
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
Peirce Algebras

Chris Brink Katarina Britz
Renate A. Schmidt

MPI–I–92–229 July 1992

���
�

�� k

I N F O R M A T I K

Im Stadtwald

W 6600 Saarbrücken

Germany

Authors’ Addresses

Chris Brink
Department of Mathematics, University of Cape Town,
Rondebosch 7700, South Africa.
Email: cbrink@ucthpx.uct.ac.za.

Katarina Britz
Department of Mathematics, University of Cape Town,
Rondebosch 7700, South Africa.
Email: brtkat01@ucthpx.uct.ac.za.

Renate Schmidt
Max-Planck-Institut für Informatik, Im Stadtwald,
W-6600 Saarbrücken 11, Germany.
Email: Renate.Schmidt@mpi-sb.mpg.de.

Acknowledgements

We are indebted to Michael Böttner for his early contribution to this paper. For finan-
cial support we thank the South African Foundation for Research Development and the
Deutsche Forschungsgemeinschaft, SFB 314 (TICS).

Abstract

We present a two-sorted algebra, called a Peirce algebra, of relations and
sets interacting with each other. In a Peirce algebra, sets can combine
with each other as in a Boolean algebra, relations can combine with each
other as in a relation algebra, and in addition we have both a relation-
forming operator on sets (the Peirce product of Boolean modules) and
a set-forming operator on relations (a cylindrification operation). Two
applications of Peirce algebras are given. The first points out that Peirce
algebras provide a natural algebraic framework for modelling certain pro-
gramming constructs. The second shows that the so-called terminological
logics arising in knowledge representation have evolved a semantics best
described as a calculus of relations interacting with sets.

Keywords

Boolean modules, relation algebras, terminological logics, weakest prespecifications.

1 Introduction

In its modern form the algebra of relations has been under investigation by math-
ematicians since Tarski’s seminal (1941) paper. The main line of development has
been the study of a class of algebras called relation algebras (see, e.g. Jónsson
(1982)), in parallel with developments such as Boolean algebras with operators
(Jónsson and Tarski (1951), (1952)) and cylindric algebras (Henkin, Monk and
Tarski (1985)). Since the early seventies the algebra of relations has increasingly
become of interest to computer scientists as well. Just as the notion of a partial
function provides a natural model for deterministic programs, so the more general
notion of a (binary) relation provides a natural model for nondeterministic pro-
grams. This idea has been exploited in Blikle (1987) and in Sanderson (1981); it
is evident in Floyd-Hoare logic for program verification and has been extended to
specification in Hoare and He Jifeng (1987); it has figured in logics of programs
such as dynamic logic (Parikh (1981), Harel (1984)), and it was used in the early
seventies to model recursive procedures (De Bakker and De Roever (1973), Hitch-
cock and Park (1972)). Recently the algebra of relations has been extensively used
in a graph-theoretic approach to programs by Schmidt and Ströhlein (1991). The
proof theory of relations is also of interest to computer scientists, and several na-
tural deduction systems are available (Wadge (1975), Hennessey (1980), Maddux
(1983)).

In many cases it has become clear that we need, not just an algebra of relations
as distinct from an algebra of sets, but an algebra of relations interacting with
sets. (For example, if we view a program as effecting a transition on a state space,
we may wish to model this by a binary relation acting on a set of states.) Such
an algebra was presented in Brink (1981) under the name of Boolean modules.
Though independent of the computer science context, Boolean modules are very
similar to dynamic algebras, introduced by Kozen (1980) as the algebraic version of
dynamic logic. And both of these are quite similar to the extended relation algebras
introduced by Suppes (1976) in a linguistic context. However, Boolean modules and
dynamic algebras both have the drawback of not treating relations (programs) and
sets equally: there is a set-forming operator on relations, but no relation-forming
operator on sets. Extended relation algebras do not have this drawback, but they
do have the drawback of being as yet unformalized as algebras.

We present here a two-sorted algebra, called a Peirce algebra, of relations and
sets interacting with each other. Peirce algebras were first defined in Britz (1988).
In a Peirce algebra, sets (or rather, the variables representing sets) can combine with
each other as in a Boolean algebra, relations can combine with each other as in a
relation algebra, and in addition we have both a set-forming operator on relations
and a relation-forming operator on sets. The former is the Peirce product used in
Boolean modules; the latter is the operation of cylindrification. Peirce algebras thus
present a natural next step after Boolean algebras, relation algebras and Boolean
modules. It is true that within a relation algebra one can mimic the behaviour
of sets (by so-called right ideal elements), and that in a Boolean module one has
some grasp on relations by the way in which they act on sets. But in a Peirce

1

algebra one can actually manipulate both sets and relations simultaneously. From
an applications-oriented point of view this is an advantage, and we present two
(sets of) sample applications to substantiate this point. The first (in §4.1) shows
how some programming constructs in the calculus of weakest prespecification of
Hoare and He (1987) can be modelled naturally in Peirce algebras. The second
(in §4.2) points out that the so-called terminological logics arising in knowledge
representation have evolved a semantics best described as a calculus of relations
interacting with sets.

2 Interactions Between Sets and Relations

Relation Algebras

Let U be some universal set, and R and S binary relations over U . Some familiar
relation-forming operations on relations are:

(2.1) The Boolean operations, i.e. intersection ∩ , union ∪ and complement ′

(2.2) Composition: R ;S = {(x, y) | (∃z)[(x, z) ∈ R & (z, y) ∈ S]}
(2.3) Converse: R⌣ = {(x, y) | (y, x) ∈ R}
(2.4) Identity: Id = {(x, x) | x ∈ U} .
Relation algebras attempt to capture in equational form the calculus of relations,
with operations such as these. We adopt here the standard definition of relation
algebras from Chin and Tarski (1951), as modified in Tarski (1955).

(2.5) Definition A relation algebra is an algebra R = (R,+, · , ′, 0, 1, ; ,⌣, e) satis-
fying the following axioms for each r, s, t ∈ R:

R1 (R,+, · , ′, 0, 1) is a Boolean algebra
R2 r ; (s ; t) = (r ; s) ; t
R3 r ; e = r = e ; r
R4 r⌣⌣ = r

R5 (r + s) ; t = r ; t+ s ; t
R6 (r + s)⌣ = r⌣ + s⌣

R7 (r ; s)⌣ = s⌣ ; r⌣

R8 r⌣ ; (r ; s)′ ≤ s′.

The full relation algebra R(U) over a set U is the power set algebra 2U2
over U

endowed with the composition, converse and identity operations defined in (2.2)
to (2.4) above. The operations of left and right residuation treated in Blyth and
Janowitz (1972) can be defined equationally in a relation algebra. The left residual
r\s and the right residual r/s of r, s ∈ R are defined by

(2.6) r\s = (s′ ; r⌣)′

(2.7) r/s = (s⌣ ; r′)′

respectively. Certain classes of elements in a relation algebra will be of special
interest to us. Let r be an element in a relation algebra. Then we say that:

(2.8) r is a equivalence element iff r = r⌣ and r ; r = r

2

(2.9) r is a right ideal element iff r ; 1 = r
(2.10) r is a left ideal element iff 1 ; r = r

(2.11) r is an ideal element iff 1 ; r ; 1 = r.

