
MAX-PLANCK-INSTITUT
FUR

INFORMATIK

A new ordering constraint solving

method and its applications

Robert Nieuwenhuis

MPI-I-92-238 February 1993

0

mPD
_ _________ IN F 0 R M AT I K _________ _

Im Stadtwald

66123 Saarbn1cken

Germany

A new ordering constraint solving

method and its applications

Robert Nieuwenhuis

MPI-I-92-238 February 1993

A new ordering constraint solving method and its
applications

Robert Nieuwenhuis*

February 3, 1993

Abstract

We show that it is possible to transform any given LPO ordering constraint C into
a finite equivalent set of constraints S for which a special kind of solutions can be
obtained. This allows to compute the equalities that follow from ordering constraints,
and to decide e.g. whether an ordering constrained equation is a tautology. Another
application we develop here is a method to check ordered rewrite systems for (ground)
confluence.

•This work has been done during a half-year stay at the Max-Planck-lnstitut fiir Informatik, Im Stadt­
wald, D-W-6600 Saarbriicken, Germany. Author's Permanent address: Technical University of Catalonia,
Pau Gargallo 5, 08028 Barcelona, Spain. E-mail: robertoCilsi. upc. es.

1

1 Introduction

It is well-known that rewriting and completion techniques, parameterized by some well­
founded ordering, are one of the most successful approaches for reasoning with equations
and more general equational formulae, cf. e.g. [DJ90, BG91], and a basic tool for solving
(dis)unification problems [CHJ92].

The lexicographic path ordering (LPO) on terms is one of the standard orderings used
for these purposes. It is obtained by lifting in a simple way an ordering >-F (called a
precedence) on the function symbols :F to an ordering on terms. If >-F is total on :F, then
the corresponding LPO is a simplification ordering total on T(:F). When necessary, the
precedence can be extended to deal with new symbols. Note that totality is a needed
requirement for most theorem proving purposes and that other general-purpose orderings
like the recursive path ordering (RPO) are not total.

LPO-Ordering constraints are quantifier-free first-order formulae over the binary pre­
dicates >- and =, where >- denotes the LPO ordering and = denotes syntactic equality.
The satisfiability of such constraints was proved to be decidable by Comon [Com90], and
satisfiability wrt. solutions in extended signatures was proved decidable in [NR92]. In
section 4 of this paper we apply and extend both previous results for defining a new cons­
traint solving algorithm which generates a particular kind of solutions and can extract the
equalities that follow from constraints.

A constrained equations has the form t = t' [C], where t = t' is an equation and C is
an LPO-ordering constraint. Such an equation denotes all instances oft = t' for which C
is satisfied. If all these instances are of the forms = s then t = t' [C] is a tautology. To
decide this property is one application of the methods described here (cf. section 5).

Furthermore, in section 6 we define a constrained rewriting relation (similar to [KKR90]
and [Pet90]) on ordering constrained equations. Suppose we have an equation u = v and a
constrained equation e [C] where eiP = uu. Then e [C] rewrites into e[vu]p [CA uu >- vu]
and into the complementary equation e [CA uu >f vu]. We apply such constrained rewrite
steps whenever CA uu >- vu is satisfiable in the sense of [NR92].

We also apply equality extraction steps, in which equations are instantiated with the
equalities that follow from their constraints. Rewriting in this way produces constrained
rewrite trees, since every constrained equation rewrites into several new ones. Constrained
rewriting with equations having so-called extra variables is done in a special way.

Constrained rewriting is applied to checking ordered rewriting systems for confluence
properties in section 7. An ordered rewrite system is a pair (E, >-) where E is a set of
equations and >- is a reduction ordering on terms. Ordered rewriting is done by apply­
ing equations of E in whatever direction agrees with >-. This allows one to deal with
unorientable axioms (like commutativity) since it always terminates.

It generalizes "classical" rewriting with oriented rewrite rules in the sense that if E =
{ St = t1, ... , Sn = tn} and Si >- ti for i = 1 ... n, then ordered rewriting with (E, >-) is
equivalent to rewriting with R = { s1 -+ tt, ... , Sn -+ tn}· The standard choice for >- is

2

the lexicographic path ordering (LPO), since (ground) confluence requires >- to be total
on ground terms.

