
MOTEL User Manual
Version 0.8.2 (February 1994)

Ullrich Hustadt
Andreas Nonnengart

Renate Schmidt
Jan Timm

MPI–I–93–236 December 1993

Addresses

Ullrich Hustadt

Max-Planck-Institut für Informatik

Im Stadtwald

W-6600 Saarbrücken

Germany

E-mail: Ullrich.Hustadt@mpi-sb.mpg.de

Andreas Nonnengart

Max-Planck-Institut für Informatik

Im Stadtwald

W-6600 Saarbrücken

Germany

E-mail: Andreas.Nonnengart@mpi-sb.mpg.de

Renate Schmidt

Max-Planck-Institut für Informatik

Im Stadtwald

W-6600 Saarbrücken

Germany

E-mail: Renate.Schmidt@mpi-sb.mpg.de

Acknowledgements

This research was funded by the German Ministry for Research and Technology (BMFT) under grant ITS

9102 and the Deutsche Forschungsgemeinschaft, SFB 314 (TICS). The responsibility for the contents of

this publication lies with the authors.

Abstract

MOTEL is a logic-based knowledge representation languages of the KL-ONE family. It contains as a

kernel the KRIS language which is a decidable sublanguage of first-order predicate logic (see Baader and

Hollunder (1990)).

Whereas KRIS is a single-agent knowledge representation system, i.e. KRIS is only able to represent

general world knowledge or the knowledge of one agent about the world, MOTEL is a multi-agent knowl-

edge representation system. The MOTEL language allows modal contexts and modal concept forming

operators which allow to represent and reason about the believes and wishes of multiple agents. Further-

more it is possible to represent defaults and stereotypes.

Beside the basic resoning facilities for consistency checking, classification, and realization, MOTEL

provides an abductive inference mechanism. Furthermore it is able to give explanations for its inferences.

Keywords

abduction, belief revision, default logic, modal logic, terminological logic, multi-agent knowledge repre-

sentation, functional dependencies

Contents
3

1 Reading the User Manual 4

1.1 Predicate Desciptions . 4

1.1.1 Call Arguments . 4

1.2 Argument Types . 5

2 Environments 6

3 Knowledge Representation 8

3.1 Concept and Role Formation . 8

3.2 Modal Terminological Axioms . 8

3.3 Modal Assertional Axioms . 10

3.4 Knowledge Revision . 10

3.5 Semantics . 11

3.6 Modal Axioms . 13

3.7 Knowledge Bases . 13

4 Classification 15

4.1 Building the Semantic Network . 15

4.2 Retrieval commands for concepts . 15

4.3 Retrieval commands for roles . 17

5 Realization and Retrieval of objects 20

6 (In)consistency 22

7 Functional Dependencies 23

7.1 Definition and Revision of Funcional Dependencies . 23

7.2 Deduction . 24

7.3 Abduction . 26

8 Examples 28

8.1 Modal Operators . 28

8.2 Role closure . 28

8.3 Abduction . 29

8.4 Defaults . 30

8.5 Enumeration Types . 30

A Quintus Prolog Release 3.1.1 Specific Predicates 32

B SICStus 2.1 Specific Predicates 33

C SB-LITTERS Interface 34

D The Common Lisp to PROLOG interface 40

D.1 The syntax of a PROLOG goal in lisp . 40

D.2 The functions (start-prolog), (start-motel), (reset-prolog) and (kill-prolog). . . 40

D.3 The function (prolog-goal). 41

D.4 The function (prolog-next). 41

D.5 The macro (do-prolog) . 41

D.6 The macro (do-prolog-with-streams) . 41

E Installing MOTEL 42

E.1 Requirements . 42

E.2 Installation . 42

Chapter 1

Reading the User Manual

1.1 Predicate Desciptions

Prediates are described according to the following grammar:

<Predicate Description> ::= <CallPattern>

Arguments: <ArgumentTypes>

<Informal Description>

<CallPattern> ::= <Predicate Name><CallArguments>

<CallArguments> ::=

| [(<CallArgument>+)]

| (<CallArgument>+)

<CallArgument> ::= [<Mode Annotation><Meta Variable>,]

| [<Mode Annotation><Meta Variable>]

| <Mode Annotation><Meta Variable>

<ArgumentTypes> ::=

| <Meta Variable> : <Type>

<ArgumentTypes>

<Predicate Name> ::= <Identifier>

<Meta Variable> ::= <Identifier>

<Type> ::= <Informal Description>

In the following subsections, we give further explanations for the parts of a predicate description.

1.1.1 Call Arguments

A predicate can have a varying number of arguments. If we use

[(<CallArgument>+)]

we want to describe the situation that the predicate has either no arguments or atleast one arguments

which must be enclosed in round brackets. The notation

(<CallArgument>+)

is used if the predicate has atleast one argument which has to be enclosed in round brackets. If the

predicate has no arguments, we simply give no call arguments.

If a call arguments takes the form

[<Mode Annotation><Meta Variable>,]

then it is an optional argument, i.e. it may be omitted, and it is followed be a comma unless it is the last

argument, i.e. the last one before the closing round bracket. If we use

[<Mode Annotation><Meta Variable>]

4

then it is an optional argument which is never followed by a comma. The last form is

<Mode Annotation><Meta Variable>

denoting a non-optional argument.

The mode annotations are useful to tell wether an argument is input or output or both. They also

describe formally the instantiation pattern to the call.

Following is a complete description of the mode annotations you will find in this user manual:

+ Input argument. This argument will be inspected by the predicate, and affects the behaviour of the

predicate, but will not be further instantiated by the predicate.

− Deterministic output argument. This argument is unified with the output value of the predicate. Given

the input arguments, the value of a deterministic output argument is uniquely defined.

∗ Nondeterministic output argument. This argument is unified with the output value of the predicate.

The predicate might be resatisfiable, and might through backtracking generate more than one output

value for this argument.

+− An input argument that deterministically might be further instantiated by the predicate.

+∗ An input argument that might be further instantiated by the predicate. The predicate might be

resatisfiable, and might through backtracking generate more than one instantiation pattern for this

argument.

All predicates of arity zero are determinate.

1.2 Argument Types

After the call pattern, we declare the types of the arguments occurring in the call pattern. For each meta

variable in the call pattern the corresponding type is given. Types are not formally defined.

Chapter 2

Environments

An environment is a container for a knowledge base. Each environment has some user provided environ-

ment name, some system generated internal environment name, and a user provided comment. Although

it is possible to have two different environments with the same environment name, the one generated later

will be not accessible by the user. So the user should carefully choose the names for the environments.

The internal environment name is unique and does not depend on the environment name. The comment

can be used for any purpose, e.g. to remind the user what the knowledge base is about.

There is always a current environment. Whenever a predicate has an environment name as optional

argument and the argument is not provided in a call to the predicate, the system will refer to the current

environment. At the beginning, there exists an empty environment named initial.

We provide the following predicates for handling environments:

clearEnvironment[(+∗EnvName)]

Arguments: EnvName environment name

removes the knowledge base in environment EnvName. Without EnvName the current envi-

ronment is removed.

compileEnvironment(+FileName[,EnvName])

Arguments: FileName file name

EnvName environment name
loads the internal representation of an environment EnvName in compiled form from a file

named FileName. If no EnvName is given, the enviroment name stored in the file FileName

will be taken. If there already exists an environment EnvName, it will be removed.

copyEnvironment([+EnvName1,]+EnvName2)

Arguments: EnvName1 environment name

EnvName2 environment name
creates a new environment EnvName2 and copies the knowledge base in EnvName1 to En-

vName2.

environment(+−EnvName, ∗EnvId, ∗Comment)

Arguments: EnvName environment name

EnvId internal environment name

Comment string
retrieves the internal environment identifier EnvId and the associated comment Comment for

a given environment name EnvName.

getCurrentEnvironment(−EnvName)

Arguments: EnvName environment name

instantiates EnvName with the identifier for the current environment.

6

initEnvironment[(+EnvName)]

Arguments: EnvName environment name

provides the environment EnvName with the initial data structures. The current environment

is initialized if no EnvName is given.

initialise

removes all environments, initialises the empty environment initial, and makes initial the

current environment.

initialize

Identical to initialize. For those of us who prefer the alternative spelling.

loadEnvironment(+FileName[,EnvName])

Arguments: FileName file name

EnvName environment name
loads the internal representation of an environment EnvName from a file named FileName. If

no EnvName is given, the enviroment name stored in the file FileName will be taken. If there

already exists an environment EnvName, it will be removed.

makeEnvironment(+EnvName,+Comment)

Arguments: EnvName environment name

Comment string
creates a new environment with identifier EnvName and associated comment Comment. This

new environment becomes the current environment.

removeEnvironment(+−EnvName)

Arguments: EnvName environment name

removes the knowledge base and the environment EnvName. If EnvName was the current

environment then initial environment becomes the current environment.

renameEnvironment(+EnvName1,+EnvName2)

Arguments: EnvName environment name

renames environment +EnvName1 to +EnvName2.

saveEnvironment([+EnvName,] FileName)

Arguments: EnvName environment name

FileName file name
saves the internal representation of environment EnvName into a file named FileName.

showEnvironment[(+EnvName)]

Arguments: EnvName environment name

displays the knowledge base in environment EnvName, i.e. the terminological axioms, the

assertional axioms, and the modal axioms.

switchToEnvironment(+EnvName)

Arguments: EnvName environment name

makes EnvName the current environment (if an environment with this identifier exists).

