MAX-PLANCK-INSTITUT

FUR
INFORMATIK

MPI-1-92-240

Set Constraints are the Monadic Class

Leo Bachmair
Harald Ganzinger
Uwe Waldmann

December 1992

(1)

o[

INFORMATIK

Im Stadtwald
W 6600 Saarbriicken

Germany

Authors’ Addresses

Leo Bachmair

Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794, U.S.A,
leo@cs.sunysb.edu

Harald Ganzinger, Uwe Waldmann

Max-Planck-Institut fiir Informatik, Im Stadtwald, D-W-6600 Saarbriicken, Germany,
{hg,uwe}Cmpi-sb.mpg.de

Publication Notes

This paper has been submitted for publication elsewhere and will be copyrighted if accepted.

Acknowledgements

The research described in this paper was supported in part by the German Science Founda-
tion (Deutsche Forschungsgemeinschaft) under grant Ga 261/4-1, by the German Ministery for
Research and Technology (Bundesministerium fiir Forschung und Technologie) under grant ITS
9102/ITS 9103 and by the ESPRIT Basic Research Working Group 6028 (Construction of Com-
putational Logics). The responsibility for the contents of this publication lies with the authors.

Abstract

We investigate the relationship between set constraints and the monadic class
of first-order formulas and show that set constraints are essentially equivalent
to the monadic class. From this equivalence we can infer that the satisfiability
problem for set constraints is complete for NEXPTIME. More precisely, we
prove that this problem has a lower bound of NTIME(c¢"/ 1°¢™). The relation-
ship between set constraints and the monadic class also gives us decidability and
complexity results for certain practically useful extensions of set constraints, in
particular “negative projections” and subterm equality tests.

Keywords

Constraint Solving, Set Constraints, Decidable First-Order Theories, Monadic Class, Program
Analysis

1 Introduction

Set constraints describe relationships between sets of terms over some vocab-
ulary. They arise naturally when one abstracts from concrete values of pro-
gram variables in program analysis and type inference algorithms, cf. Aiken and
Murphy (1991a), Aiken and Murphy (1991b), Heintze and Jaffar (1990), Heintze
and Jaffar (1991), Jones and Muchnick (1979), Mishra (1984), Mishra and
Reddy (1985), Reynolds (1969), Young and O’Keefe (1988), among others. Al-
gorithms for solving certain classes of set constraints have been given in various
settings, cf. section 4. Some of them are rather ad hoc or involve complicated
codings.

The purpose of this paper is to show that known results about decidable
fragments of first-order logic can be directly applied to set constraints. In par-
ticular, set constraints (with projections for unary functions) are, via certain
natural translations, equivalent to the monadic class, for which decidability and
complexity results are available. The satisfiability of set constraints can be re-
duced to the satisfiability of monadic formulas via length order n?, conversely,
the satisfiability of monadic formulas can be reduced to the satisfiability of
set constraints via length order n?/logn. As a consequence, the satisfiability
of set constraints is complete for NEXPTIME, a result that was left open in
(Aiken and Wimmers 1992). More precisely, we establish NTIME(¢™ 8™ for
some ¢ > 0, as a lower bound for the problem. The relationship between set
constraints and the monadic class allows us to extend set constraints by diag-
onalization (i.e., equality tests for subterms) and by projections. By applying
known results for the monadic class with equality we show that satisfiability of
the extended constraints remains decidable (and, more specifically, again com-
plete for NEXPTIME), provided projections for non-unary functions occur with
negative polarity only. In applications to program analysis and type inference,
where projections are useful, positive projections are not needed anyway, cf.
(Heintze and Jaffar 1990). Unlike in the latter paper our class of constraints
with projections is not restricted to definite constraints and, therefore, can also
be applied to the analysis of and type inference for disjunctive logic programs
or to other kinds of nondeterministic programming languages. Moreover, set
constraints with equality allow one to specify some amount of sharing between
variables, which results in more precise compile-time analyses of programs. The
problem of set constraints with unrestricted occurrences of projections remains
unsolved at this time.

In short, in this paper we demonstrate that (i) set constraints are essentially
equivalent to the monadic class and (ii) decidability and complexity results
for the monadic class carry over to set constraints. Moreover, our method of
relating set constraints to the monadic class allows us (iii) to use standard
theorem proving techniques based on ordered resolution and/or superposition
as decision procedures, and (iv) to extend set constraints in several practically
useful ways.

