
CLP(PB)

A Meta-Interpreter in CLP(R)

Peter Barth

MPI–I–92–233 August 1992

Author’s Address

Max-Planck-Institut für Informatik

Im Stadtwald

D-6600 Saarbrücken

Peter.Barth@mpi-sb.mpg.de

Acknowledgements

I would like to thank Alexander Bockmayr for his important comments and fruitful discussions.

Abstract

Constraint logic programming is one of the most attractive research areas in

logic programming. Due to [JL87] the theoretical foundation of a general con-

straint logic programming language scheme CLP(X) is available. Unfortu-

nately, implementing a CLP(X) system for some domain X is a difficult task.

The problematic points are providing a constraint solver and ensuring the in-

crementality of the constraint system. We propose here to use an existing

CLP system as implementation environment for a new CLP language. We

show that under certain conditions we can use the given constraint solver as

constraint solver for the new CLP-language. We focus here on prototyping

CLP(PB), where PB denotes the structure of pseudo-Boolean functions, in

CLP(R), where R denotes the structure of real numbers.

Keywords

Constraint Logic Programming, Operations Research, Pseudo-Boolean Unification, Pseudo-

Boolean Optimization, 0-1 Programming

Contents

1 Introduction 2

2 CLP-System Design in CLP-Systems 3

3 The Constraint Languages 4

3.1 CLP(PB) . 4

3.2 CLP(R) . 5

4 Pseudo-Boolean Constraints in CLP(R) 5

4.1 Feasibility . 5

4.2 Relaxation Approach . 7

5 Meta - CLP(PB) 8

5.1 The Meta-Interpreter . 8

5.2 Equality and Inequality Constraints . 9

5.3 Pseudo-Boolean Optimization . 10

6 Further Improvements 11

6.1 Linearization of Non-Linear Constraints . 11

6.2 Instantiation Ordering . 12

6.3 Cutting Non-Integer Solutions . 12

6.4 Optimization . 13

7 Computational Experience 13

7.1 Boolean Satisfiability Problems . 13

7.2 Constrained Non-Linear 0-1 Problems . 14

8 Conclusion 14

1

1 Introduction

Constraint logic programming is one of the most attractive research areas in logic programming.

After the theoretical foundation [JL87] of constraint logic programming languages over arbitrary

domains X , now the goal is to design CLP-systems with various instances of the computational

domain X . Unfortunately, implementing a CLP-system involves a lot of programming effort. Even

if we choose a logic programming language like PROLOG there are two new aspects involved by a

CLP-system.

• The constraint solver :

Compute the satisfiability of a constraint system as well as a solved form.

• The incrementality of the constraint system :

Solving of additional constraints must not entail the resolving of old constraints.

These problems are the same for all CLP-systems. A general CLP(X)-system, where one only

needs to specify the constraint solver would be a solution. Unfortunately, up to now no such systems

are available. Another approach to implement CLP-systems is to use an existing CLP-system and

its constraint solver. This is easily possible under some conditions which are introduced in Sect. 2.

Because constraint solving is done by the given constraint solver we can get a prototype with less

programming effort. This prototype can later be improved by incorporating special constraint

solving algorithms. Let us summarize the advantages of this approach:

• rapid prototyping

– constraint solving is done by the underlying constraint solver

– incrementality is automatically provided

• specialized constraint solving algorithms

Improvement of the prototype is possible by replacing the calls to the internal constraint

solver by special purpose algorithms of the problem domain.

The constraint logic programming language of our interest is CLP(PB), where PB denotes the

domain of pseudo-Boolean functions. Many problems from various applications, namely operations

research, can be expressed very naturally using pseudo-Boolean functions. For the definition of the

language we refer to [Boc91].

The CLP-system we use as programming environment is CLP(R), where R denotes the domain

of the real numbers. We refer to [JMSY90] for details.

The organization of the paper is as follows: In Sect. 2 we introduce the problem area and give

some general remarks of using CLP-systems as prototyping environment for other CLP-systems.

Then we describe in Sect. 3 briefly the two constraint languages CLP(R) and CLP(PB) and show in

Sect. 4 how to express pseudo-Boolean problems in the domain of real numbers. An implementation

of the prototype is described in Sect. 5 enhanced by various possible improvements, which are

sketched in Sect. 6. Finally we present in Sect. 7 some computational results for solving problems

from two different problem domains, followed by the conclusion in Sect. 8.

2

2 CLP-System Design in CLP-Systems

As already stated, the main problems in implementing CLP-systems are providing the constraint

solver as well as ensuring the incrementality of the system. In [JMSY90] it is proposed to use an

existing CLP(O)-system as implementation language for another CLP(N)-system. This seems to

be promising if

• the constraints in N can be expressed as constraints in O.

• the solutions of the transformed constraints in O can be identified with the original solutions

in N .

By using this approach we get rid of the two problems mentioned above.

• We do not need to design a constraint solver, the constraints are solved by the underlying

constraint solver.

• Incrementality is therefore automatically provided.

We only need to define how constraints in N can be expressed as constraints in O and implement

a corresponding transformation routine. We precise now the conditions for a structure N to be

expressible in O.

The final state of the constraint solver is the simplified (solved) set of all constraints collected

up to the end of execution. A problem is solvable if the final state of the constraint solver (the

solution) represents a consistent constraint set in the associated computational domain.

