
Unification and Matching in Church’s

Original Lambda Calculus

Ullrich Hustadt

MPI–I–92–219 June 1992

Author’s Address

Ullrich Hustadt

Max-Planck-Institut für Informatik

Im Stadtwald

W-6600 Saarbrücken

Germany

E-mail: Ullrich.Hustadt@mpi-sb.mpg.de

Abstract

In current implementations of higher-order logics higher-order unification is used to lift

the resolution principle from the first-order case to the higher-order case. Higher-order

matching is the core of implementations of higher-order rewriting systems and some

systems for program transformation.

In this paper I argue that Church’s original lambda calculus, called non-forgetful

lambda calculus, is an appropriate basis for higher-order matching. I provide two

correct and complete algorithms for unification in the non-forgetful lambda calculus.

Finally, I show how these unification algorithms can be used for matching in the non-

forgetful lambda calculus.

Keywords

Non-forgetful lambda-calculus, Permissive unification algorithm, Lawful unification algorithm, Higher-

order matching

1 Introduction

In first-order term algebra we interpret a term M containing variables as the set of all ground instances

σ(M) of M .

Example 1.1 Given the following signature Σ1

sorts T1, T2, T3
constants a1, a2 : T1
constants b1, b2 : T2
constant f : (T1 × T2 → T3)

variable X : T1
variable Y : T2

the term f(X, b1) can be interpreted as the set {f(a1, b1), f(a2, b1)}.

If we consider higher-order term algebras now, the interpretation of a term M to be the set of all ground

instances of M , which we want to denote GI(M), gives surprising results.

Example 1.2 Suppose F is a variable of type (T1 × T2 → T3) in signature Σ1. Then F (X,Y) can be

interpreted as the set of all terms of type T3, i.e.

GI(F (X,Y)) = {f(a1, b1), f(a2, b1), f(a1, b2), f(a2, b2)}.

On the other hand, F (X, b1) has the same interpretation

GI(F (X, b1)) = {f(a1, b1), f(a2, b1), f(a1, b2), f(a2, b2)}.

So there is no difference between GI(F (X, b1)) and GI(F (X,Y)), although intuitively F (X, b1) is more

specific than F (X,Y).

We want to interpret a term f(T1, . . . , Tm) as the set of all ground instances σ(f(T1, . . . , Tm)), where the

terms σ(T1), . . . , σ(Tm) actually occur in σ(f(T1, . . . , Tm)). We will denote this set by RGI(M) for a term

M . This results in a simple restriction to the allowed substitutions σ: If σ(X) = λxn:Tn. N for some variable

X, then all the variables in the binder must occur in the matrix N , i.e. xi ∈ FV (N) for all i, 1 ≤ i ≤ n. So
RGI(F (X, b1)) = {f(a1, b1), f(a2, b1)}, for example.

This change of interpretation has impacts on our understanding of unification and matching substitutions.

On the other hand, it is not possible to restrict the set of all substitutions to obey the restriction if we want

to use some standard algorithm for unification and matching.

Example 1.3 Given the following signature

sort T

constants a, b :

constant f : (T → (T → T))

variable F : (T → (T → T)),

we consider the unification problem U1 = {F (a, b) ?= f(a, g(a, b))}. Using the transformation system for

higher-order unification given in Snyder and Gallier (1989), we have the following transformation sequences

{F (a, b) ?= f(a, g(a, b))}

{f(H1(a, b),H2(a, b))
?= f(a, g(a, b))}

Imitation rule using

ρ1={F/λx1,x2. f(H1(x1,x2),(H2(x1,x2)))}
��

Decomposition rule

��

1

{H1(a, b)
?= a,H2(a, b)

?= g(a, b)}

{a ?= a,H2(a, b)
?= g(a, b)}

{H2(a, b)
?= g(a, b)}

{g(K1(a, b),K2(a, b))
?= g(a, b)}

{K1(a, b)
?= a,K2(a, b)

?= b}

{a ?= a,K2(a, b)
?= b}

{K2(a, b)
?= b}

{b ?= b}

{}

+

(

Imitation rule using

σ1={H1/λ y1,y2. a}

//

*

)

Projection rule using

σ2={H1/λ y1,y2. y1}

oo

Trivial removal

��

Imitation rule using

τ1={H2/λ z1,z2. g(K1(z1,z2),K2(z1,z2))}

��

Decomposition rule

��+

(

Imitation rule using

ϕ1={K1/λ y1,y2. a}

//

*

)

Projection rule using

ϕ2={K1/λ y1,y2. y1}

oo

Trivial removal

��+

(

Imitation rule using

ψ1={K2/λ y1,y2. b}

//

*

)

Projection rule using

ψ2={K2/λ y1,y2. y2}

oo

Trivial removal

��

2

The set of all unifiers of U1 is

{ψi ◦ ϕj ◦ τ1 ◦ σk ◦ ρ1 | 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 2 ∧ 1 ≤ k ≤ 2} =
{{F/λx1, x2. f(x1, g(x1, x2))}, {F/λx1, x2. f(x1, g(x1, b))}, {F/λx1, x2. f(x1, g(a, x2))},
{F/λx1, x2. f(x1, g(a, b))}, {F/λx1, x2. f(a, g(x1, x2))}, {F/λx1, x2. f(a, g(x1, b))},
{F/λx1, x2. f(a, g(a, x2))}, {F/λx1, x2. f(a, g(a, b))}}

The set of those unifiers obeying our restriction is

{ψ2 ◦ ϕ2 ◦ τ1 ◦ σ2 ◦ ρ1, ψ2 ◦ ϕ1 ◦ τ1 ◦ σ2 ◦ ρ1, ψ2 ◦ ϕ2 ◦ τ1 ◦ σ1 ◦ ρ1,} =
{{F/λx1, x2. f(x1, g(x1, x2))}, {F/λx1, x2. f(x1, g(a, x2))}, {F/λx1, x2. f(a, g(x1, x2))}}

It is easy to see that neither σ1, σ2, ϕ1, ϕ2, ψ1 nor ψ2 obeys the restriction, only the appropriate compositions

do.