We prove the following results, which together provide our confluence test for ordered
rewrite systems:

1. constrained rewrite trees are finite.

2. a critical pair t = t' between the equations of ordered rewrite systems is joinable
if allleafs of a rewrite tree with root t = t' are tautologies (the paths are ordered
rewrite proofs for all possible instances of the critical pair at the root).

Many times a non-tautology leaf of the tree is a counterexample to the confluence of E.
We show that this is the case if the constraint solving algorithm provides an irreducible
solution, since for the corresponding instance s = s' of the leaf s and s' are different
E-equivalent terms.

2 Acknowledgements

The author wishes to thank Leo Bachmair, Harald Ganzinger and Wayne Snyder (who
suggested applying Kruskal's theorem for lemma 6.1) for a very helpful joint discussion.

3 Basic terminology

We assume the reader to be familiar with the basic concepts of term rewrite systems, as
described e.g. by Dershowitz and Jouannaud [DJ90], whose notation we follow.

Along this paper we will suppose that we are given a set of function symbols :F and a
total ordering >-:F over :F (the precedence). We sometimes write pairs (:F, >-:F) or (E, >-:F),
where E is a set of equations. The LPO ordering generated by >-:F, denoted >-f;x,, is a
total simplification ordering on T(:F). It is defined as follows: s = f(s1, ... , sm) >-f;x,
g(t1, · · ·, tn) = t if

1. Si ti;,o t, for some i with 1 ~ i ~ m or

2. f >-:F g, and s >-f;x, tj, for all j with 1 ~ j ~nor

3. f = g, (s1, .. . , sm) ~f;x, (t1, ... , tn), and s >-f;x, tj, for all j with 1 ~ j ~ n

where (S1, ... , sn) ~f;x, (t1, ... , tn) if 3j ~ n s.t. Vi < j Si = ti and Sj >-f;x, tj.

By an extension (:F', >-:F') of (:F, >-:F) we mean a set of function symbols :F' such that
:F' ;2 :F and a total precedence >-:F' extending >-:F.

An LPO-ordering constraint is a quantifier-free first-order formula built over the binary
predicate symbols'>-' and '='relating terms in T(:F,X), where '=' denotes syntactic
equality of terms, and'>-' denotes a lexicographic path ordering.

3

A solution in (F', 'r:F') of a constraint C is a substitution u with range T(F') and
whose domain is a set of variables containing the variables of C, such that C u evaluates
to true under 'r' in the usual sense. Then we say that C satisfies u in (F', 'r :F'). We
will use the symbols T (resp. 1_) to denote the constraint that satisfies all (resp. no) u.
Cf. Comon's paper [Com90] for more details and a decision procedure for satisfiability in
(F, 'r.r) itself.

In the following, if (F, >-.r) contains a smallest constant symbol (which we will denote
by 0), then we will denote by (Fo, 'r Fo) the particular extension of (F, 'r .r) s. t. F0 is
F U {!} for some unary function symbol f that does not belong to F and where 'r Fo

is the extension of 'i-F where g 'i-Fo f for every symbol g in F. H F does not contain
any constant symbol, then (Fo, 'i-F0) will be F U {/, 0} for some new constant 0 and then
g 'r .r0 f 'r .r0 0 for every symbol g in F.

Furthermore, in the following, we will call a constraint C satisfiable if there exists some
extension (F', 'r:F') of (F, >-.r) in which C is satisfiable. This notion of satisfiability is the
one needed for refutation completeness of inference systems for ordering constrained clau­
ses, studied in [NR92], where it is also shown that this notion is equivalent to satisfiability
in (Fo, 'r .r0).

