
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
An Abstract Interpretation Algorithm

for Residuating Logic Programs

Michael Hanus

MPI–I–92–217 April 1992

���
�

�� k

I N F O R M A T I K

Im Stadtwald

W 6600 Saarbrücken

Germany

Author’s Address

Michael Hanus
Max-Planck-Institut für Informatik
Im Stadtwald
W-6600 Saarbrücken
Germany
michael@mpi-sb.mpg.de

Abstract

Residuation is an operational mechanism for the integration of functions into
logic programming languages. The residuation principle delays the evaluation
of functions during the unification process until the arguments are sufficiently
instantiated. This has the advantage that the deterministic nature of functions
is preserved but the disadvantage of incompleteness: if the variables in a delayed
function call are not instantiated by the logic program, this function can never
be evaluated and some answers which are logical consequences of the program
are lost. In order to detect such situations at compile time, we present an
abstract interpretation algorithm for this kind of programs. The algorithm
approximates the possible residuations and instantiation states of variables
during program execution. If the algorithm computes an empty residuation
set for a goal, then it is ensured that the concrete execution of the goal does
not end with a nonempty set of residuations which cannot be evaluated due to
insufficient instantiation of argument variables.

Keywords

Logic Programming, Functional Logic Programming, Residuation, Abstract Interpretation

1 Introduction

Many proposals for the integration of functional and logic programming languages have been made

during recent years (see [DL86] for a collection). From an operational point of view these proposals

can be partitioned into two classes: approaches with a complete operational semantics and a

nondeterministic search (narrowing) for solving equations with functional expressions (EQLOG

[GM86], SLOG [Fri85], K-LEAF [BGL+87], BABEL [MR92], ALF [Han90], among others), and

approaches which try to avoid nondeterministic computations for functional expressions by reducing

functional expressions only if the arguments are sufficiently instantiated (Funlog [SY86], Le Fun

[AKLN87], LIFE [AK90], NUE-Prolog [Nai91], among others). The former approaches are complete

under some well-defined conditions (e.g., canonicity of the axioms), i.e., they compute all answers

which can be logically inferred from the given program. The price for this completeness is an

increased search space since there may be several incomparable unifiers of two terms if these terms

contain unevaluated functional expressions. The latter approaches try to avoid this nondeterminism

in the unification process. In these approaches a term is reduced to normal form before it is unified

with another term, i.e., functional expressions are evaluated (if possible) before unification. If a

function cannot be evaluated because the arguments are not sufficiently instantiated, the unification

cannot proceed. Instead of causing a failure, the evaluation of the function is delayed until the

arguments will be instantiated. This mechanism is called residuation in Le Fun [AKLN87] and

extended to constraint logic programming in [Smo91]. For instance, consider the following program

(we write residuating logic programs in the usual Prolog syntax [CM87] but it is allowed to use

arbitrary evaluable functions in terms):

q :- p(X,Y,5), pick(X,Y).

p(A,B,A+B).

pick(2,3).

together with the goal “?- q”. After applying the first clause to the goal, the literals p(X,Y,5)

and p(A,B,A+B) are unified. This binds A to X and B to Y, but the unification of X+Y and 5 is not

successful since the arguments of the function call X+Y are not instantiated to numbers. Hence this

unification causes the generation of the residuation X+Y=5 which will be proved (or disproved) if X

and Y will be bound to ground terms. We proceed by proving the literal pick(X,Y) which binds X

and Y to 2 and 3, respectively. As a consequence, the instantiated residuation 2+3=5 can be verified

and therefore the entire goal has been proved.

The residuation principle seems to be preferable to the narrowing approaches since it preserves

the deterministic nature of functions. However, it fails to compute all answers if functions are used

in a logic programming manner. For instance, consider the function append for concatenating two

lists. In a functional language with pattern-matching it can be defined by the following equations

(we use the Prolog notation for lists):

append([], L) = L

append([E|R],L) = [E|append(R,L)]

From a logic programming point of view we can compute the last element E of a given list L

by solving the equation append(_,[E]) = L. Since the first argument of the left-hand side of

this equation will never be instantiated, residuation fails to compute the last element with this

1

Current goal: Current residuation:

rev([a,b,c],R) ∅
a(LE1,[E1]) = [a,b,c], rev(LE1,LR1) ∅
rev(LE1,LR1) a(LE1,[E1]) = [a,b,c]

a(LE2,[E2]) = LE1, rev(LE2,LR2) a(LE1,[E1]) = [a,b,c]

rev(LE2,LR2) a(LE1,[E1]) = [a,b,c], a(LE2,[E2]) = LE1

a(LE3,[E3]) = LE2, rev(LE3,LR3) a(LE1,[E1]) = [a,b,c], a(LE2,[E2]) = LE1

· · ·

Figure 1: Infinite derivation with the residuation principle (a(· · ·) denotes append(· · ·))

equation whereas narrowing computes the unique value for E [Han91]. Similarly, we can specify by

the equation append(LE,[_]) = L a list LE which is the result of deleting the last element in the

list L. Combining the specification of the last element and the rest of a list, we define the reversing

of a list by the following clauses:

rev([],[]).

rev(L, [E|LR]) :- append(LE,[E]) = L, rev(LE,LR).

Now consider the goal “?- rev([a,b,c],R)”. Since the arguments of the calls to the function

append are never instantiated to ground terms, the residuation principle cannot verify the cor-

responding residuation. Hence the answer R=[c,b,a] is not computed and there is an infinite

derivation path using the residuation principle and applying the second clause infinitely many

times (see Figure 1).1 On the other hand a functional-logic language based on the narrowing prin-

ciple can solve this goal and has a finite search space [Han91]. Therefore we should use narrowing

instead of residuation in this example.

The last example raises the important question whether it is possible to detect the cases where

the (more efficient) residuation principle is able to compute all answers. If this would be possible we

can avoid the nondeterministic and hence expensive narrowing principle in many cases and replace it

by computations based on the residuation principle without loosing any answers. A simple criterion

to the completeness of residuation is the groundness of all residuating variables: if at the end of a

computation all variables occurring in residual function calls are bound to ground terms, then all

residuations can be evaluated and hence the answer substitution does not depend on an unsolved

residuation. Since the satisfaction of this criterion depends on the data flow during program

execution, an exact answer is recursively undecidable. Therefore we present an approximation to

this answer by applying an abstract interpretation technique to this kind of programs. Previous

approaches for abstract interpretation of logic programs (see, for instance, [AH87, Bru91, Nil90])

depends on SLD-resolution as the operational semantics. Hence we cannot directly apply these

frameworks to our case. However it is possible to develop a similar technique by considering

unsolved residuations as part of the current substitution.

1A residual function call is only evaluated if all arguments are ground terms [AKLN87]. If we weaken this condition
to “a residual function call is evaluated if the arguments are sufficiently instantiated” (as in [Nai91]), then we can
also verify residuations like append([],[E])=[a]. In this case the answer to the goal “?- rev([a,b,c],R).” can be
computed by incremental verification of residuations, but there is also an infinite derivation path using the second
clause infinitely many times.

2

In the next section we give a detailed description of the operational semantics considered in

this paper. The abstract domain and the abstract interpretation algorithm for reasoning about

residuating programs is presented in Section 3. Finally, the correctness of our method is proved in

Section 4.

2 The residuation principle

The residuation principle tries to avoid nondeterministic computations by delaying function calls

until the arguments are sufficiently instantiated. The difference between residuating logic programs

and ordinary logic programs shows up in the unification procedure: if a call to a defined function

f(t1, . . . , tn) should be unified with a term t, the function call is evaluated if all arguments t1, . . . , tn

are bound to ground terms and the unification proceeds with the evaluated term, otherwise the

unification immediately succeeds and the residuation f(t1, . . . , tn) = t is added. If all variables

in t1, . . . , tn will be bound to ground terms in the further computation process, the residuation

f(t1, . . . , tn) = t will be immediately verified by evaluating the left-hand side and comparing the

result with the right-hand side.

In residuating logic programs terms are built from variables, constructors and (defined) func-

tions. Constructors (denoted by a, b, c, d) are used to compose data structures, while defined

functions (denoted by f, g, h) are operations on these data structures. A constructor term is a

term which does not contain functions, and a non-constructor term is a term containing at least

one function call. A ground term is a term containing no variables. With this concept of terms that

may contain function calls we adopt all standard notions of logic programming [Llo87] like clause,

logic program, substitution etc.

We do not require any formalism for the specification of functions, i.e., they may be defined by

equations or in a completely different language (external or predefined functions). However, the

following conditions must be satisfied in order to reason about residuating logic programs:

1. A function call can be evaluated if all arguments are ground terms.

2. The result of the evaluation is a ground constructor term (containing only constructors) or

an error message (i.e., the computation cannot proceed because of type errors, division by

zero etc.).

The unification algorithm for residuating logic programs is described in Figure 2 by a set of trans-

formation rules on term equations E in the style of Martelli and Montanari [MM82].2 In order to

unify two terms t and t′, we transform the equation t = t′ until no more rules are applicable. In

this case we yield the result fail or an equation set of the form

x1 = t1, . . . , xk = tk, s1 = s′1, . . . , sm = s′m

2There is one peculiarity in the unification algorithm in the presence of defined functions. If a variable X occurs
in a term t inside a function call, then we cannot deduce the failure of the unification problem X = t due to the
occur check. For instance, if id is the identity function, then the equation X = id(X) is valid for any value of X and
hence we cannot deduce a failure. But in this case X cannot be further instantiated to a ground term and therefore
the residuation X = id(X) will never be verified or disproved. Hence a failure is generated also in this case.