In the following sections we will show that our restriction is necessary and sufficient to solve the problem.

We will give a correct and complete transformation system for this context.

2 Non-forgetful Lambda-Calculus

Definition 2.1 (Non-forgetful Terms)

Given a set T0 of base types we define the set of types T inductively as the smallest set containing T0 and if

S, T ∈ T then (S → T) ∈ T .
The set RL→(V,Σ) of raw terms is defined by the following abstract syntax

RL→ = V | (Σ: T) | (V: T) | (RL→ · RL→) | λV: T .RL→

where V is a set of variables and Σ a set of constants. We suppose V, Σ, and T0 to be pairwise disjoint.

The set L→(V,Σ) ⊆ RL→(V,Σ) of well-typed terms is defined using the following inference rules:

Bound variable: x:T ∈ Γ
Γ ⊢ x:T ,

if x ∈ V ∧ T ∈ T

Free variable:
Γ ⊢ F :T :T ,

if F ∈ V ∧ T ∈ T

Constant:
Γ ⊢ (c:T):T

,

if c:T ∈ Σ ∧ T ∈ T

Application:
Γ ⊢M :(S → T) Γ ⊢ N :S

Γ ⊢ (M · N):T

Abstraction: Γ⊕ x:S ⊢M :T
Γ ⊢ λx:S.N :(S → T)

The set L→(V,Σ) is the set of all M ∈ RL→(V,Σ) such that ϵ ⊢M :T can be deduced for some T ∈ T . The
function type : L→ → T is defined as type(M) = T ⇐⇒ ϵ ⊢M :T .

We simply write L→ if V and Σ are obvious from the context.

The set of all free variables is FV. With a set Z of free variables we associate the set symbols(Z) ⊆ V
of all variables occurring in Z. The set of free variables of a term M with respect to V is FVV(M). The set

of bound variables of a term M with respect to V is BVV(M). If the set of variables V is obvious from the

context we write FV (M) or BV (M) for simplicity. △

Church (1941) defines a λ-term M to be well-formed iff

3

• M is either a constant or a variable,

• M is an application of the form (M1 ·M2) and M1 and M2 are well-formed,

• M is an abstraction of the form λx:T.M1 such that M1 is well-formed and contains at least an

occurrence of x in the scope of this binder.

We will use the phrase non-forgetful for these terms instead. The set of all such terms is L→
nf . The terms in

L→ \ L→
nf are called forgetful.

The set of all free variables of a term M is FV (M). The rules of lambda conversion are defined as usual.

It is important to note that the set of non-forgetful λ-terms is closed under α-, β-, and η-conversion. The

β-normal form of a term M is denoted M ↓, its η-expanded form is denoted η[M]. The set of all terms in

η-expanded form is L→
η .

Definition 2.2 (Substitution)

A substitution σ in L→ is a mapping σ : V → L→ such that the domain of σ, defined DOM(σ) =

{x ∈ V | σ(x) ̸= x}, is finite. The identity substitution is denoted ι. The set of all substitutions in L→

is denoted SUB(L→V).

The domain of a substitution σ is

DOM(σ) = {F ∈ FV | σ2(F) ̸= F}.

The set of variables introduced by σ is

I(σ) =
∪

F∈DOM(σ)

FV (σ(F)).

A substitution σ is normalized if σ(F) = σ(F)↓β for all F ∈ DOM(σ) ∩ FV.
Any substitution σ can be uniquely extended to a mapping σ̂ : L→ → L→. The composition of two

substitutions σ and τ is written τ ◦ σ and defined τ ◦ σ(x) = τ̂(σ(x)) for all x ∈ V. The union of σ and τ ,

denoted σ ∪ τ , is defined by

σ ∪ τ(x) =

σ(x), if x ∈ DOM(σ)

τ(x), if x ∈ DOM(τ)

x, otherwise

The set of non-forgetful substitutions SUB(L→
nf

V) is the set of all substitutions σ : V → L→
nf . This set is

closed under composition and union of substitutions. The substitutions in SUB(L→V) \ SUB(L→
nf

V) are

called forgetful.

The restriction σV of a substitution σ and the equality σ = τ [V] of two substitutions σ and τ over a set

of variables V is defined in the usual way. △

Lemma 2.3 Let σ be a forgetful substitution and τ some arbitrary substitution. Then the composition τ ◦ σ
is again a forgetful substitution.

3 Unification Problems in Lambda-Calculus

We use the following representation of unification problems.

Definition 3.1 (Unification problems in L→)

An equation in L→ is a multiset of terms M and N in L→
η of the same type. We will use the notation

M ?= N for equations. A system D in L→ is a multiset of equations in L→. A unification problem in L→ is

an ordered pair ⟨D,V ⟩, written ⟨D | V ⟩, such that D is a system and V is a set of variables. △

4

For a system

D = {M1
?= N1, . . . ,Mn

?= Nn}

we write D↓ instead of {η[M1↓] ?= η[N1↓], . . . , η[Mn↓] ?= η[Nn↓]}. D↓ is unique up to renaming of bound

variables.

Definition 3.2 (Unifier)

Let SUB be a set of substitutions. A substitution θ in SUB is called unifier in SUB of two terms M and N

from L→
η iff θ(M)

∗←→βη θ(N) holds.

A substitution θ in SUB is a unifier of a unification problem ⟨D | V ⟩ in SUB iff θV is a unifier for every

equation in D.