2 The Monadic Class

The monadic class is the class of first-order formulas without function symbols,
with unary (monadic) predicates only, but with arbitrary quantification. We
speak of the monadic class with equality if, in addition, equations (between
variables) are allowed in formulas.

If we skolemize a monadic formula in prenex form, the resulting quantifier-
free formula can be characterized by the following syntactic properties: (i) all

predicate symbols are unary; (ii) there exists a sequence x1, ..., x,, of variables
such that all atoms are of the form p(t), where p is a predicate and ¢ is either a
variable x,, or a term f(x1,...,xy), for some n < m. In the following we call

such formulas flat formulas over given vocabularies F and P, respectively, of
functions symbols and monadic predicate symbols. In the case of the monadic
class with equality, atoms in the skolemized formulas may also be (iii) equations
s &~ t, where s and ¢ are terms of the form described in (ii) above. For example,
the monadic formula with equality

JaVz3fVydg (p(x) Aqly) > ar gV f ~7y)

skolemizes into the flat formula

p(x) Nqly) = a=g(x,y)V f(z) =y.

The monadic class has been extensively studied. Lowenheim (1915) was
the first to prove the decidability of validity and satisfiability, not only for the
case with equality but also for quantification over predicates. The proof by
Ackermann (1954) of the same result is much simpler and, due to his syntac-
tic method of transforming the given formula into some kind of solved form,
appears to be usable in practice. In particular Ackermann employs a form of
resolution with lazy unification, in which unification between terms is actually
represented as an equational constraint in the resolvent.! Joyner Jr. (1976) and
others? have shown that ordered resolution, which is known to be refutation-
ally complete for arbitrary first-order theories, can be equipped with special
simplification techniques so that it always terminates on flat clauses and there-
fore yields a decision method for Monadic-Sat, the satisfiability problem for
the monadic class without equality and without second-order quantifiers. In
this spirit, Bachmair, Ganzinger, and Waldmann (1992a) have shown that su-
perposition with simplification is a decision method for the case with equality,
referred to as Monadic-E-Sat below.3

Lewis (1980) has shown that for some ¢ > 0, NTIME(c¢"/1°8") is an upper
bound for the complexity of Monadic-Sat, where n is the length of the formula.

!Lazy unification seems to arise naturally when trying to eliminate second-order quantifiers,
cf. (Bachmair, Ganzinger, and Waldmann 1992b or Gabbay and Ohlbach 1992).

*For an overview and a more recent treatment of the problem see (Fermiiller et al. 1992).

3In a certain sense, this extends the results of Comon, Haberstrau, and Jouannaud (1992)
about shallow equational theories to the first-order case. It is, however, not possible to extend
their result in full generality. First-order clauses over flat equations, if no restrictions such as
in (ii) apply, form a reduction class; any non-flat equation can then be flattened with the help
of auxiliary variables.

His proof is based on the finite model property of the monadic class and checks
finite structures up to cardinality 2%, where k = O(n/logn) is the number of
predicate symbols, for the model property. Although he shows that this algo-
rithm is in some sense optimal — NTIME(c™/ 1°8™), for some (other) ¢ > 0, is
at the same time a lower bound for this problem — the proof-theoretic meth-
ods of Ackermann (1954), Joyner Jr. (1976) or Fermiiller et al. (1992) appear
to be superior in practice. Lewis (1980) obtains this lower bound by showing
that NETIME is polynomially reducible, via length order nlogn, to Monadic-
Sat.* Altogether this means in particular that Monadic-Sat is complete for
NEXPTIME. Looking at these proofs it is easy to see that Monadic-E-Sat is
also NEXPTIME complete. For the upper bound one may use the fact that
a monadic formula with equality has a model if and only if it has a model of
cardinality less or equal 2m, where m is the length of the quantifier prefix and
k is the number of predicates (cf. e.g. Dreben and Goldfarb 1979).