3

Clash:
c(t1, . . . , tn) = d(t′1, . . . , t

′
m), E

fail
if c ̸= d or m ̸= n

Decompose:
c(t1, . . . , tn) = c(t′1, . . . , t

′
n), E

t1 = t′1, . . . , tn = t′n, E

Delete:
X = X,E

E

Occur check:
X = t, E

fail
if t ̸= X and X occurs in t

Instantiate:
X = t, E

X = t, σ(E)
if X occurs in E but not in t and
σ = {X 7→ t}

Commute:
t = X,E

X = t, E
if t is not a variable

Evaluate-l:
f(t1, . . . , tn) = t, E

t′ = t, E
if t1, . . . , tn are ground and f(t1, . . . , tn)
is evaluated to t′

Evaluate-r:
t = f(t1, . . . , tn), E

t = t′, E
if t1, . . . , tn are ground and f(t1, . . . , tn)
is evaluated to t′

Figure 2: Unification algorithm for residuating logic programs

where each variable xi does not occur in tj , sj or s′j , and si or s′i are unevaluable function calls

(i = 1, . . . ,m). In the latter case si = s′i is called “residual equation” or simply “residuation” and

we interpret the substitution/residuation pair ⟨σ, ρ⟩ with

σ = {x1 7→ t1, . . . , xk 7→ tk}

ρ = {s1 = s′1, . . . , sm = s′m}

as the result of the unification. In the following we consider the elements si = s′i of the residuation

ρ as multisets {si, s′i} in order to abstract from the “left” or “right” side of a residual equation

(which is irrelevant in this context), i.e., we identify the residual equations si = s′i and s′i = si.

In the entire computation σ is part of the answer substitution and ρ will be added to unifications

in subsequent resolution steps. By giving priority to the evaluate rules we obtain the operational

semantics of Le Fun [AKLN87] where residuations are immediately verified if all argument terms

are ground.

The operational semantics of residuating logic programs considered in this paper is similar to

Prolog’s operational semantics (SLD-resolution with leftmost selection rule) but with the difference

that the standard unification is replaced by the unification described above. Hence the concrete do-

main of computation C is not simply the set of all substitutions but a set of substitution/residuation

pairs, i.e.,

C = {⟨σ, ρ⟩ | σ is a substition, ρ is a set of residuations}

where a residuation is an equation (multiset) r = r′ and r or r′ is a function call. Since ground

4

function calls are evaluated during unification, we assume in the following that all elements ⟨σ, ρ⟩
of the concrete domain C do not contain function calls with ground terms in the residuation part

ρ.

As an example consider the following residuating logic program:

q :- p(X,Y,5), 1 = W-V, X = V*W, Y = V+W, pick(V,W).

p(A,B,A+B).

pick(1,2).

If the initial goal is q, then the following elements of the concrete domain are computed during the

processing of the first clause:

Before “p(X,Y,5)”: ⟨∅, ∅⟩
After “p(X,Y,5)”: ⟨∅, {5 = X+Y}⟩
After “1 = W-V”: ⟨∅, {5 = X+Y, 1 = W-V}⟩
After “X = V*W”: ⟨{X 7→ V*W}, {5 = (V*W)+Y, 1 = W-V}⟩
After “Y = V+W”: ⟨{X 7→ V*W, Y 7→ V+W}, {5 = (V*W)+(V+W), 1 = W-V}⟩
After “pick(V,W)”: ⟨{X 7→ 1*2, Y 7→ 1+2, V 7→ 1, W 7→ 2}, ∅⟩

At the clause end the residuation set is empty since all functions could be evaluated. Hence the

initial goal is proved to be true.

3 Abstract interpretation of residuating logic programs

In this section we present a method for checking whether the residuation part of the answer to a

goal is empty, i.e., whether the residuation principle is complete w.r.t. a given program and goal.

Since this problem is recursively undecidable in general, we present an approximation to it based

on a compile-time analysis of the program. If this approximation yields a positive answer, then it

is ensured that all residuations can be solved at run time. In the following we present the abstract

domain and the motivation for it. The relation to the concrete domain and the correctness of the

abstract interpretation algorithm is discussed in Section 4 in more detail. We assume familiarity

with basic ideas of abstract interpretation techniques [AH87].

3.1 Abstract domain

There has been done a lot of work concerning the compile-time derivation of run-time properties

of logic programs (see, for instance, the collection [AH87]). Since we have abstracted the different

operational behaviour of residuating logic programs into an additional component to the concrete

domain, we can use the well-known frameworks (e.g., [Bru91, Nil90]) in a similar way. The heart

of an abstract interpretation procedure is an abstract domain which approximates subsets of the

concrete domain by finite representations. An element of the abstract domain describes common

properties of a subset of the concrete domain. The properties must be chosen so that they contain

relevant propositions about the interesting run-time properties. So what are the abstract properties

in our case?

We are interested in unevaluated residuations at run time (second component of the concrete

domain). A residuation can be verified if the function call in it can be evaluated. Since a function

call can be evaluated if all arguments are ground, we need some information about the variables in

5

it and the instantiation state of these variables in order to decide the emptiness of the residuation

set. Hence our abstract domain contains information about the following properties:

Potential residuations: Residuations are generated by the unification of terms. For instance, if

variable X is bound to A+B and variable Y is bound to 2 at run time, the unification of X and Y

generates the residuation A+B=2. Hence, in order to state properties of all residuations which

may occur at run time, we must know all potential function calls in the bindings of a variable.

Moreover, we must also know the variables in this function call in order to decide whether or

not this function call can be evaluated. Therefore our abstract domain contains elements of

the form “X with +|{A,B}” meaning: variable X may be bound to a term containing a call

to function + which can be evaluated if A and B are ground.

Dependencies between variables: Function calls can be evaluated if all variables in it are bound

to ground terms. Hence we must have some information about the dependencies between

variables. For instance, consider the goal

?- A+B = C, C*2 = 6, A = 1, B = 2.

During unification of C*2 and 6 the first term cannot be evaluated since C is not ground. But

the groundness of C depends on the groundness of A and B. Thus we can deduce that the

function call C*2 can be evaluated if A and B are bound to ground terms. Hence our abstract

domain contains the element “C if {A,B}”. In general, “X if V ” means that variable X is

bound to a ground term if all variables in V are bound to ground terms.

Sharing between variables: The potential residuations can be copied between different variables

in the unification process. For instance, consider the goal

?- Z = c(X), Y = f(A), X = Y, . . .

After the unification of X and Y the variable Z contains the function call f(A). In order

to manage correctly the potential residuations, we must store the information that Z and X

share a term. Hence our abstract domain contains the element {X,Z} representing the sharing

between X and Z.

Summarizing the previous discussion, our abstract domain A contains the element ⊥ (representing

the empty subset of the concrete domain) and sets containing the following elements (such sets are

called abstractions and denoted by A, A1 etc):

Element: Meaning:

X if V X is ground if all variables in the variable set V are ground

X with f|V X may be bound to a term containing a call to f which can be evaluated if all
variables in V are ground

f there may be an unevaluated function call to f depending on arbitrary variables

{X,Y} X and Y may share a term

Obviously, A is finite if the set of variables and function symbols is finite. Since we use only program

variables and functions occurring in the program in the abstract domain, A is finite in case of a

finite program. For convenience we simply write “X” instead of “X if ∅”. Hence an element “X” in

6

an abstraction means that variable X is bound to a ground term if it does not contain any function

call.

Given an abstraction A, a variable X is called function-free in A if A does not contain elements

of the form “X with f |V ” and “f”. In the subset of the concrete domain corresponding to A a

function-free variable can only be interpreted as a term without unevaluable function calls (compare

Section 4).

To present a simple description of the abstract interpretation algorithm, we will sometimes gen-

erate abstractions containing redundant information. The following normalization rules eliminate

some redundancies in abstractions:

Normalization rules for abstractions:

A ∪ {Z, X ifV ∪ {Z}} −→ A ∪ {Z, X ifV } if Z is function-free in A
A ∪ {Z, X with f |V ∪{Z}} −→ A ∪ {Z, X with f |V } if Z is function-free in A

A ∪ {X with f |∅} −→ A
A ∪ {X ifV1, X ifV2} −→ A ∪ {X ifV1} if V1 ⊆ V2

A ∪ {X, {X,Y }} −→ A ∪ {X}

The additional condition in the first two rules ensures that Z is bound to a ground term containing

no unevaluable function calls. We call an abstraction A normalized if none of these normalization

rules is applicable to A. Later we will see that the normalization rules are invariant w.r.t. the

concrete substitutions/residuations corresponding to abstractions. Therefore we can assume that

we compute only with normalized abstractions in the abstract interpretation algorithm.