Suppose that there are two computational domains N and O and their sets of possible con-

straints are C(N) and C(O). If there exist functions ϕ : C(N) → 2C(O) and ψ : 2C(O) → 2C(N)

such that

∀p ∈ C(N) : p is solvable in N ⇐⇒ ϕ(p) is solvable in O (1)

∀p ∈ C(N) : S is solution of ϕ(p) =⇒ ψ(S) is solution of p (2)

then C(N) is called expressible in C(O).

If we have a CLP(O)-system available and C(N) is expressible in C(O), then obviously every

CLP(N) problem can be expressed as a CLP(O) problem using the function ϕ. After obtaining

the (unique) solution S by CLP(O) we can compute S′ = ψ(S) and we obtain a solution of our

original problem.

There is one case where the function ϕ can easily be computed. Suppose that the structure

N is a substructure of O and that the condition x ∈ N can be expressed in O. Then ϕ has only

to add additional constraints restricting the solution state such that all ground instances lie in N .

The function ψ is then simply the identity.

Another well known technique for implementing solvers of hard constraint theories is the relax-

ation of ϕ. We define a new function ϕ′ with the property

∀p ∈ C(N) : p is solvable in N =⇒ ϕ′(p) is solvable in O (3)

It is often possible to define ϕ′ such that the resulting problem is much easier than the one produced

by ϕ. Unfortunately we loose correctness and may therefore obtain a false solution S. One technique

to achieve correctness is to strengthen the result after solving the relaxed problem. Strengthening

must then be done by the function ψ. The main reasons for using the relaxation technique are:

3

• For the relaxed problem type an efficient constraint solver is available.

• Further information often makes the actual problem easier, so the time spent in solving ϕ(pi)

for a subproblem pi can be saved. Strengthening after collecting all available information can

be much easier.

The problem when using a relaxation technique in a CLP-system is the possible exploration of

unsatisfiable branches (if ϕ′(p) satisfiable but ϕ(p) is not).

Example: Let ∀p ∈ C(N) : ϕ′(p) = ⊤, where ⊤ denotes a tautology in N . Therefore every

constraint ϕ′(p) is satisfied; constraint solving is delayed until the first (probably wrong) solution

S is obtained.

In the next sections we describe an implementation where N is the structure of pseudo-Boolean

functions PB. The CLP(O)-system we use is CLP(R), where R denotes the structure of real

numbers. We define a function ϕ and ϕ′. For efficiency reasons we choose to implement the relaxed

version, using the linear programming relaxation for 0-1 programming and implicit enumeration

for strengthening [NW89].

3 The Constraint Languages

3.1 CLP(PB)

The constraint logic programming language CLP(PB) was first defined in [Boc91]. The language is

an instance of the general constraint logic programming scheme CLP(X) [JL86, JL87]. The com-

putational domain is the algebraic structure PB that allows us to handle equations and inequalities

between pseudo-Boolean functions.

A pseudo-Boolean function is a mapping g : {0, 1}n → Z, where Z denotes the ring of integer

numbers. Every pseudo-Boolean function can be represented by a (not necessary unique) pseudo-

Boolean term, constructed using the binary functions +, ∗,−, the constants in Z, associated with

their usual meaning and the set of boolean variables VB. A pseudo-Boolean constraint is a set of

equality or inequality-relations between pseudo-Boolean functions. For example

X1 + . . .+Xn = 1 (4)

is a pseudo-Boolean constraint, expressing that exactly one of the Xi is 1. Another pseudo-Boolean

constraint is the following set of pseudo-Boolean equations and inequalities.

A+B + C ≥ 1

A+ (1−B) ≥ 1

A+ C = 0

This pseudo-Boolean constraint is unsatisfiable. Its unsatisfiability corresponds to a refutational

proof in propositional logic [Hoo88] for

{ A or B or C , A or ¬B } |= A or C.

A CLP(PB) program and goal is defined in the usual manner of CLP-systems. Additionally,

two facilities are provided for pseudo-Boolean optimization (maximization and minimization), also

known as constrained non-linear 0-1 programming .

4

Maximize the pseudo-Boolean function f subject to the pseudo-Boolean constraint C,

denoted by maximize(f,C), which also can be written C ∧ maximize(f)(resp. for mini-

mization).

Solving pseudo-Boolean constraints is proved to be fitting in the CLP-language scheme in [Boc91].

Various methods for solving pseudo-Boolean problems have already been studied, mainly in the

area of operations research.

Typical applications of pseudo-Boolean programming include sequencing problems, time-table

scheduling, coding theory, plant location [HR68], inter-city traffic [Rhy70], kinetic energy in spin-

glass models [KGV83] or supply-support of space-stations [FGGB66]. Pseudo-Boolean constraints

can be used in knowledge representation systems, which gives more compact and comprehensive

formulas than in propositional logic. Let the Xi in (4) be facts, then this naturally represents the

condition, that exactly one Xi must be valid. A corresponding formula in propositional logic is

much larger. Replace in (4) = by ≤ then you represent the condition, that all the Xi are mutually

exclusive. Furthermore conditions like “at least c facts have to be valid” can naturally be written

as

X1 + . . .+Xn ≥ c. (5)

For the exact definition of CLP(PB), pseudo-Boolean constraint solving algorithms and exam-

ples we refer to [Boc91].

3.2 CLP(R)

The constraint logic programming language CLP(R) was first introduced in [JL86]. The domain

of computation is the structure R, the real numbers, including the binary functions +,−, ∗, / and

the binary predicates <,≤, >,≥,= with their usual meaning. For the definition of the language

see [JMSY90].

