

Author’s Address

Dov Gabbay
Imperial College, Dept. of Computing
Queens Gate
London SWZ 2AZ, England

Hans Jürgen Ohlbach
Max–Planck–Institut für Informatik
Im Stadtwald
D-6600 Saarbrücken 11
F. R. Germany
ohlbach@mpi-sb.mpg.de

Publication Notes

This report also appears in the proceedings of the
Third International Conference on Principles of Knowledge Representation and Reasoning (KR’92).

Acknowledgements

This work was stimulated considerably by many discussions with Luis Fariñas del Cerro and Andreas
Herzig from Toulouse. We are grateful to Andrzej Sza las from Warsaw university who has digged out
Ackermann’s paper.

It was supported by the ESPRIT project 3125 MEDLAR, by the “Sonderforschungsbereich” 314,
“Künstliche Intelligenz und wissensbasierte Systeme” of the German Research Council (DFG) and by the
BMFT funded project LOGO.

The first author is a SERC Senior Research Fellow.

Abstract

An algorithm is presented which eliminates second–order quantifiers over predicate
variables in formulae of type ∃P1, . . . , Pnψ where ψ is an arbitrary formula of first–
order predicate logic. The resulting formula is equivalent to the original formula – if
the algorithm terminates. The algorithm can for example be applied to do interpo-
lation, to eliminate the second–order quantifiers in circumscription, to compute the
correlations between structures and power structures, to compute semantic properties
corresponding to Hilbert axioms in non classical logics and to compute model theo-
retic semantics for new logics. An earlier version of the paper has been published in
[GO92b].

Key Words: Quantifier Elimination, Second–Order Predicate Logic, Circumscription,
Interpolation.

Contents

1 Introduction 2

2 The SCAN Algorithm 3

3 Comparison with other Methods 7

4 Applications of Quantifier Elimination 8
4.1 Circumscription . 8
4.2 Power Structures . 9
4.3 Correspondence Theory . 10
4.4 Semantics for Hilbert Calculi . 12

5 Limitations of the SCAN Algorithm 16

6 Conclusion 16

1

1 Introduction

Automating reasoning for second–order predicate logic is much more difficult than for first–order
predicate logic. Procedures that transform a given second–order formula into an equivalent first–
order formula are therefore extremely useful. This transformation is of course not always possible,
but there are important problem classes where the second–order formulae have a characteristic
structure which allows for a transformation into an equivalent first–order formula.

Several methods have been developed for computing from a given second–order formula an
equivalent first–order formula. These methods basically fall into two classes. The first class of
algorithms computes or guesses suitable instantiations for the second–order predicate variables
that are guaranteed to preserve equivalence [Ack35a, vB84, Sza92, Sim92]. The idea of the second
class of algorithms is to compute sufficiently many consequences from the formulae containing the
second–order variables and then keeping from the resulting set of formulae only those without the
second–order variables [Ack35a, KK66, BGW92]. The algorithm we are going to present falls into
this second class.

The structure of the formulae our algorithm can handle is ∃P1, . . . , Pnψ where the Pi are pred-
icate variables for n–place predicates and ψ is an arbitrary first–order formula. Our algorithm es-
sentially normalizes ψ into clause form and generates all (constraint–) resolvents of the clauses with
the predicates Pi. It is shown that the subset of the generated clauses not containing predicates Pi

(which may be infinite) is equivalent to the original formula. Since ∀P1, . . . , Pnψ⇔¬∃P1, . . . , Pn¬ψ
(⇔ is the equivalence sign), the algorithm can of course also handle universal quantifiers by re-
ducing this case to the case with existential quantifiers. This algorithm is simple and it can be
realized easily with existing theorem provers, for example OTTER.

Let us illustrate the SCAN algorithm1 with some simple examples.
It is easy to see that

∃P

(

P ∨Q
¬P ∨R

)

is logically
equivalent to

Q ∨R

where Q ∨R is just the resolvent between the two clauses on the left hand side. The “⇒”–direction
follows from the fact that Q ∨R as a resolvent is of course implied by the original formula. To
see the “⇐”–direction, suppose Q is true in an interpretation. In this case the assigment for P ,
which is existentially quantified, can be chosen to be true also, making the existentially quantified
formula true as a whole. If instead, R is true then P must be chosen to be false and again the left
hand side formula is true. Thus, the existentially quantified P can be eliminated by just taking
the single resolvent with P .

A slightly more complex example illustrates that in fact all (not redundant) resolvents with the
second–order predicate have to be generated.

∃P

P ∨Q
¬P ∨R
¬P ∨ S

is logically
equivalent to

(

Q ∨R
Q ∨ S

)

If Q is false in a model, it is necessary that R and S are both true in order to choose P such that
all three clauses on the left hand side become true. Falsity of Q enforces truth of both R and S
on the right hand side only if both resolvents are present.

In the presence of second–order predicates with arguments, the resolution rule has to be changed
slightly, as the third example demonstrates.

∃P

(

P (a) ∨Q
¬P (b) ∨R

)

is logically
equivalent to

a = b⇒ (Q ∨R)

Only in models of the right hand side where a and b are mapped to the same objects, it is
necessary that one of Q or R must be true in order to satisfy the left hand side. If a and b are

1SCAN means ‘Synthesizing Correspondence Axioms for Normal logics.’ We developed this algorithm for a
particular application and the name was chosen before we realized that it is applicable in a general context.The
casual chain of the papers is the following: First SCAN was introduced in [GaOh92a]. This stimulated [Sza92].
Both papers then stimulated [Sim92].

2

interpreted differently, we may well choose both P (a) and ¬P (b) to be true. That means instead
of unification, just a constraint for the arguments of the resolution literals has to be generated.

Further examples are given in the applications section. The SCAN algorithm is defined in the
next section and its soundness is proved. In the third section we give a more detailed comparison
with other approaches. Finally various applications of quantifier elimination are discussed. We
conclude with a section on limitations of the algorithm and some implementation hints.

2 The SCAN Algorithm

The algorithm is defined and its soundness is proved.

Definition 2.1 (The SCAN Algorithm)
Input to SCAN is a formula α = ∃P1, . . . , Pn ψ with predicate variables P1, . . . , Pn and an arbitrary
first–order formula ψ.
Output of the SCAN — if it terminates — is a formula ϕα which is logically equivalent to α, but
not containing the predicate variables P1, . . . , Pn.
SCAN performs the following three steps:

1. ψ is transformed into clause form using second order skolemization. That means the resulting
formula has the form: ∃P1, . . . , Pn∃f1, . . . , fnψ

′ where the fi are the Skolem functions and
ψ′ is a set of clauses. From the algorithm’s point of view, the quantifier prefix can be
ignored. Therefore ψ′ is treated as an ordinary clause set with the usual Skolem constants
and functions.

