LoPSTr-92, published in Springer Verlag LNCS
series.

Acknowledgements

David Basin was supported by the German Ministry for Research and Technology (BMFT) under grant
ITS 9102. Responsibility for the contents of this publication lies with the authors. Alan Bundy was
supported under SERC grant GR/E/44598, Esprit BRA grant 3012, Esprit BRA grant 3245, and an
SERC Senior Fellowship.

Abstract

We propose a novel approach to automating the synthesis of logic programs: Logic
programs are synthesized as a by-product of the planning of a verification proof.
The approach is a two-level one: At the object level, we prove program verifica-
tion conjectures in a sorted, first-order theory. The conjectures are of the form
∀args−−−−→. prog(args−−−−→) ↔ spec(args−−−−→). At the meta-level, we plan the object-level veri-
fication with an unspecified program definition. The definition is represented with a
(second-order) meta-level variable, which becomes instantiated in the course of the
planning.

This technique is an application of the Clam proof planning system. Clam is
currently powerful enough to plan verification proofs for given programs. We show
that, if Clam’s use of middle-out reasoning is extended, it will also be able to synthesize
programs.

1 Introduction

The aim of the work presented here is to automate the synthesis of logic pro-
grams. This is done by adapting techniques from areas such as middle-out rea-
soning in explicit proof plans [Bundy 88, Bundy et al 90a], proofs-as-programs
[Bates & Constable 85] and deductive synthesis [Bibel 80]. We synthesize pure
logic programs [Bundy et al 90b] from specifications in sorted, first-order theo-
ries. The approach encompasses two levels of reasoning: An object level, which
is a sorted, first-order predicate logic with equality, and a meta-level, which rea-
sons explicitly with object-level proofs. At the object level, we prove that the
specification and the program are logically equivalent, which ensures the partial
correctness and completeness of the program [Hogger 81]. At the meta-level,
we construct a plan for the object-level proof. While planning, we represent the
body of the program we are synthesizing with a meta-level variable. The use of
meta-level variables in proof planning is called middle-out reasoning. Synthesis
takes place when, in the course of planning, the meta-level variable representing
the body of the program is instantiated to an object-level term. However, this
term may not always correspond to a pure logic program. If it does not, an
auxiliary synthesis is required.

The approach is embedded within the framework of the Clam proof planner
[Bundy et al 90c]. Clam is currently powerful enough to conduct verification
proofs for conjectures containing no meta-level variables. To synthesize pro-
grams in the way we are proposing here, however, Clam’s use of middle-out
reasoning will have to be extended.

The remainder of this paper is organized as follows: Section 2 discusses re-
lated work. Section 3 contains a definition of pure logic programs. Section 4
provides a brief introduction to proof planning, middle-out reasoning and rip-
pling. Section 5 shows how verification proofs for a given specification and a
given program can be planned, and Section 6 shows how programs can be syn-
thesized by leaving the program unspecified when planning a verification proof.
Section 7 contains a summary and suggestions for future work.

2 Related Work

In program synthesis from specifications1, there are two main approachs, i.e.,
proofs-as-programs [Bates & Constable 85] and deductive synthesis [Bibel 80,
Biundo 88].

Proofs-as-programs is based on what is known as the Curry-Howard isomor-
phism [Howard 80], whereby a proposition is identified with a type of terms in
the λ-calculus that represent evidence for its truth. Under this isomorphism, a
proposition is true if and only if the corresponding type has members. A proof
of a proposition will construct such a member. Since terms in the λ-calculus

1As opposed to synthesis from input-output tuples, for example.

1

may be evaluated, proofs give rise to functional programs. For example, given
the proposition2

∀input
−−−−−→

.∃output. spec(input
−−−−−→

, output)

a proof of the proposition will construct a program f such that, for all inputs, f

yields an output that satisfies the specification, i.e., spec(input
−−−−−→

, f(input
−−−−−→

)) holds.
These ideas underlie the Nuprl system [Constable et al 86] and its Edinburgh
reimplementation Oyster [Bundy et al 90c], which are interactive proof devel-
opment systems for a variant of Martin-Löf type theory[Martin-Löf 79].