3 Set Constraints

3.1 Set Constraints as Flat Formulas

A set constraint is a finite conjunction of subset relations £ C E’, where E and
E'’ are set expressions over a given finite vocabulary F of function symbols and
V of set-valued variables. Set expressions are defined by the grammar

Ex=0|1|a|EUE|ENE|E| f(E,...,E)

where a may be any variable in V and f any n-place function symbol in F.
Semantically, the variables in V are assumed to range over sets of finite ground
terms over the function symbols in F. A set constraint is said to be satisfiable
if sets of ground terms over F can be assigned to the variables in such a way
that the constraint evaluates to true, whereby 0 denotes the empty set and 1
the set of all ground terms; a set expression f(F1i,...,E,) denotes the set of
terms { f(t1,...,tn) | t; € E;}; and E C ', ENE', EUE’, and E denote
the subset relation, intersection, union, and complement, respectively, on sets
E and F'.

Aiken and Wimmers (1992) proved that the satisfiability of set constraints
is decidable by providing a specific set of transformation rules for constraints
into a certain kind of “solved forms.” However it turns out that this problem
is a special case of the satisfiability problem for flat formulas and, hence, of
Monadic-Sat.

This can be seen by transforming a given constraint into an equivalent
set of flat formulas over F. The set denoted by a set expression E can be
represented by a monadic formula Pg(z) which codes the fact “z is in E.”
This coding will be established by induction over the syntactic structure of
constraints and set expressions. More precisely, for every set expression £ which
is a subexpression of the given constraint we introduce a monadic predicate Pg.

“We assume definitions of complexity classes as in (Johnson 1990).

These predicates are defined by the following equivalences which refer to the
predicates representing the subexpressions of E.

Pi(z) <+ true
Py(x) < false
Ppup(x) < Pg(z)V Pr(z)
PEQF(.I) — PE(QZ) A PF(SU)
Pg(z) < -Pg(x)
Prpy,.pn)(f(m1,. 0 s20)) < Pp(z1) Ao A Pg,(zn)
Prpy,. B (9(T1, . om)) < false,

where the z; are pairwise distinct (first-order) variables, and where an equiva-
lence of the last form is generated for every m-ary function symbol g different
from f. It can be seen that Prg, . g,) is defined by as many equivalences as
there are function symbols in the vocabulary. All other predicates are defined
by a single equivalence. The reader may observe that these equivalences are in
fact all flat.

I K=F CFA...\E, CF,, then let [K] be the set of all equivalences
for the subexpressions in F; and Fj, together with the additional formulas
Py, (x) = Pg,(x), for 1 <i < m, representing the subset relations.

As an example consider the constraint

a1 Cag A flag) S A f(az) C

over a vocabulary that consists of a unary function symbol f and a constant a.
Here [K] is the set

P, () — Py,(x)
Piay)(@) — Paz()
Piay)(@) — Pay(x)

Pez(z) < —Pay()

Piay)(f(@)) < Pay(2)
Pf(a2)(a) < false
Ppaz)(f(2)) Py ()

Pr@az)a) < false.

This translation of constraints into equivalences is inspired by the method
of Tseitin (1970) for transforming quantifier-free first-order formulas to clausal
normal form in a way that avoids the exponential growth of formulas caused
by more naive methods. In the algorithm by Aiken and Wimmers (1992) an
instance of the same method appears as what they call transformation of con-
straints into “one-level systems.” Clearly [K] is a set of flat formulas, for any
given K, which may be viewed as the result of skolemizing a (unique up to
renaming of variables) monadic formula [K],, in prenex form.

Theorem 1 Let I be a Herbrand interpretation over F. Then I is a model of
[K] if and only if K is satisfied under the assignment where each set variable
a in K is assigned the set of ground terms {t € Tr | Po(t) € I }. In particular,
K is satisfiable if and only if [K]m is satisfiable.

Corollary 1 The problem Setc-Sat of satisfiability of set constraints is decid-
able.

The proof follows from the decidability of Monadic-Sat using the preceding
theorem.