(2.12) Theorem In any relation algebra R the following hold for any r, s, t, u ∈
R:

R9 e⌣ = e, 0⌣ = 0, 1⌣ = 1
R10 r ≤ s iff r⌣ ≤ s⌣

R11 (r · s)⌣ = r⌣ · s⌣, r′⌣ = r⌣′

R12 r ; 0 = 0 = 0 ; r, 1 ; 1 = 1
R13 r ; (s+ t) = r ; s+ r ; t
R14 if r ≤ s then t ; r ≤ t ; s and r ; t ≤ s ; t
R15 (r ; s) · t = 0 iff (r⌣ ; t) · s = 0 iff (t ; s⌣) · r = 0
R16 (r ; s) · (t ;u) ≤ r ; [(r⌣ ; t) · (s ;u⌣)] ; u.
R17 If r ≤ e then r is an equivalence element.
R18 If s is a right ideal element then r · s = (s · e) ; r.

Proof. R9–R17 are proved in Chin and Tarski (1951).
R18: Applying R14 to s · e ≤ e and using R3 we obtain (s · e) ; r ≤ e ; r = r.
Similarly (s · e) ; r ≤ s ; r ≤ s ; 1. Since s is a right ideal element, s ; 1 = s and
hence (s · e) ; r ≤ s. Therefore (s · e) ; r ≤ r · s. It remains to be shown that r · s
≤ (s · e) ; r. By R3, r · s = s · r = (e ; s) · (e ; r). Using R16 we get r · s ≤
e ; [(e⌣ ; e) · (s ; r⌣)] ; r. Hence r · s ≤ [e · (s ; r⌣)] ; r by R3 and R9. Since r⌣ ≤ 1
and using R14 we get r · s ≤ [e · (s ; 1)] ; r. Consequently r · s ≤ (e · s) ; r =
(s · e) ; r since s ; 1 = s. 2

Since 0 and 1 are right ideal elements, and since it is known that the set of right
ideal elements is closed under joins, meets and complements, it forms a Boolean
algebra. Similarly, the sets of left ideal elements and ideal elements also form
Boolean algebras. In general, a non-trivial algebra A is said to be simple iff the
identity relation over A and the complete relation A2 are the only two congruence
relations over A. Jónsson and Tarski (1952, Theorem 4.10) show that for every
non-trivial relation algebra R the following are equivalent:

(2.13) (i) R is simple.
(ii) R has exactly two distinct ideal elements, namely 0 and 1.
(iii) For every r ∈ R, r ̸= 0 ⇒ 1 ; r ; 1 = 1.

Boolean Modules

In many cases it has become clear that we need not just an algebra of relations
distinct from an algebra of sets, but an algebra of relations interacting with sets.
Some familiar set-forming operations on sets and relations are:

(2.14) Domain: dom(R) = {x | (∃y)[(x, y) ∈ R]}
(2.15) Range: ran(R) = {y | (∃x)[(x, y) ∈ R]}

3

(2.16) Image: R “A = {y | (∃x)[(x, y) ∈ R & x ∈ A]}
(2.17) Peirce product: R :A = {x | (∃y)[(x, y) ∈ R & y ∈ A]} .
Note that operations (2.14) - (2.16) are variants of the Peirce product, since:

(2.18) dom(R) = R :U
(2.19) ran(R) = R⌣ :U
(2.20) R “A = R⌣ :A.

An algebra of relations interacting with sets via Peirce product was introduced by
Brink (1981).

(2.21) Definition (Brink (1988)) A Boolean module is a two-sorted algebra M
= (B, R, :), where B is a Boolean algebra, R is a relation algebra and : is a
mapping R× B −→ B written r : a such that for any r, s ∈ R and a, b ∈ B:

M1 r : (a+ b) = r : a+ r : b
M2 (r + s) : a = r : a+ s : a
M3 r : (s : a) = (r ; s) : a
M4 e : a = a

M5 0 : a = 0
M6 r⌣ : (r : a)′ ≤ a′.

The order of precedence among the operations is ′ and ⌣, then : , ; , · and +
in decreasing order. The full Boolean module M(U) over a set U is the Boolean
module (B(U),R(U), :), where B(U) is the power set algebra 2U over U , R(U) is
the full relation algebra over U , and : is the Peirce product defined in (2.17) above.
An ideal element in a Boolean module is defined analogously to ideal elements in a
relation algebra. It is any element a in the underlying Boolean algebra such that
1 : a = a. The only simple Boolean algebra is {0, 1}. Brink (1981, Theorem 4.1)
shows that for every non-trivial Boolean moduleM the following are equivalent:

(2.22) (i) M is simple.
(ii) M has exactly two distinct ideal elements, namely 0 and 1.
(iii) For every a ∈ B, a ̸= 0 ⇒ 1 : a = 1.

Dynamic Algebras

A dynamic algebra is a two-sorted algebra of programs and assertions, the algebra
of programs being a Kleene algebra and the algebra of assertions being a Boolean
algebra. Kleene algebras are closely related to relation algebras, while dynamic
algebras are closely related to Boolean modules.

(2.23) Definition (Kozen (1981)) A Kleene algebra is an algebra K = (K,+, 0,
; ,∗ , e) satisfying the following axioms for each r, s, t ∈ K:

K1 (K,+, 0) is an upper semilattice
K2 (K, ; , e) is a monoid
K3 r ; (s+ t) = r ; s+ r ; t
K4 (r + s) ; t = r ; t+ s ; t

4

K5 r ; 0 = 0 ; r = 0
K6 r ; s∗ ; t =

∑
n(r ; s

n ; t)

(2.24) Definition (Kozen (1981)) A dynamic algebra is a two-sorted algebra D =
(B,K, f), where B is a Boolean algebra, K is a Kleene algebra and f is a mapping
K × B −→ B written f(r, a) = f : a such that for any r, s ∈ K and a, b ∈ B

D1 r : (a+ b) = r : a+ r : b
D2 (r + s) : a = r : a+ s : a
D3 r : (s : a) = (r ; s) : a
D4 e : a = a
D5 0 : a = a : 0 = 0
D6 r∗ : a =

∑
n(r

n : a).

This definition resembles that of Boolean modules, the difference being that
Boolean modules are based on relation algebras (and hence have converse and com-
plement operations but no Kleene closure), while dynamic algebras are based on
Kleene algebras (and hence have a Kleene closure operation but no converses or
complements). There is an extensive discussion of the relative merits of Boolean
modules and dynamic algebras in Pratt (1990).

Both Boolean modules and dynamic algebras characterize set-forming operations
algebraically, but do not address the problem of defining algebraically any relation-
forming operation on relations and sets. This is the topic of the next section. Some
familiar such relation-forming operations are:

(2.25) Domain restriction: R ⌈A = {(x, y) | (x, y) ∈ R & x ∈ A}
(2.26) Range restriction: R ⌋A = {(x, y) | (x, y) ∈ R & y ∈ A}
(2.27) Cartesian product: A×B = {(x, y) |x ∈ A & y ∈ B}
(2.28) Test operation: A? = {(x, x) | x ∈ A}
(2.29) Left cylindrification: cA = {(x, y) | y ∈ A}
(2.30) Right cylindrification: Ac = {(x, y) |x ∈ A} .
These operations are interdefinable. One can for example interdefine the operations
given in (2.25) to (2.29) in terms of right cylindrification as follows:

(2.31) R ⌈A = R ∩ Ac, Ac = U2 ⌈A
(2.32) R ⌋A = R ∩ Ac⌣, Ac = (U2 ⌋A)⌣
(2.33) A×B = Ac ∩ Bc⌣, Ac = A× U

(2.34) A? = Ac ∩ Id, Ac = A? ;U2

(2.35) cA = Ac⌣, Ac = (cA)⌣.