Chapter 3

Knowledge Representation

3.1 Concept and Role Formation

Assume that we have four disjoint alphabets of symbols, called concept names C, role names R, modal

operators M, and object names O. A distinguished subset A of O is the set of all agent names. There is a

special agent name all and a special concept name top called top concept. The tuple Σ := (C,R,M,O)

is a knowledge signature.

The sets of modal concept terms and role terms are inductively defined as follows. Every concept name

is a modal concept term and every role name is a role term. Now let C, C1,. . . ,Ck be modal concept

terms, R, R1,. . . ,Rl be role terms already defined, O be a modal operator, a some agent name, and let n

be a nonnegative integer. Then

and([C1, . . . , Ck]) (conjunction)

or([C1, . . . , Ck]) (disjunction)

not(C) (negation)

naf(C) (negation as failure)

all(R,C) (value restriction)

some(R,C) (exists restriction)

atleast(n,R) (number restriction)

atmost(n,R)

b(O,a,C) (box agent introduction)

d(O,a,C) (diamond agent introduction)

b(O,C1,C2) (box concept introduction)

d(O,C1,C2) (diamond concept introduction)

are modal concept terms and

and([R1, . . . , Rl]) (role conjunction)

inverse(R) (role inversion)

restr(R,C) (role restriction)

are role terms.

3.2 Modal Terminological Axioms

A modal context is a (possibly empty) list of terms of the form b(O,a), d(O,a), bc(O,A) or dc(O,A)

where O is a modal operator, a is an agent name and A is a concept name. The set of all modal contexts

is denoted MC.
So-called modal terminological axioms are used to introduce names for modal concept terms and role

terms. A finite set of such axioms satisfying certain restrictions is called a terminology (TBox). There are

three different ways of introducing new concepts (respectively roles) into a terminology.

By the modal terminological axioms

8

defprimconcept([+EnvName,] [+M,]+A)

Arguments: EnvName environment name

M modal context

A concept name

defprimrole([+EnvName,] [+M,]+P)

Arguments: EnvName environment name

M modal context

P role name

new concept and role names are introduced in environment EnvName and modal context M without

restricting their interpretation. If no EnvName is given, the current environment will be taken. If no M

is provided, the empty modal context will be used.

The modal terminological axioms

defprimconcept([+EnvName,] [+M,]+A,+C)

Arguments: EnvName environment name

M modal context

A concept name

C concept term

defprimrole([+EnvName,] [+M]+P,+R)

Arguments: EnvName environment name

M modal context

P role name

R role term

impose necessary conditions on the interpretation of the introduced concept and role names in environment

EnvName and modal context M.

Finally, one can impose necessary and sufficient conditions by the modal terminological axioms

defconcept([+EnvName,] [+M,]+A,+C)

Arguments: EnvName environment name

M modal context

A concept name

C concept term

defrole([+EnvName,] [+M,]+P,+R)

Arguments: EnvName environment name

M modal context

P role name

R role term

One can impose an additional restriction on the interpretation of already introduced concept names

by the terminological axiom

defdisjoint([+EnvName,] [+M,]+CL)

Arguments: EnvName environment name

M modal context

CL list of concept names

which declares the mutal disjointness of all concepts in the given list of concept names.

3.3 Modal Assertional Axioms

Assertional axioms have the form

assert ind([+EnvName,] [+M,]+X,+A)

Arguments: EnvName environment name

M modal context

X object name

A concept name

assert ind([+EnvName,] [+M,]+X,+Y,+P)

Arguments: EnvName environment name

M modal context

X object name

Y object name

P role name

The first one defines X to be an element of concept A in environment EnvName and modal context M.

The second one defines the pair (X,Y) to be an element of the role P.

A finite set set of such axioms is called world description.

3.4 Knowledge Revision

MOTEL has predicates for revising the terminology and the world description of a knowledge base. The

following predicates allows to delete a concept, i.e. after deleting the concept A it is no longer possible to

prove that some object a is an element of A unless it is explicitly stated in the world description.

undefconcept(+EnvName,M,A)

Arguments: EnvName environment name

M modal context

A concept name
deletes concept A in environment EnvName and modal context M.

The following predicates delete the relationship between a concept name and a concept term previously

defined by some terminological axiom.

undefconcept(+EnvName,+M,+A,+CT)

Arguments: EnvName environment name

M modal context

A concept name

CT concept term
deletes the axiom defining the equivalence of A and CT in environment EnvName and modal

context M.

undefprimconcept(+EnvName,M,A,CT)

Arguments: EnvName environment name

M modal context

A concept name

CT concept term
deletes the axiom defining the inclusion of A in CT in environment EnvName and modal

context M.

To revise the world description one can either delete the membership of some object a in a concept A

or the membership of a pair (a, b) in the role P .

delete ind(+EnvName,+M,+X,A)

Arguments: EnvName environment name

M modal context

X object name

A concept name
deletes the assertional axiom defining the membership of X in A.

delete ind([+EnvName,] [+M,]+X,+Y,+P)

Arguments: EnvName environment name

M modal context

X object name

Y object name

P role name
deletes the assertional axiom defining the membership of the pair (X,Y) in role P.

3.5 Semantics

Suppose Σ = (C,R,M,O) is a knowledge signature.

Definition 1 (Σ-Structures)

As usual we define a Σ-structure as a pair (D, I) which consists of a domain D and an interpretation

function I which maps the individual objects to elements of D, primitive concepts to subsets of D and

the primitive roles to subsets of D ×D. △

Definition 2 (Frames and Interpretations)

By a frame F we understand any pair (W,ℜ) where

• W is a non-empty set (of worlds).

• ℜ =
⊎

O∈M,a∈A ℜa
O where the ℜa

O’s are binary relation on W, the so-called accessibility relations

between worlds.

By a Σ-interpretation ℑ based on F we understand any tuple (D,F,ℑloc, ϵ) where

• D denotes the common domain of all Σ-structures in the range of ℑloc.

• ϵ denotes the actual world (the current situation)

• F is a frame

• ℑloc maps worlds to Σ-structures with common domain D which interpret agents’ names equally.

△

Definition 3 (Interpretation of Terms)

Let ℑ = (D,F,ℑloc, ϵ) be a Σ-interpretation and let ℑloc(ϵ) = (D, I). We define the interpretation of

terms inductively over their structure:

ℑ(A) = I(A) if A is a concept name

ℑ(P) = I(P) if P is a role name

ℑ(and([C1, . . . , Cn])) = ℑ(C1) ∩ . . . ∩ ℑ(Cn)

ℑ(or([C1, . . . , Cn])) = ℑ(C1) ∪ . . . ∪ ℑ(Cn)

ℑ(not(C)) = D \ ℑ(C)

ℑ(all(R,C)) = {d ∈ D | e ∈ ℑ(C) for all e with (d, e) ∈ ℑ(R)}
ℑ(some(R,C)) = {d ∈ D | e ∈ ℑ(C) for some e with (d, e) ∈ ℑ(R)}
ℑ(b(O,a,C)) = {d ∈ D | d ∈ ℑ[χ](C) for all χ with ℜa

O(ϵ, χ)}
ℑ(d(O,a,C)) = {d ∈ D | d ∈ ℑ[χ](C) for some χ with ℜa

O(ϵ, χ)}
ℑ(and([R1, . . . , Rn])) = ℑ(R1) ∩ . . . ∩ ℑ(Rn)

ℑ(inverse(R)) = {(x, y) ∈ D ×D | (y, x) ∈ ℑ(R)}
ℑ(restr(R,C)) = {(x, y) ∈ ℑ(R) | y ∈ ℑ(C)}

where ℑ[χ] = (D,F,ℑloc, χ) △

Definition 4 (Satisfiability)

Let ℑ = (D,F,ℑloc, ϵ) be a Σ-interpretation. We define the satisfiability relation |= inductively over the

structure of modal terminological and modal assertional axioms:

ℑ |= defprimconcept(C1,C2) iff ℑ(C1) = ℑ(C2)

ℑ |= defprimconcept([b(O,a)|M],C1,C2) iff ℑ[χ] |= defprimconcept(M,C1,C2)

for every χ with ℜa
O(ϵ, χ)

ℑ |= defprimconcept([bc(O,A)|M],C1,C2) iff ℑ[χ] |= defprimconcept(M,C1,C2)

for every a with ℑ |= a ∈ A,

for every χ with ℜa
O(ϵ, χ)

ℑ |= defprimconcept([d(O,a)|M],C1,C2) iff ℑ[χ] |= defprimconcept(M,C1,C2)

for some χ with ℜa
O(ϵ, χ)

ℑ |= defprimconcept([dc(O,A)|M],C1,C2) iff ℑ[χ] |= defprimconcept(M,C1,C2)

for every a with ℑ |= a ∈ A,

for some χ with ℜa
O(ϵ, χ)

ℑ |= defconcept(M,C1,C2) iff ℑ |= defprimconcept(M,C1,C2)and

ℑ |= defprimconcept(M,C2,C1)