Adapting proofs-as-programs to logic program synthesis is not straightfor-
ward. The main problem is that proofs-as-programs synthesizes total functions.
Logic programs, however, are partial and multivalued [Bundy et al 90b]. They
may return no value, i.e., fail, or they may return more than one value on
backtracking. Moreover, they may not terminate.

One adaptation of proofs-as-programs to logic program synthesis is presented
in [Fribourg 90]. Fribourg synthesizes programs from Prolog-style proofs. He
extends standard Prolog goals to goals of the form ∀x−→.∃y−→. q(x−→, y−→)⇐ r(x−→), where
q(x−→, y−→) and r(x−→) are conjunctions of atoms, and he extends standard Prolog SLD-
resolution to the rules of definite clause inference, simplification and restricted
structural induction, each of which is associated with a program construction
rule. Given an appropriate specification, extended Prolog execution returns a
program to compute y−→ in terms of x−→. However, the program is only correct if
it is called with the variables x−→ ground and the variables y−→ unbound. Also, it
will return exactly one answer. It is thus a functional program in the guise of a
logic program.

To overcome these disadvantages, [Bundy et al 90b] suggests viewing logic
programs in all-ground mode as functions returning a boolean value. A specifi-
cation of a logic program is then:

∀args−−−−→.∃boole. spec(args−−−−→) = boole

If such specification theorems are proved in type theory, e.g., with the Oyster
system, the programs are higher-order and functional. Such programs are dif-
ficult to translate into equivalent logic programs. Therefore, [Bundy et al 90b]
suggests working with a constructive first-order logic in which the extract terms
are pure logic programs.

This idea was pursued in [Wiggins et al 91] and has been implemented in
Whelk, an interactive proof editor for logic program synthesis. The Whelk
system distinguishes between the logic of the specification and the logic of the
program. The two are related by a mapping from the program logic to the
specification logic. Each inference rule in the specification logic corresponds to
a program construction rule in the program logic. A major concern is proving
the correctness of the rules [Wiggins 92].

2Here, and in the following, we often omit sort or type information to avoid notational
clutter.

2

In deductive synthesis, a set of transformation rules is applied to a given
specification to derive a program. For instance, [Biundo 88] starts with a spec-
ification formula ∀x−→.∃y.∀z−→. Φ[x−→, y, z−→], where Φ is a quantifier-free first-order for-
mula. Biundo Skolemizes the formula to ∀x−→.∀z−→. Φ[x−→, f(x−→), z−→] and applies trans-
formation rules to the Skolemized specification until a program is obtained that
computes the Skolem function f(x−→). Her rules include evaluation, substitution,
case analysis and induction. Transformation rules must be proved sound if the
correctness of the program is to be guaranteed.

Our approach to synthesis can be related both to proof-as-programs and
deductive synthesis. On one hand, we are proving

∀args−−−−→. prog(args−−−−→)↔ spec(args−−−−→)

where the definition of prog is unknown. This is similar to proving the (higher-
order) specification

∀args−−−−→.∃prog. prog(args−−−−→)↔ spec(args−−−−→)

constructively, since a constructive proof requires showing how a witness for
an existentially quantified variable can be constructed. Thus our approach can
be seen as proofs-as-programs. On the other hand, proof planning consists
of the successive application of methods to a conjecture, where each method
transforms the conjecture into another one. Each method can thus be perceived
as a transformation rule.

3 Pure Logic Programs

Our notion of pure logic programs is similar to pure logic programs as defined
in [Bundy et al 90b] and to logic descriptions as defined in [Deville 90]. In Dev-
ille’s approach, logic program development is a two-stage process. First, a pure
logic description is obtained from a specification in a subset of natural language.
Then, the program is derived from the logic description. Deville’s reasons for
choosing logic descriptions as an intermediate representation are the same as
ours for synthesizing pure logic programs. Pure logic programs are a subset of
first-order predicate logic and thus share its purely declarative semantics. Pure
logic programs are not meant to be directly executed, yet their syntax is suffi-
ciently restricted that they are straightforward to translate into executable pro-
grams in logic programming languages, e.g., Prolog or Gödel [Hill & Lloyd 91].
We are thus not restricted to any particular logic programming language.

For the purpose of this paper, pure logic programs are collections of sentences
of the form

∀x1 : t1, . . . , xn : tn. pred(x1, . . . , xn)↔ body

where pred is a predicate symbol, the xi are distinct variables of sorts ti and
body is a pure logic program body. Only one definition per predicate symbol is
allowed. Pure logic program bodies are defined recursively:

3

• The predicates true and false are pure logic program bodies.