Below we denote variables by z, y ... and terms (with variables) by s and t. Every
ordering constraint can be expressed by an equivalent set (disjunction) of solved forms
[Com90], by keeping it in disjunctive normal form, eliminating negations with (t 'if t') =
(t' 'r t V t = t') and (t f:. t') = (t' 'r t V t 'r t'), and applying the definition of LPO for
decomposing all inequalities s 'r s' with non-variable s and s', like by

s>-f(tt, ... ,tn) ==} s'rtt/\ ... 1\s'rtn

A solved form F is either T, l_ or a formula

if top(s) 'r.r f

:Z:1 'r t1 1\ · · · 1\ :Z:n 'r tn 1\ t~ 'r :Z:~ 1\ · · · 1\ t~ 'r :Z:~ 1\ Yl = St 1\ · · • 1\ Yr = Sr

where Yk appears only once in F for k = 1 ... r.
The solutions of a solved form F are composed by the equality part eqpart(F) = (y1 =

St 1\ ... 1\ Yr = sr) (the values of the already solved variables) and the solutions of the
inequality part ineqpart(F) (which do not depend on eqpart(F)). A constraint C has the
same solutions as its set (disjunction) of solved forms.

A solved form F can be transformed into a finite set (disjunction) of simple systems
[Com90] which again has the same solutions. A simple systemS is a formula

t1 'r · · · 'r tn 1\ Yt = St 1\ · · · 1\ Yr = Sr

where Yk appears only once in S for k = 1 ... r, and for 1 :::; i :::; n every sub term of ti is
some tj with i :::; j :::; n.

Like in solved forms, the solutions of a simple system S are composed by the values
of the solved variables eqpart(S) = (Yt = St 1\ ... 1\ Yr = Sr) and the solutions of the
inequality part ineqpart(S) = (t1 'r ... 'rtn) (which do not depend on eqpart(S)), and S

is satisfiable iff ineqpart(S) is.

4

Lemma 3.1 (cf. [Com90]). Let S be a simple system. H ineqpart(S) does not contain
any of its solved forms then its only solved form is j_, and ineqpart(S) is unsatisfiable.

This lemma follows from the fact that solved forms are computed by decomposing in­
equalities into a combination F of (in)-equalities between sub terms of it. Since ineqpart(S)
contains inequalities between all its (sub)terms, ineqpart(S) must be either incompatible
with such F, or else contain F; if it is incompatible with all such F then its only solved
form is j__

4 Computing particular solutions of ordering constraints

An N Fa -solution (normalized Fa-solution) of a simple system S is a solution u in (Fa, >- :Fo

), in which, for each pair of different variables z and y of ineqpart(S), zu is of the form
f(.. _k) f(t) .. .), yu is ofthe form f(... k') f(t') .. .), where k-=/= k', and the topmost symbols
of t and t' are different from f.

Theorem 4.1 Let S be a simple system. Then the following statements are equivalent:

1. S is satisfiable

2. ineqpart(S) contains one of the solved forms of ineqpart(S)

3. S has an NFa-solution

Proof The implication 1. ~ 2. is the previous lemma. Moreover, 3. trivially implies
1. We now prove that 1. and 2. imply 3. by induction on the number k of variables in
T = ineqpart(S) = t1 >- .. . >-tn.

Note that, by definition of simple system and because T is satisfiable, every variable of
T appears exactly once as some ti in T. Let Zk, Zk-1. ... , z 1 be the variables appearing in
this way from left to right in T, i.e. T is of the form ... >- Zk >- ... >- Zk-l >- ... >- z 1 ... We
prove that there exists an NFa-solution u in which each ZjO" is of the form f(... i) f(t) .. .),
where the topmost symbol oft is different from f.

The case k = 0 holds trivially. IT k -=/= 0, then let T' be the expression obtained by
deleting from T all terms containing the variable Zk. Now T' is still a simple system.
Moreover, T' is satisfiable, since it is contained in T. Therefore T' contains one of its
solved forms. It has one variable less than T and by the induction hypothesis T' has an
N Fa-solution (} of the desired form.

Let u be defined as follows. H Zk is tn then ZkO" is /(0). Otherwise, Zk is some ti with
i-=/= n. Then ZkO" is f(.. _k) f(ti+l(}) .. .) ifti+l is not the variable Zk-1, and ZkO" is f(ti+1(})
if ti+1 is Zk-1 . Finally, yu = y(} for all other variables y in T. Below we show that u is a
solution (and therefore the needed N Fa-solution) ofT.

Each solution of a solved form of a constraint C is a solution of C, and T contains one
of its solved forms. Therefore we only have to prove that u is solution of the solved part
ofT, i.e. that su >-;;! s'u for all inequalities s >- s' in T where s or s' is a variable. IT Zk

5

does not appear in s >- s' then s >- s' is in T' and su = sO >-f;! s' 0 = s' u. The inequalities
in which Zk may appear are the following:

1. Zk >- t: By construction of u, Zku = tiu >-f;! ti+1u. The case when t is to the
right of ti+l in T is covered by transitivity and because 0 is solution ofT'.