In order to keep the abstract interpretation algorithm simple, we assume that predicate calls

and clause heads have the form p(X1, . . . , Xn) where all Xi are distinct (similarly to the example in

[Bru91]). All other literals in the clause bodies and goals have the form X = Y , X = c(Y1, . . . , Yn)

or X = f(Y1, . . . , Yn). It is easy to see that every residuating logic program can be transformed

into a flat residuating logic program satisfying the above restrictions without changing the answer

behaviour. For instance, the residuating logic program

q(T) :- p(X,Y,72), X = V-W, Y = V+W, pick(V,W).

p(A,B,A*B).

pick(9,3).

can be transformed into the following equivalent flat program:

q(T) :- Z = 72, p(X,Y,Z), X = V-W, Y = V+W, pick(V,W).

p(A,B,C) :- C = A*B.

pick(A,B) :- A = 9, B = 3.

In the following we assume that all programs are in the required form.

3.2 The abstract interpretation algorithm

The abstract interpretation algorithm is based on several operations on the abstract domain. The

first operation restricts an abstraction A to a set of variables W . It will be used in a predicate call

to omit the information about variables not passed from the predicate call to the applied clause:

call restrict(⊥,W) = ⊥

7

call restrict(A,W) = {X ∈ A | X ∈ W}

∪ {X with f |V ∈ A | {X} ∪ V ⊆ W}

∪ {f | f ∈ A or X with f |V ∈ A with X ∈ W,V ̸⊆ W}

∪ {{X,Y } ∈ A | X,Y ∈ W}

The restriction operation for predicate calls transforms an abstraction element X with f |V into the

element f if the dependent variables are not contained in W , i.e., it is noted that there may be

an unevaluated function call to f but the possible dependencies are too complex for the abstract

analysis. Similarly, an abstraction element of the form X ifV is passed to the clause only if V = ∅.3

A similar operation is needed at the clause end to forget the abstract information about local

clause variables. Hence we define:

exit restrict(⊥,W) = ⊥

exit restrict(A,W) = {X ifV ∈ A | {X} ∪ V ⊆ W}

∪ {X with f |V ∈ A | {X} ∪ V ⊆ W}

∪ {f | f ∈ A or X with f |V ∈ A with {X} ∪ V ̸⊆ W}

∪ {{X,Y } ∈ A | X,Y ∈ W}

The restriction operation for clause exits transforms an abstraction element X with f |V into the

element f if one of the involved variables is not contained in W , i.e., it is noted that there may be

an unevaluated function call to f which depends on local variables at the end of the clause.

The following operation computes the remaining abstract information of a predicate call re-

striction call restrict(A,W) in order to combine it after a predicate call:

rest(⊥,W) = ⊥

rest(A,W) = {X ifV ∈ A | X ̸∈ W or V ̸= ∅}

∪ {X with f |V ∈ A | X ̸∈ W}

∪ {{X,Y } ∈ A | X ̸∈ W or Y ̸∈ W}

The least upper bound operation is used to combine the results of different clauses for a predicate

call:

⊥ ⊔ A = A

A ⊔ ⊥ = A

A1 ⊔ A2 = {X ifV1 ∪ V2 | X ifV1 ∈ A1, X ifV2 ∈ A2}

∪ {X with f |V | X with f |V ∈ A1 or X with f |V ∈ A2}

∪ {f | f ∈ A1 or f ∈ A2}

∪ {{X,Y } | {X,Y } ∈ A1 or {X,Y } ∈ A2}

Now we are able to define the abstract unification algorithm for the abstract interpretation of

equations occurring in clause bodies or goals. Abstract unification is a function amgu(α, t1, t2)

3I conjecture that it is also possible to pass abstraction elements X ifV to the clause if {X} ∪ V ⊆ W , but I
could not prove the correctness of the abstract interpretation algorithm for this extension.

8

which takes an element of the abstract domain α ∈ A and two terms t1, t2 as input and produces

another abstract domain element as the result. Because of our restrictions on goal equations, the

following definition is sufficient:4

amgu(⊥, t1, t2) = ⊥
amgu(A,X,X) = A
amgu(A,X, Y) = closure(A ∪ {X if {Y }, Y if {X}, {X,Y }}) if X ̸= Y
amgu(A,X, c(Y1, . . . , Yn)) = closure(A ∪ {X if {Y1, . . . , Yn}, Y1 if {X}, . . . , Yn if {X},

{X,Y1}, . . . , {X,Yn}})
amgu(A,X, f(Y1, . . . , Yn)) = closure(A ∪ {X if {Y1, . . . , Yn}, X with f |{Y1,...,Yn}})

In this definition and in the rest of this paper closure(A) denotes the least set A′ containing A

which is closed under the following rules for transitivity and distribution of sharing information:

{X,Y } ∈ A′, {Y,Z} ∈ A′ =⇒ {X,Z} ∈ A′

{X,Y } ∈ A′, X with f |V ∈ A′ =⇒ Y with f |V ∈ A′

Now we can present the algorithm for the abstract interpretation of a residuating logic program

in flat form. It is specified as a function ai(α,L) which takes an abstract domain element α and

a goal literal L and yields a new abstract domain element as result. Clearly, ai(⊥, L) =⊥ and

ai(A, t = t′) = amgu(A, t, t′). The interesting case is the abstract interpretation of a predicate call

ai(A, p(X1, . . . , Xn)) which is computed by the following steps:

1. Let p(Z1, . . . , Zn) :- L1, . . . , Lk be a clause for predicate p

(if necessary, rename the clause variables such that they are disjoint from X1, . . . , Xn)

Compute Acall = call restrict(A, {X1, . . . , Xn})
A0 = ⟨replace all Xi by Zi in Acall⟩
A1 = ai(A0, L1)

A2 = ai(A1, L2)
...

Ak = ai(Ak−1, Lk)

Aout = exit restrict(Ak, {Z1, . . . , Zn})
Aexit = ⟨replace all Zi by Xi in Aout⟩

2. Let A1
exit, . . . , A

m
exit be the exit substitutions of all clauses for p as computed in step 1.

Then define Asuccess = A1
exit ⊔ . . . ⊔Am

exit

3. ai(A, p(X1, . . . , Xn)) = closure(Asuccess ∪ rest(A, {X1, . . . , Xn})) if Asuccess ̸=⊥, else ⊥

Hence a clause is interpreted in the following way. Firstly, the call abstraction is computed, i.e.,

the information contained in the predicate call abstraction is restricted to the argument variables

(Acall). The variables in this call abstraction are mapped to the corresponding variables in the

applied clause (A0). Then each literal in the clause body is interpreted. The resulting abstraction

(Ak) is restricted to the variables in the clause head, i.e., we forget the information about the local

variables in the clause. Potential residuations which are unsolved at the clause end are passed

to the abstraction Aout by the exit restrict operation. In the last step the clause variables are

renamed into the variables of the predicate call (Aexit). If all clauses defining the called predicate

4For simplicity we omit the occur check in the abstract unification.

9

p are interpreted in this way, all possible interpretations are combined by the least upper bound

of all abstractions (Asuccess). The combination of this abstraction with the information which was

forgotten by the restriction at the beginning of the predicate call yields the abstraction after the

predicate call (step 3).

The abstract interpretation algorithm described above is useless in case of recursive programs

due to the nontermination of the algorithm. This classical problem is solved in all frameworks for

abstract interpretation and therefore we do not want to develop a new solution to this problem but

use one of the well-known solutions. Following Bruynooghe’s framework [Bru91] we can construct

a rational abstract AND-OR-tree representing the computation of the abstract interpretation algo-

rithm (see also Section 4.3). During the construction of the tree we check before the interpretation

of a predicate call P whether there is an ancestor node P ′ with a call to the same predicate and

the same call abstraction (up to renaming of variables). If this is the case we take the success

abstraction of P ′ (or ⊥ if it is not available) as the success abstraction of P instead of interpreting

P . If the further abstract interpretation computes a success abstraction A′ for P ′ which differs from

the success abstraction used for P , we start a recomputation beginning at P with A′ as new success

abstraction. This iteration terminates because all operations used in the abstract interpretation

are monotone (w.r.t. the order on A defined in Section 4) and the abstract domain is finite. A

detailed description of this method is given in Section 4.3.

3.3 An example

The following example is the flat form of a Le Fun program presented in [AKLN87]:

q(Z) :- p(X,Y,Z), X = V-W, Y = V+W, pick(V,W).

p(A,B,C) :- C = A*B.

pick(A,B) :- A = 9, B = 3.

The abstract interpretation algorithm computes the following abstractions w.r.t. the initial goal

q(T) and the initial abstraction ∅ (specifying the set of all substitutions without unevaluated

function calls):

ai(∅, q(T)):
ai(∅, p(X,Y,Z)):

ai(∅, C = A*B) = {C if {A,B}, C with *|{A,B}}
ai(∅, p(X,Y,Z)) = {Z if {X,Y}, Z with *|{X,Y}} =: A1

ai(A1, X = V-W) = {Z if {X,Y}, X if {V,W}, Z with *|{X,Y}, X with -|{V,W}} =: A2

ai(A2, Y = V+W) = {Z if {X,Y}, X if {V,W}, Y if {V,W},
Z with *|{X,Y}, X with -|{V,W}, Y with +|{V,W}} =: A3

ai(A3, pick(V,W)):

ai(∅, A = 9) = {A}
ai({A}, B = 3) = {A, B}

ai(A3, pick(V,W)) = {V, W, Z if {X,Y}, X if {V,W}, Y if {V,W},
Z with *|{X,Y}, X with -|{V,W}, Y with +|{V,W}}

normalize−→ {V, W, Z, X, Y}
ai(∅, q(T)) = {T}

10

Hence the computed success abstraction is {T} meaning that after a successful computation of the

goal q(T) the variable T is bound to a ground term and the residuation set is empty, i.e., the

residuation principle allows to compute a fully evaluated answer. Similarly, the completeness of

the residuation principle can be proved by our algorithm for all other residuating logic programs

presented in [AKLN87].