2. All C–resolvents and C–factors with the predicate variables P1, . . . , Pn have to be generated.
C–resolution (‘C’ for constraint) is defined as follows:

P (s1, . . . , sn) ∨ C P (. . .) and ¬P (. . .)
¬P (t1, . . . , tn) ∨D are the resolution literals

C ∨D ∨ s1 6= t1 ∨ . . . ∨ sn 6= tn

and the C-factorization rule is defined analogously:

P (s1, . . . , sn) ∨ P (t1, . . . , tn) ∨ C
P (s1, . . . , sn) ∨ C ∨ s1 6= t1 ∨ . . . ∨ sn 6= tn

.

Notice that only C-resolutions between different clauses are allowed (no self resolution). A
C-resolution or C-factorization can be optimized by destructively resolving literals x 6= t
where the variable x does not occur in t with the reflexivity equation. C–resolution and
C–factorization takes into account that second order quantifiers may well impose conditions
on the interpretations which must be formulated in terms of equations and inequations.

As soon as all resolvents and factors between a particular literal and the rest of the clause set
have been generated (the literal is ‘resolved away’), the clause containing this literal must be
deleted (purity deletion). If all clauses are deleted this way, this means that α is a tautology.

All equivalence preserving simplifications may be applied freely. These are for example:

• Tautologous resolvents can be deleted.

• Subsumed clauses can be deleted.

• Subsumption factoring can be performed. Subsumption factoring means that a factor
subsumes its parent clause. This may be realized by just deleting some literals. For
example Q(x), Q(a), where x is a variable, can be simplified to Q(a).

• Subsumption resolution can also be performed. Subsumption resolution means that a
resolvent subsumes its parent clause, and this again may be realized by deleting some
literals [OS91] (see also example 4.4). For example the resolvent between P,Q and
¬P,Q,R is just Q,R such that ¬P can be deleted from the clause. (An instance of this
operation is realized as so called ‘unit deletion’ in the OTTER theorem prover.)

3

If an empty clause is generated, this means that α is contradictory.

3. If the previous step terminates and there are still clauses left then reverse the skolemiza-
tion. A method for reversing the skolemization in a set F of clauses is (1) to abstract all
arguments of all occurrences of Skolem functions by variables, i.e. f(s1, . . . , sn) is replaced
with f(x1, . . . , xn) and additional literals xi 6= si are added to the clause where the xi are
fresh variables and (2) to consistently rename all variables such that the arguments of all
occurrences of the Skolem function are the same. If this is possible and F [f(x1, . . . , xn)] is
the result then ∀x1, . . . , xn∃y F [y] is the solution. This process is repeated for all Skolem
functions.

If it is not possible to rename the variables consistently, the only chance is to take parallel
Henkin quantifiers [Hen61] (see example 4.5) or leave the second–order quantification.

<

The next example illustrates the different steps of the SCAN algorithm in detail. The input is:
∃P ∀x, y ∃z (¬P (a) ∨Q(x)) ∧ (P (y) ∨Q(a)) ∧ P (z). In the first step the clause form is to be
computed:

C1 ¬P (a), Q(x))
C2 P (y), Q(a)
C3 P (f(x, y))

f is a Skolem function. The second–order quantifier prefix is therefore ∃P ∃f ∀x, y. But this is
only needed for the correctness proof below.

In the second step of SCAN we begin by choosing ¬P (a) to be resolved away. The resolvent
between C1 and C2 is C4 = Q(x), Q(a) which is equivalent to Q(a) (this is one of the equivalence
preserving simplifications). The C-resolvent between C1 and C3 is C5 = (a 6= f(x, y), Q(x)). There
are no more resolvents with ¬P (a). Therefore C1 is deleted. We are left with the clauses

C2 P (y), Q(a)
C3 P (f(x, y))
C4 Q(a)
C5 a 6= f(x, y), Q(x)

.

Selecting the next two P -literals to be resolved away yields no new resolvents. Thus, C2 and C3

are simply to be deleted as well. All P -literals have now been eliminated. Restoring the quantifiers
we then get

∀x ∃z Q(a) ∧ (a 6= z ∨Q(x))

as the final result (y is no longer needed.)

Theorem 2.2 (Correctness of SCAN)
If SCAN terminates for a formula α then α is logically equivalent to SCAN(α)

Proof : The formulae under consideration contain a prefix of second–order existential quantifiers
over predicate and function variables as the only second–order component. In order to prove the
equivalence we can therefore take a standard first–order Tarskian model theory augmented with
assignments of n-ary relations to n-place predicate variables and n-ary functions to n-place function
variables.
Since we use second order skolemization, clause form generation as well as reversing the skolemiza-
tion are equivalence preserving. Adding a resolvent or a factor to a clause set is also equivalence
preserving. Therefore the only critical step in the SCAN algorithm is the purity deletion rule.
Removing a clause cannot make (in an interpretation) true clause sets false. Therefore every
interpretation satisfying the clause set before the deletion satisfies it also after the deletion.
What we are left with to prove is that an interpretation satisfying the clause set without the pure
clause also satisfies the clause set with the pure clause. And this turns out to be the really hard
part of the proof where we have to exploit the second order character of the problem. What has
to be exploited is that the predicate P is existentially quantified and therefore its interpretation
can be chosen appropriately.
Before we come to the proof for the general case, it is useful to make some conceptual simplifications.

4

• Exploiting the equivalence
(P (s1, . . . , sn) ∨C) ⇔ (P (x1, . . . , xn) ∨ C ∨ x1 6= s1 ∨ . . . ∨ xn 6= sn) it can be assumed that
the predicate P which has been “resolved away” in the pure clause C has only variables as
arguments.

• The proof for an n-place predicate is not different to the proof for a one–place predicate. Just
read x in P (x) as a vector of variables. W.l.o.g we assume therefore that P is a one–place
predicate.

• Since purity deletion is done after all resolvents and factors with the pure literal are generated,
it can be assumed w.l.o.g that there is only one resolution partner in the clause set. If there
are n resolution partners in the clause set then all proof steps below can be repeated n times.

• The clauses containing no resolution partners do not contain complementary literals with the
predicate P . They are not touched during the purity deletion process. In the sequel they
can therefore be ignored.

• The variables in the clauses can be renamed such that different clauses share the same
variables.

There are two cases which have to be distinguished. The first case is that the predicate P occurs
in the pure clause C only with one sign, either positively or negatively. The second case is that P
occurs with both signs, i.e. C is self resolving. This is the case where SCAN may loop.
Let us now consider the first case and w.l.o.g assume the predicate P occurs only positively in C.
Thus, the situation before and after purity deletion looks as follows:

K =

P (x), C(x) (=def A)
Factors(A)
¬P (x1), . . . ,¬P (xn), D(x1, . . . , xn)
S(x1), . . . , S(xn), D(x1, . . . , xn)

...