• A member of a predefined set of decidable atomic relations is a pure logic
program body3.

• A call to a previously defined predicate is a pure logic program body.

• If P and Q are pure logic program bodies, then

– P ∧Q

– P ∨Q

– ∃x. P

are pure logic program bodies.

Other connectives such as negation or implication can be added. Avoiding those,
however, largely eliminates floundering, without restricting the expressive power
of the language.

An example of a pure logic program is:

∀x, l. member(x, l) ↔ ∃h, t. l = [h|t] ∧ (x = h ∨member(x, t))

∀i, j. subset(i, j) ↔ i = [] ∨
∃h, t. i = [h|t] ∧member(h, j) ∧ subset(t, j)

The predicate member(x, l) is true if x is a member of the list l, the predicate
subset(i, j) is true if i is a subset of j. Translated into Prolog, for instance, they
become:

member(X, [X|]).
member(X, [|T])← member(X,T).

subset([],).

subset([H|T], J)← member(H,J), subset(T, J).

The pure logic program is the completion of the Prolog program.

4 Proof Planning

The central problem of automated theorem proving is the enormous search
space for proofs. Some theorem provers, e.g., NQTHM [Boyer & Moore 88], use
heuristics to decide when to apply which inference rule. These heuristics are
often built-in, which makes them inflexible and difficult to understand. To avoid
this, [Bundy 88] suggests using a meta-logic to reason about and to plan proofs.

3For the purpose of this paper, the set consists of equality (=) and inequality (̸=).

4

Proof plans are combinations of methods, which are specifications of tactics. A
tactic is a program that applies a number of object-level inference rules to a goal
formula. A method is a specification of a tactic in the sense of the assertion:
If a goal formula matches the input pattern and if the preconditions are met,
the tactic is applicable, and, if the tactic succeeds, the output conditions (or
effects) will be true of the resulting goal formulae. These ideas are the basis
of the proof planner Clam [Bundy et al 90c]. Clam constructs proof plans that
can be executed in Oyster.

Middle-out reasoning [Bundy et al 90a] extends the meta-level reasoning of
proof planning in that it allows the meta-level representation of object-level en-
tities to contain meta-level variables. This allows proof planning to proceed even
though an object-level entity is not fully specified. Thus, it is possible to post-
pone a decision about the entity’s real identity. Clam currently uses middle-out
reasoning to synthesize tail-recursive programs from non-tail-recursive speci-
fications and to generalize inductive theorems. We will extend Clam’s use of
middle-out reasoning significantly. In particular, we will use meta-level variables
to represent unspecified parts of logic programs.

Clam is particularly good at proving theorems by induction. Its power stems
from the rippling method, which is central to proving the step case(s) of induc-
tive proofs. In the step case, the overall strategy is to manipulate the induction
conclusion in such a way that it is possible to exploit the induction hypothesis.
Rippling does this by keeping track of the differences between the induction
hypothesis and the induction conclusion and applying rewrites to the induction
conclusion to reduce these differences.

Rippling is best illustrated by an example. Clam would represent the step
case of the proof of the associativity of plus as

(x+ y) + z = x+ (y + z)
⊢
(s(x)

↑
+ y) + z = s(x)

↑
+ (y + z)

where s represents the successor function. The boxes and underlining are meta-
level annotations. The non-underlined parts in the boxes are wave fronts—they
do not appear in the induction hypothesis. The underlined parts in the boxes are
wave holes. The wave holes and the remaining parts of the induction conclusion
are called the skeleton—strung together they form the induction hypothesis.
The arrows indicate the direction in which the wave fronts are moving, in this
case up the term tree of the induction conclusion. Rippling is the exhaustive
application of a set of rewrite rules called wave rules. Wave rules are also
annotated. They are applied only if the wave rule and a subexpression of the
induction conclusion match, including annotations. The annotation on the wave
rule ensures that applying it will move the wave front up in the term tree of the
induction conclusion. Often, all wave fronts can be rippled to the top of the term
tree of the induction conclusion, which means that the induction hypothesis can