4 Correctness of the abstract interpretation algorithm

In this section we will prove the correctness of the presented abstract interpretation algorithm.

Firstly, we relate the abstract domain to the concrete domain by defining a concretisation function.

Then we will prove that the abstract operations defined in the previous section are correct w.r.t.

the corresponding operations on the concrete domain. Finally, we obtain the correctness of our

algorithm by simply applying Bruynooghe’s framework [Bru91].

4.1 Relating abstractions to concrete values

To relate the computed abstract properties of the program to the concrete run-time behaviour,

we have to define a concretisation function γ:A → 2C which maps an abstraction into a subset of

the concrete domain. The most difficult point in the definition of γ is the correct interpretation

of an abstraction “X if V ”. The intuitive meaning is “the interpretation of X is ground if all

interpretations of V are ground”. To be more precise, “X if V ” describes a dependency between

the instantiation of X and the instantiation of the variables in V , i.e., we could define:

(*) If X ifV ∈ A and ⟨σ, ρ⟩ ∈ γ(A), then var(σ(X)) ⊆ var(σ(V)).

(var(ξ) denotes the set of all variables occurring in the syntactic construction ξ) Such a definition

seems to justify the generation of the abstractions “X if {Y}” and “Y if {X}” in the abstract

unification algorithm if X is unified with Y. But this interpretation is not true if X or Y are bound to

terms containing unevaluated residuations. E.g., if X is bound to f(B) and Y is bound to c(A) during

program execution, then the computation of the literal X=Y yields the substitution/residuation pair

⟨∅, {f(B)=c(A)}⟩. Thus the variables contained in the bindings of X and Y are not identical after

the unification step. Therefore we must weaken (*) to the condition that only the variables of σ(X)

occurring outside function calls are contained in the variables of σ(V) w.r.t. to the residuation ρ.

To give a precise description of the condition, we need the following definitions. By lvar(t) we

denote the set of all variables occurring outside function calls in the term t (in subsequent proofs

we say “l-variable” for variables belonging to this set):

lvar(X) = {X}

lvar(c(t1, . . . , tn)) = lvar(t1) ∪ · · · ∪ lvar(tn)

lvar(f(t1, . . . , tn)) = ∅

The extension of a set of variables V w.r.t. to the residuation ρ is defined by

varρ(V) = V ∪ {lvar(e) | f(t) = e ∈ ρ with var(t) ⊆ V }

11

(where t denotes the argument sequence t1, . . . , tn). Note that varρ(∅) = ∅ if ρ does not contain

unevaluated ground residual function calls (which do not occur in our concrete domain) and for an

empty residuation we have var∅(V) = V . The intuition of this definition is that we add to a set of

variables V all these variables which will be ground during the computation process if all variables

in V are ground. For instance, if ρ = {f(X)=c(Y), f(X)=c(Z)}, then varρ({X}) = {X, Y, Z}. We

extend the function varρ to terms by

varρ(t) = varρ(var(t))

and to finite sets of terms by

varρ({t1, . . . , tk}) = varρ(var({t1, . . . , tk}))

Since we are interested in the property whether a function call occurring in a term can be completely

evaluated, it is sufficient to look at the main function calls and not at function calls which occur

inside other function calls (this is due to the fact that a unification between a function call and

another term does not bind any variables in this call). Therefore we say a term t occurs directly in

a term t′ if t occurs in t′ outside a function call. For instance, the term X + (Y ∗ 2) occurs directly
in the term c(X + (Y ∗ 2)) but the subterm (Y ∗ 2) is not a direct occurrence.

Now we are able to define the semantics of abstractions by the concretisation function γ:A → 2C

(where t denotes the argument sequence t1, . . . , tn):

γ(⊥) = ∅

γ(A) = {⟨σ, ρ⟩ ∈ C | 1. X ifV ∈ A ⇒ lvar(σ(X)) ⊆ varρ(σ(V))

2. f(t) occurs directly in σ(X) or ρ with var(t) ̸= ∅

⇒ f ∈ A or var(t) ⊆ var(σ(V)) for some X with f |V ∈ A

3. lvar(σ(X)) ∩ lvar(σ(Y)) ̸= ∅ for variables X ̸= Y ⇒ {X,Y } ∈ A }

In the following we say a substitution/residuation pair ⟨σ, ρ⟩ satisfies the variable condition

X ifV ∈ A if condition 1 holds. Similarly, we say an occurrence f(t) in σ(X) or ρ is covered

by A if condition 2 holds.

Condition 1 implies for X ifV ∈ A that all l-variables of the current instantiation of X are

ground if all variables in V are instantiated to ground terms. Condition 2 ensures that all un-

evaluated function calls in variable bindings and in residuations are contained in A. Since we are

interested in potential residuations, it is sufficient to look at function calls which occur directly in

some variable binding (and not at function calls nested in other function calls). Hence the sharing

information is also restricted to lvar instead of var (condition 3). Note that for an unevaluated

function call in the residuation part it is sufficient that there is an arbitrary variable X which cover

this function call whereas for an unevaluated function call in the binding of a variable X there must

be an abstraction element X with f |V with the same variable. This is necessary for passing the

correct information about potential residuations in case of a predicate call (compare call restriction

operation).

From this interpretation it is clear that an abstraction without elements of the form

“X with f |V ” or “f” can only be interpreted as a fully evaluated pair ⟨σ, ρ⟩ if ρ = ∅ and σ does

12

not contain unevaluable function calls. This argument has been used to state the completeness of

the example in Section 3.3.

Due to this semantics of abstractions it can be proved that the normalization rules defined on

abstractions in Section 3.1 are invariant w.r.t. the concrete interpretation. The following lemma

justifies the application of the normalization rules.

Lemma 4.1 If A and A′ are abstractions with A → A′, then γ(A) = γ(A′).

Proof: First we show γ(A) ⊆ γ(A′). Let ⟨σ, ρ⟩ ∈ γ(A). We prove ⟨σ, ρ⟩ ∈ γ(A′) by a case analysis

on the applied normalization rule:

1. Let A = A0 ∪ {Z, X ifV ∪ {Z}}, A′ = A0 ∪ {Z, X ifV } and Z be function-free in A0.

Since the only difference between A and A′ is the transformation of “X ifV ∪ {Z}” into

“X ifV ”, we have to show lvar(σ(X)) ⊆ varρ(σ(V)). Since ⟨σ, ρ⟩ ∈ γ(A), lvar(σ(Z)) = ∅
and lvar(σ(X)) ⊆ varρ(σ(V ∪{Z})). σ(Z) is a ground term because Z is function-free in A0.

Hence lvar(σ(X)) ⊆ varρ(σ(V ∪ {Z})) = varρ(σ(V)).

2. Let A = A0∪{Z, X with f |V ∪{Z}}, A′ = A0∪{Z, X with f |V } and Z be function-free in A0.

Since only the abstraction element X with f |V ∪{Z} is affected by this transformation, we have

to show: if f(t) occurs directly in σ(X) or ρ with var(t) ̸= ∅ and var(t) ⊆ var(σ(V ∪ {Z})),
then var(t) ⊆ var(σ(V)). Since ⟨σ, ρ⟩ ∈ γ(A), var(σ(Z)) = lvar(σ(Z)) = ∅ (as in the

previous case). Hence var(t) ⊆ var(σ(V ∪ {Z})) = var(σ(V)).

3. Let A = A′ ∪ {X with f |∅}. If the abstraction element X with f |∅ was a relevant condition

for ⟨σ, ρ⟩ ∈ γ(A), then f(t) occurs directly in σ(X) or ρ with var(t) ⊆ ∅. Hence f(t) is a

ground function call which need not be covered by A′.

4. Let A = A0∪{X ifV1, X ifV2}, A′ = A0∪{X ifV1} and V1 ⊆ V2. Obviously, ⟨σ, ρ⟩ ∈ γ(A′)

since the variable condition X ifV2 is omitted in A′.

5. Let A = A0 ∪ {X, {X,Y }} and A′ = A0 ∪ {X}. If the abstraction element {X,Y } was a

relevant condition for ⟨σ, ρ⟩ ∈ γ(A), then lvar(σ(X))∩ lvar(σ(Y)) ̸= ∅. But this case cannot

occur since lvar(σ(X)) = ∅.

Next we show γ(A) ⊇ γ(A′). Let ⟨σ, ρ⟩ ∈ γ(A′). As before we prove ⟨σ, ρ⟩ ∈ γ(A) by a case analysis

on the applied normalization rule:

1. Let A = A0 ∪ {Z, X ifV ∪ {Z}} and A′ = A0 ∪ {Z, X ifV }. Since ⟨σ, ρ⟩ ∈ γ(A′),

lvar(σ(X)) ⊆ varρ(σ(V)) ⊆ varρ(σ(V ∪ {Z})). Hence ⟨σ, ρ⟩ ∈ γ(A) because “X ifV ∪ {Z}”
is the only altered abstraction element.