→ K ′ =

Factors(A)
¬P (x1), . . . ,¬P (xn), D(x1, . . . , xn)
S(x1), . . . , S(xn), D(x1, . . . , xn)

...

where C and D denote the remaining literals. These literals may well contain additional variables.
For the purpose of this proof these variables can be ignored. C and D may also contain additional
positive literals with the predicate symbol P . S(x1), . . . , S(xn), D(x1, . . . , xn) stands for the 2n−1
resolvents which are possible between these two clauses. S denotes either ¬P or C. For example
if n = 2 there are three resolvents:

¬P (x1), C(x2), D(x1, x2)
C(x1),¬P (x2), D(x1, x2)
C(x1), C(x2), D(x1, x2)

If tautologies are automatically eliminated those resolvents which are either themselves tautologies
or which are derived from tautologies are not present. We shall see that the factors of A are
needed to take over the role of those clauses which are derived from tautologies. Subsumed clauses,
however, may be deleted without any effect on the proof.
Take any interpretation ℑ satisfying K ′ and mapping the symbol P to a predicate P and the
variable x to a domain element a. If ℑ satisfies C(x) or P (x) then ℑ satisfies K and we are done.
If ℑ falsifies both we move to an interpretation ℑ′ by changing the assignment of P to a predicate
P ′ which is like P except that P ′(a) is true. Then ℑ′ satisfies P (x), C(x). We have to show that
ℑ′ still satisfies all the other clauses.
Assume ℑ′ maps the variables xi to some ai. Let J be the set of variables which are mapped to a,
i.e. xi ∈ J if ai = a. For these variables, the truth value of ¬P (xi) has changed from true under ℑ
to false under ℑ′. For all other variables nothing has changed. Therefore if ¬P (xj), j 6∈ J is true
under ℑ, it is still true under ℑ′. In this case all clauses containing this literal are still true. Now
suppose ¬P (xj), j 6∈ J are all false under ℑ. If for simplicity we assume J = {x1, . . . , xj}, there is a

5

clause M = C(x1), . . . , C(xj),¬P (xj+1), . . . ,¬P (xn), D(x1, . . . , xn) among the resolvents. In this
clause, all literals with predicate C and ¬P are false under ℑ. Since ℑ satisfies K ′, it must satisfy
D(x1, . . . , xn). The interpretation of D has not changed. Therefore ℑ′ satisfies D(x1, . . . , xn) as
well. Thus, ℑ′ satisfies all clauses in K.
It remains to be shown that in case of automatic tautology deletion the critical clause M is not

deleted. If M would either itself be a tautology or derived from a tautology, the clause A would
look like A = P (x), P (y), C′(x, y). In this case the structure of M would be
M = P (y1), C′(x1, y1), . . . , P (y1), C′(xj , yj),
¬P (xj+1), . . . ,¬P (xn), D(x1, . . . , xn). That means for example P (y1), C′(x1, y1) would be false
for all assignments of y1, in particular for ℑ(y1) = a. This assigment would also falsify the factor
P (x), C′(x, x) of clause A, which cannot be the case2.
From this we conclude that both ℑ′ and ℑ satisfy ∃P K.

The remaining case to be considered is the case where the clause C is self resolving. Schematically
the situation looks as follows:

K =

P (x),¬P (y), C(x, y)
¬P (x), D(x)
¬P (y), D(x), C(x, y)
¬P (y), D(x), C(x, x′), C(x′, y)

... (possibly infinitely many resolvents)

→ K ′ =

¬P (x), D(x)
¬P (y), D(x), C(x, y)
¬P (y), D(x), C(x, x′), C(x′, y)

...

To simplify things, let us assume, neither C(x, y) nor D(x) contain negative occurrences of P . If
in a given interpretation ℑ which maps x to some a0, D(x) is true, we can choose P (x) to be true
without further conflicts. If D(x) is false, but C(x, y) is true, where y is mapped to some a1, ℑ
satisfies K. If both D(x) and C(x, y) are false then the first resolvent enforces ¬P (y) to be true.
That means, P (a0) to be false enforces P (a1) to be false and therefore it has to be checked whether
the first clause still remains true under the assignment x 7→ a1 etc. With the same arguments as
in the base case this is proved with induction on n using the nth resolvent. That means that in
this case ℑ again satisfies ∃P K.

The case that C(x) contains further negative literals with P means that there is another recursion
loop which generates new branches of resolvents. Induction on the number of these further literals
proves the statement.
The case that D(x, y) also contains negative literals with P requires the integration of the ar-
guments we used to prove the first case into the proof for the second case. This is technically
complicated, but there are no further proof ideas needed.

Collecting everything together we can finally conclude α⇔ SCAN(α). <

If the formula given to SCAN contains a cycle in the P -literals, SCAN may keep on producing
infinitely many clauses. In some cases the size of the clauses remains finite. According to a result of
Ackermann [Ack35a, Ack35b] which can be adapted to our case, the (possibly infinite) conjunction
of the P -literal free clauses is a solution. It is one of the advantages of SCAN that in this case
a subsumption test on the resolvents may terminate the process and thus compute a finite result
whereas otherwise only infinite junk would be produced.

As an example where this happens, apply SCAN to the formula:

∃P ∀x, y (P (x, y) ⇒ P (y, x)) ∧ (P (x, y) ⇔Q(x, y)).

Since the symmetry clause ¬P (x, y), P (y, x) contains only a trivial cycle which can easily be rec-
ognized, SCAN stops and returns as expected the symmetry of Q.

There is, however, no proof that SCAN stops in all cases where there is a finite solution. If this
were the case then it would be decidable whether a theorem ∃x P (x) has finitely many different
proofs or not.

2This argument does not imply that only binary factors are needed. Before the factor itself is operated on, its
factor has to be generated. That means all factors are needed.

6

As mentioned in the introduction, formulae with universal quantifiers have to be negated before
giving them to SCAN and the result has to be negated again. The question may arise whether
there is a possibility to treat universally quantified variables directly. Eliminating P from for-
mulae ∀P F [P] in some sense means factoring out the tautological part of F [P]. For example
(∀P (P ∨ ¬P) ∧Q) is equivalent to Q, i.e. the P–part is tautologous. SCAN uses resolution as
the basic operation, and resolution is sensitive to contradictions and not to tautologies. Therefore
it is resolution which requires negation of the formula and elimination of the contradictious part.

In applications like circumscription, the structure of the formulae is ∀P ∗ Q[P ∗] ⇒R[P ∗] with
a large Q[P ∗] and a small R[P ∗]. In this case it is much more convenient to negate the formula
yielding ∃P ∗ Q[P ∗] ∧ ¬R[P ∗] because the big Q[P ∗] remains untouched.

There is a corollary derived from the proof of SCAN (2.2) which may be of some interest.
The proof says that deleting a clause as soon as one literal is resolved away preserves equivalence.
This may be exploited to eliminate only certain unwanted formulae. As an example, consider a
PROLOG program containing a binary predicate P which is symmetric. Adding the symmetry
clause to the program clauses PROLOG to loop. The corollary allows to eliminate the symmetry
clause by generating all non redundant resolvents with the other PROLOG clauses. That means
in this case that all clauses containing some P (s, t) are duplicated with P (t, s) replacing P (s, t) in
the copy. For all queries not containing P , the new PROLOG program is equivalent to the old one
together with the symmetry clause.