Various applications have already been written in CLP(R) [HMS87, HL88]. This is due to the

fact that there exists a powerful implementation of CLP(R) [HJM+91], which we use as implemen-

tation environment. This implementation is enriched by some meta-programming facilities, which

allows to handle constraints symbolically, according to [HMSY89].

4 Pseudo-Boolean Constraints in CLP(R)

In this section we show that for every pseudo-Boolean constraint there is a simple equivalent

expression in the structure R. We show that solving such expressions entails solving of quadratic

equalities1. We introduce a relaxation of the constraints which can easily be solved by CLP(R)

and present a variant of a branch and bound algorithm which calculates the solutions.

4.1 Feasibility

We show how to express pseudo-Boolean problems in the structure R. For that, we assume to have

a complete constraint solver over R.

1which is not provided by the existing CLP-system [HJM+91]. In fact a relaxation approach is used, as all non-

linear constraints are delayed. They are solved only if additional information makes them linear, if not strengthening

is not applied; the system does not give an answer.

5

Pseudo-Boolean Equalities and Inequalities.

Obviously PB is a substructure of R. This implies that every pseudo-Boolean term is a well formed

term in R and every pseudo-Boolean constraint is a well formed constraint in R. Let sR denote the

solution space of a pseudo-Boolean constraint c in R and sPB the solution space in PB. We know

that sPB ⊆ sR. The idea is now to restrict the solution space sR by additional constraints such

that only sPB rests valid. This can be done by fixing the possible values of the (pseudo-Boolean)

variables occurring in c to 0 or 1, which leads to the definition of ϕ.

As shown in [Boc91], we can transform every pseudo-Boolean constraint into a pseudo-Boolean

equation. So we need to consider only pseudo-Boolean equations. Let s
.
= t be a pseudo-Boolean

constraint. Let V = Var(s .
= t) be the set of variables occurring in s

.
= t. We define the function

ϕ as follows:

ϕ(s
.
= t)

def
= {s .

= t} ∪
∪

X∈V
{X ∗ (X − 1)

.
= 0} (6)

The constraint X ∗(X−1) = 0 is in R equivalent to the condition X ∈ {0, 1}. So we have restricted

the solution space of s = t to lie in PB and ϕ satisfies (1). Consequently, every pseudo-Boolean

problem can be transformed to an equivalent problem in R having the same solution space.

Pseudo-Boolean Optimization.

Pseudo-Boolean optimization is not so easy transformable because CLP(R) has no primitives con-

cerning optimization. So we need to give a proper algorithm for this problem. We use the underlying

constraint solver and not one of the symbolic algorithms [HR68, Basic Algorithm]. We consider

only minimization (maximization is done similarly).

The problem is to minimize a given Pseudo-Boolean function F (X⃗)2. With the algorithm given

below we compute the minimum Min of F (X⃗) and add the constraint ϕ(Min = F (X⃗)) to the

constraint system. This does the required minimization. We present now the algorithm which

computes the Minimum.

Pseudo-Boolean-Minimization in CLP(R)

1. Let CS be the initial constraint system.

2. Compute X⃗∗ ∈ {0, 1}n such that CS is satisfied.

3. Let CS′ be CS ∪ {F (X⃗) ≤ F (X⃗∗)− 1}.
IF CS′ is inconsistent THEN STOP; F (X⃗∗) =Minimum

ELSE CS = CS′;GOTO 2.

Correctness and termination of the above given algorithm is obvious. A ground vector X⃗∗ can be

obtained by (implicit) enumeration of the possible solutions, which will be described in the next

section.

2As noted in Sect. 3.1 additional constraints can assumed to be already in the actual constraint set.

6

4.2 Relaxation Approach

The CLP(R)3 system [JMSY90] we use is only an approximation of a CLP-system as described

in [JL86]. The main problem is that we have introduced quadratic constraints to express ∀X∈VB
:

X ∈ {0, 1}, which are not directly solvable by CLP(R). In fact they are delayed and because

in general we do not add other constraints making them linear, they will never get awoken. So

although our problem transformation is correct the only answer we can get by CLP(R) is ***

maybe *** which of course is not false, but does not solve our pseudo-Boolean problem.

Solving nonlinear polynomials over R is known to be very hard and seems unacceptable, even

for a prototype [Hon92, Col75]. So we have decided to use the relaxation technique introduced in

Sect. 2, see also [JMSY90, page 19–23].

We define the function

ϕ′(p) = {p} ∪
∪

X∈Var(p)
{0 ≤ X ≤ 1} (7)

for all pseudo-Boolean equality and inequality constraints p. The resulting problem is known as

linear programming relaxation. Obviously ϕ′ satisfies (3). After having solved the relaxed problem

we strengthen the solution by adding the condition X ∈ {0, 1} for all boolean variables X. This

can easily be expressed as solving the goal setbit(X), where setbit is defined as

setbit(0).

setbit(1).

This forces the variables to be boolean and implements a simple branch and bound algorithm.

Note that we have solved a clause and not a constraint. This implies that the constraint solver

no longer handles the constraint of the variables to be boolean4. It is the standard PROLOG

backtracking mechanism which forces the variables to be boolean. Therefore we cannot get symbolic

solutions. Nevertheless we can obtain all solutions of the original pseudo-Boolean problem by

backtracking. If necessary it is possible to construct the symbolic solution out of the set of possible

solutions.