2. Let A = A0 ∪ {Z, X with f |V ∪{Z}} and A′ = A0 ∪ {Z, X with f |V }. Similarly to the first

case.

3. Let A = A′ ∪ {X with f |∅}. This case is trivial since A contains the additional abstraction

element “X with f |∅”.

13

4. Let A = A0 ∪ {X ifV1, X ifV2}, A′ = A0 ∪ {X ifV1} and V1 ⊆ V2. We have to show

lvar(σ(X)) ⊆ varρ(σ(V2)). But this is trival because ⟨σ, ρ⟩ ∈ γ(A′) implies lvar(σ(X)) ⊆
varρ(σ(V1)) ⊆ varρ(σ(V2)).

5. Let A = A0 ∪ {X, {X,Y }} and A′ = A0 ∪ {X}. This case is trivial since A contains the

additional abstraction element “{X,Y }”.

Due to this lemma it makes no difference to use an abstraction A or the normalization of A if

we want to prove a proposition like ⟨σ, ρ⟩ ∈ γ(A). We will take advantage of this property in the

correctness proofs for the abstract operations (cf. Section 4.2).

For the termination of the abstract interpretation algorithm it is important that all operations on

the abstract domain are monotone. Therefore we define the following order relation on normalized

abstractions:

(a) ⊥⊑ α for all α ∈ A
(b) A ⊑ A′ ⇐⇒ 1. X ifV ′ ∈ A′ ⇒ ∃V ⊆ V ′ with X ifV ∈ A

2. X with f |V ∈ A ⇒ X with f |V ∈ A′

3. f ∈ A ⇒ f ∈ A′

4. {X,Y } ∈ A ⇒ {X,Y } ∈ A′

It is easy to prove that ⊑ is a reflexive, transitive and anti-symmetric relation on normalized

abstractions. Moreover, the operation ⊔ defined in Section 3.2 computes the least upper bound of

two abstractions:

Lemma 4.2 A1 ⊔A2 is a least upper bound of A1, A2 ∈ A.

Proof: If A1 =⊥ or A2 =⊥, then obviously A1⊔A2 is a least upper bound of A1 and A2. Therefore

we assume A1 ̸=⊥ and A2 ̸=⊥.

First we show that A1 ⊔ A2 is an upper bound of A1 (the case for A2 is symmetric): Let

X ifV0 ∈ A1 ⊔A2. By definition of ⊔, there are X ifV1 ∈ A1 and X ifV2 ∈ A2 with V0 = V1 ∪V2.

Hence X ifV1 ∈ A1 and V1 ⊆ V0 (condition 1 of ⊑). If α is an abstraction element of the form

X with f |V , f or {X,Y }, then α ∈ A1 implies α ∈ A1 ⊔A2 by definition of ⊔ (conditions 2-4 of ⊑).

Therefore A1 ⊑ A1 ⊔A2.

To show that A1 ⊔ A2 is a least upper bound, assume an abstraction A with A1 ⊑ A and

A2 ⊑ A. If X ifV ∈ A, then there are V1 ⊆ V and V2 ⊆ V with X ifV1 ∈ A1 and X ifV2 ∈ A2

(by definition of ⊑). This implies X ifV1 ∪ V2 ∈ A1 ⊔ A2 and V1 ∪ V2 ⊆ V . If α is an abstraction

element of the form X with f |V , f or {X,Y }, then α ∈ A1 ⊔ A2 implies α ∈ A1 or α ∈ A2 and

hence α ∈ A by definition of ⊑. Therefore A1 ⊔A2 ⊑ A.

It is also easy to show that γ is a monotone function:

Lemma 4.3 If A ⊑ A′, then γ(A) ⊆ γ(A′).

Proof: Let A ⊑ A′ and ⟨σ, ρ⟩ ∈ γ(A). (the case A =⊥ is trivial). We have to show ⟨σ, ρ⟩ ∈ γ(A′).

14

Let X ifV ′ ∈ A′. Since A ⊑ A′, there is a set V ⊆ V ′ with X ifV ∈ A. Since ⟨σ, ρ⟩ ∈ γ(A),

lvar(σ(X)) ⊆ varρ(σ(V)) ⊆ varρ(σ(V
′)). Hence ⟨σ, ρ⟩ satisfies X ifV ′.

If f(t) occurs directly in σ(X) or ρ with var(t) ̸= ∅, then f ∈ A or var(t) ⊆ var(σ(V)) for some

X with f |V ∈ A. These abstraction elements are also contained in A′ in both cases (by definition

of ⊑).

If lvar(σ(X))∩lvar(σ(Y)) ̸= ∅ for variablesX ̸= Y , then {X,Y } ∈ A. This implies {X,Y } ∈ A′

by definition of ⊑.

It is also not difficult to show that all abstract operations defined in Section 3.2 (restriction,

remainder, abstract unification etc.) are monotone. As an example we show the monotonicity of

the restriction operation for clause entries.

Lemma 4.4 The abstract operation call restrict is monotone.

Proof: Let A1 ⊑ A2 and A′
1 := call restrict(A1,W), A′

2 := call restrict(A2,W). We have to show:

A′
1 ⊑ A′

2.

If A1 =⊥, then A′
1 =⊥ and thus A′

1 ⊑ A′
2. Hence we assume A1 ̸=⊥ which implies A2 ̸=⊥ and

A′
1 ̸=⊥, A′

2 ̸=⊥.

1. X ifV ∈ A′
2: By definition of call restrict, V = ∅, X ∈ A2 and X ∈ W . Since A1 ⊑ A2,

X ∈ A1 which immediately implies X ∈ A′
1.

2. X with f |V ∈ A′
1: By definition of call restrict, X with f |V ∈ A1 and {X} ∪ V ⊆ W . This

implies X with f |V ∈ A2 and thus X with f |V ∈ A′
2.

3. f ∈ A′
1: By definition of call restrict, either f ∈ A1 which implies f ∈ A2 and f ∈ A′

2, or

X with f |V ∈ A1 with X ∈ W and V ̸⊆ W . The latter case implies X with f |V ∈ A2 and

f ∈ A′
2.

4. {X,Y } ∈ A′
1: By definition of call restrict, {X,Y } ∈ A1 and X,Y ∈ W . Hence {X,Y } ∈ A2

and therefore {X,Y } ∈ A′
2.

4.2 Correctness of abstract operations

Following the framework presented in [Bru91], the correctness of the abstract interpretation al-

gorithm can be proved by showing the correctness of each basic operation of the algorithm (like

abstract unification, clause entry and clause exit). Correctness means in this context that all con-

crete computations, i.e., the results of the concrete clause entry, clause exit and unification (cf.

Section 2), are subsumed by the abstractions computed by the corresponding abstract operations.

In this section we will prove the correctness of each of these operations. In the following we use

standard notions and notations from term rewriting [DJ90]. For instance, a position π in a term

t is a sequence of natural numbers denoting the path from the root symbol to this term position,

and t|π denotes the subterm of t at position π.

15

First we prove that the abstract unification operation covers all possible concrete unifiers. For

this purpose we need several propositions. A unifier of two terms containing function calls does not

make these terms identical (due to the residuations), but the following lemma states a relationship

between the variables of the unified terms.

Lemma 4.5 If t1 and t2 are terms and ⟨σ, ρ⟩ is a unifier computed by the rules of Figure 2, then

lvar(σ(t1)) ⊆ varρ(σ(t2)).

Proof: We prove the lemma by analysing different subterms of σ(t1) and σ(t2) which contain

variables of lvar(σ(t1)). Let σ(t1)|π be a subterm of σ(t1) which is not inside a function call so

that σ(t1)|π and σ(t2)|π have different root symbols and π is minimal with this property. If σ(t1)|π
is a function call, then the variables in this subterm do not count for lvar(σ(t1)). If σ(t1)|π is not

a function call, then σ(t2)|π must be a function call (otherwise these subterms have identical root

symbols after successful unification) and σ(t2)|π can be evaluated to σ(t1)|π (in this case σ(t1)|π
is a ground term) or σ(t1)|π = σ(t2)|π ∈ ρ. In the latter case lvar(σ(t1)|π) ⊆ varρ(σ(t2)|π) by

definition of varρ.

Next we want to characterize the effect of a substitution with respect to the extension varρ of a

variable set.

Lemma 4.6 If X ∈ varρ(t) and σ is a substitution, then lvar(σ(X)) ⊆ varσ(ρ)(σ(t)).

Proof: Since varρ(t) = var(t) ∪ {lvar(e) | f(t) = e ∈ ρ with var(t) ⊆ var(t)}, there are two cases

if X ∈ varρ(t):

1. X ∈ var(t): Then lvar(σ(X)) ⊆ var(σ(X)) ⊆ var(σ(t)) ⊆ varσ(ρ)(σ(t)).

2. X ∈ lvar(e) for some f(t) = e ∈ ρ with var(t) ⊆ var(t): Then var(σ(t)) ⊆ var(σ(t)). Hence

lvar(σ(X)) ⊆ lvar(σ(e)) ⊆ varσ(ρ)(σ(t)).

The following lemma extends the previous lemma to terms:

Lemma 4.7 If t1 and t2 are terms with lvar(t1) ⊆ varρ(t2) and σ is a substitution, then

lvar(σ(t1)) ⊆ varσ(ρ)(σ(t2)).