3 Comparison with other Methods

Wilhelm Ackermann gave two procedures for eliminating existential quantifiers. Both eliminate
only one quantifier at a time. The first one requires to bring the formula into a form

∃P ∀x (A(x) ∨ P (x)) ∧ ∆[¬P]

where ∆[¬P] is a formula containing only negative occurrences of P (x). The result is then ∆[A],
i.e. all occurrences of ¬P (x) are replaced with A(x) in ∆. This method has difficulties in handling
problems with clauses containing several occurrences of P . For example

∃P ∀x, y (P (x, a) ∨ P (a, x) ∨ C(x)) ∧ (¬P (y, a) ∨ ¬P (a, y) ∨D(y))

falls into this problematic class. The SCAN–solution for this case, however, is simply C(a) ∨D(a).
In its kernel the second method of Ackermann is actually quite similar to SCAN. Although his

notation is very different to ours, it amounts to generating the conjunction of all P–free resolvents3.
It is, however, also restricted to one–place predicates. Literals P (s1, . . . , sn) have therefore

to be written as First(x, s1) ∧ . . . ∧ nth(x, sn) ⇒ P ′(x) before this method can be applied. This
transformation blows up the formulae considerably. In fact, if SCAN is reduced to formulae
with one-place predicates where all arguments are variables and no further simplifications of the
resolvents are applied, you obtain Ackermann’s second method.

Since Ackermann does not use resolution as we do, it is very difficult to integrate optimization
steps like subsumption deletion etc. That means that his method would not terminate for the above
example with the symmetry clause. Therefore SCAN is much easier to handle and it behaves better
than Ackermann’s method in such pathological cases.

The idea of generating consequences of the formulae with P and then taking the subset of
P–free formulae is actually the kernel of other approaches to this problem. For example a theorem
in [KK66] says that it is the set of all consequences you have to take. This is of course too much to
be of practical value. A minimal subset free of redundancies should be sufficient. We showed that

3Historical note: On page 401 of [Ack35a] there is the definition an operation

A
x1,...,xn,z
y1,...,ym

∧ B
p1,...,pn
q1,...,ql,z

→ A
x1,...,xn

y1,...,ym
∨ B

p1,...,pn
q1,...,ql

where the subscripts yi stand for P (yi) and the superscripts xi stand for ¬P (xi) in a clause containing also literals
A or B respectively. Thus, contraction on z actually means resolution between P (z) and ¬P (z). The step to full
resolution as we know it now is not that big.

7

the set of resolvents without tautologies and subsumed clauses is sufficient. Bachmair, Ganzinger
and Waldmann [BGW92] have gone even one stop further. Their “hierarchical theorem proving”
approach allows the formulation of redundancy criteria based on term orderings. Furthermore they
have incorporated equality reasoning by superposition principles. This mechanism can be used to
get rid of existentially quantified predicate and function symbols.

4 Applications of Quantifier Elimination

As mentioned in the introduction, the applications we have in mind are classes of problems where
formulae with the structure ∃P1, . . . , Pnψ or ∀P1, . . . , Pnψ occur. This need not be second–order
formulae in the first place. Even in standard first–order logic there might be useful applications.
Suppose there is an axiomatization of something in terms of a predicate P and maybe some other
predicates, and by some reason it is known that only theorems not containing P are to be proved
from these axioms. That means

Axioms(P) ⇒ Theorem
iff ∀P (Axioms(P) ⇒ Theorem)
iff (∃P Axioms(P)) ⇒ Theorem
iff SCAN(∃P Axioms(P)) ⇒ Theorem

i.e. SCAN can optimize the axioms with respect to the particular class of theorems not containing
P .

Actually the situation is a special case of interpolation. We have

∀Q,R ϕ(Q,P) ⇒ ψ(P,R)
iff (∃Q ϕ(Q,P)) ⇒∀R ψ(P,R)
iff (SCAN(∃Q ϕ(Q,P))⇒¬SCAN(∃R¬ψ(P,R))
iff ϕ′(P) ⇒ ψ′(P)

i.e. SCAN does interpolation.

4.1 Circumscription

Circumscription is a transformation of formulae proposed by John McCarthy [McC80] for the pur-
pose of formalizing non–monotonic aspects of commonsense reasoning. ‘Circumscribing’ a predicate
means in semantic terms minimizing the extension of that predicate.

If for example the formula Bird(Tweety) is circumscribed with respect to the predicate Bird,
we want to formalize that Tweety is the only bird at all, i.e.
Circ(Bird(Tweety), Bird) ⇔ (Bird(Tweety) ∧ ∀x Bird(x) ⇒ x = Tweety).

Analogously Circ(∀x Bird(x) ⇒ fly(x), f ly) ⇔∀x Bird(x) ⇔ fly(x),
i.e. if birds fly then minimizing the extension of fly adds the information that only birds fly.

Unfortunately circumscription in its general definition requires a second–order quantifier. For
circumscribing a single unary predicate at a time, the definition is as follows:

Circ(F (P), P) = F (P) ∧ ∀P ∗ (F (P ∗) ∧ ∀y P ∗(y) ⇒ P (y)) ⇒ (∀x P (x) ⇒ P ∗(x)).

So far only in special cases equivalent first–order formulae could be computed [Lif85]. SCAN
offers a uniform way to compute first–order circumscriptions in most of the cases where there is
one at all.

Example 4.1 (For Circumscription)
Circ(P (a), P) = P (a) ∧ ∀P ∗ (P ∗(a) ∧ ∀y P ∗(y) ⇒ P (y)) ⇒ (∀x P (x) ⇒ P ∗(x)).
In order to get rid of the second–order quantification, the ∀P ∗ . . .–formula is negated to obtain
a version with existential quantifier ∃P ∗ . . . which is a suitable input to SCAN. Clausifying the

8

negated formula yields
∃P ∗ ∃x ∀y P ∗(a)

¬P ∗(y), P (y)
P (x)
¬P ∗(x)

Fortunately there is no Skolem function. Therefore we need not worry about skolemization and
unskolemization. We just keep in mind that x is existentially quantified and therefore to be treated
as a constant symbol.
Resolving P ∗ away yields

∃x P (a)
P (x)
x 6= a

The result has to be negated again such that the final version is as expected:

Circ(P (a), P) ⇔ P (a) ∧ ∀x P (x) ⇒ x = a.