ℑ |= defprimrole(R1,R2) iff ℑ(R1) = ℑ(R2)

ℑ |= defprimrole([b(O,a)|M],R1,R2) iff ℑ[χ] |= defprimrole(M,R1,R2)

for every χ with ℜa
O(ϵ, χ)

ℑ |= defprimrole([bc(O,A)|M],R1,R2) iff ℑ[χ] |= defprimrole(M,R1,R2)

for every a with ℑ |= a ∈ A,

for every χ with ℜa
O(ϵ, χ)

ℑ |= defprimrole([d(O,a)|M],R1,R2) iff ℑ[χ] |= defprimrole(M,R1,R2)

for some χ with ℜa
O(ϵ, χ)

ℑ |= defprimrole([dc(O,A)|M],R1,R2) iff ℑ[χ] |= defprimrole(M,R1,R2)

for every a with ℑ |= a ∈ A,

for some χ with ℜa
O(ϵ, χ)

ℑ |= defrole(M,R1,R2) iff ℑ |= defprimrole(M,R1,R2)and

ℑ |= defprimrole(M,R2,R1)

ℑ |= assert ind(X,A) iff ℑ(X) ∈ ℑ(A)
ℑ |= assert ind([b(O,a)|M],X,A) iff ℑ[χ] |= assert ind(M,X,A)

for every χ with ℜa
O(ϵ, χ)

ℑ |= assert ind([bc(O,A)|M],X,A) iff ℑ[χ] |= assert ind(M,X,A)

for every a with ℑ |= a ∈ A,

for every χ with ℜa
O(ϵ, χ)

ℑ |= assert ind([d(O,a)|M],X,A) iff ℑ[χ] |= assert ind(M,X,A)

for some χ with ℜa
O(ϵ, χ)

ℑ |= assert ind([dc(O,A)|M],X,A) iff ℑ[χ] |= assert ind(M,X,A)

for every a with ℑ |= a ∈ A,

for some χ with ℜa
O(ϵ, χ)

ℑ |= assert ind(X,Y,P) iff (ℑ(X),ℑ(Y)) ∈ ℑ(P)

ℑ |= assert ind([b(O,a)|M],X,Y,P) iff ℑ[χ] |= assert ind(M,X,Y,P)

for every χ with ℜa
O(ϵ, χ)

ℑ |= assert ind([bc(O,A)|M],X,Y,P) iff ℑ[χ] |= assert ind(M,X,Y,P)

for every a with ℑ |= a ∈ A,

for every χ with ℜa
O(ϵ, χ)

ℑ |= assert ind([d(O,a)|M],X,Y,P) iff ℑ[χ] |= assert ind(M,X,Y,P)

for some χ with ℜa
O(ϵ, χ)

ℑ |= assert ind([dc(O,A)|M],X,Y,P) iff ℑ[χ] |= assert ind(M,X,Y,P)

for every a with ℑ |= a ∈ A,

for some χ with ℜa
O(ϵ, χ)

△

Definition 5

Let ℑ be an interpretation and let Φ be a modal terminological or modal assertional axiom with ℑ |= Φ.

Then we call Φ satisfiable and we call ℑ a model for Φ. If all interpretations are models for Φ then we

call Φ a theorem. Any axiom for which no model exists is called unsatisfiable. Thus, Φ is a theorem iff its

negation is unsatisfiable. △

3.6 Modal Axioms

For any modal operator O and any agent a one has to specify the properties of the accessibility relation

ℜa
O. On the other hand, these properties correspond to subsetrelationships on modal concepts. Some of

these correspondences are listed below. For further details see Nonnengart (1992).

Name Axiom Schema Property

d b(O,a,C) ⊆ d(O,a,C) ∀x∃y ℜa
O(x, y)

t b(O,a,C) ⊆ C ∀x ℜa
O(x, x)

b C ⊆ b(O,a,d(O,a,C)) ∀x, y ℜa
O(x, y) ⇒ ℜa

O(y, x)

4 b(O,a,C) ⊆ b(O,a,b(O,a,C)) ∀x, y, z ℜa
O(x, y) ∧ ℜa

O(y, z) ⇒ ℜa
O(x, z)

5 d(O,a,C) ⊆ b(O,a,d(O,a,C)) ∀x, y, z ℜa
O(x, y) ∧ ℜa

O(x, z) ⇒ ℜa
O(y, z)

The user specifies the properties of the accessibility relation using the predicate modalAxioms. At the

moment, the conjunctions d45, d4, d5, and t are allowed. The identifiers kd45, kd4, kd5, and kt together

form the argument type of Kripke classes.

modalAxioms([+EnvName,] +Class,+O,+a)

Arguments: EnvName environment name

Class Kripke class

O modal operator

a agent name
asserts the internal representation of the properties defined by the given Kripke class Class for

the accessibility relation of the modal operator O and agent a.

modalAxioms([+EnvName,] +Class,+O, concept(+A))

Arguments: EnvName environment name

Class Kripke class

O modal operator

A concept name
asserts the internal representation of the properties defined by the given Kripke class Class for

the accessibility relation of the modal operator O for every agent in concept A.

3.7 Knowledge Bases

A triple consisting of a terminology, a world description, and modal axioms is a knowledge base. It is

possible to load and to save knowledge bases using the following predicates.

saveKB([+EnvName,]+FileName)

Arguments: EnvName environment name

FileName file name
saves the terminological, assertional, and modal axioms of the knowledge base in environment

EnvName into the file FileName.

loadKB(+FileName,−EnvName)

Arguments: FileName file name

EnvName environment name
loads the terminological, assertional, and modal axioms from file FileName, turns them into

their internal representation in environment EnvName.

getKB([+EnvName],−Axioms)

Arguments: EnvName environment name

Axioms list of axioms
Axioms is instantiated with a list of all terminological, assertional, and modal axioms in envi-

ronment EnvName.

Chapter 4

Classification

4.1 Building the Semantic Network

Suppose C and D are concepts in a modal context M . Then C subsumes D if we can prove from the

assumption that a skolem constant a is an element of D that is also an element of C. The predicate for

doing this in MOTEL is

subsumes([+EnvName,] [+M,]+C,+D)

Arguments: EnvName environment name

M modal context

C concept name

D cocept name
succeeds if C and D are known concepts in environment EnvName and modal context M and

C subsumes D.

Let C(E,M) be the set of all concepts in environment E and modal context M . We can compute the

subsumption relation on C(M), called semantic network of M , using the predicate

classify[([+EnvName,] [+M])]

Arguments: EnvName environment name

M modal context
computes the semantic network in modal context M.

4.2 Retrieval commands for concepts

After the classification is done, one can use the following commands to retrieve informations about the

semantik network:

showHierarchy(+EnvName,+M,+Type)

Arguments: EnvName environment name

M modal context

Type either concepts or roles
displays the concept hierarchy, i.e. the semantic network in the modal context M if Type is

concepts and the role hierarchy in the modal context M if Type is roles.

getHierarchy(+EnvName,+M,+Type,−H)

Arguments: EnvName environment name

M modal context

Type either concepts or roles

H internal representation of the subsumption hierarchy
instantiates H with the internal representation of the concept hierarchy, i.e. the semantic

network in the modal context M if Type is concepts and with the internal representation of

the role hierarchy in the modal context M if Type is roles.

15

getDirectSuperConcepts(+EnvName,+M,+Concept,−CL)

Arguments: EnvName environment name

M modal context

Concept concept name

CL list of concept names
CL is the list of all concept names which are direct super concepts of Concept.

getAllSuperConcepts(+EnvName,+M,+Concept,−CL)

Arguments: EnvName environment name

M modal context

Concept concept name

CL list of concept names
CL is the list of all concept names which are super concepts of Concept.

getDirectSubConcepts(+EnvName,+M,+Concept,−CL)

Arguments: EnvName environment name

M modal context

Concept concept name

CL list of concept names

CL is the list of all concept names which are

direct sub concepts of Concept.

getAllSubConcepts(+EnvName,+M,+Concept,−CL)

Arguments: EnvName environment name

M modal context

Concept concept name

CL list of concept names
CL is the list of all concept names which are sub concepts of Concept.

getConcepts(+EnvName,+M,−CL)

Arguments: EnvName environment name

M modal context

CL list of concept names
CL is the list of all concept names in the subsumption hierarchy.

testDirectSuperConcept(+EnvName,+M,+Concept1,+Concept2,−Concept)

Arguments: EnvName environment name

M modal context

Concept1 concept name

Concept2 concept name

Concept concept name
Concept is Concept1 iff Concept1 is a direct super concept of Concept2 or Concept is Concept2

iff Concept2 is a direct super concept of Concept1 otherwise the predicate fails.

testDirectSubConcept(+EnvName,+M,+Concept1,+Concept2,−Concept)

Arguments: EnvName environment name

M modal context

Concept1 concept name

Concept2 concept name

Concept concept name
Concept is Concept1 iff Concept1 is a direct sub concept of Concept2 or Concept is Concept2

iff Concept2 is a direct sub concept of Concept1 otherwise the predicate fails.

testSuperConcept(+EnvName,+M,+Concept1,+Concept2,−Concept)

Arguments: EnvName environment name

M modal context

Concept1 concept name

Concept2 concept name

Concept concept name
Concept is Concept1 iff Concept1 is a direct super concept of Concept2 or Concept is Concept2

iff Concept2 is a direct super concept of Concept1 otherwise the predicate fails.

testSubConcept(+EnvName,+M,+Concept1,+Concept2,−Concept)

Arguments: EnvName environment name

M modal context

Concept1 concept name

Concept2 concept name

Concept concept name
Concept is Concept1 iff Concept1 is a direct super concept of Concept2 or Concept is Concept2

iff Concept2 is a direct super concept of Concept1 otherwise the predicate fails.

getCommonSuperConcepts(+EnvName,+M,+CL1,−CL2)

Arguments: EnvName environment name

M modal context

CL1 list of concept names

CL2 list of concept names
CL2 is the list of all concept names subsuming all concepts in CL1.

getCommonSubConcepts(+EnvName,+M,+CL1,−CL2)

Arguments: EnvName environment name

M modal context

CL1 list of concept names

CL2 list of concept names
CL2 is the list of all concept names which are subsumed by all concepts in CL1.