If SUB is the set of all normalized substitutions in SUB(L→V) then the set of all unifiers of a unification

problem U is denoted SU(U). If SUB is the set of all normalized substitutions in SUB(L→
nf

V) then a unifier

is called non-forgetful and the set of all non-forgetful unifier of U is written SUnf (U). △

Definition 3.3 (Complete set of unifiers)

Let SUB be a set of substitutions, U be a unification problem and Z and a finite set of variables, called the

set of protected variables. A set CSU(U)[Z] of substitutions in SUB is a complete set of unifiers for U in

SUB separated on FV (U) away from Z iff

(1) CSU(U)[Z] ⊆ SU(U) ⊆ SUB

(2) ∀ϕ ∈ SU(Γ):∃ θ ∈ CSU(U)[Z]: θ ≤β ϕ [FV (U)]

(3) ∀ θ ∈ CSU(U)[Z]:DOM(θ) ⊆ FV (U) and I(θ) ∩ (Z ∪ DOM(θ)) = ∅.

If Z is not significant, we drop the [Z]. If CSU(U) consists of a single substitution we call this substitution

a most general unifier.

Again if SUB is the set of all normalized substitutions in SUB(L→V) then a complete set of all unifiers of

a unification problem U is denoted CSU(U). If SUB is the set of all normalized substitutions in SUB(L→
nf

V)

then a complete set of all non-forgetful unifier of U is written CSUnf (U). △

Definition 3.4 (Solved Form)

An equation is in solved form in a unification problem U if it is in the form η[F] ?= N , for some variable F

which occurs only once in U , and F and N have the same type. A system D is solved if each of its pairs is

solved. A unification problem ⟨D | V ⟩ is solved if D is solved.

To a system S = {F1
?= N1, . . . , Fn

?= Nn} in solved form we associate a substitution

⌈S⌉SUB = {F1/N1, . . . , Fn/Nn}.

This substitution is unique up to variable renaming. To a unification problem ⟨D | V ⟩ in solved form we

associate a system

⟨D | V ⟩VAR = {F ?= N | F ?= N ∈ D ∧ F ∈ V }.

Then we can associate to a unification problem U in solved form the substitution ⌈U⌉SUB = ⌈U VAR⌉SUB. △

Lemma 3.5 If

U = ⟨{F1
?= N1, . . . , Fn

?= Nn} | V ⟩

is a unification problem in solved form and {F1, . . . , Fn} ⊆ V , then {⌈U⌉SUB} is a CSUnf (U)[W] for any W

such that W ∩ FV (F1
?= N1, . . . , Fn

?= Nn) = ∅.

Proof: ⌈U⌉SUB is obviously a unifier of U , so {⌈U⌉SUB} ⊆ SU(U). If θ ∈ SU(U) then θ =β θ ◦ ⌈U⌉SUB, since

θ(Fi)
∗←→β θ(Ni) = θ(⌈U⌉SUB(Fi)) for 1 ≤ i ≤ n, and θ(x) = θ(⌈U⌉SUB(x)) otherwise. So ⌈U⌉SUB ≤β θ and

⌈U⌉SUB ≤β θ [FV (U)]. Because DOM(⌈U⌉SUB) = {F1, . . . , Fn} ⊆ FV (U) and ⌈U⌉SUB is idempotent the third

condition is also fulfilled.

5

4 The Permissive Unification Algorithm

Snyder and Gallier (1989) give a correct and complete transformation system HU for unification in L→.

Our first approach to the problem of unification in L→
nf will be a slight modification of their transformation

system.

The central notion for both transformation systems is the partial binding.

Definition 4.1 (Partial binding)

A partial binding of type (An → A0) is a term of the form

λxn:An. a(λ ypm :Bpm .Hm(xn, ypm))

for some atom a of type (Bm → A0) and free variables Hi of type (An, Bpi → Bi) for all i, 1 ≤ i ≤ m.

If a is a constant or a free variable, the partial binding is called an imitation binding. If a is a bound

variable xi for some i, 1 ≤ i ≤ n, then it is called an ith projection binding.

For a variable F , a partial binding M is appropriate to F if type(F) = type(M). △

The transformation system uses sequences of partial bindings to construct unifiers. Partial bindings allow

to substitute a term for a free variable that is as much undetermined as possible and at least as determined

as needed. We are using the fact that for any term M there exists a partial binding P and a substitution σ

such that σ(P)
∗−→β M . But this wouldn’t be true if σ has to be a non-forgetful substitution.

Example 4.2 Consider the term

M1 = λx1:A1. f(a)

where f is a constant of type ((A1 → A1)→ A1) and a is a constant of type (A1 → A1). An appropriate

partial binding is

P1 = λx1:A1. f(λ z1:A1.H1(x1, z1))

where H1 is a free variable of type (A1, A1 → A1). It is not possible to find a non-forgetful substitution σ

such that σ(P1) =M1. This substitution has to satisfy σ(λ z1:A1.H1(x1, z1)) =βη a, where . The reason is

that the variable x1 has to occur in σ(λ z1:A1. H1(x1, z1)), but it doesn’t occur in a.

But the Hi are only auxiliary variables we are using to construct a instantiation for a free variable F in the

original unification problem we consider. So it doesn’t matter that we instantiate Hi with a forgetful term

as long as the instantiation for F is non-forgetful.

For this reason we augment the system of equation D we want to unify with the set of free variables in

it. Now we can distinguish the variables which must be instantiated with non-forgetful terms from those

which can be instantiated with arbitrary terms. In every step in the transformation sequence we will ensure

that this restriction is obeyed. A unification problem ⟨D | V ⟩ such that the restriction of any unifier σ of

⟨D | V ⟩ to V is forgetful is called a forgetful unification problem. Otherwise it is called non-forgetful.

We define a predicate on unification problems which distinguishes non-forgetful unification problems from

obviously forgetful ones.