<

Example 4.2 (For Circumscription)
Circ(∀x P (x) ⇒Q(x), Q) =
∀x P (x) ⇒Q(x) ∧ ∀Q∗ (∀y P (y) ⇒Q∗(y) ∧ ∀y Q∗(y) ⇒Q(y)) ⇒ (∀x Q(x) ⇒Q∗(x)).
Negation of the ∀P ∗ . . .–formula and clausification yields

∃Q∗ ∃x ∀y ¬P (y), Q∗(y)
¬Q∗(y), Q(y)
Q(x)
¬Q∗(x)

Resolving Q∗ away yields
∃x ∀y ¬P (x)

Q(x)
¬P (y), Q(y)

Negation again yields: (∀y P (y) ⇒Q(y)) ⇒ (∀x Q(x) ⇒ P (x))
Together with ∀y P (y) ⇒Q(y) this simplifies to ∀y P (y) ⇔Q(y). <

4.2 Power Structures

An algebra is a set together with some functions operating on this set. A structure is an algebra
plus some additional relations between the elements of the algebra’s carrier set. A power structure

of a structure is again a structure. Its carrier set is just the powerset of the structure’s carrier
set and its functions and relations are obtained by lifting the structure’s functions and relations
to operate on sets instead of elements [Bri92]. For example a binary relation R can be lifted to a
one-place function F :

F (X) = {z | ∃x ∈ X R(x, z)}

The duality problem is now to find the correspondences between the properties of the relation and
the properties of the lifted function. For example transitivity of the binary relation corresponds to
the property F (F (X)) ⊆ F (X). Quite a number of theories in mathematics, logic, and computer
science turn out to be instances of power structure constructions, duality theory, or correspondence
theory respectively, in logic, or power domains in denotational semantics of non deterministic
programs, just to name two of them.

With SCAN it is possible to do one direction and compute from the properties of the lifted
function the properties of the underlying relation. For example in order to obtain transitivity from
F (F (X)) ⊆ F (X) we proceed as follows:
Applying the above definition of F in terms of R, ∀X ∀z z ∈ F (F (X)) ⇒ z ∈ F (X)
is rewritten to

9

∀X (∃x x ∈ F (X) ∧R(x, z)) ⇒ (∃x x ∈ X ∧R(x, z))
and further to
∀X ∀z (∃x (∃x′ x′ ∈ X ∧R(x′, x)) ∧R(x, z)) ⇒ (∃x x ∈ X ∧R(x, z))
which can also be written as
∀X ∀z (∃x (∃x′ X(x) ∧R(x′, x)) ∧R(x, z)) ⇒ (∃x X(x) ∧R(x, z))
and this is now a typical quantifier elimination problem. Negation, application of SCAN and
negation again yields the transitivity of R (c.f. example 4.3).

The other direction, computing from the properties of the structure the properties of the power
structure, turns out to be a formula synthesizing problem that can be solved with resolution
theorem provers by constructively proving certain existentially quantified theorems. We shall
report on this in a subsequent publication.

4.3 Correspondence Theory

Many non classical logics are characterized by a basic Hilbert calculus which corresponds to a
model theoretic semantics in terms of possible worlds. Different variants of the logic manifest
themselves by additional Hilbert axioms which correspond to particular properties of the possible
worlds structure.

For example normal modal logic [Che80] is characterized by the Hilbert axioms and rules for
predicate logic plus the K-axiom

(✷P ∧ ✷(P ⇒Q)) ⇒✷Q

and the necessitation rule
P

✷P
.

The semantics of this logic is Kripke’s well known possible worlds semantics:

w |= ✷P iff ∀v R(w, v) ⇒ v |= P

where R is the accessibility relation.
The correspondence problem in these logics is to find for a given additional Hilbert axiom an

equivalent property of the accessibility relation [vB84]. For example the Hilbert axiom ∀P ✷P ⇒ P
corresponds to the reflexivity of the accessibility relation. Actually this is one of the instances of
power structure constructions. The predicates can be identified with the set of worlds where they
are true and the modal operators can be seen as functions operating on these sets of worlds. For
mechanizing deduction in non classical logics it is very important to find these correspondences
[Ohl91]. So far the method for finding the correspondences was mostly by intuition and the
verification required complex proofs [vB84].

SCAN is the first algorithm which offers a method for computing the correspondences fully
automatically. Moreover, since SCAN preserves equivalences, the computed correspondence axioms
are guaranteed to be complete in the sense that a formula is derivable in the Hilbert calculus if and
only if it is valid in the frames which are models of the computed correspondence axiom. The idea
is as follows: We take the model theoretic semantics for the operators and translate the Hilbert
axioms into predicate logic (cf. [Ohl91]).

For example ∀P ✷P ⇒ P is translated into ∀P (∀w, v R(w, v) ⇒ P (v)) ⇒ P (w). Application of
SCAN to the negation of this formula and negating the result again yields the expected reflexivity
axiom ∀w R(w,w).

Notice that this method is applicable as long as the semantics of the operators can be for-
malized with first–order predicate logic axioms. Moreover since SCAN preserves equivalence we
automatically get soundness and completeness if the basic semantics is complete. That means the
Hilbert calculus and the semantics together with the correspondence axioms computed by SCAN
define the same logic.

Let us illustrate this application of SCAN with some more examples from modal logic.
In the sequel H(P, v) means P holds in world v. For atomic P it is possible to write P (v)

instead of H(P, v). The semantics of the modal operators are written as an equivalence in terms

10

of the H–predicate and the accessibility relation. This equivalence is used as a rewrite rule for
eliminating the operators. As usual, the ✸–operator is seen as an abbreviation for ¬✷¬.

Example 4.3 (Modal K4-Axiom)

Hilbert axiom: ∀P ✷P ⇒ ✷✷P
H-Formulation: ∀P ∀a H(✷P ⇒ ✷✷P, a)

Semantics: ∀P ∀w H(✷P,w) ⇔ (∀v R(w, v) ⇒H(P, v))

negated axiom: ∃P ∃a ¬H(✷P ∧✸✸¬P, a)

translated (i.e. Semantics applied as rewrite rule).
∃P ∃a (∀v R(a, v) ⇒ P (v)) ∧ ∃b R(a, b) ∧ ∃c R(b, c) ∧ P (c)

clause form: ¬R(a, v), P (v)
R(a, b)
R(b, c) (Quantifier prefix: ∃a, b, c ∀v)
¬P (c)

P resolved away: ¬R(a, c)
R(a, b)
R(b, c)

unskolemized: ∃a, b, c ¬R(a, c) ∧R(a, b) ∧R(b, c)
negated: ∀a, b, c R(a, b) ∧R(b, c) ⇒R(a, c) (transitivity)

<

SCAN can also work with quantified versions of modal logic. The predicate exists(w, x) expresses
that the object x exists in the domain of the world w.

Example 4.4 (Barcan Formula)

Hilbert axiom: ∀P ✷∀x P (x) ⇒∀x ✷P (x)
H-Formulation: ∀P ∀a H(✷∀x P (x) ⇒∀x ✷P (x), a)

semantics of ∀: w |= ∀x P (x) iff for all a in the domain of w w[x/a] |= P (x).

negated axiom: ∃P ∃a ¬H(✷∀x P (x) ∧ ∃x ✸¬P (x), a)

translated: ∃P ∃a ∀v R(a, v) ⇒ (∀x exists(v, x) ⇒ P (v, x)) ∧
∃x exists(a, x) ∧ ∃b R(a, b) ∧ ¬P (b, x)

clause form: ¬R(a, v),¬exists(v, x), P (v, x)
exists(a, c)
R(a, b)
¬P (b, c)

P resolved away: R(a, b)
exists(a, c)
¬exists(b, c) Here we have resolved with R(a, b).