2. s >- Zk: If Zk appears in s, then su >-:;! ZkU. Otherwise, su = sO, and sO is
some term with a topmost symbol g with g >-~o f >-~0 0. (s is not a variable,
because Zk is the leftmost variable, nor is s the constant 0, since T is satisfiable).
Now if zku is f(O) then su >-:;! ZkU· Otherwise, ZkU is f(.. . f(ti+l) .. .)0, and
sO>-~~ f(... f(ti+l) .. .)0 i:ff sO >-f;! ti+10 because g >-~0 f. But sO>-~~ ti+10, since
0 is solution of T'.

3. s[zk] >- y: Here y is some tj with j > i, and s[zk]u >-:;! ZkU >-:;! yu by case 1.

0

The previous result (a constraint is satisfiable i:ff it has a simple system whose solved
form is not ..L) is related to [NR92], where another method, with a much more complicated
proof, is given for finding solutions in (Fo, >-~0).

However, the above technique is not only interesting because of its simplicity, but also
for the special NF0-solutions, which are crucial for the results of the following section.

5 Ordering constrained equations

An ordering constrained equation is a pair formed by an equation t = t' and an LPO­
ordering constraint C, written t = t' [C], denoting all instances oft = t' for which C is
satisfied. If all these instances are of the form s = s then t = t' [C] is a tautology.

Lemma 5.1 It is decidable whether a constrained equation t = t' [C] is a tautology.

Proof Let { sl' 0 0 0 ' Sn} be the simple systems of c' and Ui = {yl 1--+ sl' 0 0 0) Yr 1--+ Sr}
if eqpart(Si) = (Yl = s1 A ... AYr = Sr), for 1 :::; i :::; n. Nowt = t' [C] is equivalent to
EE = { tu1 = t'u1 [ineqpart(Sl)], ... , tun= t'un [ineqpart(Sn)] }. Therefore t = t' [C]
is a tautology i:ff all constrained equations in E E are tautologies.

We now prove that a constrained equations= s' [T] in EE is a tautology i:ff s and s'
are the same term or T is unsatisfiable. The if-part of this statement is obvious. For the
only-if part, suppose that s :/= s' and T is satisfiable. By the previous theorem we know
that T has an NF0-solution 0, and sO :/= s'O, because 0 cannot be a unifier of s and s':
it instantiates different variables with different terms whose topmost symbol f does not
appear in s = s'. This means that s = s' [T] is not a tautology.

0

6

6 Constrained rewriting

A constrained equation e [C] can be rewritten by constrained rewriting with u = v into
e[vu]p [C 1\ uu >- vu] and into the complementary equation e [C 1\ uu 'if vu] iff

1. eiP = uu and

2. C 1\ uu >- vu is satisfiable and

3. zu = 0 for every (so-called extra) variable z in v that is not contained in u.

By equality extraction, e [C] can be rewritten into
{ eu1 [ineqpart(S1)], .. . , eun [ineqpart(Sn)] } iff

1. the set { S1, ... , Sn} of satisfiable simple systems of C is non-empty and

2. the equality parts eqpart(Si) are non-empty for 1 ~ i ~ n and

3. Ui = {y1 ~ s1, ... ,yr ~ sr} if eqpart(Si) = (Y1 = s11\ ... 1\yr = sr) for 1 ~ i ~ n.

Note that the set of constrained equations obtained by equality extraction is equivalent
toe [C] (it has the same instances). We instantiate the equation with the equalities that
follow from its constraint. Furthermore, each constrained equation obtained contains a
strictly smaller number of variables than e [C].

By equality extraction and constrained rewriting we can compute confluence trees. A
confluence tree (using E) for an equation t = t1 is a tree T such that

1. the nodes of T are constrained equations

2. the root of T is t = t1 [T]

3. the children of each inner node e [C] are the constrained equations obtained by one
step of constrained rewriting on e [C] with an equation in E, or by one step of
equality extraction on e [C].