5

be exploited. The wave rules required for our example proof are

s(M)
↑
+N ⇒ s(M +N)

↑
(1)

s(M)
↑
= s(N)

↑
⇒ M = N (2)

where M and N are free variables. Clam generates these wave rules automati-
cally from the definition of + and the substitution axiom for s. The rippling of
the example consists of three applications of wave rule (1) (two on the left- and
one on the right-hand side) and one of wave rule (2):

(s(x)
↑
+ y) + z = s(x)

↑
+ (y + z)

s(x+ y)
↑
+ z = s(x)

↑
+ (y + z)

s((x+ y) + z)
↑

= s(x)
↑
+ (y + z)

s((x+ y) + z)
↑

= s(x+ (y + z))
↑

(x+ y) + z = x+ (y + z)

Not only has the wave front moved to the top of the induction conclusion,
but it has also disappeared. The induction conclusion is now identical to the
induction hypothesis, and the step case is complete. This final step is called
strong fertilization.

Rippling will be the key method in planning the step cases of the verifica-
tions proofs. Other methods we will use in the following sections are induction,
symbolic evaluation, tautology checking and unblocking. What these methods
do will become apparent in the discussion of the proofs.

5 Verification

In this section, we show how Clam’s existing methods can be used to plan the
verification proof for a given program. Our verification conjectures, which we
prove classically, are first-order sentences of the form:

∀args−−−−→. prog(args−−−−→)↔ spec(args−−−−→)

The logical equivalence of the specification and the program guarantees the
partial correctness and completeness of the program with respect to the speci-
fication [Hogger 81].

We show how Clam plans proofs for such conjectures using the example
conjecture

∀i, j. subset(i, j) ↔ (∀x. member(x, i)→ member(x, j)) (3)

6

where the program subset is defined as

∀i, j. subset(i, j) ↔ i = [] ∨
∃h, t. i = [h|t] ∧member(h, j) ∧ subset(t, j)

and member in the program and the specification is defined as:

∀x, l. member(x, l) ↔ ∃h, t. l = [h|t] ∧ (x = h ∨member(x, t))

The definitions of subset and member give rise to the following wave rules:

subset([H|T]
↑
, J) ⇒ member(H,J) ∧ subset(T, J)

↑
(4)

member(X, [H|T]
↑
) ⇒ X = H ∨member(X,T)

↑
(5)

We also need the following wave rules, which are derived from lemmas:

P ∨Q
↑
→ R ⇒ P → R ∧Q→ R

↑
(6)

∀x. P ∧Q
↑
⇒ ∀x. P ∧ ∀x. Q

↑
(7)

P ∧Q
↑
↔ P ∧R

↑
⇒ Q↔ R (8)

Wave rules such as (6)–(8) that are stated in terms of logical connectives only
are called propositional wave rules.

For conjecture (3), based on wave rules (4)–(8), Clam suggests one-step
structural induction on the list i4. The annotated step case is then:

subset(t, j)↔ ∀x. member(x, t)→ member(x, j)
⊢
subset([h|t]

↑
, j)↔ ∀x. member(x, [h|t]

↑
)→ member(x, j)

Rippling with wave rules (4) and (5) on the left and right, respectively, gives
us:

member(h, j) ∧ subset(t, j)
↑
↔

∀x. x = h ∨member(x, t)
↑
→ member(x, j)

Rippling with wave rule (6) on the right results in:

member(h, j) ∧ subset(t, j)
↑
↔

∀x. x = h→ member(x, j) ∧member(x, t)→ member(x, j)
↑

4Clam uses a technique called recursion analysis [Bundy et al 89] to choose an induction
schema. Explaining recursion analysis is beyond the scope of this paper.

7

Rippling with wave rule (7) on the right gives us:

member(h, j) ∧ subset(t, j)
↑
↔

∀x. x = h→ member(x, j) ∧ ∀x. member(x, t)→ member(x, j)
↑

Now, we cannot continue rippling because none of the wave rules applies, but
we cannot yet exploit the induction hypothesis either. We say that the rippling
is blocked. We can unblock the rippling by simplifying the wave front on the
right-hand side, i.e., by rewriting ∀x. x = h→ member(x, j) to member(h, j):

member(h, j) ∧ subset(t, j)
↑
↔

member(h, j) ∧ ∀x. member(x, t)→ member(x, j)
↑

Wave rule (8) applies and yields:

subset(t, j)↔ ∀x. member(x, t)→ member(x, j)

We strong fertilize to complete the step case. The base case is:

⊢ subset([], j)↔ ∀x. member(x, [])→ member(x, j)

Symbolic evaluation of subset([], j) and member(x, []) gives us:

⊢ true↔ ∀x. false→ member(x, j)

which further simplifies to the tautology:

⊢ true

Our proof plan is thus complete. It is identical to the proof plan that Clam
produces automatically, except that Clam does the base case before the step
case.