We illustrate the behaviour of the algorithm with an example. Let us solve the pseudo-Boolean

constraint

X1 +X2 + . . .+Xn = 1

Obviously a simply generate and test algorithm has to test 2n possibilities. Instead the approach

presented here can list all solutions in linear time. Suppose that while enumerating, X1 is instan-

tiated to 1. Then the corresponding constraint set is

{1 +X2 + . . .+Xn = 1}
n∪

i=1

{0 ≤ Xi ≤ 1},

which is simplified by the underlying real-number based constraint solver to

{X2 = X3 = . . . = Xn = 0}
n∪

i=1

{0 ≤ Xi ≤ 1}.

3From now on we identify CLP(R) with the implementation CLP(R) 1.1 as described in [HJM+91].
4Note that there is no way in R to express the fact that a variable is boolean beside a quadratic expression. We

do not use quadratic expressions and therefore our assumption in Sect. 2, that x ∈ PB is expressible in R, fails.

7

Obviously the whole search space is cut off and instantiating the Xi to 0 is performed in linear

time. The same is true for the cases Xi = 1, where i > 1. Solving 0-1 problems with the above

given relaxation approach has been shown to be very efficient [NW89, Hoo88].

We have illustrated how to translate pseudo-Boolean problems into problems in CLP(R). This

transformation allows us to use the real constraint solver to approximate constraint solving over

the discrete domain BOOL. Another example using this idea can be found in [HJM+91, page 23–24;

smm].

For every pseudo-Boolean constraint p occurring during the execution of a program we

• add the constraint p to the constraint set as it is.

• For every (pseudo-Boolean) variable X in p we

– add the constraints X ≤ 1 and X ≥ 0 to the constraint set (the function ϕ′)

– mark the variable X for later treatment by setbit (strengthening by ψ).

After executing the pseudo-Boolean program we solve setbit for all marked variables and can

obtain all possible solutions by backtracking5.

5 Meta - CLP(PB)

We describe now a first implementation of CLP(PB) in CLP(R). We adapt the meta-interpreter

described in [HMSY89] and give new definitions for solving the constraints. No symbolic solutions

are given, all possible solutions of the query can be enumerated by backtracking. Pseudo-Boolean

optimization is handled as in Sect. 4.

For this section, the reader is assumed to be familiar with PROLOG [CM87] and

CLP(R) [JMSY90] as well as with meta-programming in general [SS86] and meta-programming

in CLP(R) [HMSY89]. We refer especially to [HMSY89].

5.1 The Meta-Interpreter

We adapt the meta-interpreter [HMSY89, page 61] for our needs. One major difference is, that

for delaying the instantiation of the pseudo-Boolean variables we have to collect them invisible

to the user. We distinguish therefore between an internal meta-interpreter and a top-level meta-

interpreter , where the internal meta-interpreter handles the variable collection. The top-level

meta-interpreter hides this variable collection and is given by

goal(G) :- pbgoal(G,[],PBV),

bit(PBV).

The internal meta-interpreter pbgoal is called with the initial empty variable list. All pseudo-

Boolean variables occurred while solving the goal G are collected in the list PBV. Instantiation of all

5We do not feel that this is a restriction for practical purposes. Once a user has specified a problem, he normally

does not want some screens full with the most general unifier . In most of the cases he wants to have an applicable

solution, that is one of the possible ground instances.

8

variables in PBV by bit leads to the enumeration of all possible solutions. The predicate bit may

be replaced by a predicate yielding symbolic solutions6.

The internal meta-interpreter pbgoal is defined as in [HMSY89], but additionally handles the

variable list in the last two arguments. Variable collection is done in pbconstraint where new

pseudo-Boolean variables may occur.

pbgoal(true,PBV,PBV).

pbgoal((A,B),PBVin,PBVout) :-

pbgoal(A,PBVin,PBVtemp),

pbgoal(B,PBVtemp,PBVout).

pbgoal(minimize(F),PBVin,PBVout) :-

pbmin(F,PBVin,PBVout).

pbgoal(maximize(F),PBVin,PBVout) :-

pbmax(F,PBVin,PBVout).

pbgoal(C,PBVin,PBVout) :-

pbconstraint(C,PBVin,PBVout).

pbgoal(X,PBVin,PBVout) :-

rule(X,Y),

pbgoal(Y,PBVin,PBVout).

The two additional cases minimize and maximize handle pseudo-Boolean optimization. The

syntax7 of all other possible constraints is identical to the one in CLP(R) and can be handled

by pbconstraint as in the original meta-interpreter. The last case handles user-defined clauses.

The predicate rule behaves like clause in PROLOG, except that arithmetic terms are given

syntactically8 in quoted form [HMSY89]. So rule behaves like quoted rule in [HMSY89].

5.2 Equality and Inequality Constraints

Equalities and inequalities are handled by pbconstraint. We use the underlying constraint solver

of CLP(R). Since PB is a substructure of R we simply add all equality and inequality constraints

to the internal constraint system as in the original meta-interpreter.

pbconstraint(A = B,PBVin,PBVout) :-

eval(A) = eval(B),

getvarlist(A = B,PBVin,PBVout).

The predicate eval [HJM+91] gives syntactic terms their semantics9 in R. All variables occur-

ring in A and B are Boolean variables. The predicate getvarlist adds these variables to the variable

list PBVin yielding PBVout. Moreover, for every new pseudo-Boolean variable V the constraints

6for example the predicate setof(Vars,bit(Vars),Table) instantiates Table to the list of all possible solutions

and is nothing else than the table of solutions [HR68]. A most general pseudo-Boolean unifier can be constructed

out of this table.
7the negation of a pseudo-Boolean variable X has to be written (1−X).
8For example CLP(R) cannot distinguish between 3 + 4, 2 + 5 and 7. Because this is necessary in some cases,

the concept of quoting arithmetic terms is introduced. So quote(3+4) reduces to 3 +̂ 4, where +̂ is an uninterpreted

function symbol. For further information we refer to [HMSY89].
9The reverse process of quoting. For example eval(3 +̂ 4) is equivalent to 7.