4. no leaf ofT can be rewritten by constrained rewriting with E or by equality extrac­
tion.

Lemma 6.1 There is no infinite confluence tree using (a finite) E.

Proof The number of children of each inner node is finite (two in the case of constrained
rewrite steps, and n in equality extraction steps, where n is the finite number of satisfiable
solved forms of a constraint C).

We now derive a contradiction from the existence of some infinite branch B. Let B be
an infinite sequence of constrained equations of the form e1 [Cl], e2 [C2], ..• where each
constrained equation ei+l [Ci+1] is obtained from ei [Ci] by constrained rewriting or by
equality extraction, and where no Cj is insatisfiable.

7

First, note that there can only be a finite number of equality extraction steps in B,
because they strictly reduce the number of variables, and in constrained rewriting steps
the number of variables does not increase. This means that in B there must be an infinite
contiguous subsequence CR of only constrained rewrite steps.

Second, in CR there is no infinite contiguous subsequence of only complementary
steps e [C~c], e [Ck+1], ... since the number of possible applications of equations to a finite
e is finite, and no equation can be applied twice at the same position (then the non­
complementary constraint becomes insatisfiable).

This means that, if we omit in CR the constrained equations obtained by comple­
mentary steps, we get an infinite sequence B' of the forme~ [C~], e~ [C~], ... where each
e~+l [Ci+l] is obtained from e~ [Ci] by a non-complementary constrained rewrite step (and
by possibly adding some more conditions to CI+l corresponding to omitted complementary
steps in between).

In B', if j > i, then Cj 1\ ej !: e~ is insatisfiable, because in each step on e~ [Ci]
obtaining e~+l [Ci+l] a condition (equivalent to) e~ >- ei+1 is added to the constraint.

Furthermore, by Kruskal's theorem, for some node ei [CI] in B' the equation ei must be
embedded in the equation ej of some node ej [Cj] with j > i, since all terms appearing in
the tree are built over a finite set of symbols. Then also ej !:~ eL because all simplification
orderings contain the embedding relation.

But Cj 1\ ej !: ei is insatisfiable, and Cj 1\ ej !: e~ is equivalent to Cj since ej !:~ ei,
i.e. Cj is also insatisfiable, which contradicts the initial assumptions. D

7 A confluence test for ordered rewrite systems

Rewrite methods have to be adapted in those cases in which any orientation of the axioms
yields a nonterminating system, like in the presence of commutativity. Ordered rewriting
and completion techniques overcome this problem. An ordered rewrite system is a pair
formed by a set of equations E and a reduction ordering >- on terms. Ordered rewriting
is done by applying an equation in whatever direction agrees with the given ordering, and
therefore always terminates. Let u = v (or v = u) be an equation in E, and let t be a
term with tiP = uu and uu >- vu, for some substitution u. Then t rewrites by ordered
rewriting with (E, >-)into t[vu]p, denoted t --+(E,>-) t[vu]p or simply t --+E t[vu]p·

For instance, with z + y = y + z the term a+ b rewrites into b + a only if a + b >- b + a.
For example

z+y

(z+y)+z

z+(y+z)

y+z

z+(y+z)

y+(z+z)

is a confluent system for associativity and commutativity (if>- treats + lexicographically).
This means that terms like z + (g(a) +b) and (b + z) + g(a) are AC-equivalent for all z iff
their (unique) normal forms by ordered rewriting with (E, >-) are equal. However, first >­
has to be extended to some>-' that is able to deal with the new symbols g, a and b, and

8

also with variables like z (which are in fact treated as Skolem constants). Moreover, 'r 1

must be total on all terms of the extended signature1 and therefore the standard choice
for >- is LPO.

So, given (E, >-),the required property for this purpose is the confluence of (E, >-1
) for

all total extensions ';-1 of>-.

There exist unfailing completion methods that generate a finite confluent ordered
rewrite system for a given input (E, >-)whenever such a system exists (if>- is total onE­
equivalent terms) [Bac87]. However, it is not always easy to check whether such a system
has been obtained.

For terminating systems of oriented rewrite rules, a well-known result by Knuth and
Bendix [KB70] states that such a system R is confluent if and only if all critical pairs
between its rules are joinable by rewriting with R. In this paper we show that, surprisingly,
it is possible do something similar for ordered rewrite systems: find ordered rewrite proofs
for all instances (possibly with new symbols) of each critical pair.