A set constraint K of length n contains O(n) (occurrences of) subexpres-
sions and k = O(n/logn) distinct function symbols. Every occurrence of a
subexpression E of K corresponds to at most one occurrence of Pgr on the
right hand side and at most k occurrences of Pr on the left hand side of an
equivalence in [K]. Hence [K] (and thus [K],,) contains O(n?/logn) atoms.
As every predicate symbol or variable in the monadic formula [K],, can be
coded in O(logn) space, [K],, has length O(n?). Using the upper bound of
Lewis (1980), this gives us the following theorem:

Theorem 2 Setc-Sat can be reduced to Monadic-Sat via length order n?. Sat-
isfiability of set constraints can hence be decided in NTIME(C”2/1°gn), for some
constant ¢ > 0.

In comparison to what has been obtained by Aiken and Wimmers (1992), this
theorem gives us a precise upper bound of the problem within NEXPTIME
with a less than quadratic exponent of n?/logn.

We also can prove that Setc-Sat is NEXPTIME-hard, more precisely we
have the theorem:

Theorem 3 NTIME(c") can be reduced to Setc-Sat via length order nlogn.

To prove this theorem, we first prove a lemma which shows how to translate a
certain class of flat formulas into set constraints via length order n.

Lemma 1 Let I be a flat formula of length n of the form
Qi) AN AP () AU (2, y) AL A Uk(,y)

where the ®; are flat clauses over a single variable x, constant a and unary
function f, and where the ¥; are quantifier- and function-free formulas over
the variables © and y. Then there ezists a set constraint K of length O(n) such
that K 1is satisfiable if and only if VaVy I is satisfiable. The constraint K can
be constructed from I in polynomial time.

Proof. In order to replace the formulas ¥; by equivalent constraints we intro-
duce an auxiliary binary function symbol g. The original f-terms are distin-
guished by the set constraint N = a U f(N), together with constraints p C N,
for any predicate symbol p in I'. The ¥; can now be replaced by constraints
g(N,N) C [¥;], where [¥;] is defined inductively over the syntactic structure
by the identities

(TAY] = [¥]N[¥]

(TVY] = [¥]U[V]
[-¥] = [¥JNg(N,N)
[p(z)] = g(p,N), for predicates p
p(y)] = ¢g(N,p), for predicates p

ot

Any other boolean connectives are assumed to be defined in the usual way.
The clauses ®; take the form

Li(z)V...Ly(x) vV Mi(f(z)) V...V My(f(z))V Ni(a) V...V Ny(a),

where the L;, M; and N; are predicates, possibly negated. An equivalent system
of set constraints for such a formula is

f(Lin...NnL,NN) C MjU...UM;UN{U...UN;
N/ = (N;Na)U f(N;]), for 1 <i<r.

The conjunction of all these constraints is equivalent to I'. The statements
about the complexity are obviously satisfied with this construction. O

The proof of Theorem 3 now follows from (Lewis 1980) where the reduction
of NTIME(c¢") to the monadic class via length order nlogn only produces for-
mulas I' as required for the above lemma. In Section 3.3 we shall give a trans-
lation into set constraints for the whole class of monadic formulas in prenex
form, which, however, will be of a quadratic length order and which will involve
projections.

Corollary 2 There exists a constant ¢ > 0 such that Setc-Sat cannot be decided
in NTIME(¢"/ logn).

Corollary 3 Setc-Sat is NEXPTIME complete.

3.2 Set Constraints with Equality

Set constraints have been proposed as a tool for the static analysis of programs.
Extending set constraints by tests for equality of terms allows to better approxi-
mate programs in cases where the equality of two program variables is essential.
Examples include non-linear heads of Prolog clauses or other kinds of equality
tests on variables (for an example see Section 3.3). If we define the extension
in such a way that we stay inside the monadic class with equality, the extended
set constraints will enjoy basically the same properties as before.

Let Aé denote a family of operators on sets, called diagonalization opera-
tors, where f is an n-ary function symbol, with n > 1, and ® a propositional
formula over equations of form ¢ ~ j, with 1 < 4,5 < n. Then, for any set
expression F, Aé(E) is a set expression denoting the subset of all terms of
the form f(t1,...,t,) in E, such that, in addition, the formula ® is true when
“i =~ j” is interpreted as “t; = t;.”

The diagonalization operators can be represented by flat formulas (with
equality):

PAé(E)(f(xl""’:E”)) <~ PE(f(l‘l,...,:L'n))/\q)[l'i/i;1§i§n]

PAé(E)(g(xlw")xm)) < false, for g # f.