9

V >= 0,V <= 1

are added to the constraint system.

The predicates for <= and >= are implemented similarly. A minor improvement is done for <

(resp. >).

pbconstraint(A < B,PBVin,PBVout) :-

eval(A) <= eval(B)-1,

getvarlist(A < B,PBVin,PBVout).

Note that we have used our knowledge over the domain Z while transforming the constraint S < T

into S ≤ T − 1 (resp. for >). This yields a smaller search space for the constraint solver, that is

some inconsistencies or conclusions, like fixations of variables to 0 or 1, are detected earlier.

5.3 Pseudo-Boolean Optimization

We use the optimization algorithm described in Sect. 4.1.

pbmin(F,PBVin,PBVout) :-

getvarlist(F,PBVin,PBVout),

min_iterate(F,PBVout,Minimum),

eval(F) = Minimum.

The predicate min iterate implements the branch and bound algorithm which computes the

Minimum. Note that all constraints collected up to now, as well as the new generated constraints

eval(F) <= LocalMinimum-1 are active at every moment of computation. So get value only

produces values, such that all constraints are satisfied.

min_iterate(F,PBV,Minimum) :-

get_value(F,PBV,LocalMinimum),!,

eval(F) <= LocalMinimum-1,

min_iterate(F,PBV,Minimum).

min_iterate(F,PBV,Minimum) :-

get_value(F,PBV,Minimum).

In get value the possible solutions of the constraint set are enumerated and the first solution

gives a value of F. The instantiation of the variables in Vars must be temporarily10. We have to

store the computed result in the global database and undo the variable bindings produced by bit

with !,fail.

get_value(F,Vars,Value) :- do_get_value(F,Vars,Value).

get_value(F,Vars,Value) :- value(Value).

do_get_value(F,Vars,_) :-

retractall(value(X)),

10Unfortunately the concept of implication [PD91] is not available. Then get value would be

get value(F,Vars,Value) :- bit(Vars) => eval(F) = Value..

10

bit(Vars),eval(F) = Value,

fasserta(value(Value)),

!,fail.

The predicate fasserta is equivalent to asserta in PROLOG.

This implements the desired optimization algorithm by implicit enumeration. The implemen-

tation can be improved by heuristics which try to find a value near the Minimum. The simplest

heuristic is trying to instantiate all variables in the objective function having a positive (negative)

coefficient with 0 (1) first.

6 Further Improvements

6.1 Linearization of Non-Linear Constraints

As stated in [Boc91] any pseudo-Boolean constraint can be represented in the form

a1 ∗ P⃗1 + . . .+ an ∗ P⃗n2 c

where ai and c are integer constants and 2 ∈ {=, <=, >=}. The P⃗i are products of the form

X1 ∗ . . . ∗Xl ∗Xl+1 ∗ . . . ∗Xk.

Note that Xi is an abbreviation for Xi − 1.

In order to linearize the constraint, we replace every product P⃗i by a new variable Yi and solve

the resulting problem. Obviously the constraint is not solvable if the linearized form is not solvable.

So some inconsistencies are directly detected. If the linearized constraint set remains consistent we

add the constraints

X1 + . . .+Xl +Xl+1 + . . .+Xk + Yi ≥ 1 (8)

− (X1 + . . .+Xl +Xl+1 + . . .+Xk) + k ∗ Yi ≥ 0 (9)

which are equivalent to [For60]

Yi = X1 ∗ . . . ∗Xl ∗Xl+1 ∗ . . . ∗Xk (10)

and continue the computation.

We explain briefly the equivalence of {(8),(9)} and (10). If P⃗i = 1 then obviously X1 = . . . =

Xi = Xi+1 = . . . = Xk = 1. Therefore S = X1 + . . . + Xi + Xi+1 + . . . + Xk = 0 and (8) forces

Yi = 1. On the other side if P⃗i = 0 then k ≥ S ≥ 1 and (9) forces Yi = 0. Vice versa if Yi = 0,

then S ≥ 1 is implied by (8), therefore P⃗i = 0. On the other side if Yi = 1, then (9) implies S = 0,

therefore P⃗i = 1.

Much work has already be done for the linearization of pseudo-Boolean constraints, which does

not introduce new variables [BM84a]. These techniques have to be further investigated and tested.

11

6.2 Instantiation Ordering

In order to speed up a boolean satisfiability checker [HF90], Jeroslow and Wang [JW90] have

designed a variable selection rule, which provides a heuristic on which variable with which value to

branch first. They have introduced a weightening function

w(S, j, v) =
∞∑
k=1

Njkv ∗ 2−k (11)

where Njkv is the number of clauses in a set S of clauses having k literals in which xj occurs

positively (if v = 1) or negatively (if v = 0). Then they branch on the variable xj∗ with value v∗,

where (j∗, v∗) maximizes w(S, j, v). Roughly spoken they branch such that many short clauses will

become satisfied.

The Pseudo-Boolean Case.

We consider first linear pseudo-Boolean inequalities, which can be brought to the normal

form [HR68]

a1 ∗Xs1
1 + . . .+ an ∗Xsn

n ≥ b (12)

such that b ≥ a1 ≥ . . . ≥ an ≥ 1 (sj ∈ {0, 1} and X1
j ≡ Xj , X

0
j ≡ Xj). We define now a function

g(j, v) =

{
aj
b if sj = v

0 otherwise

which gives a measure of how much the assignment to the variable Xj with value v satisfies (12).