4.3 Retrieval commands for roles

getDirectFatherRoles(+EnvName,+M,+Role,−RL)

Arguments: EnvName environment name

M modal context

Role role name

RL list of role names
RL is the list of all role names which are direct father roles of Role.

getAllFatherRoles(+EnvName,+M,+Role,−RL)

Arguments: EnvName environment name

M modal context

Role role name

RL list of role names
RL is the list of all role names which are father roles of Role.

getDirectSonRoles(+EnvName,+M,+Role,−RL)

Arguments: EnvName environment name

M modal context

Role role name

RL list of role names
RL is the list of all role names which are direct son roles of Role.

getAllSonRoles(+EnvName,+M,+Role,−RL)

Arguments: EnvName environment name

M modal context

Role role name

RL list of role names
RL is the list of all role names which are son roles of Role.

getRoles(+EnvName,+M,−RL)

Arguments: EnvName environment name

M modal context

RL list of role names
RL is the list of all role names in the subsumption hierarchy.

testDirectFatherRole(+EnvName,+M,+Role1,+Role2,−Role)

Arguments: EnvName environment name

M modal context

Role1 role name

Role2 role name

Role role name
Role is Role1 iff Role1 is a direct father role of Role2 or Role is Role2 iff Role2 is a direct father

role of Role1 otherwise the predicate fails

testDirectSonRole(+EnvName,+M,+Role1,+Role2,−Role)

Arguments: EnvName environment name

M modal context

Role1 role name

Role2 role name

Role role name
Role is Role1 iff Role1 is a direct son role of Role2 or Role is Role2 iff Role2 is a direct son role

of Role1 otherwise the predicate fails

testFatherRole(+EnvName,+M,+Role1,+Role2,−Role)

Arguments: EnvName environment name

M modal context

Role1 role name

Role2 role name

Role role name
Role is Role1 iff Role1 is a direct father role of Role2 or Role is Role2 iff Role2 is a direct father

role of Role1 otherwise the predicate fails

testSonRole(+EnvName,+M,+Role1,+Role2,−Role)

Arguments: EnvName environment name

M modal context

Role1 role name

Role2 role name

Role role name
Role is Role1 iff Role1 is a direct son role of Role2 or Role is Role2 iff Role2 is a direct son role

of Role1 otherwise the predicate fails

getCommonFatherRoles(+EnvName,+M,+RL1,−RL2)

Arguments: EnvName environment name

M modal context

RL1 list of role names

RL2 list of role names
RL2 is the list of all role names subsuming all roles in RL1.

getCommonSonRoles(+EnvName,+M,+RL1,−RL2)

Arguments: EnvName environment name

M modal context

RL1 list of role names

RL2 list of role names
RL2 is the list of all role names which are subsumed by all roles in RL1.

Chapter 5

Realization and Retrieval of objects

The realization problem is to find for an object a all concepts C such that a is an instance of C. The

retrieval problem is to find for a concept C all objects a such that a is an instance of C. In MOTEL both

problems are solved using the deduce-command.

deduce(+−EnvName,+−M, elementOf(+−X,+−CT),+−Exp)

Arguments: EnvName environment name

M modal context

X object name

CT concept term

Exp explanation
For a given object name X all concept names CT such that X is an instance of CT will be

enumerated. Exp provides some explanation why this is true. For a given concept termCT

all object names X such that X is an instance of CT will be enumerated. The concept term

CT can be eiter a variable or a concept term containing role names but not general role terms

only. Again Exp provides some explanation why this is true. If M is not instantiated, it will

enumerate all modal contexts such that X is an instance of C. Finally, if EnvName is a variable,

it will be instantiated with an environment such that X is an instance of C in modal context

M.

realize(+EnvName,+M,+X,−CL)

Arguments: EnvName environment name

M modal context

X object name

CL list of concept names

Exp explanation
try it.

getAllObjects(+EnvName,+M,−OL)

Arguments: EnvName environment name

M modal context

OL list of object names
OL is the list of names of all objects known to exist in environment EnvName and modal

context M.

To get information about roles we have the predicate

20

deduce(+−EnvName,+−M, roleFiller(+−X,+−R,−L,−N), -Exp)

Arguments: EnvName environment name

M modal context

X object name

R role name

L list of object names

N number

Exp explanation
gets all objects in the range of role R for argument X in environment EnvName and modal

context M. L is instantiated with the list of all these objects and N is the number of elements

in this list.

It is possible to use abduction to find a set of hypothesises, i.e. terminological axioms, such that some

object X is an element of a concept C if these hypothesises are true.

abduce(+−EnvName,+−M, *H, elementOf(+−X,+−C),+−Exp)

Arguments: EnvName environment name

M modal context

X object name

C concept name

*H set of hypothesises

Exp explanation
For a given object name X all concepts C such that X is an instance of C using the additional

set of hypothesises will be enumerated. Exp provides some explanation why this is true. For a

given concept name C all object names X such that X is an instance of C will be enumerated.

Again Exp provides some explanation why this is true. IfM is not instantiated, it will enumerate

all modal contexts such that X is an instance of C. Finally, if EnvName is a variable, it will be

instantiated with an environment such that X is an instance of C in modal context M.

Usually, MOTEL does not compute all possible explanations. However, this can be changed using

setOption(allProofs, yes)

Chapter 6

(In)consistency

We call a knowledge base inconsistent, if we can prove form some object name X and some concept name

A that X is an element of A and of not(()A). Otherwise the knowledge base is consistent.

consistent[([+EnvName,] [+M])]

Arguments: EnvName environment name

M modal context
succeeds if the environment EnvName and modal context M is consistent.

inconsistent[([+EnvName,] [+M])]

Arguments: EnvName environment name

M modal context
succeeds if the environment EnvName and modal context M is inconsistent.

22

Chapter 7

Functional Dependencies

In this chapter we describe the component of MOTEL for specifying and reasoning about functional

dependencies among roles.

7.1 Definition and Revision of Funcional Dependencies

Functional dependencies are described using functional dependency literals of the following form

infl(+X,+Y,+W)

posInfl(+X,+Y)

negInfl(+X,+Y)

noInfl(+X,+Y)

change(+X,+W)

increase(+X)

decrease(+X)

X and Y denote roles/attributes and W denotes the weight of X influencing Y or W denotes the weight

of change of an attribute. posInfl is assigned the weight 1.0, negInfl the weight -1.0 and noInfl the

weight 0.0. The weights for increase, decrease and noChange are 1.0, -1.0 and 0.0, respectively.

The command def can be used to define a functional dependency, the command undef can be used to

remove it.

def([+EnvName], [+MS],+Fact)

Arguments: EnvName environment name

MS modal context

Fact functional dependency literal
This predicate is used to update the knowledge base of information about the functional

dependencies. The definition of multiple influences between attributes and multiple changes

on an attribute are prevented.

undef([+EnvName], [+MS],+−Fact)

Arguments: EnvName environment name

MS modal context

Fact functional dependency literal
retracts all facts matching Fact.

With the following predicates it is possible to display information about the functional dependencies which

are currently defined.

showFDW([+−Env])

Arguments: Env environment name (internal representation)

displays the user defined functional dependencies in the knowledge base.

23

showInfl(+−Env)

Arguments: Env environment name (internal representation)

displays the user defined influence relationships in the knowledge base.

showChange(+−Env)

Arguments: Env environment name (internal representation)

displays the user defined changes in the knowledge base.

showFD([+−Env])

Arguments: Env environment name (internal representation)

displays the user defined functional dependencies in the knowledge base. Similar to showFDW,

but the default reprsentation is chosen.