Definition 4.3 ((Non-)Forgetful unification problems)

An equation F ?=M is forgetful with respect to V if F is an element of the set of variables V , F does

not occur in the free variables of M , and M is a forgetful term. Otherwise an equation is called possibly

non-forgetful with respect to V . A unification problem ⟨D | V ⟩ is forgetful if some equation M ?= N in D

is forgetful with respect to V . Otherwise it is possibly non-forgetful. A solved unification problem that is

possibly non-forgetful is called non-forgetful. △

Lemma 4.4 If U1 is non-forgetful, i.e. it is solved and possibly non-forgetful, then ⌈U1⌉SUB is a non-forgetful

substitution.

6

Proof: Because U1 is solved it has the form

⟨F1
?=M1, . . . , Fm

?=Mm | V ⟩,

for some free variables F1,. . . , Fm and some terms M1,. . . , Mm. Because U1 is possibly non-forgetful there

is no equation Fi
?=Mi, 1 ≤ i ≤ m, such that Mi is a forgetful term. Without restriction of generality we

can assume that V = {F1, . . . , Fn} for some n, 0 ≤ n ≤ m. Then ⌈Un⌉SUB is

{F1/M1, . . . , Fn/Mn}

and this substitution is non-forgetful.

Definition 4.5 (Transformation system HU)
The following rules form the transformation system on unification problems given by Snyder and

Gallier (1989).

Trivial removal

⟨{M ?=M} ∪D | V ⟩ ⇒ ⟨D | V ⟩ HU1

Decomposition
⟨{λxk:Tk. a(Mm) ?= λxk:Tk. a(Nm)} ∪D | V ⟩

⇓
⟨∪1≤i≤m{λxk:Tk.Mi

?= λxk:Tk. Ni} ∪D | V ⟩,
HU2

where a is an arbitrary atom.

Variable elimination
⟨{λxk:Tk. F (xk) ?= λxk:Tk. N} ∪D | V ⟩

⇓
⟨{λxk:Tk. F (xk) ?= λxk:Tk. N} ∪ θ(D)↓ | V ⟩,

HU3

where

• F is a variable, and

• F ̸∈ FV (λxk:Tk. N) and F ∈ FV (D)m

• θ = {F/λxk:Tk. N}.

Imitation
⟨{λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪D | V ⟩

⇓
⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪ {F/P}(D)↓ | V ⟩,

HU4a

where

• F is a free variable and a is either a constant or a free variable not equal to F , and

• P is a variant of a imitation binding appropriate to F e.g. P = λ ym:Sm. a(λ zpn :Rpn .Hn(ym, zpn)).

Projection
⟨{λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪D | V ⟩

⇓
⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪ {F/P}(D)↓ | V ⟩,

HU4b

where

• F is a free variable and a a arbitrary atom,

• P is a variant of a ith projection binding for 1 ≤ i ≤ m, appropriate to the free variable F , that is,

P = λ ym:Sm. yi(λ zpq :Rpq .Hq(ym, zpq)), and

7

• head(Mi) = a, if head(Mi) is a constant.

Explosion
⟨{λxk:Tk. F (Mm) ?= λxk:Tk. G(Nn)} ∪D | V ⟩

⇓
⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. G(Nn)} ∪ {F/P}(D)↓ | V ⟩,

HU4c

where

• F and G are free variables and

• P = λ ym:Sm. a(λ zpn :Rpn .Hn(ym, zpn)) is a variant of some arbitrary partial binding appropriate to

the term λxk:Tk. F (Mm) such that a ̸= F and a ̸= G.

△

Definition 4.6 (Transformation system PU)
We obtain the transformation system PU by adding the restriction that U1 =⇒PU U2 iff U1 =⇒HU U2 and

U2 is possibly non-forgetful. △

4.1 Correctness and Completeness of PU
Theorem 4.7 (Correctness) If U = ⟨D | FV (D)⟩ ∗

=⇒PU U ′, with U ′ in solved form and possibly non-

forgetful, then the substitution ⌈U ′⌉SUB is a non-forgetful unifier of U .

Proof: Snyder and Gallier (1989) have shown that HU is correct, i.e. if U ′ = ⟨D′ | V ⟩, where V = FV (D),

and U
∗

=⇒HU U ′ then ⌈D⌉SUB ∈ SU(D). Because for any transformation step U1 =⇒PU U2 there exists a

transformation step U1 =⇒HU U2 we can conclude that ⌈U ′⌉SUB ∈ SU(U).

Now if ⟨D′ | V ⟩ is solved and possibly non-forgetful then any equation in D′ has the form F ?=M , where

F is a variable, F does not occur anywhere else in D′, and M is a non-forgetful term if F is in V . So ⌈U ′⌉SUB

is non-forgetful.

Lemma 4.8 If M = λxn:Tn. N is a forgetful term then exists no substitution σ such that σ(M)↓ is a

non-forgetful term.

Proof: Because M is forgetful some bound variable, let’s assume it is xi, for some i, 1 ≤ i ≤ n, does not

occur in N . The substitution σ instantiates free variables with some λ-terms but applied toM it could never

happen that the instantiation results in a new occurrence of the bound variable xi. So xi does not occur

free in the matrix of σ(M) or its normal form.

Lemma 4.9 If U1 is a forgetful unification problem then there exists no transformation U1 =⇒HU U2 such

that U2 is possibly non-forgetful.

Proof: We consider each transformation rule in turn:

Trivial removal Trivial equations are non-forgetful, so the removal of a trivial equation doesn’t change

forgetfulness.

Decomposition If either term in the decomposed equation is forgetful, it’s decomposition will be forgetful

too.

Variable elemination If the equation F ?= λxk:Tk. N is forgetful, the resulting unification problem is

forgetful because this equation is preserved. If some equation in D is forgetful then θ(D)↓ will be

forgetful because of lemma 4.8.