3 Peirce Algebras

In order to characterize the relation-forming operations defined in (2.25) to (2.30),
we extend the notion of a Boolean module to include a relation-forming operation
on sets. Accordingly, we define a Peirce algebra to be a Boolean module (B,R, :)

5

enriched with an operation from the underlying Boolean algebra B to the underlying
relation algebra R. This operation is the algebraic counterpart to right cylindrifi-
cation.

(3.1) Definition Let B = (B,+, · , ′, 0, 1) be a Boolean algebra and R = (R,+, · ,
′, 0, 1, ; ,⌣, e) be a relation algebra. A Peirce algebra is a two-sorted algebra P =
(B,R, : , c), where (B,R, :) is a Boolean module and c :B −→ R a mapping such
that for every a ∈ B and r ∈ R:

P1 ac : 1 = a

P2 (r : 1)c = r ; 1.

The assumed order of precedence is c, ′ and ⌣, then : , ; , · and + in descending
order.

Examples of Peirce Algebras

(i) The full Boolean module M(U) over a non-empty set U endowed with right
cylindrification is a Peirce algebra. For, let A be any subset of U and R any
relation over U . Axiom P1 states that the domain of Ac = A× U is A, which
is true. As for axiom P2, R composed with the universal relation U2 is the set of
(x, y) such that x ∈ dom(R) and y ∈ U , that is, R ;U2 = dom(R)× U . Hence
R ;U2 = (dom(R))c = (R :U)c by (2.18) and (2.33). We call the Peirce algebra
(B(U),R(U), : , c) the full Peirce algebra over U and denote it by P(U).

(ii) Suppes (1976) introduced the notion of an extended relation algebra. In (1976,
1981) he defines an extended relation algebra over a non-empty set U as the fam-
ily of sets 2U ∪2U2

closed under the set-theoretic operations union, intersection,
complementation, relational composition, converse, image and domain restriction.
Complementation on a set in 2U is taken with respect to U and complementation
on a relation in 2U2

with respect to U2. An extended relation algebra is denoted
by E(U).
Extended relation algebras are used in the context of computational linguistics
(Suppes (1976, 1979, 1981) and Böttner (1992a, 1992b)). They specify the model
structure of certain fragments of natural language. For example, the sentence ‘Some
persons do not eat some foods’ is interpreted by P ∩ (E⌣′ “F) ̸= 0 where P , E and
F denote the set of persons, the relation of eating and the set of foods, respectively
(Suppes (1981, p. 406)).
Extended relation algebras are not algebras in the same sense as relation algebras,
Boolean modules or Peirce algebras. They are more appropriately thought of as
calculi of sets and relations interacting with each other. An extended relation
algebra E(U) can be transformed into the full Peirce algebra P(U) by explicitly
distinguishing between the operations on the sets in 2U and the operations on the
relations in 2U2

and defining the image and domain restriction operations as in
(2.20) and (2.31) in terms of Peirce product and right cylindrification, respectively.

(iii) Any relation algebra R can be regarded as a Peirce algebra (B,R, ; , ι), where
B is the Boolean algebra of right ideal elements of R, ; is the map R× B −→ B

6

satisfying M1 to M6 and ι the map B −→ R defined by ι(r) = r. The operation ;
is the composition in R restricted to B, and ι satisfies P1 and P2.

Arithmetic

The next theorem lists a number of arithmetical properties of Peirce algebras.

(3.2) Theorem In any Peirce algebra (B,R, : , c) the following hold for each a, b ∈
B and r, s ∈ R.

P3 ac is a right ideal element
P4 0c = 0, 1c = 1
P5 (a+ b)c = ac + bc

P6 a′c = ac′

P7 (a · b)c = ac · bc
P8 a = b iff ac = bc

P9 a ≤ b iff ac ≤ bc

P10 (r ; ac) : 1 = r : a
P11 (r : a)c = r ; ac

P12 r : a = b iff r ; ac = bc

P13 r : 1 = 0 iff r = 0
P14 ac · e is an equivalence element
P15 r · ac = (ac · e) ; r, ac = (ac · e) ; 1
P16 r · ac⌣ = r ; (ac · e), ac⌣ = 1 ; (ac · e)
P17 (ac · e) : 1 = a
P18 (ac · e) : b = a · b
P19 (ac · e) : a = a
P20 (ac · e) : a′ = 0
P21 (r · ac⌣) : 1 = r : a
P22 (r · ac⌣) : b = r : (a · b).

Proof. P3 follows from the axioms, since ac ; 1 = (ac : 1)c = ac.
P4: 0 = 0 : 1 by M5. Hence 0c = (0 : 1)c = 0 ; 1 = 0 by M5, P2 and R12. Similar
for 1c = 1.
P5: (a+ b)c = ((ac + bc) : 1)c, since a + b = ac : 1 + bc : 1 = (ac + bc) : 1 by P1
and M2. Therefore (a+ b)c = (ac + bc) ; 1 = ac ; 1 + bc ; 1 = ac + bc by P2, R5
and P3.
P6: ac + a′c = (a+ a′)c = 0c = 0 by P5 and P4. Then a′c must coincide with
ac′, the unique complement of ac.
P7: We use P6 and P5 together with the De Morgan laws: (a · b)c = (a′ + b′)′c =
(a′ + b′)c′ = (a′c + b′c)′ = (ac′ + bc′)′ = ac · bc.
P8: If a = b then clearly ac = bc. Conversely, suppose ac = bc. Then ac : 1 = bc : 1,
hence a = b by P1.
P9: Using P8 and P5 we get a + b = b iff (a+ b)c = bc iff ac + bc = bc. Therefore
a ≤ b iff ac ≤ bc.
P10 follows by P1, since (r ; ac) : 1 = r : (ac : 1) by M3.

7

P11: Using P10, P2 and P3 we get (r : a)c = ((r ; ac) : 1)c = r ; ac ; 1 = r ; ac.
P12 follows by P8 and P11: r : a = b iff (r : a)c = bc iff r ; ac = bc.
P13: (r ; 1) · 1 = 0 iff (1 ; 1⌣) · r = 0 by R15. Then r ; 1 = 0 iff r = 0 since 1 ; 1⌣

= 1. Hence (r : 1)c = 0c iff r = 0 by P12 which implies that r : 1 = 0 iff r = 0 by
P8.
P14 is immediate by R17.
P15 follows immediately by R18 since ac is a right ideal element by P3. To establish
ac = (ac · e) ; 1 let r = 1.
P16: Using R4, R11, P15, R7 and R17 we get r · ac⌣ = (r · ac⌣)⌣⌣ = (r⌣ · ac⌣⌣)⌣

= (r⌣ · ac)⌣ = ((ac · e) ; r⌣)⌣ = r⌣⌣ ; (ac · e)⌣ = r ; (ac · e). Let r = 1 then
ac⌣ = 1 ; (ac · e).
P17 follows by P8 since ((ac · e) : 1)c = (ac · e) ; 1 = ac by P2 and P15.
P18: ((ac⌣ · e) : b)c = (ac⌣ · e) ; bc = ac · bc = (a · b)c by P11, P15 and P7. The
result then follows by P8.
P19 and P20 are immediate by P18.
P21: (r · ac⌣) : 1 = (r ; (ac · e)) : 1 by P16. Thus (r · ac⌣) : 1 = r : ((ac · e) : 1) =
r : a by M3 and P17.
P22: Since ac⌣ · bc⌣ = (a · b)c⌣ by R11 and P7, we get, using P21 repeatedly,
(r · ac⌣) : b = (r · ac⌣ · bc⌣) : 1 = (r · (a · b)c⌣) : 1 = r : (a · b). 2

P4–P7 imply that the set of right cylindrification elements forms a Boolean algebra.
In fact, as we show in Theorem (3.6) below, this Boolean algebra coincides with the
Boolean algebra of right ideal elements in the relation algebra R.