This is an equivalence preserving simplification (subsumption resolution.)

unskolemized: ∃a, b, c R(a, b) ∧ ¬exists(b, c) ∧ exists(a, c)

negated: ∀a, b R(a, b) ⇒ (∀c exists(a, c) ⇒ exists(b, c)) (Increasing Domain)

<

The next example is the McKinsey axiom. It does not correspond to a first–order definable property
of the accessibility relation.

Example 4.5 (McKinsey Axiom)

11

Hilbert axiom: ∀P ✷✸P ⇒✸✷P
H-Formulation: ∀P ∀a H(✷✸P ⇒✸✷P, a)

semantics: ∀P ∀w H(P,w) ⇔ (∀v R(w, v) ⇒H(P, v))

negated axiom: ∃P ∃a H(✷✸P ∧ ✷✸¬P, a)
translated: ∃a ∀x R(a, x) ⇒∃y (R(x, y) ∧ P (y))∧

∀x R(a, x) ⇒∃y (R(x, y) ∧ ¬P (y))

clause form: ¬R(a, x),R(x, f(x))
¬R(a, x), P (f(x))
¬R(a, y),R(y, g(y))
¬R(a, y),¬P (g(y)) (Quantifier prefix: ∃f, g ∀x, y)

P resolved away: ¬R(a, x),R(x, f(x))
¬R(a, y),R(y, g(y))
¬R(a, x),¬R(a, y), f(x) 6= g(y)

unskolemized with second–order Henkin quantifiers:

∃a

(

∃f ∀x
∃g ∀y

) (R(a, x) ⇒R(x, f(x))) ∧
(R(a, y) ⇒R(y, g(y))) ∧
(¬R(a, x) ∨ ¬R(a, y) ∨ f(x) 6= g(y))

negated:

∀a

(

∀f ∃x
∀g ∃y

) ((R(a, x) ⇒R(x, f(x))) ∧
(R(a, y) ⇒R(y, g(y)))) ⇒
(R(a, x) ∧R(a, y) ∧ f(x) = g(y))

<

The reader may verify with SCAN that the axiom ∀P ✸✷P ⇒ ✷✸P is equivalent to confluence
of R: ∀a, b, c R(a, b) ∧R(a, c) ⇒∃d R(b, d) ∧R(c, d). Compared to the McKinsey axiom, slight
changes in the sequence of the modal operators obviously may have dramatic effects.

Based on Ackermann’s first elimination method Andrzej Sza las has developed an alternative
algorithm for computing correspondence axioms in modal logic [Sza92]. This algorithm terminates
and reports failure in cases where SCAN loops. This may be an advantage. It may also be a
disadvantage because sometimes it is possible to recognize and exploit regular structures in the
loop.

Inspired by the SCAN algorithm, Harold Simmons has recently proposed another method
for computing correspondence axioms for modal logics [Sim92]. His method extends an idea of
van Benthem where it is necessary to guess appropriate instantiations for universally quantified
predicate variables [vB84]. Simmons figured out how to determine these instantiations without
guessing.

4.4 Semantics for Hilbert Calculi

There are more and more applications of logic in areas other than mathematics and classical
computer science. In particular AI approaches to modelling intelligent agents are a very interesting
area for applications of logic. Existing logics, however, usually do not cover all aspects which are
needed there (formal notions of knowledge, belief, actions, causality, probability, time etc. as
well as all kinds of combinations). Therefore there is a need for supporting the development of
new logics and the mechanization of these logics. In [GO92a] we shall present a methodology for
developing mechanizations of logics defined via Hilbert calculi. The main problem here is to find a
model theoretic semantics which serves as a basis for a translation of the formulae of the new logic
into predicate logic. This can be done by starting with a very general and therefore very weak
neighbourhood semantics and by proving certain key lemmata which enable the transition form
a weak semantics to a stronger semantics. A version of neighbourhood semantics for an n-place

12

connective C is:

w |= C(P1, . . . , Pn, w) iff N (w, ζ(v1 , . . . , vn)ΨC(v1 |= P1, . . . , vn |= Pn)

which means that the set of all n-tuples v1, . . . , vn for which ΨC(v1 |= P1, . . . , vn |= Pn) holds forms
a neighbourhood of w. Ψ is a propositional function such as ⇒ , ∧ etc. (For a binary causality
operator, for example, one would choose ⇒ .)

A relational semantics for n-place connectives is

w |= C(P1, . . . , Pn, w) iff(∀v1, . . . , vn R(w, v1, . . . , vn) implies ΨC(v1 |= P1, . . . , vn |= Pn)

where RC is an n+ 1–ary accessibility relation.
Semantics of these kind can be used to translate the formulae of the new logic into predicate

logic. Applied to Hilbert axioms, second–order formulae are obtained which can be processed
by SCAN. The key lemmas for strengthening the semantics are: Closedness under intersection
and supersets allows the transition from neighbourhood semantics to relational semantics. If the
accessibility relation collapses to a point relation, relational semantics can be strengthened to
predicate logic semantics.

We illustrate the idea with an example from Lukasiewicz. The implicational fragment of propo-
sitional logic can be axiomatized by modus ponens: from P and P → Q derive Q, and one more
axiom ((P → Q) → R) → ((R → P) → (S → P))

Assume the strongest semantics of the →–connective (material implication) is not yet known,
but we have an approximation in terms of possible worlds and a ternary relation:

x |= P → Q iff ∀y, z R(x, y, z) implies (y |= P implies z |= Q)

This semantics can be used to translate the above Hilbert axiom and modus ponens into predicate
logic. For example the translation of modus ponens yields

∀P,Q ∀x (P (x) ∧ (∀y, z R(x, y, z) ⇒ P (y) ⇒Q(z)) ⇒Q(x)

If we do this for the above axiom also, we get two second–order formulae from which SCAN can
eliminate the quantifiers. The result is:

SCAN(Modus Ponens) = ∀z ∃x, y R(x, y, z)

SCAN(Axiom) = ∀a, b, c, d, e, h, k (R(a, b, c) ∧R(c, d, e) ∧R(e, h, k)) ⇒
(∃u, v (R(b, u, v) ∧R(d, v, k) ∧ (∀x, y R(u, x, y) ⇒ (k = x))))

It can now be proved with standard predicate logic means that the conjunction of these two
formulae is equivalent to

∀a R(a, a, a) ∧ ∀a, b, c R(a, b, c) ⇒ a = b ∧ a = c

That means the relation R collapses to a point relation. This fact is the key lemma from which it
is trivial to show that the → connective is actually material implication.

The proof that the accessibility relation collapses to a point relation requires a lemma to be
proved:

∀x, y, z, u, v R(x, y, z) ∧R(u, v, x) ⇒ v = z

A proof of this lemma has been found by Bill McCune and Larry Wos using the Otter theorem
prover with unit resolution resolution (UR-Resolution) 4:

Axioms:
all a, b, c, d, e, h, k (R(a, b, c) & R(c, d, e) & R(e, h, k))
⇒ (exists u, v (R(b, u, v) & R(d, v, k) & (all x, y (R(u, x, y) ⇒ (k = x)))).