Proof: Let X ∈ lvar(σ(t1)). Then there is a variable Y ∈ lvar(t1) with X ∈ lvar(σ(Y)). Condition

lvar(t1) ⊆ varρ(t2) implies Y ∈ varρ(t2). By the previous lemma, lvar(σ(Y)) ⊆ varσ(ρ)(σ(t2)).

Therefore X ∈ varσ(ρ)(σ(t2)).

Now we are able to prove the correctness of the abstract unification operation. Correctness

means that abstract unification is consistent with concrete unification in the following sense:

If ⟨σ, ρ⟩ ∈ γ(A) is the current substitution/residuation pair during program execution

and the execution of the literal t1 = t2 yields the new substitution/residuation pair

⟨σ′ ◦ σ, ρ′⟩, then this new substitution/residuation pair is covered by the abstraction

computed by abstract unification, i.e., ⟨σ′ ◦ σ, ρ′⟩ ∈ γ(amgu(A, t1, t2)).

16

Execution of the literal t1 = t2 means applying the rules of Figure 2 to the equations ρ ∪ {σ(t1) =
σ(t2)}. In order to simplify the proof, we state a result for the unifier ⟨σ, ρ⟩ of the single equation

{σ(t1) = σ(t2)}, i.e., we show ⟨σ ◦ σ, ρ ∪ σ(ρ)⟩ ∈ γ(amgu(A, t1, t2)). The difference between

⟨σ◦σ, ρ∪σ(ρ)⟩ and ⟨σ′◦σ, ρ′⟩ is that some variables in σ(ρ) are bound to ground terms by ⟨σ′◦σ, ρ′⟩
(since the original computation considers also the residuations in ρ which may be evaluated to

ground constructor terms and thus binds variables of the other side of the equation) and ρ′ may

contain less residuations than ρ∪σ(ρ). But this difference causes no problem since ⟨σ◦σ, ρ∪σ(ρ)⟩ ∈
γ(A′) implies ⟨σ′ ◦ σ, ρ′⟩ ∈ γ(A′). This can be seen by the following two obvious propositions:

Proposition 4.8 If A is an abstraction, ⟨σ, ρ⟩ ∈ γ(A) and σ′ a substitution which maps all vari-

ables X with σ(X) ̸= X into ground constructor terms, then ⟨σ′ ◦ σ, σ′(ρ)⟩ ∈ γ(A).

Proposition 4.9 If A is an abstraction, ⟨σ, ρ⟩ ∈ γ(A) and ρ′ ⊆ ρ where the residuations from

ρ− ρ′ do not contain variables, then ⟨σ, ρ′⟩ ∈ γ(A).

Due to this argument we prove in the following correctness theorems all results w.r.t. unifiers

which do not consider the current residuation ρ. The following theorem states the correctness of

the abstract unification in this sense.

Theorem 4.10 (Correctness of abstract unification) Let X be a variable, t be a term of

the form t = Y , t = c(Y1, . . . , Yn) or t = f(Y1, . . . , Yn) and A be an abstraction. Then for

all ⟨σ, ρ⟩ ∈ γ(A) and all unifiers ⟨σ′, ρ′⟩ for σ(X) and σ(t) computed by the rules of Figure 2,

⟨σ′ ◦ σ, ρ′ ∪ σ′(ρ)⟩ ∈ γ(amgu(A,X, t)).

Proof: Let A, ⟨σ, ρ⟩ and ⟨σ′, ρ′⟩ be given as described above. We prove the theorem for each of the

three cases for t.

Let t = Y (̸= X, otherwise the theorem is trivially true). Then

A′ := amgu(A,X, Y) = closure(A ∪ {X if {Y }, Y if {X}, {X,Y }})

We have to show: ⟨σ′ ◦ σ, ρ′ ∪ σ′(ρ)⟩ ∈ γ(A′).

1. X if {Y } ∈ A′: Since ⟨σ′, ρ′⟩ is a unifier for σ(X) and σ(Y), Lemma 4.5 yields

lvar(σ′(σ(X))) ⊆ varρ′(σ
′(σ(Y))) ⊆ varρ′∪σ′(ρ)(σ

′(σ(Y))).

2. Y if {X} ∈ A′: Symmetric to the previous case.

3. Z ifV ∈ A′ ∩ A: Since ⟨σ, ρ⟩ ∈ γ(A), lvar(σ(Z)) ⊆ varρ(σ(V)). The straightforward exten-

sion of Lemma 4.7 to sets of terms yields

lvar(σ′(σ(Z))) ⊆ varσ′(ρ)(σ
′(σ(V))) ⊆ varρ′∪σ′(ρ)(σ

′(σ(V))).

Hence all variable conditions of A′ are satisfied by ⟨σ′ ◦ σ, ρ′ ∪ σ′(ρ)⟩.

17

4. f(t) occurs directly in σ′(σ(Z)) with var(t) ̸= ∅ (for an arbitrary variable Z):

First we assume that f(t) occurs in a position also present in σ(Z), i.e., there is a position

π with σ′(σ(Z))|π = f(t), σ(Z)|π = f(s) and σ′(s) = t. Since ⟨σ, ρ⟩ ∈ γ(A) and f(s) occurs

directly in σ(Z), f ∈ A (which implies f ∈ A′) or var(s) ⊆ var(σ(V)) for some Z with f |V ∈
A. The latter case implies var(t) = var(σ′(s)) ⊆ var(σ′(σ(V))) for Z with f |V ∈ A′.

Otherwise we assume that f(t) occurs directly in σ′(σ(Z)) but not in σ(Z), i.e., there is a

position π with σ′(σ(Z))|π = f(t) but σ(Z)|π is undefined or a variable. In this case σ(Z)

must contain a variable which is instantiated by the unifier ⟨σ′, ρ′⟩ to a non-constructor term.

Since a unifier computed by the rules of Figure 2 binds only l-variables in σ(X) and σ(Y)

to non-constructor terms, σ(Z) must share a l-variable with σ(X) or σ(Y) (for simplicity we

consider only the case for σ(X) in the following), i.e., {Z,X} ∈ A and σ′(σ(X)) have also a

direct occurrence of the subterm f(t). Since new function calls are not created by the rules

of Figure 2, there must exist a subterm f(s) of an instantiated variable σ(Z ′) with σ′(s) = t.

Moreover, σ(Z ′) and σ(X) (or σ(Y)) share a l-variable (which contains the function call f(t) in

σ′). Hence, because of ⟨σ, ρ⟩ ∈ γ(A), {Z ′, X}(or {Z ′, Y }) ∈ A and f ∈ A (which immediately

implies f ∈ A′) or var(s) ⊆ var(σ(V)) for some Z ′ with f |V ∈ A. In the latter case we have

X with f |V ∈ A′ and also Z with f |V ∈ A′ (since A′ is closed under the distribution of sharing

information) where var(t) = var(σ′(s)) ⊆ var(σ′(σ(V))). Hence the occurrence of f(t) in

σ′(σ(Z)) is covered by A′.

5. f(t) occurs directly in σ′(ρ) ∪ ρ′ with var(t) ̸= ∅ but does not occur directly in σ′(σ(Z)) for

any variable Z:

• f(t) belongs to σ′(ρ): Since f(t) does not occur in σ′(σ(Z)) for any Z, this function call

is not contained in the image of σ′ and therefore there exists a residual function call f(s)

in ρ with σ′(s) = t. Since var(s) ̸= ∅ and ⟨σ, ρ⟩ ∈ γ(A), f ∈ A or var(s) ⊆ var(σ(V))

for some Z with f |V ∈ A. Thus f ∈ A′ or var(t) = var(σ′(s)) ⊆ var(σ′(σ(V))) for

Z with f |V ∈ A′.

• f(t) belongs to ρ′: Since ρ′ is generated during unification of σ(X) and σ(Y), there is a

subterm f(s) of σ(X) or σ(Y) with σ′(s) = t, i.e., f(t) occurs in σ′(σ(X)) or σ′(σ(Y))

which contradicts our assumption. Thus this case cannot occur.

Therefore every residual function call in σ′(ρ) ∪ ρ′ is covered by A′.

6. lvar(σ′(σ(Z))) ∩ lvar(σ′(σ(Z ′))) ̸= ∅ for variables Z ̸= Z ′:

If lvar(σ(Z)) ∩ lvar(σ(Z ′)) ̸= ∅, then {Z,Z ′} ∈ A and thus {Z,Z ′} ∈ A′. Otherwise we

assume lvar(σ(Z))∩ lvar(σ(Z ′)) = ∅. Since σ′ instantiates only l-variables of σ(X) and σ(Y)

to non-ground terms, σ(Z), σ(Z ′) and σ(X), σ(Y) must share l-variables. Hence (in the worst

case) {Z,X}, {Z ′, Y } ∈ A which implies by definition of A′ (closure property) {Z,Z ′} ∈ A′.

Altogether we have shown that ⟨σ′ ◦ σ, ρ′ ∪ σ′(ρ)⟩ ∈ γ(A′) for the case t = Y .