Theorem 4 The satisfiability of set constraints with diagonalization is decid-
able. More precisely, the problem 1s NEXPTIME complete.

Let us point out that tree automata with tests for equality of subterms
(Bogaert and Tison 1991) are a special case of set constraints with equality. It
is also known that equality tests that allow two cousins in a tree to be compared
immediately lead to unsatisfiability, even in the case of definite constraints.

3.3 Set Constraints with Projections

If one is interested in satisfiability only, the class of constraints that can be
decided by translation into the monadic class can be enlarged by a more refined
treatment of equivalences. Let IV be a set of first-order clauses. Let furthermore
F denote an equivalence p(ti,...,t,) <> ®, where ® is an arbitrary formula in
which p does not occur. If p occurs in NV only with a single polarity (positive or
negative), then the satisfiability of N U {F'} is equivalent to the satisfiability of
N U {F'} where F’ represents the appropriate direction of the equivalence F.
Let F., and F denote the orientations p(ti,...,t,) — ® and p(t1,...,t,) + P,
respectively, of F'.

Lemma 2 Let N and F be as before.

(i) If p occurs only in negative literals of N, then N U {F} is satisfiable if
and only if NU{F_} is satisfiable. In particular the minimal models of NU{F'}
coincide with the minimal models of N U {F_}.

(ii) If p occurs only in positive literals of N, then N U {F'} is satisfiable if
and only if NU{F.,} is satisfiable. In particular the mazimal models of NU{F'}
coincide with the mazimal models of N U {F_,}.

Proof. We prove case (i), the other case being dual. If I is a model of N U{F},
it is clearly also a model of N U {F_}. If I is a model of N U {F,_}, define I’
from I by only changing the interpretation for p such that p(t1,...,¢,)o is true
in I’ if and only if ®o is true in I, where o ranges over all ground substitutions
for the free variables in F'. As p does not occur positively in N and does not
occur in @, I’ is a model of N U {F}.

If I’ is not a minimal model of NU{F}, that is, there exists a smaller model
I" of NU{F}, then I’ and I" cannot differ in the interpretation of p alone. In
this case I” is also a model of N U {F_} which is smaller than I. O

Polarity of a subexpression F in a set constraint K corresponds to parity or
disparity, respectively, of the nesting of complement operators around E. More
precisely, let n be the number of complement operators enclosing a particular
occurrence of F in K. Then this occurrence is called positive, if either n is even
and the occurrence is in the right side of a subset relation, or else n is odd and
the occurrence is in the left side of a subset relation. Otherwise the occurrence
is called negative.

If F is a positive [negative] subexpression of K, we need to consider only
those clauses that correspond to the —-direction [«—-direction] of the equiva-
lences defining Pg. (If an expression occurs in both polarities, both directions
have to be taken.) By [K]4 we denote the resulting polarity-based clausal form
of K.

For example, in a1 C ag A f(ag) C az A f(az) € a9, both ay and a3

occur positively and negatively, while f(ag2) and f(@z) occur only negatively.
Therefore [K]+ consists of the clauses

P, (x) — Pu,(x
Pf(QQ)(x) — Pz
Pf(az)(x) — P, (z

Py (), Poy(z) —
— Paz(x), Pa,(x)

Poy () = Ppiay)(f(2))

Paz(®) = Pyay)(f(@)) -

Repeated application of Lemma 2 yields the following lemma:
Lemma 3 A constraint K is satisfiable if and only if [K]+ is satisfiable.

The optimized translation allows us to admit projection functions to a cer-
tain extent. If f is an n-ary function symbol, we call f?, for 1 < i < n, the
i-th projection of f, and admit set expressions of the form f!(E), which are
defined to denote the sets of all terms x; for which there exist ground terms
Tlyeeey Tim1y Tigly- -, Tn, Such that f(x1,...,2,) € E. The denotation of a set
expression f¢(E) can be defined by the equivalence

Pf’(E)(xz) < 31’1,...,1‘1'_1,33,‘_,_1,...,33” PE(f($1,,$n)>

If n > 1, the —-direction of this equivalence is second-order as the existential
quantifiers range over the ground terms of the given vocabulary. However, if
n = 1 or f{(E) does not occur positively in K, then [K]+ is a set of (flat)
clauses (without existential quantifiers). Let SetcP-Sat [SetcEP-Sat] denote
the satisfiability problem for set constraints without [with]| equality and without
positive occurrences of projections for non-monadic function symbols.