P12 provides us with a translation between arithmetical properties in the re-
lation algebra and properties in the Boolean module. In particular, it provides a
translation between properties of composition and properties of Peirce product. It
explains the apparent parallelism between the arithmetic of relation algebras and
Boolean modules (observed by Brink (1981) and Pretorius (1990)).

P14–P20 characterize elements of the form ac · e, thus establishing properties of
the test operation defined in (2.28).

P21 and P22 establish properties of Peirce product applied to range restriction.
A Peirce algebra is simple if its underlying Boolean module is simple. The next

theorem states that this definition is equivalent to requiring that the underlying
relation algebra is simple.

(3.3) Theorem Let (B,R, : , c) be a Peirce algebra. Then R is a simple relation
algebra iff (B,R, :) is a simple Boolean module.

Proof. Assume R is simple and a is any non-zero element in B. Then ac ̸= 0c = 0
by P8 and P4 which implies 1 ; ac ; 1 = 1 by (2.13). Applying P11 and P2 yields
1 = 1 ; ac ; 1 = ((1 : a)c : 1)c. Using P1 we get 1 = (1 : a)c. Hence 1c = (1 : a)c by
P4 and 1 : a = 1 by P8 which implies (B,R, :) is simple by (2.22).

Conversely, suppose (B,R, :) is simple. Let r be any non-zero element in R.
Then r : 1 ̸= 0 by P13 and 1 : (r : 1) = 1 by (2.22). So 1c = (1 : (r : 1))c by P8 and
(1 : (r : 1))c = 1 ; r ; 1 by P11 and P2. Therefore 1c = 1 ; r ; 1, i.e. 1 = 1 ; r ; 1 by
P4. Consequently R is simple by (2.13). 2

8

(3.4) Theorem Let P be a Peirce algebra with an underlying simple Boolean mod-
ule. Then for each a, b ∈ B:

P23 a ̸= 0 ⇒ ac⌣ : 1 = 1
P24 b ̸= 0 ⇒ ac ; bc = ac

P25 b ̸= 0 ⇒ ac : b = a
P26 b ̸= 0 ⇒ (r ; ac) : b = r : a.

Proof. P23: Assume a ̸= 0. By Theorem (2.22) 1 : a = 1. Applying P12 and P4
yields 1 ; ac = 1c = 1. Then ac⌣ ; 1 = (1 ; ac)⌣ = 1 by R9 and R7 and ac⌣ ; 1
= 1c by P4. Hence ac⌣ : 1 = 1 by P12.
P24: Let b ̸= 0. Then bc ̸= 0c = 0. By Theorem (3.3) the relation algebra of P
is simple. Hence 1 ; bc ; 1 = 1 by Theorem (2.13). Therefore ac ; 1 ; bc ; 1 = ac ; 1.
Using P3 we obtain the required property.
P25 follows directly from P24 by P12.
P26: (r ; ac) : b = r : (ac : b) = r : a by M3 and P25 whenever b ̸= 0. 2

P23 and P25 respectively state that in a full Peirce algebra P(U) over a non-empty
set U the range of Ac is U whenever A ̸= ∅, and Ac :B is A whenever B ̸= ∅ (and
as a special case that the domain of Ac is A).

Peirce Algebra and Relation Algebra

In example (iii) above we pointed out that any relation algebra can be regarded as
a Peirce algebra. The relationship between the Boolean algebra B and the relation
algebra R of a Peirce algebra (B,R, : , c) is further clarified in Theorems (3.6) and
(3.8). We show that B can be embedded in R in two ways: as its Boolean algebra of
right ideal elements, and as its Boolean algebra of subsets of the identity relation.

(3.5) Lemma Let (B,R, : , c) be a Peirce algebra. There is a bijection between B

and the set {r ∈ R | r = r ; 1} of right ideal elements of R.

Proof. Define g : B −→ {r ∈ R | r = r ; 1} by g(a) = ac and h : {r ∈ R | r = r ; 1}
−→ B by h(r) = r : 1. Both g and h are well-defined. We show that g is bijective
by showing that h is the inverse of g. For any a ∈ B, h(g(a)) = ac : 1 = a by P1
and for any r ∈ R such that r = r ; 1, g(h(r)) = (r : 1)c = r ; 1 = r by P2. Hence
h is the inverse of g as required. 2

(3.6) Theorem Let (B,R, : , c) be a Peirce algebra. B and ({r ∈ R | r = r ; 1}, +,
· , ′, 0, 1) are isomorphic.

Proof. Follows from the previous lemma and P4–P7. 2

By mapping the Boolean elements to the converse of their right cylindrification,
B can be embedded analogously in R as the Boolean algebra of left ideal elements.
B can also be embedded in R as the Boolean algebra of elements r ∈ R such that
r ≤ e.

9

(3.7) Lemma Let (B,R, : , c) be a Peirce algebra. There is a bijection between B

and the set {r ∈ R | r ≤ e}.

Proof. We proceed similarly as for Lemma (3.5). Define g : B −→ {r ∈ R | r ≤ e}
by g(a) = ac · e and h : {r ∈ R | r ≤ e} −→ B by h(r) = (r ; 1) : 1. Again g and h

are well-defined. Using P15 and P1 we obtain h(g(a)) = ((ac · e) ; 1) : 1 = ac : 1
= a for each a ∈ B. Now consider g(h(r)) = ((r ; 1) : 1)c · e for any r ∈ R such
that r ≤ e. By P2 and R12 g(h(r)) = (r ; 1) · e. Letting s = 1, t = e and u = e
in R16 we obtain (r ; 1) · e ≤ r ; r⌣ ; e. Since r is an equivalence element by R17,
(r ; 1) · e ≤ r ; e by Definition (2.8). Thus (r ; 1) · e ≤ r by R3. Also, r = r ; e
≤ r ; 1 by R14 since e ≤ 1. Then r · e ≤ (r ; 1) · e and r ≤ (r ; 1) · e since r ≤ e.
Therefore (r ; 1) · e = r, i.e., g(h(r)) = r. Consequently, h is the inverse of g, hence
g is bijective. 2

(3.8) Theorem Let (B,R, : , c) be a Peirce algebra. B and ({r ∈ R | r ≤ e}, +, · ,
−, 0, e) are isomorphic.

Proof. Follows from the previous lemma and P4– P7. 2

These results reiterate the point made by Maddux (1990) that Peirce algebras are
not a mathematical requisite for modelling the interactions between sets and rela-
tions, in the sense that these interactions can be modelled in relation algebras. For
instance, as mentioned in Chin and Tarski (1951), although the domain and range
of a relation cannot be expressed in a relation algebra (because they are sets), their
properties can be expressed in a relation algebra in terms of right and left ideal
elements. Consider for example the statement that relations R and S have the
same domain. In a proper relation algebra over U this can be expressed by the
equation R ;U2 = S ;U2. The property that dom(R) = dom(S) iff R ;U2 = S ;U2

can be verified set-theoretically. However, and this is an important observation, it
can also be derived equationally in the framework of Peirce algebras. For we have
r : 1 = s : 1 iff (r : 1)c = (s : 1)c by P8 which implies r : 1 = s : 1 iff r ; 1 = s ; 1
by P2. This illustrates our view that while relation algebras may suffice to model
the interactions between sets and relations, Peirce algebras provide a more natural
framework for doing so.