7.2 Deduction

deduce([+EnvName], [+MS],+−Info, [−E])

Arguments: EnvName environment name

MS modal context

Info a literal of the appropriate kind, see description below

E explanations (not as yet implemented)
Succeeds if Info can be inferred by deduction. Here is a short description of Info that can be

inferred.

infl(+−X,+−Y,+−W)

X attribute/role name

Y attribute/role name

W list of weights weight, a value
computes the cumulative weight W of all the influence links between the attributes X

and Y.

simultInfl(+−Xs,+−Y,+−W)

Xs list of attributes/role names

Y attribute/role name

W list of weights weight, a value
checks if the list Xs is well-defined (that is, is Xs a SET of independent attributes) and

computes the total weight W of the attributes in the list Xs simultaneously influencing

attribute Y.

leastInfl(+−X,+−Y)

X attribute/role name

Y attribute/role name
succeeds if X is a least attribute influencing Y.

leastInfls(+−Xs,+−Y)

Xs list of attributes/role names

Y attribute/role name
collects the least attributes influencing Y in Xs.

greatestInfl(+−X,+−Y)

X attribute/role name

Y attribute/role name
succeeds if Y is a greatest attribute influenced by X.

greatestInfls(+−Xs,+−Y)

X attribute/role name

Ys list of attributes/role names
collects the greatest attributes influenced by X in Ys.

maxPosInfl(+−X,+−Y,+−Wmax)

X attribute/role name

Y attribute/role name

Wmax weight, a value
succeeds if Wmax is the greatest weight with which X influences Y positively.

maxNegInfl(+−X,+−Y,+−WMin)

X attribute/role name

Y attribute/role name

WMin a value
succeeds if WMin is the greatest weight with which X influences Y negatively.

change(+−Y,+−W)

Y attribute/role name

Wy weight of change of Y
determines the change in Y.

posInfl(+−X,+−Y)

X attribute/role name

Y attribute/role name
succeeds if attribute X influences attribute Y positively.

negInfl(+−X,+−Y)

X attribute/role name

Y attribute/role name
succeeds if attribute X influences attribute Y negatively.

noInfl(+−X,+−Y)

X attribute/role name

Y attribute/role name
succeeds if the cumulative influence between the attributes X and Y is 0.0.

simultPosInfl(+−Xs,+−Y)

Xs list of attributes/role names

Y attribute/role name
succeeds if the simultaneous influence of the attributes in the list Xs on the attribute Y

is positive.

simultNegInfl(+−Xs,+−Y)

Xs list of attributes/role names

Y attribute/role name
succeeds if the simultaneous influence of the attributes in the list Xs on the attribute Y

is positive.

simultNoInfl(+−Xs,+−Y)

Xs list of attributes/role names

Y attribute/role name
succeeds if the simultaneous influence of the attributes in the list Xs on the attribute Y

is positive.

increase(+−X)

Y attribute/role name

succeeds if attribute Y increases.

decrease(+−X)

Y attribute/role name

succeeds if attribute Y decreases.

noChange(+−X)

Y attribute/role name

succeeds if attribute Y does not change (i.e. there is neither an increase nor a decrease).

7.3 Abduction

The standard query for abduction is

abduce([+EnvName], [+MS],+−H,+−C,E)

where EnvName denotes an environment name, MS a modal context and E a list of explanations. H and C

repectively denote a hypothesis and its consequent. In this component of MOTEL H and C can also be lists

of hypotheses, respectively, consequents. The different possibilities are listed below. Explanations are not

as yet generated for inference with functional dependencies. Provision was made for future implementation.

abduce([+EnvName], [+MS],+−change(+−X,+−Wx),+−change(+−Y,+−Wy), [])

Arguments: EnvName environment name

MS modal context

X attribute/role name

Wx weight of change of X

Y attribute/role name

Wy weight of change of Y
Succeeds if, under the hypothesis of change(+−X,+−Wx), change(+−Y,+−Wy) follows.

abduce([+EnvName], [+MS],+−Hypothesis,+−Consequent, [])

Arguments: EnvName environment name

MS modal context

Hypothesis a literal of appropriate kind

Consequent a literal of appropriate kind
Succeeds if Consequent follows under the hypothesis Hypothesis. Hypothesis and Consequent

are of the form:

increase(+−X), decrease(+−X), noChange(+−X).

abduce([+EnvName], [+MS],+Changes,+−change(+−Y,+−Wy), [])

Arguments: EnvName environment name

MS modal context

Changes a list of literals of the form

change(+−X,+W)

Y attribute/role name

Wy weight of change of Y
Succeeds if change(+−Y,+−W) follows under the hypotheses of Changes.

abduce([+EnvName], [+MS],+−Hypotheses,+−Consequent, [])

Arguments: EnvName environment name

MS modal context

Hypotheses a list of literals of the appropriate kind

Consequent a literal of the appropriate kind
Succeeds if Consequent follows under the hypotheses Hypotheses. Hypotheses is a list of

increase(+−X), decrease(+−X), noChange(+−X)

literals and Consequent is one of these literals.

abduce([+EnvName], [+MS],+−Change,+−Changes, [])

Arguments: EnvName environment name

MS modal context

Change a literal of the form

change(+−X,+−W)

Changes a list of literals of the form

change(+−X,+−W)

Succeeds if Changes hold under the hypothesis that Change holds.

abduce([+EnvName], [+MS],+−Hypothesis,+−Consequents, [])

Arguments: EnvName environment name

MS modal context

Hypothesis a literal of the form

increase(+−X)

decrease(+−X)

noChange(+−X)

Consequents a list of literals of this form
Succeeds if Consequents follow under the hypothesis Hypothesis.

Chapter 8

Examples

8.1 Modal Operators

Let’s suppose that we have some agent a1 in our world. We can form the concept containing everything

that a1 believes to be a car using the terminological axiom (2) in the following knowledge base. We call

this concept c1. Furthermore we specify that a1 believes that c1 is the concept containing everything he

believes to be a car using axiom (4). And we assert that provability for the believe of a1 is like the

modal logic kd45.

That implies that a1 is able to perform positive introspection, i.e. he believes what he believes. Suppose

audi is an element of c1 (axiom (6)). If c3 is the concept containing everything that a1 believes to be

an element of c1 (axiom (3)) and a1 believes that this equivalence is true, then audi must be an element

of c3.

(1) modalAxioms(kd45,believe,a1).

(2) defconcept(c1,b(believe,a1,auto)).

(3) defconcept(c3,b(believe,a1,c1)).

(4) defconcept([b(believe,a1)],c1,b(believe,a1,auto)).

(5) defconcept([b(believe,a1)],c3,b(believe,a1,c1)).

(6) assert ind(audi,c1).

We can check this using the query

| ?- deduce(elementOf(audi,c3)).

yes

So the believes of a1 act like we expect them to do.

8.2 Role closure

Suppose we define a concept onlyMaleChildren using the terminological axiom (1) in the following

knowledge base. Then given the assertional axioms (2)–(7) we cannot prove that tom is an element of

onlyMaleChildren because there might exists children of tom which are not male.

But using the axiom (8) we state that at any point of time we know all objects which are role fillers

of the child role for tom.

(1) defconcept(onlyMaleChildren,all(child,male)).

(2) assert ind(tom,peter,child).

(3) assert ind(tom,chris,child).

(4) assert ind(tom,tim,child).

(5) assert ind(peter,male).

(6) assert ind(chris,male).

(7) assert ind(tim,male).

(8) defclosed(tom,Y,child).

So we can actually prove that tom is an element of onlyMaleChildren.

28

| ?- deduce(elementOf(tom,onlyMaleChildren)).

yes

If we get to know a new child of tom, say betty, which is not male, we just add the assertional axioms

(9) and (10).

(10) assert ind(tom,betty,child)

(11) assert ind(betty,not(male))

Now we are no longer able to deduce that tom is an element of onlyMaleChildren, but we are still

consistent.

| ?- deduce(elementOf(tom,onlyMaleChildren)).

no

| ?- consistent([]).

yes

8.3 Abduction

Here we consider the famous nixon-diamond. Suppose we specify that somebody who is a quaker and a

normalQuaker is a dove. And somebody who is a republican and a normalRepublican is a hawk. The

agent nixon is a quaker and a republican. This can be done using the following axioms:

(1) defprimconcept(and([quaker,normalQuaker]),dove).

(2) defprimconcept(and([republican,normalRepublican]),hawk).

(3) assert ind(nixon,quaker).

(4) assert ind(nixon,republican).

Now we are neither able to deduce that nixon is a dove nor that he is a hawk.

| ?- deduce(elementOf(nixon,dove)).

no

| ?- deduce(elementOf(nixon,hawk)).

no

But we can use the abductive inference mechanism to get information about the additional knowledge we

need to infere that nixon is a dove.

| ?- abdeduce(elementOf(nixon,dove),H,E).

E = proved(in([],dove,nixon),hyp([]),

basedOn(and([proved(in([],quaker,nixon),hyp([]),basedOn(abox)),

proved(in([],normalQuaker,nixon),hyp([]),

basedOn(usingAbHyp(in(env(e4),rn(H, G, F, E),modal([]),

normalQuaker,nixon,hyp(B),ab(D),call(C),

proved(in([],normalQuaker,nixon),

hyp(B),basedOn(A))))))]))),

H = [in(env(e4),rn(P, O, N, M),modal([]),normalQuaker,nixon,hyp(J),ab(L),

call(K),proved(in([],normalQuaker,nixon),hyp(J),basedOn(I)))] ?

yes

The PROLOG variable H is instantiated with the set hypothesises that we need to infer that nixon is a

dove. Here we needed only one hypothesis, namly that nixon is a normalQuaker. The PROLOG variable

E is instantiated with the explanation why we were able to prove that nixon is a dove. The proof was

based on the fact that nixon is a quaker and on the hypothesis that he is a normalQuaker.