Taking this into account in (11) we obtain

wpb(S, j, v) =
∞∑
k=1

g(j, v) ∗Njkv ∗ 2−k

as new weightening function. Note that the function g gives always 1 or 0 if applied to clausal

inequalities (a1 = . . . an = b = 1) and therefore the new weightening function specializes to the one

of Jeroslow and Wang for clausal inequalities.

For the weightening function, we can view every equality f = c as a pair of inequalities f ≥ c

and f ≤ c and after linearization we obtain a weightening function for arbitrary pseudo-Boolean

constraints.

6.3 Cutting Non-Integer Solutions

Consider again the normal form

a1 ∗ P⃗1 + . . .+ an ∗ P⃗n2 c

of a pseudo-Boolean constraint. Let gcd(ai) denote the greatest common divisor of all the ai.

Then we can replace the original constraint by

a1
gcd(ai)

∗ P⃗1 + . . .+
an

gcd(ai)
∗ P⃗n2 r2(

c

gcd(ai)
),

where r2 is a rounding function depending on 2. If c
gcd(ai)

is an integer value, then we cannot

further restrict the search space and r2 is the identity. If c
gcd(ai)

is not integral and

12

• 2 ≡=, then the constraint is not solvable.

• 2 ≡≥, then r2 rounds c
gcd(ai)

up to the next integer value.

• 2 ≡≤, then r2 rounds c
gcd(ai)

down to the next integer value.

This can significantly reduce the search space. For solving propositional satisfiability problems

there is an algorithm using exclusively a cutting plane technique [Hoo89]. In this algorithm all valid

linear combinations of the actual constraint set are built and with a similar rounding technique

stronger constraints are obtained. We illustrate the idea on an example. Let

A+B + (1− C) ≥ 1 (13)

A+ C ≥ 1 (14)

be the constraint set. Then a valid linear combination is 2 ∗A+B ≥ 1. With the above described

method we deduce

A+B ≥ 1. (15)

Note that (15) is the resolvent of (13) and (14).

6.4 Optimization

Alternative approaches for solving the optimization problem are to optimize the linear program-

ming relaxation (for example with the Simplex algorithm) and applying a branch and bound algo-

rithm [NW89]. Other alternatives are symbolic algorithms, such as the Basic algorithm described

in [HR68, CHJ90] and adaptations of boolean constraint solving algorithms [BES+90].

Much work has already be done in this area which has to be investigated and incorporated in

future versions of the prototype.

7 Computational Experience

We have tested the prototype on some test problems for boolean satisfiability checkers [MR91] and

for constrained non-linear 0-1 programming [Tah72]. We run all the tests on a Solbourne-SPARC-

Server (16 Mips) under Sun-OS-4.1.1.

7.1 Boolean Satisfiability Problems

In [MR91], a large set of boolean satisfiability problems has been tested on various algorithms. We

have solved a subset of these problems with our prototype. We represent every clause

C = L1 ∨ . . . ∨ Ln

as a linear pseudo-Boolean inequality

C ′ = L′
1 + . . .+ L′

n ≥ 1,

where for negated (positive) literals Li = Vi(= Vi) we set L′
i = 1 − Vi(= Vi). A set of

clauses {C1, . . . , Cn} is satisfiable iff the set of pseudo-Boolean inequalities {C ′
1, . . . , C

′
n} is sat-

isfiable [Hoo88].

13

In Table 1 we give the results of the tests. The table is organized as follows. The first three

columns report on using no heuristic for instantiating the variables, whereas the next three columns

report on using the Jeroslow-Wang like heuristic described in Sect. 6.2. For each problem we

report the cputime (time) used for finding a solution (or proving the problem to be unsatisfiable).

Additionally, the total number of branches while enumerating (nodes) and the total number of

wrong choices, that is fathomed nodes (fn) is reported. Because we have implemented the JW-

heuristic in CLP(R), it runs rather slow. So we have given in brackets the time used without

counting the computation of the heuristic. The last three columns are copied from [MR91]. They

report the cputime used on a Appollo-Workstation (4 Mips) for

Jer/Wa a version of the Davis/Puttnam/Loveland algorithm [HF90], using the variable selection

heuristic described in Sect. 6.2,

ProIII Prolog-III [Col90] using rational terms and a branch and bound algorithm and

CHIP-2 CHIP [VH89] using the finite domain constraint solver

on a Sun 3/60 (3 Mips). For further information we refer to [MR91].

Taking into account that CLP(PB) is not designed to solve satisfiability problems and that the

current prototype is written as a meta-interpreter, the results are quite encouraging.

7.2 Constrained Non-Linear 0-1 Problems

We have used the test problems given in [Tah72], which are constrained non-linear 0-1 minimization

problems having a special structure. They have been obtained by replacing in linear 0-1 programs

each variable Xi by a product Pi of new linear 0-1 variables. We solve the original linear master

problem under the additional constraints Xi = Pi.

The results are given in Table 2. The table is organized as follows. The first two columns report

on using no linearization, that is all constraints are delayed until they become linear. The next two

columns report on using the Fortet linearization [For60]. As heuristic for implicit enumeration we

use the heuristic as described in Sect 5.3. In the column iterations we give the number of iterations

until the optimum is reached by the implicit enumeration algorithm. In the column time we give

the cputime used for solving the problem. The time in brackets is the cputime used for establishing

the optimum solution. The fifth column reports the cputime used by the algorithm from [Tah72]

(TAHA) on a IBM 7040. The last two columns are copied from [HJM89] and report the cputime

used by the algorithm HJM [HJM89] with linear objective function (HJM) and from [BM84b]

(BM) on a SUN 3/50 (3 Mips).