Peirce Algebra and Dynamic Algebra

Theorem (3.9) makes the relationship between Peirce algebras and dynamic algebras
more precise:

(3.9) Theorem Every join-complete Peirce algebra is a dynamic algebra.

Proof. We first need to show that every join-complete relation algebra is a Kleene
algebra. To see this, we define the Kleene closure operation for relation algebras
by r∗ =

∑
n r

n (where
∑

indicates least upper bound). Axioms K1 to K6 of of
Definition (2.23) are now all theorems in the arithmetic of relation algebras. To
complete the proof, we need to show that axioms D1 to D6 hold in any Peirce

10

algebra. D1 to D5 correspond to M1 to M5. To prove D6, let (B,R, : , c) be a
Peirce algebra, and let B′ be the Boolean algebra {r ∈ R | r = r ; 1}. It follows
from Lemma (3.6) that B′ and B are isomorphic under the map a ; 1 → a : 1. Hence
(B,R, :) is isomorphic to (B,R, ;). D6 now becomes r∗ ; a =

∑
n(r

n ; a), which was
proved by Chin and Tarski (1951). So if R is join-complete, then (B,R, ;) is a
dynamic algebra, and hence so is (B,R, :). 2

4 Applications

4.1 Weakest Prespecifications

We show that Peirce algebras provide a natural way of modelling three different
concepts in logics of programs. This comes about through the two isomorphism
theorems proved in Theorems (3.6) and (3.8). First, Hoare and He (1987) use right
ideal elements to model conditional statements in logics representing programs as
binary relations. Second, subsets of the identity relation are used to model a test
operation (Parikh (1981)). Third, left ideal elements can be used to model the
initialization of abstract data types as defined in Hoare, He and Sanders (1987).

In the calculus of weakest prespecifications of Hoare and He (1987), a condition
is defined as a binary relation for which B = B ;U2. That is, conditions are right
ideal elements in the calculus of relations. This definition is explained as follows:
a condition in a programming language is written as a Boolean expression. This
corresponds to a set of states in which the expression is true. Since there is a
correspondence between the Boolean algebra of right ideal elements in the calculus
of binary relations over U , and the Boolean algebra of subsets of U , a condition is
modelled by some subset A of U transformed into a binary relation over U with
domain A and codomain U .

The natural algebraic counterpart for the calculus of weakest prespecifications
is therefore a Peirce algebra. Elements of the Boolean algebra correspond to condi-
tions; they are transformed into relations by the operation c, which maps elements
of the Boolean algebra to right ideal elements of the relation algebra. A guarded
command in the calculus of weakest prespecifications is a relation of the form B ∩ P ,
where B is a condition and P is the statement executed if the condition is satisfied.
In a Peirce algebra, this is an element of the form bc · p, where b is an element of
the Boolean algebra and p is an element of the relation algebra.

In the calculus of weakest prespecifications, specifications of programs are mod-
elled by binary relations. The weakest prespecification of a program Q and a spec-
ification R, denoted by Q\R, is a specification of a program P such that, when P
is executed followed by Q, their sequential composition meets R. In the calculus of
relations, it is defined equationally by Q\R = (R′ ;Q⌣)′, coinciding with definition
(2.6) of the left residual of r and q in a relation algebra. The algebraic properties
of weakest prespecification mentioned in Hoare and He (1987) are thus properties
of left residuation in relation algebras. The notion of a weakest postspecification
coincides similarly with that of right residuation.

Other authors have concidered the test operation ?, defined as a relation-forming

11

operation on sets (Parikh (1981)). Set-theoretically, A? = Ac ∩ Id. In a Peirce
algebra, the test operation is defined by a? = ac · e. Now a? ; p = ac · p by P15, so
that the definition of the guarded commands of Hoare and He (1987) coincide with
that of Parikh (1981).

A third relation-forming operation on sets, that of mapping sets to left ideal el-
ements in a Peirce algebra, has an application in the initialization of abstract data
types. In Hoare, He and Sanders (1987), weakest prespecifications are used in the re-
finement of abstract data types. An abstract data type is a tripleAT = (AI,A,AF),
where AI is the initialization, AF the finalization, and A a set of operations over
the data type. In general, the initialization of a data type is any binary relation
over some universe U , with U2, the universal relation, representing random initial-
ization, Id, the identity relation, representing no initialization, left ideal elements
representing non-deterministic initialization, and left ideal elements arising from
singleton sets representing deterministic initialization. That is, non-deterministic
and deterministic initialization that do not depend upon the initial state of the
abstract data type before initialization, are modelled naturally by elements of the
form ac⌣ in a Peirce algebra, where a is an element of the Boolean algebra. In
the case of deterministic initialization, a would be a singleton set of the Boolean
algebra.

4.2 Knowledge Representation

Brink and Schmidt (1992) proposed an algebraic approach to knowledge representa-
tion, more specifically terminological representation. It was shown that the termi-
nological (representation) language ALC of Schmidt-Schauß and Smolka (1991) can
be captured in the context of Boolean modules. It was further shown that inference
about information expressed in this language can be carried out equationally. In
this section we use Peirce algebras to accomodate terminological languages even
more expressive than ALC.

Terminological representation languages are part of the knowledge represen-
tation system kl-one (Brachman and Schmolze (1985)), and its many successsors
including nikl, krypton, back and others. For a survey of these, see, e.g., Woods
and Schmolze (1992). Terminological languages are used to encode knowledge to
be stored in the knowledge base of a kl-one based system (more specifically in
the terminological component, or T-box, if the system is a hybrid representation
system such as krypton or back).

Terminological representation languages have two syntactic primitives, called
concepts and roles. Concepts are usually interpreted as sets and roles as binary
relations. Concepts are ordered in a taxonomy by the subsumption relation which
is interpreted as the subset relation. This taxonomy is called the concept taxonomy.
Similarly roles are ordered in a separate role taxonomy. Common concept-forming
operators are and, or and not which are used respectively to represent the conjunc-
tion, disjunction and negation of concepts. For example, let Males and Heirs be
concepts representing the set of males and the set of heirs to the throne, respec-
tively. Then the concept (and Males Heirs) represents the set of male heirs to the

12

throne, (or Males Heirs) represents the set of all males and all heirs to the throne
and (not Males) represents the set of humans who are not male (provided we as-
sume the universe of discourse is the set of humans). These operators can also be
used to construct new roles. Other typical role-forming operators are inverse and
compose. With these the relation ‘is a child of’, which coincides with the relation
‘has as parent’, can be represented as the role (inverse parent-of) where parent-of is
a role denoting the relation ‘is a parent of’. And the relation ‘is a grandmother
of’ which coincides with the relation ‘is a mother of a parent of’ can be repre-
sented as (compose mother-of parent-of) where mother-of denotes the relation ‘is
a mother of’. Most terminological languages also have operators that take both
concepts and roles as arguments. An example of such an operator is the concept-
forming operator some. For example, let Princes represent the set of princes. Then
(some mother-of Princes) is a concept description representing the set of mothers of
(some) princes. An example of a role-forming operator applied to both concepts and
roles is the restrict operator. This operator can be used, for example, to represent
the relation ‘has as son’, that is, the relation ‘is a parent of’ with its range restricted
to the set of males, as the role (restrict parent-of Males). Subsumption relationships
between concepts and roles are expressed using the ‘ ⊑ ’ symbol. Mutual sub-
sumption relationships, called equivalences, are denoted with the ‘

.
= ’ symbol. For

example the statements:

(4.1) Charles is a prince.
(4.2) All princes are male heirs to the throne.
(4.3) Elizabeth is a mother of Charles.
(4.4) Everybody who has someone as a son is a parent of that person.

can be represented in terminological languages as the following subsumption rela-
tions:

(4.1)′ Charles ⊑ Princes
(4.2)′ Princes ⊑ (and Males Heirs)
(4.3)′ Elizabeth ⊑ (some mother-of Charles)
(4.4)′ has-son ⊑ parent-of, where has-son

.
= (restrict parent-of Males).