Imitation If the equation λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn) is forgetful then the resulting unification

problem is forgetful because this equation is preserved. If some equation in D is forgetful then θ(D)↓
will be forgetful because of lemma 4.8.

8

Projection The same argumentation as for the imitation rule holds.

Explosion If the equation λxk:Tk. F (Mm) ?= λxk:Tk. G(Nn) is forgetful then the resulting unification

problem is forgetful because this equation is preserved. If some equation in D is forgetful then θ(D)↓
will be forgetful because of lemma 4.8.

Lemma 4.10 If U1 is a unification problem then in any transformation sequence

U1 =⇒HU U2 =⇒HU · · · =⇒HU Un

such that Un is in solved form and ⌈Un⌉SUB is a non-forgetful substitution each Ui is possibly non-forgetful

for 1 ≤ i ≤ n.

Proof: We will first show that Un is possibly non-forgetful: Assume that Un is forgetful. Then Un has the

form Un = ⟨{F1
?=M1, . . . , Fm

?=Mm} | V ⟩ and there is an equation Fi
?=Mi for some i, 1 ≤ i ≤ m, such

that Fi ∈ V and Mi is a forgetful term. But then ⌈Un⌉SUB(Fi) = Mi implies that ⌈Un⌉SUB is a forgetful

substitution in contradiction to our assumption. So Un must be non-forgetful.

If Ui+1 is possibly non-forgetful then Ui must be possibly non-forgetful for all i, 1 ≤ i ≤ n− 1. Assume

again the contrary, i.e. that Ui is forgetful. Then following lemma 4.9 there could be no transformation

Ui =⇒HU Ui+1 such that Ui+1 is non-forgetful.

So we can conclude that each Ui in the transformation sequence is possibly non-forgetful.

Theorem 4.11 (Completeness of PU) Let U = ⟨D | FV (D)⟩ be a unification problem. If θ ∈ SUnf (U),

then there exists a sequence of transformations

U = U0 =⇒PU U1 =⇒PU U2 =⇒PU · · · =⇒PU Un,

where Un is in solved form and ⌈Un⌉SUB ≤β θ [FV (U)].

Proof: From the completenessHU we know that for θ ∈ SUnf (U), there exists a sequence of transformations

U = U0 =⇒HU U1 =⇒HU U2 =⇒HU · · · =⇒HU Un,

where Un is in solved form and ⌈Un⌉SUB ≤β θ [FV (U)],i.e. there exists a substitution σ such that

σ ◦ ⌈Un⌉SUB =β θ [FV (U)]. Because θ is non-forgetful and following lemma 2.3 ⌈Un⌉SUB must be non-forgetful

too. From lemma 4.10 we know that each Ui, 1 ≤ i ≤ n, must be possibly non-forgetful. So there exists a

transformation sequence

U = U0 =⇒PU U1 =⇒PU U2 =⇒PU · · · =⇒PU Un.

5 The Lawful Unification Algorithm

If we want to use non-forgetful substitutions only, we have to modify the notion of partial bindings. Consider

again the general form of a partial binding, i.e.

P1 = λxn:An. a(λ ypm :Bpm .Hm(xn, ypm)).

Let’s assume that this partial binding is used in a transformation sequence resulting in a unifier σ. Let

σ(λ ypj :Bpj .Hj(xn, ypj)) = Mj and let {xk1,j , . . . , xkqj,j}, 1 ≤ k1,j < j2,j < · · · < jqj ,j ≤ n, be the set of all

xi appearing in Mj for all j, 1 ≤ j ≤ m. Then a binding of the form

P2 = λxn:An. a(λ ypm :Bpm . Hm(xkqm,m , ypm)).

could be used instead of P1 in a transformation sequence resulting in the unifier σ. We will prove this

conjecture after we defined the notion of selective partial bindings and the presentation of the lawful

transformation system.

9

Definition 5.1 (Selective Partial Bindings)

A selective partial binding of type (An → A0) is a term of the form

λxn:An. a(λ ypm :Bpm . Hm(xkqm,m , ypm))

for some atom a of type (Bm → A0) and free variables Hj of type (Ajqj , Bpj → Bj) where 1 ≤ k1,j < k2,j <

· · · < kqj ,j ≤ n for all j, 1 ≤ j ≤ m.

If a is a constant or a free variable, the selective partial binding is called an selective imitation binding;

if a is a bound variable xi for some i, 1 ≤ i ≤ n, then it is called a selective ith projection binding.

For a variable F , a selective partial binding M is appropriate to F if type(F) = type(M). △

Definition 5.2 (Transformation system LU)
The following rules form the lawful unification algorithm for unification in the non-forgetful lambda-calculus

Trivial removal

⟨{M ?=M} ∪D,V ⟩ ⇒ ⟨D,V ⟩ LU1

Decomposition
⟨{λxk:Tk. a(Mm) ?= λxk:Tk. a(Nm)} ∪D,V ⟩

⇓
⟨∪1≤i≤m{λxk:Tk.Mi

?= λxk:Tk. Ni} ∪D,V ⟩,
LU2

where a is an arbitrary atom.

Variable elimination
⟨{λxk:Tk. F (xk) ?= λxk:Tk. N} ∪D,V ⟩

⇓
⟨{λxk:Tk. F (xk) ?= λxk:Tk. N} ∪ θ(D)↓, V ⟩,

LU3

where

• F is a variable,

• F ̸∈ FV (λxk:Tk. N) and F ∈ FV (D), and

• θ = {F/λxk:Tk. N}.

Imitation
⟨{λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪D,V ⟩

⇓
⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪ {F/P}(D)↓, V ⟩,

LU4a

where

• F is a free variable and a is either a constant or a free variable not equal to F , and

• P is a variant of a selective imitation binding appropriate to F , e.g.

P = λ ym:Sm. a(λ zpn :Rpn .Hn(ykqm,m , zpn)).