It can be seen, that our prototype behaves well on Taha’s problems. It is interesting to note,

that without linearization the results are much better. It seems that the problems are to small (in

the number of variables) to explode exponentially.

8 Conclusion

We have given an implementation of the new constraint logic programming language CLP(PB)
in CLP(R). Emphasis was on the ease of prototyping CLP-systems in other CLP-systems under

14

Table 1: Boolean satisfiability problems

no heuristic JW heuristic Jer/Wa Chip2 ProIII

Problem nodes fn time nodes fn time time time time

ulmbc024 32 18 2.02 11 1 3.99 (0.9) 0.86 4.54 3.28

ulmbc040 106 52 25.11 20 2 23.04 (6.93) 2.26 9.58 11.95

ulmbc060 863 299 476.73 31 2 86.71 (25.64) 6.93 19.58 397.00

ulmbp048* 39364 30294 312.55 209 69 172.32 (26.68) 1.90 44.74 –

ulmbs040 840 760 24.14 23 2 7.68 (0.35) 0.79 14.62 1.60

ulmbs060 – – % 30 2 20.71 (1.0) 1.23 177.6 8.63

ulmbs084 – – – 38 4 58.64 (3.23) 2.30 # 87.58

ulm027r0 25 13 0.25 11 1 2.59 (0.21) 0.70 1.9 0.32

ulm027r1 23 12 0.45 23 4 3.77 (0.62) 0.80 2.42 0.70

ulm027r2 25 12 0.22 11 0 2.04 (0.18) 0.70 1.92 0.32

ulm054r0 50 26 0.50 21 1 13.36 (0.51) 1.22 3.84 1.13

ulm054r1 46 24 0.94 78 12 35.31 (1.98) 1.97 18.7 1.55

ulm054r2 50 24 0.54 22 0 11.69 (0.5) 1.20 3.84 1.68

ulm081r0 75 39 0.81 31 1 40.82 (0.7) 2.18 5.7 2.15

ulm081r1 69 36 1.53 181 28 177.1 (6.0) % 328.7 2.90

ulm081r2 75 36 0.78 33 0 34.86 (0.67) 2.18 5.68 8.47

ulm216r0 200 104 2.52 – – % 18.13 15.16 72.98

ulm216r1 184 96 4.20 – – % 114.39 # 102.23

ulm216r2 200 96 2.42 – – % 17.77 15.12 –

real1a12 18 6 2.4 15 0 8.21 (1.79) 0.80 10.02 6.75

real1b12 15 4 0.35 11 0 1.66 (0.38) 0.63 3.3 0.50

real2a12 18 6 2.5 15 0 8.4 (1.86) 0.80 10.16 4.82

real2b12 15 4 0.51 11 0 1.61 (0.32) 0.63 3.24 0.48

real2c12 17 6 2.67 14 0 11.22 (1.72) 0.85 14.18 36.67

alu1 79 28 8.36 59 1 83.48 (7.71) 2.49 5.36 –

dc1 79 47 10.31 49 1 61.78 (16.27) 2.22 5.9 –

example 9 3 0.26 5 0 0.25 (0.04) 0.57 0.52 –

newtes1 56 9 0.41 52 0 22.88 (0.34) 0.90 2.68 13.53

newtest* – – % 146 85 184.55 (11.59) 0.92 46.8 –

tomstest 35 5 0.23 30 0 5.76 (0.22) 0.66 2.14 3.15

twoinvr1 30 18 0.75 17 0 3.7 (0.43) 0.77 2.06 1.43

twoinvrt* 18 11 2.21 7 1 4.69 (1.49) 1.28 1.58 –

* unsatisfiable problem

program aborted after some time

% program run out of memory

– problem not tested

15

Table 2: Constrained non-linear 0-1 problems

no linearization Fortet linearization TAHA HJM BM

Problem iterations time iterations time time time time

1–A 1 0.06 1 0.29 (0.26) 0.27 0.50 3.34

1–B 1 0.13 1 0.47 (0.43) 0.15 2.74 86.38

1–C 1 10.7 1 1.62 (1.47) 0.23 325.82 303.98

2–A 1 0.26 1 1.15 (0.88) 1.88 1.44 8.06

2–B 1 0.76 1 2.15 (2.01) 0.58 2.66 20.10

2–C 1 0.55 1 2.93 (2.05) 3.33 125.86 1391.26

2–D 2 14.12 2 56.4 (46.24) 1.02 356.90 648.30

2–E 1 0.39 1 0.96 (0.84) 5.02 0.66 3.52

3–A 1 0.39 1 0.54 (0.50) 2.12 0.42 1.04

3–B* 0 0.28 0 0.59 8.83 0.80 3.14

3–C 1 0.37 1 1.01 (0.81) 2.35 0.38 8.12

3–D 2 0.95 1 2.19 (1.66) 3.42 1.10 15.22

3–E 1 1.15 1 2.94 (1.92) 11.29 2.56 36.86

* no solution

certain conditions. The direct transformation of pseudo-Boolean constraints into equivalent con-

straints in R has been found to produce too hard problems and we have introduced and applied a

relaxation based approach for the transformation.