The different terminological representation languages distinguish themselves by
the operators they provide. The terminological language ALC of Schmidt-Schauß
and Smolka (1991) is a language in the class of so-called attributive (concept) de-
scription languages. These languages have been extensively analysed and classified
with respect to the complexity of computing subsumption relations in a series of
recent papers (e.g. Schmidt-Schauß and Smolka (1991), Hollunder et al (1990) and
Donini et al (1991)). As their name suggests attributive concept description lan-
guages have concept-forming operators but no role-forming operators. ALC also
does not provide for the expression of role subsumption relationships. Here we
consider the expressively more powerful terminological language U which Patel-
Schneider introduced in (1987). U is one of the most powerful existing terminolo-
gical languages having ALC as a sublanguage.

In this section we extend the idea of Brink and Schmidt (1992) and formalize
the language U in the context of Peirce algebra.

13

To begin with we define the syntax of U . Our presentation is in line with that
of Schmidt-Schauß and Smolka (1991) and Brink and Schmidt (1992). The syntax
we use for U is essentially that of Patel-Schneider (1987). The vocabulary of U
consists of three disjoint sets of symbols: the set of primitive concepts, the set of
primitive roles and the set of structural symbols. (Primitive concepts and roles are
also referred to as being ‘atomic’ or ‘generic’.) There are two designated concepts,
the top concept ⊤ and the bottom concept ⊥, and one designated role, the identity
role self. The set of structural symbols contains the operators as well as the symbols
‘ ⊑ ’ and ‘

.
= ’, which we define below. Let ‘A’ denote any primitive concept and ‘C’,

‘D’, . . . any concept description constructed from other concepts and roles according
to the following syntax rule (in Backus Naur Form):

(4.5) C,D −→ A | (and C D) | (or C D) | (not C) |
(some R C) | (all R C) |
(atleast n R) | (atmost n R) |
(rvm R S) | (sd C Rb1 . . .Rbk),

where k is a positive integer, n is a non-negative integer and ‘R’ and ‘S’ denote role
descriptions (and are defined in (4.7) below). The ‘Rbi’ in the sd-construct denote
so-called role bindings and have one of two forms. Namely:

(4.6) Rbi −→ (⊆ R S) | (⊇ R S).

Let ‘Q’ denote any primitive role. The role descriptions ‘R’, ‘S’, . . . are defined
according to the rule:

(4.7) R, S −→ Q | (and R S) | (or R S) | (not R) |
(inverse R) | (compose R S) | (trans R) |
(restrict R C).

The model-theoretic semantics of U can be given similar to that of ALC as an
interpretation I which is defined as the pair (DI , ·I). DI denotes a set called the
domain (or universe) of interpretation and ·I is a map, called the interpretation
function, which assigns to every concept description C a subset CI of DI and to
every role R a binary relation RI over DI . Applied to concept descriptions this
assignment is constrained by the following conditions:

(4.8) ⊤I = DI

⊥I = ∅
(and C D)I = CI ∩ DI

(or C D)I = CI ∪ DI

(not C)I = (CI)′ (= DI − CI)

(some R C)I =
{
x | (∃y)[(x, y) ∈ RI & y ∈ CI]

}
(all R C)I =

{
x | (∀y)[(x, y) ∈ RI ⇒ y ∈ CI]

}
(atleast n R)I =

{
x | card({y | (x, y) ∈ RI}) ≥ n

}
(atmost n R)I =

{
x | card({y | (x, y) ∈ RI}) ≤ n

}
(rvm R S)I =

{
x | (∀y)[(x, y) ∈ RI ⇒ (x, y) ∈ SI]

}
(sd C Rb1 . . .Rbk)

I =
{
x | (∃y)[(x, y) ∈ ∩k

i=1 Rbi
I & y ∈ CI]

}
.

14

(For any set A, card(A) denotes the cardinality of A.) The semantics of the role
binding constructs Rbi is given by:

(4.9) (⊆ R S)I =
{
(x, y) | (∀z)[(x, z) ∈ RI ⇒ (y, z) ∈ SI]

}
(⊇ R S)I =

{
(x, y) | (∀z)[(y, z) ∈ SI ⇒ (x, z) ∈ RI]

}
.

The role-forming constructs are interpreted according to the following conditions:

(4.10) selfI =
{
(x, x) | x ∈ DI

}
(and R S)I = RI ∩ SI

(or R S)I = RI ∪ SI

(not R)I = (RI)′ (= (DI ×DI)− RI)

(inverse R)I =
{
(x, y) | (y, x) ∈ RI

}
(compose R S)I =

{
(x, y) | (∃z)[(x, z) ∈ RI & (z, y) ∈ SI]

}
(trans R)I = RI ∪

∪
k≥1

{
(x, y) | (∃z1) . . . (∃zk)[(x, z1) ∈ RI

& ∀(1 ≤ i < k)[(zi, zi+1) ∈ RI] & (zk, y) ∈ RI]
}

(restrict R C)I =
{
(x, y) | [(x, y) ∈ RI & y ∈ CI]

}
.

Therefore, concepts are interpreted as sets and roles together with the role binding
constructs are interpreted as binary relations. In particular, concepts arising from
other concepts do so by the usual Boolean operations of intersection, union and
complement. Concepts arising from other concepts and roles do so by set-forming
operations on sets and relations. For example, the expression (some R C) is inter-
preted as the Peirce product RI :CI . With the exception of the number restriction
operators atleast and atmost, the remaining concept-forming operators all, rvm and
sd can be shown to be interpreted as variants of Peirce product. The designated role
self is interpreted as the identity relation. Roles arising from other roles with the
operators and, or, not, inverse, compose, trans are respectively interpreted by the
operations intersection, union, complement, converse, composition and transitive
closure. (Note that the transitive closure of a relation R is also given by

∪∞
n=1R

n

where R1 = R and Rn+1 = R ;Rn for n ≥ 1.) The role binding constructs are
special roles and their semantics can be expressed in terms of residuation or equiva-
lently as variants of composition. The restrict operator, an operator on concepts and
roles yielding roles, is interpreted as range restriction which is definable in terms
of left cylindrification. We refer to the language U without the operators atleast
and atmost as U−. In column two of Table 1 we summarize the semantics of U−

as reformulated in terms of operations in the calculus sets and relations interacting
with each other. To emphasize this context, we use the notation of Section 2 and
abbreviate CI , DI , . . . and RI , SI , . . . by C, D, . . . and R, S, . . . , respectively.
U abbreviates DI and Rbi abbreviates Rbi