Theorem 5 SetcEP-Sat is decidable. More precisely, it is a NEXPTIME com-
plete problem.

Set constraints with projections of monadic function symbols allow the
translation of arbitrary monadic formulas in prenex form.

Theorem 6 Monadic-Sat can be reduced to SetcP-Sat wvia length order
n?/logn.

Proof. Let ® be a monadic formula in prenex form, and let ®’ be its skolemized
form. Assume that @ is a formula over the set of predicate symbols P, the
set of function symbols F, and the variables z1,...,zr. We will show how to
compute a set constraint K¢ over a signature F that is solvable if and only if
@’ (and thus ®) is solvable.

The new signature F contains a constant e and a binary operator (writ-
ten in infix form), that are used as list constructors, and a unary operator g

(A5

for every g in F. We generally omit parentheses and abbreviate A : (B : C)
as A : B : C to simplify notation. Furthermore we somewhat sloppily write
A':Bfor A: A:---: A: B, and similarly A° : B for B. The set of F-terms is
mapped into the set of F-terms via a function 7 that is defined inductively by
T(g(t1,...,t;)) = g(7(t;) : -+ : 7(t1) : €). The function 7 is injective, its range,
denoted by T, is the only solution of the set equation

T=§(T":e),
geF

where |g| denotes the arity of g.
We define a function & from flat boolean expressions over P, F, and
r1,...,T) to set expressions as follows:

£(p(zi))
E(p(g(1, ..., 2i)))
(U1 AWy) =¢

)

)

=Tkt ap, : T 1ie

(W1 VW) = (V) UE(P2)
E(-0) =TF:ené(D) .

The set constraint Kg is now defined as the conjunction of the following subset
relations: (i) the set equation defining 7' that was given above, (ii) the subset
relation «y, C T for every predicate symbol p € P, and (iii) the subset relation
TF . e C &(®). If n is the size of the monadic formula ®, then Kg has size
O(n?/logn).

Suppose that I is a Herbrand model for ®’. For every p € P, we assign to o,
the set of all 7(¢) such that p(t) € I. An easy induction proof shows that this
assignment constitutes a solution of Kg. Conversely, assume that we have a
solution of K¢, then the set of all p(t) such that «;, contains 7(t) is a Herbrand
model for ®'. In other words, K¢ is satisfiable if and only if ® is satisfiable. O

Theorems 2 and 6 indicate that set constraints without positive occurrences of
projections for non-monadic functions and the monadic class are two essentially
equivalent logics, with respect to expressiveness as well as complexity.

The problem of set constraints with unrestricted positive projections is still
open. Positive projections can be used to formulate negations of subset re-
lationships. In fact, a C f!(f(a,)), where a is a constant, is equivalent to
a ¢ (. Therefore, being able to solve constraints with negated subset rela-
tionships would be a major step towards admitting projections in full and an
interesting case of its own. We have learned that this latter problem has re-
cently been solved (Sophie Tison, personal communication), but we have not
yet seen the solution.

Negated subset relations amount to deciding fragments of the inductive
theory for the class of flat formulas that correspond to set constraints. Without
loss of generality one may restrict attention to constraints K of form

E{CON...NE, COANaZD

where « is a set variable. Such a constraint is satisfiable if and only if
[E1 COA...NEp, C0]
is satisfiable and
[E1 CONA...NEy CO] Ve —Py(x)

where the universal quantification ranges over the set of ground terms of the
given signature.

We believe that by relating set constraints to the monadic class it should
be possible to decide universally quantified consequences of set constraints by
exploiting the finite model property of the monadic class. More precisely, if ® is
a monadic formula over predicate symbols in P and [is a P-structure, then one
can consider the equivalence relation = in I defined by z = y if and only if for
all p in P we have I |= p(x) if and only if I = p(y). Clearly, I is a model of ® if
and only if I/= (with the canonical interpretation of the predicate symbols) is
a model of ®. Moreover, I /= is finite so that the validity of formulas in I can
be effectively decided. If we now consider a set constraint K and its equivalent
monadic formula [K],,, the only remaining problem is to characterize those
finite models of [KTJ,, which result from (Herbrand) models I of [K] through
factorization by =. This problem we have not yet been able to solve.