Next we consider the case t = c(Y1, . . . , Yn). Then

A := amgu(A,X, c(Y1, . . . , Yn)) = closure(A ∪ {X if {Y1, . . . , Yn}, Y1 if {X}, . . . , Yn if {X},
{X,Y1}, . . . , {X,Yn}})

18

1. X if {Y1, . . . , Yn} ∈ A′: Since ⟨σ′, ρ′⟩ is a unifier for σ(X) and σ(t), Lemma 4.5 yields

lvar(σ′(σ(X))) ⊆ varρ′(σ
′(σ(t))) ⊆ varρ′∪σ′(ρ)(σ

′(σ(t))) = varρ′∪σ′(ρ)(σ
′(σ({Y1, . . . , Yn}))).

2. Yi if {X} ∈ A′: Similarly to the previous case, Lemma 4.5 yields lvar(σ′(σ(t))) ⊆
varρ′∪σ′(ρ)(σ

′(σ(X))). Since lvar(σ′(σ(Yi))) ⊆ lvar(σ′(σ(t))), we obtain

lvar(σ′(σ(Yi))) ⊆ varρ′∪σ′(ρ)(σ
′(σ(X))).

3. Z ifV ∈ A′ ∩A: This is identical to the corresponding case of “t = Y ” (see above).

Therefore all variable conditions of A′ are satisfied by ⟨σ′ ◦ σ, ρ′ ∪ σ′(ρ)⟩.

4. f(t) occurs directly in σ′(σ(Z)) or in the residuation σ′(ρ)∪ρ′ with var(t) ̸= ∅: This is similar

to the corresponding cases of “t = Y ” with the difference that sometimes we have to replace

“Y ” by “some Yi” in the proof.

5. lvar(σ′(σ(Z))) ∩ lvar(σ′(σ(Z ′))) ̸= ∅ for variables Z ̸= Z ′: Let lvar(σ(Z)) ∩ lvar(σ(Z ′)) = ∅
(otherwise we proceed as in case “t = Y ”). Since σ′ instantiates only l-variables of σ(X) and

σ(c(Y1, . . . , Yn)) to non-ground terms, σ(Z) and σ(Z ′) must share l-variables with σ(X) and

σ(c(Y1, . . . , Yn)). By ⟨σ, ρ⟩ ∈ γ(A) and the closure property of A′ we obtain {Z,Z ′} ∈ A′.

Hence we have proved the theorem for the case t = c(Y1, . . . , Yn).

Next we consider the case t = f(Y1, . . . , Yn). Then

A := amgu(A,X, f(Y1, . . . , Yn)) = closure(A ∪ {X if {Y1, . . . , Yn}, X with f |{Y1,...,Yn}})

1. X if {Y1, . . . , Yn} ∈ A′:

If σ(t) is a ground term, then the function call σ(t) evaluates to a ground term which is unified

with σ(X), i.e., all l-variables of σ(X) are bound to ground terms. Hence lvar(σ′(σ(X))) = ∅.

If σ(t) is not a ground term, then the function call σ(t) delays or is bound to σ(X), i.e., there

are the following two cases:

• If σ(X) is not a variable, then σ′ = ∅ and ρ′ = {σ(X) = σ(t)}. Hence lvar(σ′(σ(X))) =

lvar(σ(X)) ⊆ varρ′(σ(t)) ⊆ varρ′∪ρ(σ(t)) = varρ′∪σ′(ρ)(σ
′(σ({Y1, . . . , Yn}))).

• If σ(X) is a variable, then σ′ = {σ(X) 7→ σ(t)} and ρ′ = ∅. Hence lvar(σ′(σ(X))) =

lvar(σ(t)) = ∅ ⊆ varρ′∪σ′(ρ)(σ
′(σ({Y1, . . . , Yn}))).

2. Z ifV ∈ A′ ∩A: This is identical to the corresponding case of “t = Y ” (see above).

3. f(t) occurs directly in σ′(σ(Z)) or in the residuation σ′(ρ) ∪ ρ′ with var(t) ̸= ∅: We

assume that f(t) is a “new” residual function call introduced by this unification, i.e.,

f(t) = σ′(σ(f(Y1, . . . , Yn))) (otherwise we proceed as in case “t = Y ”). But this function

call is covered by A′ since X with f |{Y1,...,Yn} ∈ A′, var(t) = var(σ′(σ({Y1, . . . , Yn}))) and the

closure property of A′.

19

4. lvar(σ′(σ(Z))) ∩ lvar(σ′(σ(Z ′))) ̸= ∅ for variables Z ̸= Z ′: Let lvar(σ(Z)) ∩ lvar(σ(Z ′)) = ∅
(otherwise we proceed as in case “t = Y ”). Then σ(X) must be a variable and thus σ′ =

{σ(X) 7→ σ(t)}. Therefore σ′ may only delete occurrences of σ(X) from the l-variables but

does not add new l-variables in any term, i.e., lvar(σ′(σ(Z))) ∩ lvar(σ′(σ(Z ′))) = ∅. By this

contradiction we infer that this case cannot occur.

Next we want to prove that the abstract operations performed at the entry of a clause are

correct w.r.t. the concrete semantics. Hence we must show something like:

If P is a predicate call with abstraction A, ⟨σ, ρ⟩ ∈ γ(A), L :-L1, . . . , Lk is a variant

of a clause and ⟨σ′, ρ′⟩ is a unifier for σ(P) and L, then ⟨σ′ ◦ σ, ρ′ ∪ σ′(ρ)⟩ ∈ γ(A0)

where A0 is the abstraction computed for the clause L :-L1, . . . , Lk by the abstract

interpretation algorithm ai.

However, this statement is too strong and not true in general since A0 contains only properties of

variables occurring in the clause L :-L1, . . . , Lk. Bruynooghe [Bru91] has shown that it is sufficient

to prove that the call substitution restricted to the clause variables is contained in the computed

call abstraction. Hence in our case it is sufficient that ⟨σ′ ◦ σ|W , ρ′⟩ ∈ γ(A0) where W is the set of

all clause variables and the restriction of a substitution ϕ to a variable set V is defined by

ϕ|V := {X 7→ t ∈ ϕ | X ∈ V }

Strictly speaking we have omitted the “old” residuation σ′(ρ) while applying the clause, but later

we will see that this omitted residuation set is also covered by the computed success abstraction

(compare Theorem 4.14). The difference of this simplification in comparison to the “real” compu-

tation is that some residuations of σ′(ρ) may be evaluated during the concrete clause application.

But this difference makes no problem due to Propositions 4.8 and 4.9.

Theorem 4.11 (Correctness of clause entry) Let P = p(X1, . . . , Xn) be a predicate call with

abstraction A and ⟨σ, ρ⟩ ∈ γ(A). Let p(Z1, . . . , Zn) :-L1, . . . , Lk be a (renamed) clause, ⟨σ′, ρ′⟩ be
a unifier for σ(P) and p(Z1, . . . , Zn) computed by the rules of Figure 2, and A0 be the abstraction

computed by algorithm ai. Then ⟨σ′ ◦σ|W , ρ′⟩ ∈ γ(A0) with W = var(p(Z1, . . . , Zn) :-L1, . . . , Lk).

Proof: σ′ = {Z1 7→ σ(X1), . . . , Zn 7→ σ(Xn)} and ρ′ = ∅ is a unifier computed for σ(P) and

p(Z1, . . . , Zn) (all other unifiers are renamings of this). Since all Z ∈ W are new variables, σ(Z) = Z

and thus σ′ ◦ σ|W = σ′. Hence we have to show: ⟨σ′, ∅⟩ ∈ γ(A0).

1. X ifV ∈ A0: By definition of call restrict and ai, V = ∅, X = Zi for some i ∈ {1, . . . , n} and

Xi ∈ A. Since ⟨σ, ρ⟩ ∈ γ(A), lvar(σ′(Zi)) = lvar(σ(Xi)) = ∅. Hence all variable conditions

of A0 are satisfied by ⟨σ′, ∅⟩.

2. f(t) occurs directly in σ′(X) with var(t) ̸= ∅: Then X = Zi for some i ∈ {1, . . . , n} and

therefore f(t) occurs directly in σ(Xi). Since ⟨σ, ρ⟩ ∈ γ(A), f ∈ A (which immediately

implies f ∈ A0) or var(t) ⊆ var(σ(V)) for some Xi with f |V ∈ A. Now consider the latter

20

case. If V ̸⊆ {X1, . . . , Xn}, then f ∈ A0 by definition of call restrict. Otherwise, if V ⊆
{X1, . . . , Xn}, Zi with f |σxz(V) ∈ A0 (where the substitution σxz renames each Xj into Zj).

Since σxz(V) ⊆ {Z1, . . . , Zn}, var(t) ⊆ var(σ(V)) = var(σ′(σxz(V))).

3. Since the residuation part is empty, there are no function calls in this part.

4. lvar(σ′(X)) ∩ lvar(σ′(Y)) ̸= ∅ for variables X ̸= Y : Then X = Zi and Y = Zj for some

i ̸= j. σ′(Zi) = σ(Xi) and σ′(Zj) = σ(Xj) implies lvar(σ(Xi)) ∩ lvar(σ(Xj)) ̸= ∅. Since

⟨σ, ρ⟩ ∈ γ(A), {Xi, Xj} ∈ A and hence {Zi, Zj} ∈ A0.