I .
For expository purposes and without changing the expressive and deductive

capabilities of U we have slightly adapted the original vocabulary in Patel-Schneider
(1987). The names of some of the operators have been changed; and, or and compose
are here defined as binary operators; for some we use the more general definition
given by Schmidt-Schauß and Smolka (1991) (there denoted by ∃R :C), and we

15

Table 1: Algebraic Semantics of U−

Terminological expression Interpretation Algebraic term

(i) ⊤ U 1

⊥ ∅ 0

(and C D) C ∩ D a · b
(or C D) C ∪ D a+ b

(not C) C ′ a′

(ii) self Id e

(and R S) R ∩ S r · s
(or R S) R ∪ S r + s

(not R) R′ r′

(inverse R) R⌣ r⌣

(compose R S) R ;S r ; s

(trans R)
∞∪
n=1

Rn
∞∑
n=1

rn

(⊆ R S) (R ;S⌣′)′ = R⌣\S⌣ (r ; s⌣′)′ = r⌣\s⌣

(⊇ R S) (R′ ;S⌣)′ = R/S (r′ ; s⌣)′ = r/s

(iii) (some R C) R :C r : a

(all R C) (R :C ′)′ (r : a′)′

(rvm R S) ((R ∩ S ′) :U)′ ((r · s′) : 1)′

(sd C Rb1 . . .Rbk) (
k∩

i=1

Rbi) :C (
k∏

i=1

ri) : a

(iv) (restrict R C) R ∩ Cc⌣ = R ⌋C r · ac⌣ = r ⌋ a

16

include the designated concepts ⊤ and ⊥ in the vocabulary of U . The some operator
as defined by Patel-Schneider (1987) is applied only to a role R. Its interpretation
is the following:

(4.11) (some R)I =
{
x | (∃y)[(x, y) ∈ RI]

}
which coincides with RI :DI = dom(RI). It is not difficult to prove that our
version of U is equivalent to that of Patel-Schneider.

To complete the definition of U we define subsumption and equivalence by which
concepts and roles are related. Syntactically, these relationships are expressed as
terminological axioms. Terminological axioms are used when computing information
implicit in the knowledge base. They are denoted by ‘σ’, ‘τ ’, . . . and take the form
of specializations ⊑ (often also called subsumptions) or equivalences

.
= and are

defined by:

(4.12) σ, τ −→ C ⊑ D | C .
= D | R ⊑ S | R .

= S.

A set of terminological axioms is referred to as a terminology T. A terminology can
be viewed as a presentation of a knowledge base.

An interpretation I satisfies (or models) a terminological axiom σ, written |=I σ,
if and only if depending on the form of σ the following holds:

(4.13) |=I A ⊑ B iff AI ⊆ BI

|=I A
.
= B iff AI = BI ,

for A and B either both concepts or both roles. More generally, an interpretation
I is a model for a terminology T, written |=I T , if and only if every terminological
axiom in T is satisfied by I. A terminological axiom σ is entailed by a terminology
T, written T |= σ, if and only if σ is satisfied by every model of T. Subsumption
and equivalence with respect to a terminology T, respectively denoted by ‘ ≼T ’ and
‘ ≈T ’, are defined by:

(4.14) A ≼T B iff T |= A ⊑ B

A ≈T B iff T |= A
.
= B

where A and B are either both concepts or both roles. Subsumption and equivalence
with respect to the empty terminology are denoted by ≼ and ≈ , respectively.
Quotienting the set of concept descriptions with respect to semantic equivalence
≈T yields a poset ordered with respect to ≼T / ≈T . This poset is called the
concept taxonomy. The role taxonomy is defined similarly.

With specialization and equivalence relationships respectively interpreted as a
subset relation and an equality, we have shown that the semantics of U− can be
accomodated in the calculus of sets and relations. Therefore, since this calculus
is formalized in Peirce algebra, so is the semantics of U−. In particular, each
concept (interpreted as a set) can be interpreted as an element in the underlying
Boolean algebra and each role (interpreted as a binary relation) as an element in
the underlying relation algebra. The algebraic interpretation of U− is summarized
in column three of Table 1 which lists the algebraic terms with which the different
kinds of terminological expressions are associated. Observe that to accomodate the
trans operator the underlying relation algebra needs to be join-complete (i.e. closed

17

with respect to arbitrary joins). Table 1 is subdivided as follows:

(i) lists the designated concepts and the concept-forming operators, their inter-
pretation in the calculus of sets and the corresponding interpretation in Boolean
algebra.

(ii) lists the designated role and roles arising from other roles, their interpretation
in the calculus of relations and the formalization in relation algebra.

(iii) lists concepts arising from concepts as well as roles. These constructs are
interpreted as interactions between sets and relations through Peirce product and
are catered for in Boolean modules.

(iv) lists the role-forming operator restrict on concepts which is interpreted with
left cylindrification and is formalized in Peirce algebra.

It is not difficult to show that each universal identity in a Peirce algebra determines
a semantic equivalence (≈) true in any terminology. (By a universal identity we
mean an equational axiom or property of any Peirce algebra.)

An alternative approach to computing subsumption and equivalence relations
is then the algebraic approach. This approach uses equational reasoning. New
subsumption and equivalence relationships are deduced equationally from the ter-
minological axioms and the axioms of Peirce algebra. We do not elaborate on the
equational approach as detailed presentations with worked out examples can be
found in Brink and Schmidt (1992) as well as Schmidt (1991).

In conclusion we claim for the application of Peirce algebras to terminological
representation and reasoning the following advantages:

(i) Peirce algebras provide a formal mathematical framework. By and large, the
development of kl-one type knowledge representation and terminological represen-
tation has been implementation-driven and rather ad hoc, see Woods and Schmolze
(1992). (Only recently research has started to focus on formal aspects such as se-
mantics and tractability.) It seems a common belief that the structural description
operator sd cannot be discarded because it cannot be defined using other termino-
logical constructs, see Woods and Schmolze (1992, §5.2.1). However analysis in the
context of Peirce algebra reveals that this is not true. From the algebraic transla-
tions of sd expressions (see Table 1) it is apparent that sd can be defined in terms
of the some operator and other operators. In fact, Schmidt (1991) showed that sd
and some are interdefinable. Thus, the operator sd is redundant in U .
(ii) Peirce algebras are quite powerful. They are sufficiently expressive to cater
for U−, a very expressive sublanguage of U . With the exception of the atleast
and atmost constructs most existing terminological constructs can be expressed in
U− and are thus also catered for in Peirce algebras. Examples of constructs not
explicitly included in the language U− (or the language U) but expressible in U−

(or U) are the top role, the bottom role and the roles (domain C) and (range C).
The top and bottom roles are respectively interpreted as the universal relation
(DI)2 and the empty relation and are therefore respectively associated with the
unit and the zero in the relation algebra. The domain and range operators are used
in nikl (see Schmolze (1989)) and the language KL defined in Woods and Schmolze

18

(1992). In the calculus, and hence also algebraically, (domain C) is interpreted as
the left cylindrification of the set CI , while (range C) is interpreted as the right
cylindrification of CI . An example of an operator not captured in Peirce algebra
is a generalized version of the atleast operator, called the fillers operator, defined in
Patel-Schneider (1989).