Of course, we able to abduce that nixon is a hawk:

| ?- abduce(H,elementOf(nixon,hawk),H).

E = proved(in([],hawk,nixon),hyp([]),

basedOn(and([proved(in([],republican,nixon),hyp([]),basedOn(abox)),

proved(in([],normalRepublican,nixon),hyp([]),

basedOn(usingAbHyp(in(env(e4),rn(H, G, F, E),modal([]),

normalRepublican,nixon,hyp(B),ab(D),call(C),

proved(in([],normalRepublican,nixon),

hyp(B),basedOn(A))))))]))),

H = [in(env(e4),rn(P, O, N, M),modal([]),normalRepublican,nixon,hyp(J),ab(L),

call(K),proved(in([],normalRepublican,nixon),hyp(J),basedOn(I)))] ?

yes

8.4 Defaults

In this example we want to specify that children of doctors are rich person by default. So we have some

role hasChild and to talk about the children of doctors we need the role hasDoctorParent which is the

restriction of the inverse of hasChild, i.e. the parent role, to doctor.

(1) defprimrole(hasChild).

(2) defrole(hasDoctorParent,restr(inverse(hasChild),doctor)).

So if somebody is in the domain of hasDoctorParent, i.e. is a child of doctor, and we cannot prove

that he is an element of not(richPerson), then we expect him to be an element of richPerson. This is

what axiom (3) says:

(3) defprimconcept(and([some(hasDoctorParent,top),

naf(not(richPerson))]),richPerson).

Let’s add some assertional axioms:

(4) assert ind(chris,doctor).

(5) assert ind(chris,tom,hasChild).

Because tom is a child of a doctor he must be rich:

| ?- deduce(elementOf(tom,richPerson)).

yes

On the other hand, we can add to our knowledge that tom is not rich using the assertional axiom (6).

(6) assert ind(tom,not(richPerson)).

Now we no longer able to deduce that tom is a richPerson and we are still consistent.

| ?- deduce(elementOf(tom,richPerson)).

no

| ?- consistent([]).

yes

8.5 Enumeration Types

Suppose we are talking about some bmw. We expect this car to be either yellow, red, or red. We can put

this in our knowledge base using the axioms (1) and (2).

(1) defconcept(c1,and([car,some(hasCol,set([yellow,blue,red])),

all(hasCol,set([yellow,blue,red]))])).

(2) assert ind(bmw,c1).

Now somebody tells us that the bmw is not yellow. Then we can add this knowledge by axioms (3)

and (4).

(3) defconcept(c2,some(hasCol,not(set([yellow])))).

(4) assert ind(bmw,c2).

Of course, we expect the bmw to be either blue or red. Therefore we build the following concept c3:

(5) defconcept(c3,some(hasCol,set([blue,red]))).

and ask wether bmw is an element of c3.

| ?- deduce(elementOf(bmw,c3)).

yes

We get the expected answer.

Appendix A

Quintus Prolog Release 3.1.1

Specific Predicates

ask(+−EnvName,+−M, elementOf(+−X,+−C),+−Exp)

Arguments: EnvName environment name

M modal context

X object name

C concept name

Exp explanation
A synonym for the deduce predicate described in chapter 5.

ask(+−EnvName,+−M, roleFiller(+−X,+−R,−L,−N), -Exp)

Arguments: EnvName environment name

M modal context

X object name

R role name

L list of object names

N number

Exp explanation
A synonym for the deduce predicate described in chapter 5.

saveMOTEL(+FileName)

Arguments: FileName file name

Saves the whole program state, containing all user defined predicates. The file FileName

becomes an executable file.

32

Appendix B

SICStus 2.1 Specific Predicates

ask(+−EnvName,+−M, elementOf(+−X,+−C),+−Exp)

Arguments: EnvName environment name

M modal context

X object name

C concept name

Exp explanation
A synonym for the deduce predicate described in chapter 5.

ask(+−EnvName,+−M, roleFiller(+−X,+−R,−L,−N), -Exp)

Arguments: EnvName environment name

M modal context

X object name

R role name

L list of object names

N number

Exp explanation
A synonym for the deduce predicate described in chapter 5.

saveMOTEL(+FileName)

Arguments: FileName file name

Saves the whole program state, containing all user defined predicates. The file FileName

becomes an executable file.

33

Appendix C

SB-LITTERS Interface

sb defenv(+EnvName,+Comment)

(SB DEFENV ENVNAME COMMENT)

Arguments: EnvName environment name

Comment string
creates a new environment with identifier EnvName and associated comment Comment.

sb initenv[(+EnvName)]

(SB INITENV [ENVNAME])

Arguments: EnvName environment name

initializes environment EnvName or the current environment if no argument is given.

sb primconcept([+EnvName,] [+M,]+CName1, [+CSpecList])

(SB PRIMCONCEPT [ENVNAME] [(:LIST [(B O A) (D O A) (BC O A) (DC O A)] ∗) CNAME1

[CSpecList])

Arguments: EnvName environment name

M modal context

CName1 concept name

CSpecList SB-ONE concept specification
impose necessary conditions on the interpretation of CName1 in environment EnvName and

modal context M. The conditions are specified by CSpecList.

sb defconcept([+EnvName,] [+M,]+CName1,+CSpecList)

(SB PRIMCONCEPT [ENVNAME] [(:LIST [(B O A) (D O A) (BC O A) (DC O A)] ∗) CNAME1

CSpecList)

Arguments: EnvName environment name

M modal context

CName1 concept name

CSpecList SB-ONE concept specification
impose necessary and sufficient conditions on the interpretation of CName1 in environment

EnvName and modal context M. The conditions are specified by CSpecList.

CSpecList is a list of SB-ONE concept specification elements having the following form:

• supers([+C1, . . . ,+Cn])

(SUPERS (:LIST C1 C2 . . .Cn))

specifies a concept which is the conjunction of C1,. . . ,Cn.

• restrict_inh(+RName1, restricts(+RName2, range(+CName2,+CNameDef)))

(RESTRICT INH RNAME1 (RESTRICTS RNAME2 (RANGE CNAME2 CNAMEDEF)))

specifies a concept which is the domain of RName1. RName1 is the restriction of RName2 to the

range CName2 and to the default range CNameDef.

34

• nr(+RName1,MinNr,+MaxNr,+DefNr)

(NR RNAME1 MINNR MAXNR DEFNR)

specifies a concept which contains all object having at least MinNr, at most MaxNr, and by default

DefNr role fillers for role RName1.

sb primelemrole([+EnvName,] [+MS,]+RName1,+PrimRSpec)

(SB PRIMELEMROLE [ENVNAME] [MS] RNAME1 (DOMAIN-RANGE CNAME1 CNAME2 CNAMEDEF))

Arguments: EnvName environment name

M modal context

RName1 role name

PrimRSpec SB-ONE primitive role specification
impose necessary conditions on the interpretation of RName1 in environment EnvName1 and

modal context M. The conditions are specified by PrimRSpec. PrimRSpec takes the following

form: domain-range(+CName1,+CName2,+CNameDef). This defines RName1 to be a role

with domain CName1, range CName2 and default range CNameDef in environment EnvName

and modal context M.

sb defelemrole([+EnvName,] [+M,]+RName1,+RSpec)

(SB DEFELEMROLE [ENVNAME] [M] RNAME1 (RESTRICTS RNAME2 (RANGE CNAME1

CNAMEDEF)))

Arguments: EnvName environment name

M modal context

RName1 role name

RSpec SB-ONE role specification
impose necessary and sufficient conditions on the interpretation of RName1 in environment

EnvName1 and modal context M. The conditions are specified by RSpec which takes the form

restricts(+RName2, range(+CName1,+CNameDef)). RName1 is a maximal subset of the

role RName2 such that each role filler of RName1 is in CName1.

sb disjoint([+EnvName,] [+M,]+CName1,+CName2)

(SB DISJOINT [ENVNAME] [M] CNAME1 CNAME2)

Arguments: EnvName environment name

M modal context

CName1 concept name

CName2 concept name
declares the concepts CName1 and CName2 to be disjoint.

sb defelem([+EnvName,] [+M,]+ICName1,+ISpecList)

(SB DEFELEM [ENVNAME] [M] ICNAME1 ISPECLIST)

Arguments: EnvName environment name

M modal context

ICName1 object name

ISpecList SB-ONE individual specification
introduces an object in environment EnvName and modal context M which obeys the restric-

tions given in ISpecList.

A SB-ONE individual specification takes the following form

[isa(+CName),+IRSpec1, . . . ,+IRSpecn]

(:LIST (ISA CNAME) IRSPEC1 . . . IRSPECn)

where IRSpeci is

irole(+RNamei, iname(+IRNamei),+IRListi)

(IROLE RNAMEi (INAME IRNAMEi) IRLISTi)

and the argument IRListi is a

list which is either empty or contains either nr(+MinNri,+MaxNri,+DefNri) (NR MINNRi MAXNRi

DEFNRi), vr(+ICNamei) (VR ICNAMEi), or both.