Projection
⟨{λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪D,V ⟩

⇓
⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪ {F/P}(D)↓, V ⟩,

LU4b

falls

• F is a free variable and a an arbitrary atom,

• P is a variant of a selective ith projection binding for 1 ≤ i ≤ m, appropriate to F , that is, P =

λ ym:Sm. yi(λ zpq :Rpq .Hq(ykqm,m , zpq)), and

10

• head(Mi) = a, if head(Mi) is a constant.

Explosion
⟨{λxk:Tk. F (Mm) ?= λxk:Tk. G(Nn)} ∪D,V ⟩

⇓
⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. G(Nn)} ∪ {F/P}(D)↓, V ⟩,

LU4c

where

• F and G are free variables and

• P = λ ym:Sm. a(λ zpn :Rpn .Hn(ykqm,m , zpn)) is a variant of some arbitrary selective partial binding

appropriate to F such that a ̸= F and a ̸= G

△

5.1 Correctness and Completeness of LU
Lemma 5.3 If U =⇒ U ′ using transformation rules LU1 or LU3 then SUnf (U) = SUnf (U

′).

Proof: Snyder and Gallier (1989) show in lemma 4.12 that if D =⇒HU D
′ using transformations HU1 and

HU3, then SU(D) = SU(D′). Now LU1 and LU3 are exactly the same rules as HU1 and HU3, so we conclude

SU(⟨D | V ⟩) = SU(⟨D′ | V ⟩). This implies SUnf (⟨D | V ⟩) = SUnf (⟨D′ | V ⟩).

Theorem 5.4 (Correctness) If U = ⟨D | FV (D)⟩ is a unification problem in L→ and U
∗

=⇒LU U ′, with

U ′ in solved form and non-forgetful, then the substitution ⌈U ′⌉SUB is a non-forgetful unifier of U .

Proof: The proof is exactly the same as for the correctness of PU.

Lemma 5.5 If M = λxn:Tn. a(Mm) is a non-forgetful term then there exists a variant of a selective partial

binding P and a non-forgetful substitution τ such that τ(P)
∗−→β M .

Proof: We distinguish the following cases:

m = 0: Then M itself is a selective partial binding. We let P =M and τ = ι.

m > 0: Suppose Xi = BV (Mi) ∩ {x1, . . . , xn} = {xk1,i , . . . , xkqi,i} with 1 ≤ k1,i < k2,i < · · · < kqi,i ≤
n. Let Pi = η[Hi(xk1,i , . . . , xkqi,i)], where type(Pi) = type(Mi) and Hi is a free variable of

appropriate type, for all i, 1 ≤ i ≤ m. Because M is a non-forgetful term, we must have∪
1≤i≤mXi ∪ {a} = {x1, . . . , xn}. Therefore P = λxn:Tn. a(Pm) is a selective partial binding.

Let τ = {H1/λxkq1,1 .M1, . . . , Hm/λxkqm,m .Mm}. τ is obviously non-forgetful and τ(Pi)
∗−→β Mi,

for each i, 1 ≤ i ≤ m. Thus τ(P)
∗−→β M .

Lemma 5.6 If θ = {F/M}∪θ′ is a non-forgetful substitution then there exists a variant of a selective partial

binding P appropriate to F and a non-forgetful substitution τ such that

θ = {F/M} ∪ τ ∪ θ′ [DOM(θ)]

=β τ ◦ {F/P} ∪ θ′ [DOM(θ)]

If θ is idempotent then θ′′ = {F/M} ∪ τ ∪ θ′ is an idempotent, non-forgetful unifier of the equation F ?= P .

Proof: Because θ is non-forgetful, the termM must be non-forgetful and we can define P and τ as in lemma

5.5. Because P is a variant, we have DOM(τ) ∩ DOM(θ) = ∅. Therefore the first equation holds. We have

already shown τ(P)
∗−→β M , so

{F/M} = {F/M} ∪ τ [DOM(θ)]

=β τ ◦ {F/P} [DOM(θ)]

If θ is idempotent and DOM(τ) ∩ I(θ) = ∅ then DOM(θ′′) ∩ I(θ′′) = ∅. Finally θ′′(P) = τ(P)
∗−→β θ

′′(F)

shows that θ′′ is a unifier of F ?= P .

11

Definition 5.7 (Transformation system LV)
We define the transformation system LV on pairs of unification problems and substitutions in the following

way

Trivial removal

⟨⟨{M ?=M} ∪D | V ⟩, θ⟩ ⇒ ⟨⟨D | V ⟩, θ⟩ LV1

Decomposition
⟨⟨{λxk:Tk. a(Mm) ?= λxk:Tk. a(Nm)} ∪D | V ⟩, θ⟩

⇓
⟨⟨∪1≤i≤m{λxk:Tk.Mi

?= λxk:Tk. Ni} ∪D | V ⟩, θ⟩,
LV2

where a is not a free variable in DOM(θ).

Variable elimination
⟨⟨{λxk:Tk. F (xk) ?= λxk:Tk. N} ∪D | V ⟩, θ⟩

⇓
⟨⟨{λxk:Tk. F (xk) ?= λxk:Tk. N} ∪ σ(D)↓ | V ⟩, θ⟩,

LV3

where

• F is a variable,

• F ̸∈ FV (λxk:Tk. N) and F ∈ FV (D), and

• σ = {F/λxk:Tk. N}.

Selective partial binding

⟨⟨{λxk:Tk. F (Mm) ?= λxk:Tk. b(Nn)} ∪D | V ⟩, {F/Q} ∪ θ⟩
⇓

⟨⟨{F ?= P , λ xk:Tk. F (Mm) ?= λxk:Tk. b(Nn)} ∪ {F/P}(D)↓ | V ⟩, {F/Q} ∪ τ ∪ θ⟩,
LV4

where

• F is a free variable and the equation λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn) is not solved,

• Q = λ ym:Sm. a(Qn),

• P is a variant of a selective partial binding appropriate to F , e.g.