(iii) Peirce algebras are easy to use. Even the most complicated terminological
constructs in U− have straightforward algebraic translations (as summarized in Ta-
ble 1). Unlike the model-theoretic interpretation the algebraic interpretation of
terminological expressions is free of individual variables and quantifiers. The al-
gebraic language thus provides a compact and elegant formalization for first-order
statements and terminological expressions. Peirce algebras provide a natural axiom-
atization for reasoning with concepts and roles. The axiomatization is equational.
As a consequence, terminological inferences are straightforward to compute from
the terminological axioms and the algebraic ones. For examples and case studies
refer to Brink and Schmidt (1992) and Schmidt (1991).

(iv) Terminological representation can be linked to other areas of application of
Peirce algebra. In particular, we believe terminological representation can benefit
from Suppes’ (1976, 1979, 1981) and Böttner’s (1992a, 1992b) linguistic analysis of
English language sentences, referred to earlier. This work can be utilized for trans-
lating information expressed in ordinary English into terminological expressions,
and vice versa.

References

Blikle, A. (1987), MetaSoft Primer, Vol. 288 of Lecture Notes in Computer Science,
Springer-Verlag.

Blyth, T. S. and Janowitz, M. F. (1972), Residuation Theory, Pergamon Press,
Oxford, England.

Böttner, M. (1992a), State transition semantics, Theoretical Linguistics. To appear.

Böttner, M. (1992b), Variable-free semantics for anaphora, Journal of Philosophical
Logic. To appear.

Brachman, R. J. and Schmolze, J. G. (1985), An overview of the kl-one knowledge
representation system, Cognitive Science 9(2), 171–216.

Brink, C. (1981), Boolean modules, Journal of Algebra 71(2), 291–313.

Brink, C. (1988), On the application of relations, South African Journal of Philos-
ophy 7(2), 105–112.

Brink, C. and Schmidt, R. A. (1992), Subsumption computed algebraically, Com-
puters and Mathematics with Applications 23, 329–342.

19

Britz, K. (1988), Relations and programs, Master’s thesis, Department of Computer
Science, University of Stellenbosch, Stellenbosch, South Africa.

Chin, L. H. and Tarski, A. (1951), Distributive and modular laws in the arith-
metic of relation algebras, University of California Publications in Mathemat-
ics 1(9), 341–384.

De Bakker, J. W. and De Roever, W. P. (1973), A calculus for recursive program
schemes, in M. Nivat (ed.), Symposium on Automata, Formal Languages and
Programming, North Holland, Amsterdam.

Donini, F. M., Lenzerini, M., Nardi, D. and Nutt, W. (1991), The complexity
of concept languages, Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning, Morgan Kaufmann,
San Mateo, California, pp. 151–162.

Harel, D. (1984), Dynamic logic, in D. Gabbay and F. Guenthner (eds), Handbook
of Philosophical Logic, Vol. II, Reidel, Dordrecht, Holland, pp. 497–604.

Henkin, L., Monk, J. D. and Tarski, A. (1985), Cylindric Algebras I, Vol. 64 of Stud-
ies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

Hennessey, M. C. B. (1980), A proof system for the first-order relational calculus,
Journal of Computer and System Sciences 20, 96–110.

Hitchcock, P. and Park, D. (1972), Induction rules and termination proofs, inM. Ni-
vat (ed.), Automata, Languages and Programming, North-Holland, Amster-
dam.

Hoare, C. A. R. and Jifeng, H. (1987), The weakest prespecification, Information
Processing Letters 24, 127–132.

Hoare, C. A. R., Jifeng, H. and Sanders, J. W. (1987), Prespecification in data
refinement, Information Processing Letters 25, 71–76.

Hollunder, B., Nutt, W. and Schmidt-Schauß, M. (1990), Subsumption algorithms
for concept description languages, Proceedings of the 9th European Conference
on Artificial Intelligence, pp. 348–353.

Jónsson, B. (1982), Varieties of relation algebras, Algebra Universalis 15, 273–298.

Jónsson, B. and Tarski, A. (1951), Boolean algebras with operators, Part I, Amer-
ican Journal of Mathematics 73, 891–939.

Jónsson, B. and Tarski, A. (1952), Boolean algebras with operators, Part II, Amer-
ican Journal of Mathematics 74, 127–162.

Kozen, D. (1980), A representation theorem for models of ∗-free PDL, in
J. de Bakker and J. van Leeuwen (eds), Automata, Languages and Program-
ming, Vol. 85 of Lecture Notes in Computer Science, Springer-Verlag, pp. 351–
36.

20

Kozen, D. (1981), On the duality of dynamic algebras and Kripke models, in E. En-
geler (ed.), Logic of Programs, Vol. 125 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 1–11.

Maddux, R. D. (1983), A sequent calculus for relation algebras, Annals of Pure and
Applied Logic 25, 73–101.

Maddux, R. D. (1990). Personal communication with C. Brink.

Parikh, D. (1981), Propositional dynamic logic of programs: A survey, in E. En-
geler (ed.), Logic of Programs, Vol. 125 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 102–144.

Patel-Schneider, P. F. (1987), Decidable, Logic-Based Knowledge Representation,
PhD thesis, University of Toronto.

Patel-Schneider, P. F. (1989), A four-valued semantics for terminological logics,
Artificial Intelligence 38, 319–351.

Pratt, V. R. (1990), Dynamic algebras as a well-behaved fragment of relation al-
gebras, in C. H. Bergman, R. D. Maddux and D. L. Pigozzi (eds), Algebraic
Logic and Universal Algebra in Computer Science, Vol. 425 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 77–110.

Pretorius, J. P. G. (1990), The algebra and topology of Boolean modules, Master’s
thesis, Department of Mathematics, University of Cape Town, Cape Town,
South Africa.

Sanderson, J. G. (1981), A Relational Theory of Computing, Vol. 82 of Lecture
Notes in Computer Science, Springer-Verlag.

Schmidt, G. and Ströhlein, T. (1991), Relations and Graphs, Springer-Verlag,
Berlin-Heidelberg.

Schmidt, R. A. (1991), Algebraic terminological representation, Master’s thesis, De-
partment of Mathematics, University of Cape Town, Cape Town, South Africa.
Available as Thesis-Reprint TR 011. Also as Technical Report MPI-I-91-216,
Max-Planck-Institut für Informatik, Saarbrücken, Germany.

Schmidt-Schauß, M. and Smolka, G. (1991), Attributive concept description with
complement, Artificial Intelligence 48, 1–26.

Schmolze, J. G. (1989), The language and semantics of nikl, Technical Report 89–4,
Department of Computer Science, Tufts University, Department of Computer
Science, Tufts University, Medford, MA.

Suppes, P. (1976), Elimination of quantifiers in the semantics of natural language by
use of extended relation algebra, Revue Internationale de Philosophie 30, 243–
259.

21

Suppes, P. (1979), Variable-free semantics for negations with prosodic variation, in
E. Saarinen, R. Hilpinen, I. Niiniluoto and M. P. Hintikka (eds), Essays in
Honour of Jaakko Hintikka, Reidel, Dordrecht, Holland, pp. 49–59.

Suppes, P. (1981), Direct inference in English, Teaching Philosophy 4, 405–418.

Tarski, A. (1941), On the calculus of relations, Journal of Symbolic Logic 6, 73–89.

Tarski, A. (1955), Contributions to the theory of models, Part III, Indagationes
Mathematicae 17, 56–64.

Wadge, W. W. (1975), A complete natural deduction system for the relational
calculus, Theory of Computation Report, University of Warwick.

Woods, W. A. and Schmolze, J. G. (1992), The kl-one family, Computers and
Mathematics with Applications 23, 133–177.

22