A binary relation--+ on any setT is confluent if the relation+--* o --+* is contained in
the joinability relation --+ * o +--*.

In the following, for a given (E, >-:F), by confluence of (E, >-:F) we mean the confluence,
for every extension (:F1

, >-7=') of (:F, >-:F), of the ordered rewrite relation --+(E :F') on T (:F1
).

,>-lpo

By ground confluence of (E, >-:F) we mean the confluence of the ordered rewrite relation
--+(E >-:F) on T(:F).

• lpo

In the following we will focus on general confluence, and not on ground confluence, since
the latter property follows from the former, i.e. every confluent ordered rewrite system is
ground confluent (the inverse implication is not true). The following lemma is well-known:

Lemma 7.1 (E, >-:F) is confluent iff for every instance t = t' of a critical pair between
equations in E and for every extension (:F1

, 'r:F') of (:F, >-:F) such that t and t1 are in
T(:F'), t = t' is joinable by ordered rewriting with (E, >-t.:o).

Similarly, (E, >-:F) is ground confluent iff for every ground instance (over the given signa­
ture) t = f of a critical pair between equations in E, t = t1 is joinable by ordered rewriting
with (E, >-{p0).

Lemma 7.2 Let t = t1 be an equation in T(:F, X), and let T be a confluence tree (using
E) for t = t'. Then, for every instance tu = t1 u of t = t' and every extension (:F', >-:F') of
(:F, >-:F) with tu and t1u in T(:F1

, X), the instance tu= t1u can be rewritten with (E, >-t.:o)
into some instance of a leaf ofT.

Proof tu = t1 u can be rewritten (in 0 steps) into an instance of the root t = t' [T].
Therefore, it suffices to prove that if tu = t1 u can be rewritten into some instance s = s'
of a node e [C] then either e [C] is a leaf or else tu= t'u can also be rewritten into some
instance of one ofthe children of e [C].

1Theoretically, (E, >--') could also be convergent if >--' were total only on E-equivalent terms, but pro­
perties like totality on E-equivalent terms can only be guaranteed by requiring totality on all terms.

9

Let the children e' [C 1\ u >-- v] and e [C 1\ u '1- v] of e [C] be obtained by a constrained
rewrite step. If uo- >--t;, vo-, then s = s' can be rewritten into an instance of e' [C 1\ u >-- v].
Otherwise s = s' is an instance of e [C 1\ u '1- v].

If the children of e [C] are obtained by an equality extraction step, then s = s' is also
an instance of one of the children. 0

Lemma 7.3 If there is a confluence tree fort = t' using E in which allleafs are tautolo­
gies then, for every instance to- = t' o- oft = t' and for every extension (F', >-- :F') of (F, >--:F)
with to- and t'o- in T(F', X), the instance to-= t'o- is joinable wrt. (E, >--t;,) .

Proof By the previous lemma, for every o- the equation to- = t' o- can be reduced by
ordered rewriting with (E, >--t;,) into some instance of a leaf of the tree. But if allleafs
have only instances of the form s = s, then to- = t' o- is joinable. 0

The previous lemma provides a confluence test for ordered rewrite systems: if for each
one of its critical pairs there exists a constrained rewrite tree with only tautologies as
leafs, then the rewrite system is confluent. The lemma below states that in may cases a
constrained rewrite tree with a non-tautology leaf in fact provides a counter-example to the
confluence of E (the gap for obtaining decidability of confluence lies in that it is not known
whether constraints can be manipulated in such a way that irreducible N F 0-solutions can
always be obtained):

Lemma 7.4 If E I= t = t' and there is an confluence tree for t = t' with a non-tautology
leaf e [C] with an irreducible (wrt. (E, >--:F)) NF0-solution for C, then (E, >--r-) is not
confluent.

Proof Let s = s' [C] be a non-tautology leaf of the confluence tree, and let {51 , ... , Sn}
be the set of satisfiable simple systems of C (this set is non-empty as s = s' [C] is not
a tautology). Since s = s' [C] is in normal form wrt. equality extraction, there must be
some i with 1 :::; i :::; n such that the equality part eqpart(Si) is empty. By the theorem
XX we know that ineqpart(Si) (which is equal to Si) has an NF0-solution B, i.e. sB = s'B
is an instance in T(Fo) of s = s' [C].