In the following section, we will show how the planning of verification proofs
carries over to the synthesis of logic programs.

6 Synthesis

Verification can be extended to synthesis by introducing middle-out reasoning
in the proof planning. Middle-out reasoning involves representing object-level
entities with meta-level variables, thus enabling the proof planning to continue
even though the identity of the object-level entity is unknown. We will represent
the body of the program to be synthesized with a meta-level variable. One

8

might expect that middle-out reasoning would significantly increase the amount
of search in planning, but we will show that this is not case, due to the tight
control that rippling provide.

If we inspect the planning of Section 5 to determine which steps depend
directly on the definition of the program, we see that there are only two: The
application of wave rule (4), since the rule was derived from the program, and
the symbolic evaluation of subset([], j). Not having wave rule (4) means that,
in the step case, the rippling would be blocked after the application of wave
rules (5)–(7). It is precisely the use of middle-out reasoning which will allow us
to continue planning even though we do not have wave rule (4).

We begin our synthesis with the same conjecture, wave rules (5)–(8), and
with a program whose body is undefined, i.e.,

∀i, j. subset(i, j)↔ P(i, j)

(P is a second-order meta-level variable representing the program body). As
before, we proceed by one-step structural induction on the list i. Because of the
duality between induction and recursion, we know what the recursive structure
of the body of the program will be: A base case where the list i will be empty,
and a step case where the list i consists of a head and a tail and which may
contain a recursive call. Thus P(i, j) can already be partially instantiated such
that

∀i, j. subset(i, j) ↔ i = [] ∧ B(j) ∨
∃h, t. i = [h|t] ∧ S(h, t, j, subset(t, j))

(B and S are again second-order meta-level variables). Moreover, if the step
case contains a recursive call, there will be a wave rule for subset of the form:

subset([H|T]
↑
, J)⇒ S(H,T, J, subset(T, J))

↑
(9)

The rippling proceeds as in Section 5 using wave rule (9) instead of (4).
Applying wave rules (5) and (9) yields:

S(h, t, j, subset(t, j))
↑
↔

∀x. x = h ∨member(x, t)
↑
→ member(x, j)

Applying wave rules (6), (7) and the unblocking step to the right-hand side of
the equivalence as before gives:

S(h, t, j, subset(t, j))
↑
↔

member(h, j) ∧ ∀x. member(x, t)→ member(x, j)
↑

9

We now apply wave rule (8), which instantiates

S(h, t, j, subset(t, j))

with:
member(h, j) ∧ S ′(h, t, j, subset(t, j))

We obtain the subgoal:

S ′(h, t, j, subset(t, j))
↑
↔ ∀x. member(x, t)→ member(x, j)

Finally, strong fertilization, which is now applicable, matches the conclusion
with the induction hypothesis, which was

subset(t, j)↔ ∀x. member(x, t)→ member(x, j)

thus instantiating S ′(h, t, j, subset(t, j)) with subset(t, j).
To complete the proof plan, we need to deal with the base case:

⊢ subset([], j)↔ ∀x. member(x, [])→ member(x, j)

Symbolic evaluation of subset([], j) and member(x, []) gives us

⊢ B(j)↔ ∀x. false→ member(x, j)

which simplifies to:
⊢ B(j)↔ true

This is a tautology if we take B(j) to be true.
The proof plan is complete, and the fully instantiated subset program is:

∀i, j. subset(i, j) ↔ i = [] ∧ true ∨
∃h, t. i = [h|t] ∧member(h, j) ∧ subset(t, j)

To summarize the synthesis process, we can say that synthesis equals plan-
ning verification proofs using middle-out reasoning. Whether we are doing ver-
ification or synthesis, the schema of the proof plan is the same:

1. Choosing an induction schema

2. Base case(s): Symbolic evaluation and tautology checking

3. Step case(s): Rippling and strong fertilization

In the subset example, the instantiation of the initial meta-level variable
representing the program body met the definition of a pure logic program in
Section 3. However, this is not necessarily true of all instantiations in general.
We discuss this problem briefly in the following.