4 Related Work

The present paper was motivated by the work of Aiken and Wimmers (1992)
who considered the basic form of set constraints defined in Section 3.1. Their
constraint solving algorithm employs a step similar to our translation of con-
straints into flat formulas and then employs similar techniques as ordered res-
olution to saturate constraints. This is not surprising as ordered resolution
can be turned into a decision procedure for the whole monadic class. Their
algorithm was shown to be in NEXPTIME. We have made this result more
precise by establishing a less than quadratic exponent, i.e., an upper bound of
NTIME(¢"/losm).

In an earlier approach Heintze and Jaffar (1990) used ad-hoc formalisms
for solving the satisfiability problem of the class of definite set constraints with
projections. Definite constraint are of the form X C Y, where Y is a variable
and X does not contain the complement operator (but may contain projections).
Their approximative consequence operator for Prolog programs can be defined
in terms of these constraints. For example, the reverse program

rev(nil, L, L)
rev(cons(X,L),R,S) :— rev(L,cons(X,R),S).

is approximated by the constraints

c(nil, 1,1)

c(cons(cons*((rev)), ¢ (rev)), cons? (¢ (rev)), ¢ (rev))

rev

N 1N

rev,

10

where ¢ is a ternary constructor which combines the arguments of rev. The
least solution of the constraints is the least solution of the approximate con-
sequence operator. Our present result for constraints with projections is more
general in that we also admit positive occurrences of unions and negative occur-
rences of complements. Therefore we can also handle analysis and type inference
problems for disjunctive logic programs and nondeterministic programming lan-
guages. Moreover, we have exhibited a decidable class of set constraints with
equality. For the above example

A5_s(c(nil,1,1)) C rev
c(cons(cons (P (rev)), ct(rev)), cons® (2 (rev)), 3 (rev)) C rev,
is a better approximation of the reverse program which captures the non-
linearity (i.e., the multiple occurrence of the variable L) in the first clause.

Frithwirth et al. (1991) studied the same class of constraints as Heintze and
Jaffar (1990) and presented a proof method similar to ours in flavor. They
reduce the problem to the decidability of a certain class of Horn clauses and
show that the complexity of determining membership in their minimal models
is EXPTIME-complete. Here we have seen that adding disjunctions to this
class of formulas makes the complexity jump to NEXPTIME completeness.

Tree automata with tests for equality of subterms (Bogaert and Tison 1991)
are a special case of set constraints with equality.

More recently, Gilleron, Tison, and Tommasi (1992) have introduced a new
class of tree automata which exactly accept solutions of set constraints. This
gives rise to another constraint solving algorithm. They also prove the existence
of regular, as well as minimal and maximal regular solutions in case solutions do
exist. The problem of projections is left open in this paper. Although the new
class of automata may be of interest in its own, the proposed treatment of set
constraints in terms of these automata appears to be technically involved. The
reader will perhaps appreciate the simplicity of the treatment in the present

paper.

5 Conclusions and Future Work

In this paper we have demonstrated that set constraints can be viewed as a
logic that is essentially equivalent to the monadic class of first-order formulas.
The translations establishing the equivalence are natural and have allowed us
to directly apply decidability and complexity results for the monadic class to
set constraints and settle open problems posed by Aiken and Wimmers (1992).
Moreover we have shown that extensions of set constraints by equality and by
negative projections do not lead beyond the monadic class (with equality). At
present, however, projections for non-monadic functions are restricted to neg-
ative subexpressions in constraints, and the problem of admitting unrestricted
projections remains open.

11

References

W. ACKERMANN, 1954. Solvable Cases of the Decision Problem. North-
Holland, Amsterdam.

A. AIKEN AND B. MURPHY, 1991. Implementing regular tree expressions. In
ACM Conference on Functional Programming Languages and Computer Archi-
tecture, pp. 427-447.

A. AIKEN AND B. MURPHY, 1991. Static type inference in a dynamically typed
language. In FEighteenth Annual ACM Symposium on Principles of Program-
ming Languages, pp. 279-290.