The result of sb_defelem is the introduction of an object ICName1 which is a member of CName and

pairs (ICName1,ICNamei) which are elements of IRNamei. The role IRNamei is a subset of RNamei and

has atleast MinNri role fillers and atmost MaxNri role fillers. The default number of role fillers is DefNri.

sb attributes([+EnvName,] [+M,]+CN,+InfoList)

(SB ATTRIBUTES [ENVNAME] [M] CN INFOLIST)

Arguments: EnvName environment name

M modal context

CN concept name

InfoList list of info nodes
attaches some attributive information to concept CN in environment EnvName and M. The

information is taken from InfoList which is a list of info nodes of the form (Attribute,Value).

Lisp syntax for INFOLIST:

(:LIST (:LIST ATTR1 VALUE1) . . . (:LIST ATTRn VALUEn))

sb attributes([+EnvName,] [+M,]+CN,+RN,+InfoList)

(SB ATTRIBUTES [ENVNAME] [M] CN RN INFOLIST)

Arguments: EnvName environment name

M modal context

CN concept name

RN role name

InfoList list of info nodes
attaches some attributive information to role RN at concept CN in environment EnvName

and M. The information is taken from InfoList which is a list of info nodes of the form (At-

tribute,Value).

Lisp syntax for INFOLIST:

(:LIST (:LIST ATTR1 VALUE1) . . . (:LIST ATTRn VALUEn))

sb fact([+EnvName,] [+M,] isa(+−X,+−CT))

(SB FACT [ENVNAME] [M] (ISA X CT))

Arguments: EnvName environment name

M modal context

X object name

CT concept term
For a given object name X all concept names CT such that X is an instance of CT in the world

description will be enumerated. Exp provides some explanation why this is true. For a given

concept termCT all object names X such that X is an instance of CT in the world description

will be enumerated. The concept term CT can be eiter a variable or a concept name. Again

Exp provides some explanation why this is true.

sb fact([+EnvName,] [+M,] irole(+∗RName,+∗ICName1,+∗ICName2))

(SB FACT [ENVNAME] [M] (IROLE RNAME ICNAME1 ICNAME2))

Arguments: EnvName environment name

M modal context

RName role name

ICName1 object name

ICName2 object name
succeeds if the pair (ICName1,ICName2) is an element of the role RName in the world de-

scription in environment EnvName and modal context M.

sb fact([+EnvName,] [+M,] role(+∗RName,+∗CNameDom,+∗CNameRan))

(SB FACT [ENVNAME] [M] (ROLE RNAME CNAMEDOM CNAMERAN))

Arguments: EnvName environment name

M modal context

RName role name

CNameDom concept name

CNameRan concept name
succeeds if RName is a role with domain CNameDom and range CNameRan in the terminology.

sb fact([+EnvName,] [+M,] attributes(+∗CN,+∗Attribute,+∗Value))

(SB FACT [ENVNAME] [M] (ATTRIBUTES CN ATTRIBUTE VALUE))

Arguments: EnvName environment name

M modal context

CN concept name

Attribute term

Value term
succeeds if the Value is the value of Attribute for concept CN in environment EnvName and

modal context M.

sb fact([+EnvName,] [+M,] attributes(+∗CN,+∗RN,+∗Attribute,+∗Value))

(SB FACT [ENVNAME] [M] (ATTRIBUTES CN RN ATTRIBUTE VALUE))

Arguments: EnvName environment name

M modal context

CN concept name

RN role name

Attribute term

Value term
succeeds if the Value is the value of Attribute for role RN at concept CN in environment

EnvName and modal context M.

sb fact([+EnvName,] [+M,] allRoles(+CName,−Info))

(SB FACT [ENVNAME] [M] (ALL ROLES CNAME INFO))

Arguments: EnvName environment name

M modal context

CName concept name

Info list containing informations
Info is a list consisting of lists each containing the role name, the domain, the codomain, the

minimal number of role fillers, the maximal number of role fillers, and the default number of

role fillers of a role with domain CName.

Example: ?- sb fact(initial,[],allRoles(golf,X))

X = [[has part,golf,windshield,1,1,1],[consumes,golf,gasoline]]

sb ask([+EnvName,] [+M,] supers(+∗CName1,+∗CName2))

(SB ASK [ENVNAME] [M] (SUPERS CNAME1 CNAME2))

Arguments: EnvName environment name

M modal context

CName1 concept name

CName2 concept name
succeeds if CName2 is a direct superconcept of CName1 in the current subsumption hierarchy.

sb ask([+EnvName,] [+M,] supers*(+∗CName1,+∗CName2))

(SB ASK [ENVNAME] [M] (SUPERS* CNAME1 CNAME2))

Arguments: EnvName environment name

M modal context

CName1 concept name

CName2 concept name
succeeds if CName2 is a superconcept of CName2 in the current subsumption hierarchy.

sb ask([+EnvName,] [+M,] role(+∗RName,+∗CNameDom,+∗CNameRan))

(SB ASK [ENVNAME] [M] (ROLE RNAME CNAMEDOM CNAMERAN))

Arguments: EnvName environment name

M modal context

CName1 concept name

CName2 concept name
succeeds if RName is a role with domain CNameDom and range CNameRan.

sb ask([+EnvName,] [+M,] roleDef(+∗RName,+∗CNameDef))

(SB ASK [ENVNAME] [M] (ROLEDEF RNAME CNAMEDEF))

Arguments: EnvName environment name

M modal context

RName role name

CNameDef concept name
succeeds if RName is a role with default range CNameDef.

sb ask([+EnvName,] [+M,] roleNr(+∗RName,+∗MinNr,+∗MaxNr))

(SB ASK [ENVNAME] [M] (ROLENR RNAME MINNR MAXNR))

Arguments: EnvName environment name

M modal context

RName role name

MinNr number

MaxNr number
succeeds if RName is a role with at least MinNr and at most MaxNr role fillers.

sb ask([+EnvName,] [+M,] roleDefNr(+∗RName,+∗DefNr))

(SB ASK [ENVNAME] [M] (ROLEDEFNR RNAME DEFNR))

Arguments: EnvName environment name

M modal context

RName role name

DefNr number
succeeds if RName is a role with default number DefNr of role fillers.

sb ask([+EnvName,] [+M,] isa(+∗ICName,+∗CName))

(SB ASK [ENVNAME] [M] (ISA ICNAME CNAME))

Arguments: EnvName environment name

M modal context

ICName object name

CName concept name
succeeds if ICName is an element of CName in environment EnvName and modal context M.

sb ask([+EnvName,] [+M,] irole(+∗RName,+∗ICName1,+∗ICName2))

(SB ASK [ENVNAME] [M] (IROLE RNAME ICNAME1 ICNAME2))

Arguments: EnvName environment name

M modal context

RName role name

ICName1 object name

ICName2 object name
succeeds if the pair (ICName1,ICName2) is an element of the role RName in environment

EnvName and modal context M.

sb ask([+EnvName,] [+M,] attributes(+∗CN,+∗Attribute,+∗Value))

(SB ASK [ENVNAME] [M] (ATTRIBUTES CN ATTRIBUTE VALUE))

Arguments: EnvName environment name

M modal context

CN concept name

Attribute term

Value term
succeeds if the Value is the value of Attribute for concept CN in environment EnvName and

modal context M.

sb ask([+EnvName,] [+M,] attributes(+∗CN,+∗RN,+∗Attribute,+∗Value))

(SB ASK [ENVNAME] [M] (ATTRIBUTES CN RN ATTRIBUTE VALUE))

Arguments: EnvName environment name

M modal context

CN concept name

RN role name

Attribute term

Value term
succeeds if the Value is the value of Attribute for role RN at concept CN in environment

EnvName and modal context M.

sb ask([+EnvName,] [+M,] allRoles(+CName,−Info))

(SB ASK [ENVNAME] [M] (ALL ROLES CNAME INFO))

Arguments: EnvName environment name

M modal context

CName concept name

Info list containing informations
Info is a list consisting of lists each containing the role name, the domain, the codomain, the

minimal number of role fillers, the maximal number of role fillers, and the default number of

role fillers of a role with domain CName.

Example: ?- sb ask(initial,[],allRoles(golf,X))

X = [[has part,golf,windshield,1,1,1],[consumes,golf,gasoline]]

Appendix D

The Common Lisp to PROLOG

interface

This interface provides functions to call a PROLOG goal from within lisp in a lisp–like syntax. The results

produced by PROLOG are bound to the corresponding variables in lisp.

D.1 The syntax of a PROLOG goal in lisp

• Functions are notated in infix notation:

atomic(1) gets (atomic 1).

• Function arguments are separated by spaces:

defprimconcept(female, not(male))

gets (defprimconcept female (not male)).

• PROLOG variables have a ’?’ as first character, e.g. ?a or ?x.

• PROLOG lists get lisp lists with the keyword :list as the first element:

[male, female] gets (:list male female).

• An open PROLOG list is written as follows:

[a,b,c,d,e | V] gets (:openlist (a b c d e) ?v).

• To conserve PROLOG symbols with capital letter, the are escaped with ’ ’ in lisp:

– makeEnvironment gets make environment,

– assert ind gets assert ind,

– make Env gets make env.

• The existential quantifier is used as follows:

– E^ expression gets ((̂?e) expression),

– D^ E^ expression gets ((̂?d ?e) expression) and so on.

D.2 The functions (start-prolog), (start-motel),

(reset-prolog) and (kill-prolog).