10

Auxiliary Syntheses In the course of planning, a meta-level variable may
become instantiated with a program body that violates the definition of pure
logic programs of Section 3. Thus, we must check the synthesized program. We
need to run an auxiliary synthesis for any part of the program that constitutes
a violation; the part itself becomes the specification. We replace any part for
which we run an auxiliary synthesis with a call to the auxiliary predicate, and
we add the auxiliary predicate to our program.

An example where an auxiliary synthesis is necessary is the specification:

∀m, l. max(m, l)↔ m ∈ l ∧ (∀x. x ∈ l→ x ≤ m)

The element m is the maximum element of the list l. The initial synthesized
program is:

∀m, l. max(m, l) ↔ l = [] ∧ false ∨
∃h, t. l = [h|t] ∧ ((m = h ∧ ∀x. x ∈ t→ x ≤ m) ∨

(h ≤ m ∧max(m, t)))

The part ∀x. x ∈ t→ x ≤ m in the program body violates the definition of pure
logic program bodies, since it contains a universal quantifier and an implication.
We therefore run the auxiliary synthesis:

∀m, l. aux(m, l)↔ (∀x. x ∈ l→ x ≤ m)

The auxiliary specification states that m is greater than any element of the list
l. Unlike the original max specification, however, m does not have to be an
element of l. The final program with the auxiliary predicate is:

∀m, l. max(m, l)↔
l = [] ∧ false ∨
∃h, t. l = [h|t] ∧ ((m = h ∧ aux(m, t)) ∨ (h ≤ m ∧max(m, t)))

∀m, l. aux(m, l)↔
l = [] ∧ true ∨
∃h, t. l = [h|t] ∧ h ≤ m ∧ aux(m, t)

7 Summary and Future Work

We have shown how pure logic programs can be synthesized by using middle-
out reasoning in the planning of verification proofs. The approach provides a
basis for the automatic synthesis of partially correct and complete programs
from specifications in sorted, first-order predicate logic. The only synthesis step
that lies outside of the proof planning proper is the syntactic check whether the
instantiation of the body of the program is acceptable as a pure logic program.

The current methods of the proof planner Clam are a solid foundation to
start with. A version of Clam which works with sorted first-order predicate logic

11

with equality (the original Clam was written for a variant of Martin-Löf type
theory) is able to verify the subset and max programs in Sections 5 and 6. The
main change to Clam to enable the corresponding syntheses is the extension of
middle-out reasoning.

There are other extensions to Clam which are needed to cope with problems
that arise in synthesis proofs. One problem is posed by nested quantifiers in the
body of the specification. This occurs, for example, in the proof planning for:

∀k. no duplicates(k)↔ (∀l,m. append(l,m) = k → (∀x. x ∈ l→ x ̸∈ m))

The annotated induction conclusion is:

no duplicates([h|t]
↑
)↔

(∀l,m. append(l,m) = [h|t]
↑
→ (∀x. x ∈ l→ x ̸∈ m))

Here, the rippling on the right-hand side of the equivalence is immediately
blocked. The wave rule we would like to apply is

[H1|T1]
↑
= [H2|T2]

↑
⇒ H1 = H2 ∧ T1 = T2

↑

but in order to do so we need to unfold the append first. This is obstructed
by the universal quantification of l. Clam’s current unblocking techniques will
have to be extended to deal with such cases.

Another difficult problem arises, for example, in the proof planning for:

∀x. even(x)↔ (∃y. y · s(s(0)) = x)

Here, the problem is that Clam is unable to suggest the appropriate type of
induction, namely two-step induction on x. Clam’s technique to choose an
induction schema, i.e., recursion analysis [Bundy et al 89], works well for con-
jectures containing universal quantifiers only, but breaks down in the presence
of existential quantifiers. The alternative to recursion analysis is again to use
middle-out reasoning, this time to postpone the choice of induction schema until
the rippling in the step case determines the type of induction.