4Dov Gabbay and Mark Reynolds found a different proof by hand. So far we have not been able to prove the
theorem with an automated theorem prover in one go, i.e. without inventing the lemma.

13

all z exists x, y R(x, y, z).

Axioms in clause form:

¬R(x1, x2, x3)|¬R(x3, x4, x5)|¬R(x5, x6, x7)|R(x2, f4(x1, x2, x3, x4, x5, x6, x7), f3(x1, x2, x3, x4, x5, x6, x7)).
¬R(x1, x2, x3)|¬R(x3, x4, x5)|¬R(x5, x6, x7)|R(x4, f3(x1, x2, x3, x4, x5, x6, x7), x7).
¬R(x1, x2, x3)|¬R(x3, x4, x5)|¬R(x5, x6, x7)|¬R(f4(x1, x2, x3, x4, x5, x6, x7), x, y)|(x = x7).

R(g(z), f(z), z).

Negated Lemma in clause form:
R(e, d, c).
R(b, a, e).
(a 6= c).

Equality Axioms
(x = x).
(x1 6= y1)|(x2 6= y2)|(x3 6= y3)|¬R(x1, x2, x3)|R(y1, y2, y3).
(x 6= y)|(y = x).
(x 6= y)|(y 6= z)|(x = z).

— UNIT CONFLICT at 1707.97 sec — 4702 [binary,4701,1487] .

Length of proof is 7.

————— PROOF —————
1 ¬R(x, y, z)|¬R(z, u, v)|¬R(v, w, v6)|R(y, k(x, y, z, u, v, w, v6), h(x, y, z, u, v, w, v6)).
2 ¬R(x, y, z)|¬R(z, u, v)|¬R(v, w, v6)|R(u, h(x, y, z, u, v, w, v6), v6).
3 ¬R(x, y, z)|¬R(z, u, v)|¬R(v, w, v6)|¬R(k(x, y, z, u, v, w, v6), v7, v8)|(v7 = v6).
4 (x = x).
5 (x 6= y)|(z 6= u)|(v 6= w)|¬R(x, z, v)|R(y, u, w).
8 R(g(x), f(x), x).
9 R(e, d, c).
10 R(b, a, e).
11 (a 6= c).

Abbreviations:
l =def g(b)
m =def g(l) = g(g(b))
n =def g(m) = g(g(g(b)))
o =def f(b)
p =def f(l) = f(g(b))
q =def f(m) = f(g(g(b)))
r =def g(p) = g(f(g(b)))
s =def f(p) = f(f(g(b)))
t =def k(n, q, l, p, l, o, b) = k(g(g(g(b))), f(g(g(b))), g(b), f(g(b)), f(b), b)
u =def h(n, q, l, p, l, o, b) = h(g(g(g(b))), f(g(g(b))), g(b), f(g(b)), f(b), b)
v =def h(r, s, p, u, b, a, e) = h(g(f(g(b))), f(f(g(b))), f(g(b)), h(n, q, l, p, l, o, b), b, a, e)
w =def k(q, t, u, v, e, d, c) = k(f(g(g(b))), k(n, q, l, p, l, o, b), h(n, q, l, p, l, o, b), h(r, s, p, u, b, a, e), e, d, c)
gx =def g(x)
g2x =def g(gx) = g(g(x))
g3x =def g(g2x) = g(g(g(x)))

15 [ur, 2, 8, 8, 8] R(f(gx), h(g(g3x), f(g2x), g2x, f(gx), gx, f(x), x), x).
19 [ur, 1, 8, 8, 8] R(f(g2x), k(g(g3x), f(g2x), g2x, f(gx), gx, f(x), x),

h(g(g3x), f(g2x), g2x, f(gx), gx, f(x), x)).
96 [ur, 2, 8, 15, 10] R(u, v, e).
1477 [ur, 3, 19, 96, 9, 11] ¬R(w, a, x).
1487 [ur, 1, 19, 96, 9] R(t, w, h(q, t, u, v, e, d, c)).

14

4680 [ur, 5, 4, 4, 10, 1477] (w 6= b).
4701 [ur, 3, 8, 8, 8, 4680] ¬R(t, w, x).
4702 [binary,4701,1487] Contradiction.

Using the above lemma, the proof of the main parts

∀a R(a, a, a) and
∀a, b, c R(a, b, c) ⇒ a = b ∧ a = c

of the theorem is straightforward.

Proof of ∀a R(a, a, a) with Otter.

Axioms:
all x, y, z, u, v R(x, y, z) & R(u, v, x) ⇒ v = z

all a, b, c, d, e, h, k ((R(a, b, c) & R(c, d, e) & R(e, h, k))
⇒ (exists u, v (R(b, u, v) & R(d, v, k) & (all x, y (R(u, x, y) ⇒ (k = x)))))).

all z exists x, y R(x, y, z).

Formulae in clause form:

¬R(x, y, z)|¬R(u, v, x)|(v = z).
¬R(x1, x2, x3)|¬R(x3, x4, x5)|¬R(x5, x6, x7)|R(x2, f4(x1, x2, x3, x4, x5, x6, x7), f3(x1, x2, x3, x4, x5, x6, x7)).
¬R(x1, x2, x3)|¬R(x3, x4, x5)|¬R(x5, x6, x7)|R(x4, f3(x1, x2, x3, x4, x5, x6, x7), x7).
¬R(x1, x2, x3)|¬R(x3, x4, x5)|¬R(x5, x6, x7)|¬R(f4(x1, x2, x3, x4, x5, x6, x7), x, y)|(x = x7).
R(g(z), f(z), z).

¬R(c1, c1, c1). (negated thoerem.)

————— PROOF —————
1 [] ¬R(x, y, z)|¬R(u, v, x)|(v = z).
3 [] ¬R(x, y, z)|¬R(z, u, v)|¬R(v, w, v6)|R(u, f1(x, y, z, u, v, w, v6), v6).
5 [] R(f4(x), f3(x), x).
6 [] ¬R(c1, c1, c1).
9 [ur,5,1,5] (f3(f4(x)) = x).
11 [para from,9,5] R(f4(f4(x)), x, f4(x)).
16 [ur,11,3,11,5] R(x, f1(f4(f4(f4(x))), f4(x), f4(f4(x)), x, f4(x), f3(x), x), x).
94 [ur,16,1,11] (x = f4(x)).
95 [ur,16,1,5] (f3(x) = x).
102 [para from,94,5] R(x, f3(x), x).
281 [para into,102,95] R(x, x, x).
282 [binary,281,6] Contradiction.

Proof of ∀a, b, c R(a, b, c) ⇒ a = b ∧ a = c with Otter.

Axioms:
all x, y, z, u, v R(x, y, z) & R(u, v, x) ⇒ v = z

all x R(x, x, x).

Formulae in clause form:

¬R(x, y, z)|¬R(u, v, x)|(v = z).
R(x, x, x).

R(c3, c2, c1). (negated theorem)
(c3 6= c1)|(c3 6= c1).