• (start-prolog) starts SICStus Prolog as a subprocess. This function must be called before using

(prolog-goal) or (do-prolog). It returns three values: The input/output-stream, the error-

output-stream and the process-id of the PROLOG process. These values may be stored and used

later as optional parameters of the other functions, if more than one PROLOG process is used.

40

• (start-motel) has the same effect as (start-prolog), except that it immediately consults Motel.

It returns the same three values as (start-prolog).

• (reset-motel &optional i e p) resets and / or stops the PROLOG process. Of course this can be

done only if (prolog-goal) was called using the multitasking features of Lucid Lisp of if the lisp

process was interrupted before.

• (kill-prolog &optional i e p) kills the last by (start-prolog) or (start-motel) invoked PRO-

LOG process. If the optional parameters i, e, p (that are given from start-prolog or start-motel) are

specified, the corresponding process is killed.

D.3 The function (prolog-goal).

prolog-goal ({prolog-goal-expression}∗ &optional i e p)

prolog-goal takes the given list of PROLOG goals (in lisp-like syntax as given above) and converts

them into PROLOG syntax. These goals are send then to the PROLOG process (if the optional parameters

are specified, then the corresponding process is used), seperated by commas. The first return value is a

(possibly empty) string with the output from the PROLOG process, the second return value is on of

´ last, nil or t: When PROLOG returns yes, prolog-goal returns ´ last. When PROLOG returns

no, prolog-goal returns nil. When PROLOG returns variable bindings, these bindings are converted to

lisp syntax and bound to the appropriate lisp variable. In this case t is returned.

D.4 The function (prolog-next).

prolog-next (& optional i e p) gets the next answer (if there are more than one) from PROLOG, and

treats the result as prolog-goal does. It returns nil if this was the last answer and PROLOG returned

no ´ last, if it was the last answer and PROLOG returned yes and t otherwise.

D.5 The macro (do-prolog)

do-prolog ({prolog-goal-expression}∗)
({(var [init [step]])}∗)
(end-test {result}∗)
{declaration}∗ {tag statement}∗
This macro works in the same way as the lisp DOmacro. The goals are given in a list as in prolog-goal,

The variables are lisp symbols prefixed with ?. The rest works like the do macro: The macro calls

prolog-goal and prolog-next in each loop and binds the variables accordingly.

D.6 The macro (do-prolog-with-streams)

In order to use the do-prolog macro (see above) with a PROLOG process different from the last recently

created, you have to call (do-prolog-with-stream i e p (do-prolog . . .)).

Appendix E

Installing MOTEL

E.1 Requirements

You need one of the following PROLOG systems to use MOTEL:

• Quintus Prolog 3.1.1

• SICStus Prolog 2.1 Patch level 5 – Patch level 7

• SWI-Prolog (Version 1.6.10)

• ECRC Common Logic Programming System (Version 3.2.2)

The interface between Lisp and Prolog is only available for Lucid Common Lisp and SICStus Prolog.

E.2 Installation

The MOTEL distribution contains one compressed tar file, which includes the MOTEL system. To install

the system on a SUN-4 (SunOS 4.1.x) execute the following steps:

Uncompress the compressed tar file

prompt(1)% uncompress motel.tar.Z

Extract the source file and documentation file from the tar file

prompt(2)% tar xvf motel.tar

This results in the files README, int.c,int.o,int.pl, motel.lisp, motel.pl, motel.dvi, and hn.dvi.

The file README gives a brief description how the system can be used, the file motel.dvi is the the user

manual for the MOTEL, hn.dvi gives an introduction to modal terminological logics. The file motel.pl

is the MOTEL source file, the files motel.lisp,int.pl, and int.o contain the code for the interface

between Lucid Common Lisp and SICStus Prolog.

After starting your PROLOG system you have to consult the source file.

prompt(3)% sicstus

SICStus 2.1 #5 : Tue Jul 21 16 : 16 : 49 MET DST 1992

| ?− consult(motel).

{consulting motel.pl...}
{motel.pl consulted, 5600 msec 329168 bytes}
yes

| ?−

Now you can work with the MOTEL system as described in the previous chapters.

To use the interface between Lucid Common Lisp and SICStus Prolog, you have to modify the file

motel.lisp. At the beginning it contains three setq-commands:

42

(setq ∗ consult− motel− string ∗ ”[′/usr/local/motel/motel.pl′].”)

(setq ∗ prolog− executable ∗ ”/usr/local/sicstus2.1/sicstus”)

(setq ∗ int dot pl ∗ ”/HG/hiwis/timm/lucid/int.pl”)

You should replace /usr/local/motel/motel.pl with the filename of your installation of the motel.pl

file. Furthermore you should replace /usr/local/sicstus2.1/sicstus with the filename of you PRO-

LOG system. The variable *int_dot_pl* contains the location of the file int.pl included in the distri-

bution.

Now you can load this file after you have started Lucid Common Lisp:

prompt(3)% lucid

; ; ; Lucid Common Lisp/SPARC

; ; ; Application Environment Version 4.0.0, 6 July 1990

; ; ; Copyright (C) 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Lucid, Inc.

; ; ; All Rights Reserved

; ; ;

; ; ; This software product contains confidential and trade secret information

; ; ; belonging to Lucid, Inc. It may not be copied for any reason other than

; ; ; for archival and backup purposes.

; ; ;

; ; ; Lucid and Lucid Common Lisp are trademarks of Lucid, Inc. Other brand

; ; ; or product names are trademarks or registered trademarks of their

; ; ; respective holders.

> (load”motel.lisp”)

; ; ; Loading source file ”motel.lisp”

; ; ; Warning : File ”motel.lisp” does not begin with IN− PACKAGE.

Loading into package ”USER”

#P”/usr/local/motel/src/motel/motel.lisp”

>

Then you are able to work with the interface between Lucid Lisp and SICStus Prolog as described in

chapter D.

References

Franz Baader and Bernard Hollunder, 1990. KRIS: Knowledge Representation and Inference

System — System Description —. Technical Memo DFKI-TM-90-03, Deutsches Forschunszentrum für

Künstliche Intelligenz.

Andreas Nonnengart, 1992. First-Order Modal Logic Theorem Proving and Standard PROLOG.

Internal report MPI-I-92-228, Max-Planck-Institute for Computer Science.

Index

abduce, 20, 25, 26

Agent names, 8

ask, 31, 32

assert ind, 10

change, 22, 24, 25

classify, 14

clearEnvironment, 6

compileEnvironment, 6

Concept

top, 8

Concept names, 8

Conjunction, 8

role, 8

consistent, 21

copyEnvironment, 6

decrease, 22, 24–26

deduce, 19, 20, 23

def, 22

defconcept, 9

defdisjoint, 9

defprimconcept, 9

defprimrole, 9

defrole, 9

delete ind, 11

Disjunction, 8

environment, 6

Exists restriction, 8

getAllFatherRoles, 16

getAllObjects, 19

getAllSonRoles, 17

getAllSubConcepts, 15

getAllSuperConcepts, 15

getCommonFatherRoles, 18

getCommonSonRoles, 18

getCommonSubConcepts, 16

getCommonSuperConcepts, 16

getConcepts, 15

getCurrentEnvironment, 6

getDirectFatherRoles, 16

getDirectSonRoles, 17

getDirectSubConcepts, 15

getDirectSuperConcepts, 15

getHierarchy, 14

getKB, 13

getRoles, 17

greatestInfl, 23

greatestInfls, 23

inconsistent, 21

increase, 22, 24–26

infl, 22, 23

initEnvironment, 7

Inversion

role, 8

Knowledge signature, 8

Kripke class, 13

leastInfl, 23

leastInfls, 23

loadEnvironment, 7

loadKB, 13

makeEnvironment, 7

maxNegInfl, 24

maxPosInfl, 24

Modal concept terms, 8

Modal context, 8

Modal operators, 8

modalAxioms, 13

Negation, 8

Negation as failure, 8

negInfl, 22, 24

noChange, 24–26

noInfl, 22, 24

Number restriction, 8

Object names, 8

posInfl, 22, 24

realize, 19

removeEnvironment, 7

renameEnvironment, 7

Role names, 8

Role restriction, 8

Role terms, 8

saveEnvironment, 7

saveKB, 13

saveMOTEL, 31, 32

sb ask, 35–38

44

sb attributes, 35

sb defconcept, 33

sb defelem, 34

sb defelemrole, 34

sb defenv, 33

sb disjoint, 34

sb primconcept, 33

sb primelemrole, 34

Semantic network, 14

setOption, 20

showChange, 23

showEnvironment, 7

showFD, 23

showFDW, 22

showHierarchy, 14

showInfl, 23

simultInfl, 23

simultNegInfl, 24

simultNoInfl, 24

simultPosInfl, 24

subsumes, 14

switchToEnvironment, 7

Terminological axioms, 8

modal, 8

testDirectFatherRole, 17

testDirectSonRole, 17

testDirectSubConcept, 15

testDirectSuperConcept, 15

testFatherRole, 17

testSonRole, 17

testSubConcept, 16

testSuperConcept, 16

Top concept, 8

undef, 22

undefconcept, 10

undefprimconcept, 10

Value restriction, 8