Finally, in Sections 5 and 6, we assumed that Clam had available the lemmas
necessary to derive the propositional wave rules (6)–(8). Given the large number
of conceivable propositional wave rules, Clam should be able to generate the
lemmas and wave rules on demand.

References

[Bates & Constable 85] Joseph L. Bates and Robert L. Constable. Proofs as
programs. ACM Transactions on Programming Lan-
guages and Systems, 7(1):113–136, January 1985.

12

[Bibel 80] W. Bibel. Syntax-directed, semantics-supported pro-
gram synthesis. Artificial Intelligence, 14:243–261,
1980.

[Biundo 88] S. Biundo. Automated synthesis of recursive algorithms
as a theorem proving tool. In Y. Kodratoff, editor,
Eighth European Conference on Artificial Intelligence,
pages 553–8. Pitman, 1988.

[Boyer & Moore 88] R.S. Boyer and J.S. Moore. A Computational Logic
Handbook. Academic Press, 1988. Perspectives in Com-
puting, Vol 23.

[Bundy 88] A. Bundy. The use of explicit plans to guide induc-
tive proofs. In R. Lusk and R. Overbeek, editors, 9th
Conference on Automated Deduction, pages 111–120.
Springer-Verlag, 1988. Longer version available from
Edinburgh as DAI Research Paper No. 349.

[Bundy et al 89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and
A. Stevens. A rational reconstruction and extension
of recursion analysis. In N.S. Sridharan, editor, Pro-
ceedings of the Eleventh International Joint Conference
on Artificial Intelligence, pages 359–365. Morgan Kauf-
mann, 1989. Also available from Edinburgh as DAI
Research Paper 419.

[Bundy et al 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka
steps into calculations in automatic program synthe-
sis. In S.L.H. Clarke, editor, Proceedings of UK IT 90,
pages 221–6, 1990. Also available from Edinburgh as
DAI Research Paper 448.

[Bundy et al 90b] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis
of logic programs from inductive proofs. In J. Lloyd,
editor, Computational Logic, pages 135–149. Springer-
Verlag, 1990. Esprit Basic Research Series. Also avail-
able from Edinburgh as DAI Research Paper 501.

[Bundy et al 90c] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill.
The Oyster-Clam system. In M.E. Stickel, editor,
10th International Conference on Automated Deduc-
tion, pages 647–648. Springer-Verlag, 1990. Lecture
Notes in Artificial Intelligence No. 449. Also available
from Edinburgh as DAI Research Paper 507.

13

[Constable et al 86] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Im-
plementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice Hall, 1986.

[Deville 90] Y. Deville. Logic Programming. Systematic Program
Development. International Series in Logic Program-
ming. Addision-Wesley, 1990.

[Fribourg 90] L. Fribourg. Extracting logic programs from proofs
that use extended Prolog execution and induction.
In Proceedings of Eighth International Conference on
Logic Programming, pages 685 – 699. MIT Press, June
1990.

[Hill & Lloyd 91] P. Hill and J. Lloyd. The Gödel Report. Technical Re-
port TR-91-02, Department of Computer Science, Uni-
versity of Bristol, March 1991. Revised in September
1991.

[Hogger 81] C.J. Hogger. Derivation of logic programs. JACM,
28(2):372–392, April 1981.

[Howard 80] W.A. Howard. The formulae-as-types notion of con-
struction. In J.P. Seldin and J.R. Hindley, editors,
To H.B. Curry; Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic
Press, 1980.

[Martin-Löf 79] Per Martin-Löf. Constructive mathematics and com-
puter programming. In 6th International Congress for
Logic, Methodology and Philosophy of Science, pages
153–175, Hanover, August 1979. Published by North
Holland, Amsterdam. 1982.

[Wiggins 92] G. A. Wiggins. Synthesis and transformation of logic
programs in the Whelk proof development system. In
K. R. Apt, editor, Proceedings of JICSLP-92, 1992.

[Wiggins et al 91] G. A. Wiggins, A. Bundy, H. C. Kraan, and J. Hes-
keth. Synthesis and transformation of logic programs
through constructive, inductive proof. In K-K. Lau and
T. Clement, editors, Proceedings of LoPSTr-91, pages
27–45. Springer Verlag, 1991. Workshops in Computing
Series.

14