15

————— PROOF —————
1 [] ¬R(x, y, z)|¬R(u, v, x)|(v = z).
3 [] R(x, x, x).
4 [] R(c3, c2, c1).
5 [] (c3 6= c2)|(c3 6= c1).
6 [binary,4,1] ¬R(c1, x, y)|(c2 = y).
7 [binary,4,1] ¬R(x, y, c3)|(y = c1).
12 [binary,6,3] (c2 = c1).
20 [para from,12,5] (c3 6= c1).
31 [binary,7,3] (c3 = c1).
32 [binary,31,20] Contradiction.

That means using SCAN and standard predicate logic theorem proving, both of which can be
automated, it is possible to analyze unknown logics and to find the strongest semantics. This
semantics (plus some further optimizations) in turn serve as a basis for a translation into predicate
logic.

5 Limitations of the SCAN Algorithm

There is a strange phenomenon which requires further investigation. From modal logic we know
cases where a Hilbert axiom has a semantic property which is only second–order axiomatizable.
Together with a further axiom, both correspond to a first–order axiomatizable property of the
accessibility relation. For example the McKinsey axiom (example 4.5) ∀P ✷✸P ⇒✸✷P alone
corresponds to a second–order property of the accessibility relation (reversing skolemization in the
SCAN algorithm needs second–order Henkin quantifiers). Combined with the transitivity axiom
✷P ⇒ ✷✷P (ex. 4.3), however, these two define atomicity ∀x ∃y (R(x, y) ∧ ∀z R(y, z) ⇒ z = y))
[vB84, page203] which is obviously a first–order definable property.

Applied to the McKinsey axiom, SCAN actually computes this property if the critical clause
which prevents reversing the skolemization in the normal way is replaced with its factor. Although
we have some ideas, why transitivity might in this particular case enable this operation, we are far
from having a general theory for processing combinations of axioms with these strange properties.
Actually the proof that the McKinsey axiom together with the transitivity axiom correspond to
atomicity requires the axiom of choice. Therefore no simple solution of this problem is to be
expected.

The example, however, shows that SCAN is not complete in the sense that it computes always
a first–order formula when there is one. It is, however, not clear whether this has to be the job of
SCAN at all. Obviously the conjunction of two formulae, one or both of which are second–order can
be equivalent to a first–order formula, even if one of them alone is not equivalent to a first–order
formula. This has to be investigated further.

In cases where SCAN loops and produces infinitely many clauses it is sometimes possible to
recognize some regularities. We can try to recognize these regularities automatically and to exploit
them for finding a finite representation of the infinitely many clauses.

6 Conclusion

We have presented an algorithm for the elimination of second–order quantifiers over predicate
variables. The algorithm is simple and easy to implement by a slight modification of a standard
resolution theorem prover. In fact, for example the theorem prover OTTER can be used without
any changes [McC90]. The trick is to encode those predicates which are not to be resolved upon as
$ans–literals. For each ‘empty’ clause, OTTER finds, it prints the $ans–literals which are part of
the empty clause. These literals make up one clause of the result. In order to simulate C-resolution
by ordinary resolution the input literals have to be abstracted, i.e. in the clause form the literals
P (s) have to be replaced with P (x)|x 6= s.

16

Although this works, one would like to have some changes. For example subsumption must be
disabled because the implemented subsumption algorithm does not consider the $ans–literals and
therefore removes clauses which actually are not subsumed. Furthermore there are no simplifica-
tions on the $ans–literals. This may cause the output to be unnecessary long.

An even simpler way for realizing SCAN is to let a theorem prover exhaustively generate all
resolvents and then to collect manually those clauses not containing the predicates to be eliminated.
This permits the application of all simplifications. On the other hand, it sometimes does not
prevent the theorem prover from looping in parts of the clause set which are not to be touched by
the SCAN algorithm.

We have shown that the SCAN algorithm can be applied to really hard problems such as
computation of interpolands or computation of first–order circumscription. It can also be used to
transform Hilbert axioms for non classical logics into properties of the semantic structure. This is
extremely useful for the mechanization of these logics because it allows for compiling formulae of
these logics into first–order predicate logic and using standard predicate logic deduction systems.

Convinced that these are not the only applications of our new technique we would like to
encourage everybody to join our work in this area.

References

[Ack35a] Wilhelm Ackermann.
Untersuchung über das Eliminationsproblem der mathematischen Logik. Mathematische

Annalen, 110:390–413, 1935.

[Ack35b] Wilhelm Ackermann.
Zum Eliminationsproblem der mathematischen Logik. Mathematische Annalen, 111:61–
63, 1935.

[BGW92] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Theorem proving for hierarchic
first-order theories, 1992. To appear in Proc. ALP’92, Lecture Notes in Comp. Science.

[Bri92] Chris Brink. Power Structures and Their Applications. PhD thesis, Fac. of Science,
Rand Afrikaans University, Johannesburg, South Afrika, 1992.

[Che80] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge,
1980.

[GO92a] Dov M. Gabbay and Hans Jürgen Ohlbach. From a Hilbert calculus to its model theoretic
semantics, 1992. presented at UKALP, april 92, to be published.

[GO92b] Dov M. Gabbay and Hans Jürgen Ohlbach. Quantifier elimination in second–order
predicate logic. South African Computer Journal, 7:35–43, July 1992.

[Hen61] L. Henkin. Some remarks on infinitely long formulas. In Infinistic Methods, pages
167–183. Pergamon Press, Oxford, 1961.

[KK66] G. Kreisel and J.L. Krivine. Éléments de Logique Mathématique. Théorie des modèles.
Société Mathématique de France, 1966.

[Lif85] Vladimir Lifschitz. Computing circumscription. In Proc. of IJCAI 85, pages 121–127.
University of, 1985.

[McC80] John McCarthy. Circumscription – a form of non-monotonic reasoning. Artificial Intel-
ligence, 13:295–323, 1980.

[McC90] William McCune. Otter 2.0. In Mark Stickel, editor, Proc. of 10th Internation Con-

ference on Automated Deduction, LNAI 449, pages 663–664. Springer Verlag, 1990.

17

[Ohl91] Hans Jürgen Ohlbach. Semantics based translation methods for modal logics. Journal

of Logic and Computation, 1(5):691–746, 1991.

[OS91] Hans Jürgen Ohlbach and Jörg H. Siekmann. The Markgraf Karl refutation procedure.
In Jean Luis Lassez and Gordon Plotkin, editors, Computational Logic, Essays in Honor

of Alan Robinson, pages 41–112. MIT Press, 1991.

[Sim92] Harold Simmons. An algorithm for eliminating predicate variables from π1
1 sentences,

1992.

[Sza92] Andrzej Sza las. On correspondence between modal and classical logic: Automated
approach. Technical Report MPI–I–92–209, Max Planck Institut für Informatik,
Saarbrücken, march 1992.

[vB84] Johan van Benthem. Correspondence Theory in D. Gabbay, F. Guenthner: Handbook
of Philosophical Logic, volume II, Extensions of Classical Logic of Synthese Library Vo.

165, pages 167–248. D. Reidel Publishing Company, Dordrecht, 1984.

18