A. AIKEN AND E.L. WIMMERS, 1992. Solving Systems of Set Constraints
(Extended Abstract). In Proc. IEEE Symposium on Logic in Computer Science,
pp. 329-340.

L. BACHMAIR, H. GANZINGER AND U. WALDMANN, 1992. Superposition with
Simplification as a Decision Procedure. In preparation.

L. BACHMAIR, H. GANZINGER AND U. WALDMANN, 1992. Theorem proving
for hierarchic first-order theories. In H. Kirchner, G. Levi, editors, Algebraic and
Logic Programming, Lecture Notes in Computer Science, vol. 632, pp. 420—445,
Berlin, Springer-Verlag. (Invited paper for special AAECC issue on ALP’92.).

B. BOGAERT AND S. TISON, 1991. Automata with equality tests. Technical
Report IT 207, Laboratoire d’Informatique Fondamentale de Lille.

H. ComoN, M. HABERSTRAU AND J.-P. JOUANNAUD, 1992. Decidable Prob-
lems in Equational Theories. In Proc. IEEE Symposium on Logic in Computer
Science, pp. 255-265.

B. DREBEN AND W.D. GOLDFARB, 1979. The Decision Problem. Solvable
Classes of Quantificational Formulas. Addison-Wesley Publishing Company,
Inc.

C. FERMULLER, A. LEITSCH, T. TAMMET AND N. ZAMOV, 1992. Resolution
Methods for the Decision Problem. To appear.

T. FRUHWIRTH, E. SHAPIRO, M. VARDI AND E. YARDENI, 1991. Logic pro-
grams as types for logic programs. In Proc. IEEE Symposium on Logic in
Computer Science, pp. 300-309.

D. M. GABBAY AND H. J. OHLBACH, 1992. Quantifier elimination in second—
order predicate logic. South African Computer Journal, Vol. 7, pp. 35—43.

R. GILLERON, S. T1SON AND M. ToMMASI, 1992. Solving Systems of Set Con-
straints using Tree Automata. Technical Report, Laboratoire d’Informatique
Fondamentale de Lille. Paper accepted for STACS’93.

12

N. HEINTZE AND J. JAFFAR, 1990. A finite presentation theorem for approxi-
mating logic programs. In Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pp. 197-209.

N. HEINTZE AND J. JAFFAR, 1991. Set-based program analysis. Draft
manuscript.

D.S. JoHNsON, 1990. A catalog of complexity classes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A, pp. 67-161. El-
sevier.

N.D. JoONES AND S.S. MUCHNICK, 1979. Flow analysis and optimization of
LISP-like structures. In Sizth Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 244-256.

W.H. JOYNER JR., 1976. Resolution Strategies as Decision Procedures. Jour-
nal of the Association for Computing Machinery, Vol. 23, No. 3, pp. 398-417.

H.R. LEwis, 1980. Complexity Results for Classes of Quantificational Formu-
las. Journal of Computer and System Sciences, Vol. 21, pp. 317-353.

L. LOWENHEIM, 1915. Uber Méglichkeiten im Relativkalkiil. Math. Annalen,
Vol. 76, pp. 228-251.

P. MisHRA, 1984. Towards a theory of types in PROLOG. In Proc. IEEE
Symposium on Logic in Computer Science, pp. 289-298.

P. MisHrA AND U. REDDY, 1985. Declaration-free type checking. In Twelfth

Annual ACM Symposium on the Principles of Programming Languages, pp.
7-21.

J.C. REYNOLDS, 1969. Automatic Computation of Data Set Definitions. In-
formation Processing, Vol. 68, pp. 456-461.

G.S. TSEITIN, 1970. On the complexity of derivation in propositional calculus.
Seminars in Mathematics, V.A. Steklov Math. Institute, Leningrad, Consultants
Bureau, New York-London, Vol. 8, pp. 115-125. Reprinted in J. Siekmann and
G. Wrightson (eds): Automation of Reasoning, Vol. 2, 1983, Springer-Verlag,
pp. 466-486.

J. YOUNG AND P. O’KEEFE, 1988. Experience with a type evaluator. In
D. Bjgrner, A.P. Ershov, N.D. Jones, editors, Partial Evaluation and Mized
Computation, pp. 573-581. North-Holland.

13