The work was done to obtain a prototype of the new constraint logic programming language

CLP(PB). Several examples [Boc91, Sect. 6] [HR68] have been implemented and tested. The

different approaches, symbolic constraint solving versus adapted constraint solving mechanisms in

R need now to be compared. The goal is to obtain a powerful (pseudo-)Boolean constraint solver.

On the other side, it is necessary to give some larger applications in CLP(PB) which show

the usefulness of this language. Equivalences between pseudo-Boolean programming and theorem-

proving have been already sketched in [Hoo88] and need to be further investigated.

References

[BES+90] W. Büttner, K. Estenfeld, R. Schmid, H.-A. Schneider, and E. Tidén. Symbolic con-

straint handling through unification in finite algebras. Applicable Algebra in Engineer-

ing, Communication and Computing, 1:97–118, 1990.

[BM84a] E. Balas and J. B. Mazzola. Nonlinear 0-1 programming: I. Linearization techniques.

Mathematical Programming, 30:1–21, 1984.

[BM84b] E. Balas and J. B. Mazzola. Nonlinear 0-1 programming: II. Dominance relations and

algorithms. Mathematical Programming, 30:22–45, 1984.

[Boc91] A. Bockmayr. Logic programming with pseudo-boolean constraints. Technical Report

mpii-91-227, Max-Planck-Institut für Informatik, Saarbrücken, 1991.

[CHJ90] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudo-boolean pro-

gramming revisited. Discrete Applied Mathematics, 29:171 – 185, 1990.

16

[CM87] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and ext.

edition, 1987.

[Col75] G. E. Collins. Quantifier elimination for the elementary theory of real closed fields by

cylindrical algebraic decomposition. In Lecture Notes in Computer Science, volume 33,

pages 134–183. Springer-Verlag, 1975.

[Col90] A. Colmerauer. An introduction to Prolog III. Communications of the ACM, 33(7):69–

90, 1990.

[FGGB66] R.J. Freeman, D.C. Gogerty, G.W. Graves, and R.B.S. Brooks. A mathematical model

of supply support for space operations. Oper. Research, 14:1–15, 1966.

[For60] R. Fortet. Applications de l’algèbre de boole en recherche opérationelle. Rev. Française

Recherche Opér., 4:17–26, 1960.

[HF90] J. Hooker and C. Fedjki. Branch-and-cut solution of inference problems in propositional

logic. Annals of Mathematics and Artificial Intelligence, 1:123–139, 1990.

[HJM89] P. Hansen, B. Jaumard, and V. Mathon. Constrained nonlinear 0-1 programming.

Technical Report RRR 47-89, Rutgers Center for Operations Research, 1989.

[HJM+91] Nevin C. Heintze, Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland Yap.

The CLP(R) programmer’s manual – version 1.1. Technical report, IBM Thomas J

Watson Research Center, November 1991.

[HL88] Tien Huynh and Catherine Lassez. A CLP(R) options trading analysis system. In

Logic Programming: Proceedings of the Fifth International Conference and Symposium,

pages 59–69, Seattle, Washington, U.S.A., 1988.

[HMS87] Nevin Heintze, Spiro Michaylov, and Peter Stuckey. CLP(R) and some electrical engi-

neering problems. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the

4th International Conference, pages 675–703. MIT Press, May 1987.

[HMSY89] Nevin Heintze, Spiro Michaylov, Peter Stuckey, and Roland Yap. On meta-

programming in CLP(R). In Ewing Lusk and Ross Overbeek, editors, Logic Program-

ming: Proceedings of the North Amercian Conference, 1989, pages 52–68. MIT Press,

October 1989.

[Hon92] Hoon Hong. Non-linear constraints solving over real numbers in constraint logic pro-

gramming (introducing RISC-CLP). RISC-Linz Report Series 92-08, Research Institute

for Symbolic Computation, Johannes Kepler Institute, A-4040 Linz, Austria, Europe,

January 27 1992.

[Hoo88] J. N. Hooker. A quantitative approach to logical inference. Decision Support Systems,

4:45 – 69, 1988.

[Hoo89] J. N. Hooker. Input proofs and rank one cutting planes. ORSA Journal for Computing,

1:137 – 145, 1989.

17

[HR68] P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related

Areas. Springer-Verlag, 1968.

[JL86] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. Technical Report

86/73, Monash University, Victoria, Australia, June 1986.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of

the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany,

pages 111–119. ACM, January 1987.

[JMSY90] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) language

and system. Technical Report RC 16292 (#72336) 11/15/90, IBM Research Division,

November 1990.

[JW90] R.E. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals of

Mathematics and AI, 1, 1990.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, 1983.

[MR91] I. Mitterreiter and F.J. Radermacher. Experiments on the running time behaviour of

some algorithms solving propositional logic problems. Technical report, Forschungsin-

stitut für anwendungsorientierte Wissensverarbeitung Ulm, 1991.

[NW89] G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser et al.,

editor, Optimization, volume 1 of Handbooks in Operations Research and Management

Science, chapter VI, pages 447–527. Elsevier, 1989.

[PD91] Frank Pfenning and Scott Dietzen. A declarative alternative to assert in logic program-

ming. Draft, 1991.

[Rhy70] J. Rhys. A selection problem of shared fixed costs and networks. Manag. Science,

17:200–207, 1970.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[Tah72] H. A. Taha. A Balasian-based algorithm for zero-one polynomial programming. Man-

agement Science, 18B:328–343, 1972.

[VH89] Pascal Van Hentenryck. Contraint satisfaction in logic programming. MIT Press, 1989.

18