P = λ ym:Sm. a(λ zpn :Rpn .Hn(ynqn
, zpn)),

and

• τ = {H1/λ ym:Sm. Q1, . . . , Hn/λ ym:Sm. Qn}.

△

Lemma 5.8 If θ ∈ SUnf (U) for some unification problem U not in solved form and W is a set of variables,

then there exists some transformation ⟨U, θ⟩ =⇒LV ⟨U ′, θ′⟩ such that

1. θ = θ′ [W];

2. If θ is idempotent then θ′ is an idempotent non-forgetful unifier of U ′ and

3. U =⇒LU U
′.

Proof: Because U is not in solved form there exists an equation M ?= N , that is not solved in U . We

distinguish the following three cases:

1. If M = N then we can use the transformation rule LV1. If head(M) is not a free variable in DOM(θ),

we can use LV2 too.

12

2. If head(M) = head(N)̸∈DOM(θ) then we can use LV2.

3. Otherwise M ̸= N and we have one of the following two cases:

(a) head(M) ̸= head(N): Because there exists a unifier for U one of M or N must be flexible. We

assume that M is a flexible term.

(b) head(M) = head(N) ∈ DOM(θ): In this case M is flexible too.

LetM = λxk:Tk. F (Mm) andN = λxk:Tk. N
′. Then LV4 is applicable or ifM

∗−→η F and F ̸∈FV (N)

the rule LV3 is applicable too.

Therefore there exists a transformation

⟨U, θ⟩ =⇒LV ⟨U ′, θ′⟩

If one of the rules LV1, LV2 or LV3 is applied, the requirements for θ′ are fulfilled

1. Because θ = θ′;

2. Because of the correctness of LU ;

3. Because of the definition of LV.

If the transformation rule LV4 is applied, we can assume, that θ = {F/Q} ∪ ϕ. Following lemma 5.6 there

exists a selective partial binding P and a non-forgetful substitution τ such that

DOM(τ) ∩W = ∅,

θ′ = {F/Q} ∪ τ ∪ ϕ =β τ ◦ {F/P} ∪ ϕ, and

U ′ = {F/P}(U) ∪ {F ?= P}.

The requirements for θ′ are fulfilled

1. Because of the construction of θ′;

2. We suppose DOM(θ) ∩ I(θ) = ∅, so following lemma 5.6

DOM(θ′) ∩ I(θ′) = ∅,

and

θ′(P) = τ(P)
∗−→β Q = θ′(F).

3. Because U is unifiable, we can deduce from the applicability of LV4 the applicability of at least one of

LU4a, LU4b, or LU4c:

• If head(N) is not a variable in DOM(θ) and

– if head(Q) = head(N) then U =⇒LU4a U
′ or

– if head(Q) ̸= head(N) then U =⇒LU4b
U ′.

• If head(N) is a variable then U =⇒LU4c U
′.

Lemma 5.9 If θ ∈ SUnf (U) and no transformation applies to ⟨U, θ⟩ then U is in solved form.

Theorem 5.10 (Completeness of LU) For any unification problem U = ⟨D | FV (D)⟩, if θ ∈ SUnf (U)

then there exists a transformation sequence

U = U0 =⇒LU U1 =⇒LU · · · =⇒LU Un

such that Un is in solved form and ⌈Un⌉SUB ≤β θ [FV (D)].

13

Proof: It is easy to show that any sequence of LV-transformations terminates. Therefore we have for any

unification problem U and unifier θ of U a finite sequence

⟨U, θ⟩ = ⟨U0, θ0⟩
∗

=⇒LV ⟨Ul, θl⟩

such that no further transformation is applicable. By induction over l using lemma 5.8 with W = FV (U)

we have θ = θl [W] and θl ∈ SUnf (Ul). Furthermore there exists a corresponding transformation sequence

U = U0
∗

=⇒LU Ul.

Using the previous lemma, Ul is in solved form. So we have ⌈Ul⌉SUB ≤β θl = θ [W].

6 Matching

To avoid the decision which definition of ‘matching’ we want to deal with, we consider the problem of

restricted unification instead. A V-restricted unification problem is just a unification problem in the sense of

definition 3.1. But the definition of a unifier changes in the following way:

Definition 6.1 (Unifier of a V-restricted unification problem)

Let SUB be a set of substitutions. A substitution θ in SUB is a unifier of a V-restricted unification problem

⟨D | V ⟩ in SUB iff DOM(θ) ∩ (FV (D) \ V) = ∅ and θV is is a unifier for every equation in D.

If SUB is the set of all normalized substitutions in SUB(L→V) then the set of all unifiers of a V-restricted

unification problem U is denoted SUV (U). If SUB is the set of all normalized substitutions in SUB(L→
nf

V)

then a unifier is called non-forgetful and the set of all non-forgetful unifier of a U is written SUVnf (U). △

Obviously we have yet considered the problem of FV (D)-restricted unification or unrestricted unification.

For D = {M1
?= N1, . . . ,Mn

?= Nn} the problem of FV (M1, . . . ,Mn)\FV (N1, . . . , Nn)-restricted unification

will be called the problem of matching M1,. . . , Mn to N1,. . . , Nn.

Restricted unification can be reduced to unrestricted unification by an enrichment of the set of constants Σ

and a reduction of the set of variables V generating the set of λ-terms. For a V-restricted unification problem

⟨D | V ⟩ let V′ = V \ symbols(((FVV(D) \ V) ∪ (V \ FVV(D)))) and Σ′ = Σ ∪ symbols((FV (D) \ V)). The

free variables in FVV(D) \ V occur in D but are not allowed to be instantiated by a V-restricted unifier.