We now prove that sB = s'theta is not joinable (in fact, it is irreducible) by ordered
rewriting with (E, >--f;

0
). This implies that (E, >--r-) is not confluent, because, by construc­

tion of the confluence tree, E I= sB = s'e.
First, note that se # s'e, because (} cannot be a unifier of s and s': it instantiates

different variables with different terms whose topmost symbol f does not appear in s = s'.
It remains show that sB = s'e is also irreducible wrt . (E, >--~)at non-variable positions

of s = s', i.e. at positions not inside the substitution theta: it would mean (s = s')lp = uo­
for some o-, and (se= s'B)IP = uo-B. But the constraint C 1\ uo- >-- vo- is insatisfi.able, since
s = s' [C] is in normal form wrt. constrained rewriting, and therefore uo-e '1-r,; vo-e, since
B is a solution of C.

0

Let us briefly explain why our treatment of extra variables works. Recall that the
extra variables in a step applying an equation u = v are the variables of the right hand

10

side v that do not belong to u. In such steps, the instantiation of these variables is not
determined by the matching instantiation of u, i.e. one has to "guess" their value.

For computing normal forms with a confluent E, in practice one can always choose
to instantiate the extra variables with the smallest constant 0: if u = v can somehow be
applied reductively, then it can also be applied reductively instantiating the extra variables
with 0 (0 is the smallest constant, and therefore the smallest ground term) and therefore
the same normal forms are computed in this way.

When building confluence trees we also instantiate extra variables with the smallest
constant 0: if there is a non-tautology leaf, then E cannot be confluent; if allleafs are
tautologies, then we have found a rewrite proof for all instances of the critical pair.

11

References

[Bac87] Leo Bachmair. Proof methods for equational theories, 1987.

[BG91] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Technical Report MPI-1-91-208, Max-Planck­
Institut fiix lnformatik, Saarbriicken, August 1991.

[CHJ92] Hubert Comon, Marianne Haberstrau, and Jean-Pierre Jouannaud. Decidable
problems in shallow equational theories (extended abstract). In Seventh Annual
IEEE Symposium on Logic in Computer Science, pages 255-265, Santa Cruz,
California, USA, June 22-25, 1992. IEEE Computer Society Press.

[Com90] Hubert Comon. Solving inequations in term algebras (extended abstract). In
Fifth Annual IEEE Symposium on Logic in Computer Science, pages 62-69,
Philadelphia, Pennsylvania, USA, June 4-7, 1990. IEEE Computer Society
Press, Los Alam.itos, CA, USA.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal
Models and Semantics, chapter 6, pages 244-320. Elsevier Science Publishers
B.V., Amsterdam, New York, Oxford, Tokyo, 1990.

[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.
In J. Leech, ed., Computational Problems in Abstract Algebra, pages 263-297.
Pergamon Press, Oxford, 1970.

[KKR90] Claude Kirchner, Helene Kirchner, and Michael Rusinowitch. Deduction with
symbolic constraints. Draft, May 23, 1990.

[NR92] Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering cons­
trained clauses. In Deepak Kapur, editor, 11th International Conference on
Automated Deduction, LNAI 607, pages 477-491, Saratoga Springs, New York,
USA, June 15-18, 1992. Springer-Verlag.

[Pet90] Gerald E. Peterson. Complete sets of reductions with constraints. In Mark E.
Stickel, editor, 10th International Conference on Automated Deduction, LNAI
449, pages 381-395, Kaiserslautern, FRG, July 24-27, 1990. Springer-Verlag.

12

	92-2380001
	92-2380002
	92-2380003
	92-2380004
	92-2380005
	92-2380006
	92-2380008
	92-2380009
	92-238001_Cover
	92-2380010
	92-2380011
	92-2380012
	92-2380013
	92-2380014
	92-2380015
	92-2380016
	92-2380017
	92-2380018
	92-2380019
	92-2380020
	92-2380021
	92-2380022
	92-2380023
	92-2380024
	92-2380025
	92-2380026