So they are added to the set of constants. Beside that the symbols of variables in V \ FVV(D) are neither

included in V′ nor in Σ′. This is necessary if we want to use LU as a complete transformation system for

V-restricted unification as one can see in the proof of theorem 6.3.

This induces a bijection f between L→(V,Σ) and L→(V’,Σ’): f renames bound variables x:T such that

x ∈ symbols((FV (D) \ V) ∪ (V \ FV (D))) to some y:T with y ∈ V′. So f(M) is only a α-variant of M .

Because we have considered α-equivalence classes of terms all the time we will never use f explicitly in the

following.

Of course, f can be lifted to a bijection from substitutions in SUB(L→(V,Σ)V)V\(FV (D)\V) into

substitutions in SUB(L→(V′,Σ′)V
′
) and between systems in L→(V,Σ) and systems in L→(V′,Σ′).

Theorem 6.2 (Correctness) If U = ⟨D | V ⟩ is a V-restricted unification problem in L→(V,Σ) and there

exists a transformation sequence

⟨D | FVV′(D)⟩ = U0 =⇒LU U1 =⇒LU · · · =⇒LU Un

in L→(V′,Σ′) such that Un is in solved form and possibly non-forgetful, then ⌈Un⌉SUB is a V-restricted unifier

of U .

Proof: The correctness of LU implies that ⌈Un⌉SUB is a unifier of U . We have to show that it is V-restricted.

Because all variables in FVV(D) \ V are considered as constants in D the free variables of D are a subset of

V . Because V′ and FVV′(D) \ V are disjoint no free variable in Un will be in FVV′(D) \ V . So the domain

of ⌈Un⌉SUB will be a subset of V . So ⌈Un⌉SUB is a V-restricted unifier of U .

14

Theorem 6.3 (Completeness) If U = ⟨D | V ⟩ is a V-restricted unification problem in L→(V,Σ) and θ is

a non-forgetful unifier of U then there exists a transformation sequence

⟨D | V ⟩ = U0 =⇒LU U1 =⇒LU · · · =⇒LU Un

in L→(V′,Σ′) such that Un is in solved form and possibly non-forgetful and

⌈Un⌉SUB ≤ θ [V].

Proof: Because θ is a unifier of the V-restricted unification problem ⟨D | V ⟩ it is also a unifier of the

unification problem ⟨D | FVV′(D)⟩. Because of the completeness of LU there exists a transformation

sequence

⟨D | FVV′(D)⟩ = U ′
0

∗
=⇒LU ⟨Dn | FVV′(D)⟩ = U ′

n

in L→(V′,Σ′) such that U ′
n is in solved form and possibly non-forgetful. Because LU ignores the set of

variables associated with the unification problem there is also a transformation sequence

⟨D | V ⟩ = U0
∗

=⇒LU ⟨Dn | V ⟩ = Un

We have ⌈U ′
n⌉SUB ≤ θ [FVV′(D)].

Now we have FVV′(D) ⊆ V . So we have to explain why we expect ⌈Un⌉SUB ≤ θ [V] to hold. Of course,

this is true if (DOM(⌈Un⌉SUB) ∪ COD(⌈Un⌉SUB)) ∩ (V \ FVV′(D)) = ∅.
Let us carefully reconsider the completeness proof for the transformation system LU using the system

LV. We can see that in neither step

⟨⟨Di | V ⟩, θi⟩ =⇒LV ⟨⟨Di+1 | V ⟩, θi+1⟩

a variable not in DOM(θi) is instantiated. Furthermore DOM(θi+1) \ DOM(θi) ⊆ V′. Because variables in

V \FVV(D) are not in FV′ and V \FVV(D) = V \FVV′(D), no variable in V \FVV′(D) will be instantiated

by ⌈Un⌉SUB. So we have at least ⌈Un⌉SUB = ⌈U ′
n⌉SUB [V].

For the same reason, no variable x ∈ (V \ FVV′(D)) is an element of COD(⌈Un⌉SUB): Because they are

neither in V′ nor in Σ′, they will not be introduced in some transformation step

⟨⟨Di | V ⟩, θi⟩ =⇒LV ⟨⟨Di+1 | V ⟩, θi+1⟩.

So they will not occur in Un and we have ⌈Un⌉SUB ≤ θ [V].

7 Future Work

The question wether or not higher-order matching is decidable in the simply typed lambda calculus is open.

It is obvious that neither the matching algorithm based on PU nor the algorithm based on LU provides a

decision procedure for matching in the non-forgetful lambda calculus.

Example 7.1 Given the signature

sort T1
constants a : T1
variable F : ((T1 → T1)→ T1)

we consider the second-order matching problem

M0 = ⟨{F :T1(λx:T1. x) ?= a:T1} | F ⟩

In LU as well as in PU it is possible to use the project rule. We apply the substitution

σ = {F :T1/λ y: (T1 → T1). y(H1: ((T1 → T1)→ T1)(y))}

15

to M0 resulting in the matching problem

M1 = ⟨{H1:T1(λx:T1. x)
?= a:T1} | F ⟩.

M1 is identical to M0 up to renaming of the free variable. So the projection rule can be applied again and

again resulting in an infinite branch in the search space.

Nevertheless, the use of the non-forgetful lambda calculus puts a strong restriction on the unifiers of a V -

restricted unification problem. In the above example it is easy to see that there exists no matching substition

for M0. So it could be possible that it is easier to provide a decision procedure for matching in the non-

forgetful lambda calculus than to provide such a procedure for the simply typed lambda calculus (if either

of them exists).

References

Alonzo Church, 1941. The Calculi of Lambda-Conversion. Number 6 in Annals of Mathematics Studies.

Princeton University Press, Princeton, USA.

W. Snyder and J. Gallier, 1989. Higher-Order Unification Revisited: Complete Sets of Transformations.

Journal of Symbolic Computation, Vol. 8, pp. 101–140.

16