To prove a similar theorem for the correctness of the abstract operations performed at clause

exit, we need two propositions about the flow of residuation abstractions in the abstract interpre-

tation of predicates. The first proposition states that a residuation abstraction of the form “f” will

never be deleted during abstract interpretation:

Proposition 4.12 Let P be a predicate call with abstraction A, f ∈ A and ai(A,P) ̸=⊥. Then

f ∈ ai(A,P).

Proof: By induction on the computation steps of the abstract interpretation algorithm (cf. Sec-

tion 4.3), it is straightforward to show that this proposition holds since an abstraction element “f”

is passed through abstract unification (amgu), from predicate calls to clause entries (call restrict)

and from clause exits to predicate calls (exit restrict and rest). Hence “f” is present in all ab-

stractions different from ⊥ during the entire abstract interpretation of ai(A,P).

The next proposition states that a residuation abstraction of the form “X with f |V ” will only

be deleted during abstract interpretation if all variables are provable bound to ground terms:

Proposition 4.13 Let P be a predicate call with abstraction A, X with f |V ∈ A and

A′ := ai(A,P) ̸=⊥. Then f ∈ A′ or V = V1 ∪ V2 with X with f |V1 ∈ A′ and all variables

Z ∈ V2 are bound to ground terms in all concrete interpretations corresponding to A′.

Proof: This proposition holds similarly to the previous proposition. Note that an abstraction

element X with f |V is never deleted but only transformed into f (by call restrict or exit restrict)

or some variables in V are deleted by the normalization rules. In the latter case the conditions

in the normalization rules ensure that these deleted variables are bound to ground terms in the

corresponding concrete interpretations (see proof of Lemma 4.1).

Now we are prepared to prove the correctness of the abstract clause exit operations, i.e., we

show that each substitution/residuation pair which may occur at the end of a clause applied to a

predicate call is covered by the abstract interpretation algorithm.

Theorem 4.14 (Correctness of clause exit) Let P = p(X1, . . . , Xn) be a predicate call

with abstraction Ain and ⟨σin, ρin⟩ ∈ γ(Ain). Let A = ai(Ain, P) = closure(Asuccess ∪
rest(Ain, {X1, . . . , Xn})) be the abstraction after the predicate call computed by the abstract inter-

pretation algorithm ai. Let L :-L1, . . . , Lk be a (renamed) clause for P , and Ak be the abstraction

21

computed for the clause end in ai. Let ⟨σk, ρk⟩ ∈ γ(Ak) and σ be a substitution on the variables

from σin(P) so that σ(σin(P)) = σk(L). Then ⟨σ ◦ σin, ρk ∪ σ(ρin)⟩ ∈ γ(A).

In a concrete computation the substitution/residuation pair ⟨σk, ρk⟩ after the clause application is

an extension of σin (i.e., σk(L) = σ(σin(P)), as required) and an extension of ρin (i.e., ρk = ρ∪σ(ρin)
for some ρ where some of the residuations can be evaluated). Since we have omitted the residuation

ρin in the corresponding clause entry (compare Theorem 4.11), we prove in this theorem that this

was correct.

Proof: Let L = p(Z1, . . . , Zn), σzx = {Z1 7→ X1, . . . , Zn 7→ Xn} be the renaming of each variable

Zi into Xi, and σxz = {X1 7→ Z1, . . . , Xn 7→ Zn} the inverse of σzx. Note that σk(Zi) = σ(σin(Xi))

for i = 1, . . . , n. We have to show: ⟨σ ◦ σin, ρk ∪ σ(ρin)⟩ ∈ γ(A).

1. X ifV ∈ A: Hence there are two cases:

• X ifV ∈ rest(Ain, {X1, . . . , Xn}): Then lvar(σin(X)) ⊆ varρin(σin(V)) since X ifV ∈
Ain and ⟨σin, ρin⟩ ∈ γ(Ain). Lemma 4.7 yields lvar(σ(σin(X))) ⊆ varσ(ρin)(σ(σin(V))) ⊆
varρk∪σ(ρin)(σ(σin(V))).

• X ifV ∈ Asuccess: Since Aexit ⊑ Asuccess, there is a set V ′ ⊆ V with X ifV ′ ∈ Aexit.

By definition of Aexit, σxz(X) ifσxz(V
′) ∈ Ak and {σxz(X)} ∪ σxz(V

′) ⊆ {Z1, . . . , Zn}.
⟨σk, ρk⟩ ∈ γ(Ak) implies lvar(σk(σxz(X))) ⊆ varρk(σk(σxz(V

′))) and hence (since

σ(σin(P)) = σk(L)) lvar(σ(σin(X))) ⊆ varρk(σ(σin(V
′))). Therefore lvar(σ(σin(X))) ⊆

varρk(σ(σin(V))) ⊆ varρk∪σ(ρin)(σ(σin(V))).

2. f(t) occurs directly in σ(σin(Xi)) (for some i ∈ {1, . . . , n}) with var(t) ̸= ∅: Then f(t) occurs

also directly in σk(Zi) since σ(σin(P)) = σk(L). ⟨σk, ρk⟩ ∈ γ(Ak) implies f ∈ Ak (which

immediately implies f ∈ A) or var(t) ⊆ var(σk(V)) for some Zi with f |V ∈ Ak. In the

latter case there are two possibilities: If V ̸⊆ {Z1, . . . , Zn}, then f ∈ Aout (by definition of

exit restrict) and f ∈ A. If V ⊆ {Z1, . . . , Zn}, then Xi with f |σzx(V) ∈ Aexit. This implies

Xi with f |σzx(V) ∈ A where var(t) ⊆ var(σk(V)) = var(σ(σin(σzx(V))).

3. f(t) occurs directly in σ(σin(X)) with X ̸∈ {X1, . . . , Xn} and var(t) ̸= ∅: Hence there is a

position π with f(t) = σ(σin(X))|π. We can distinguish two cases:

• π is also a position in σin(X) and σin(X)|π = f(s) with σ(s) = t: Since ⟨σin, ρin⟩ ∈
γ(Ain), f ∈ Ain (which implies f ∈ A by Proposition 4.12) or var(s) ⊆ var(σin(V)) for

some X with f |V ∈ Ain. Since X ̸∈ {X1, . . . , Xn}, the latter case yields X with f |V ∈
rest(Ain, {X1, . . . , Xn}) and thus X with f |V ∈ A where var(t) = var(σ(s)) ⊆
var(σ(σin(V)).

• π is not a position in σin(X) or σin(X)|π is a variable: Then σin(X) contains a variable

Z which is instantiated by σ to a term containing the subterm f(t). Since σ instan-

tiates only variables occurring in σin(P), there is a variable Xi so that σin(Xi) has

a direct occurrence of Z. Hence Z is shared between σin(Xi) and σin(X) which im-

plies {Xi, X} ∈ Ain, {Xi, X} ∈ rest(Ain, {X1, . . . , Xn}), and also {Xi, X} ∈ A (since

X ̸∈ {X1, . . . , Xn}). Moreover, f(t) occurs directly in σ(σin(Xi)). Hence we obtain as

22

above f ∈ A or var(t) ⊆ var(σ(σin(V)) for some Xi with f |V ∈ A. The latter case im-

plies X with f |V ∈ A since {Xi, X} ∈ A and A is closed under the rule for distribution

of sharing information.

4. f(t) with var(t) ̸= ∅ occurs directly in ρk but not directly in σ(σin(X)) for all variables X

(otherwise proceed as in case 2 or 3): Since ⟨σk, ρk⟩ ∈ γ(Ak), f ∈ Ak (which immediately

implies f ∈ A) or var(t) ⊆ var(σk(V)) for some X with f |V ∈ Ak. In the latter case there are

two possibilities: If {X} ∪ V ̸⊆ {Z1, . . . , Zn}, then f ∈ Aout (by definition of exit restrict)

and hence f ∈ A. If {X}∪V ⊆ {Z1, . . . , Zn}, then σzx(X) with f |σzx(V) ∈ Aexit. This implies

σzx(X) with f |σzx(V) ∈ A where var(t) ⊆ var(σk(V)) = var(σ(σin(σzx(V))).

5. f(t) with var(t) ̸= ∅ occurs directly in σ(ρin) but not directly in σ(σin(X)) for all variables

X (otherwise proceed as in case 2 or 3): Since f(t) does not occur directly in any σ(σin(X)),

f(s) occurs directly in ρin with σ(s) = t. Since ⟨σin, ρin⟩ ∈ γ(Ain), f ∈ Ain (which implies

f ∈ A by Proposition 4.12) or var(s) ⊆ var(σin(V)) for some X with f |V ∈ Ain. In the latter

case there are three possibilities:

• X ̸∈ {X1, . . . , Xn}: ThenX with f |V ∈ rest(Ain, {X1, . . . , Xn}) and henceX with f |V ∈
A where var(t) = var(σ(s)) ⊆ var(σ(σin(V)).

• X ∈ {X1, . . . , Xn}, V ̸⊆ {X1, . . . , Xn}: Then f ∈ Acall (by definition of call restrict)

and f ∈ A (by Proposition 4.12).

• {X} ∪ V ⊆ {X1, . . . , Xn}: Then, by Proposition 4.13, f ∈ A or V = V1 ∪ V2 with

X with f |V1 ∈ A and all Z ∈ V2 are bound to ground terms by σ ◦ σin. The latter case

implies var(t) = var(σ(s)) ⊆ var(σ(σin(V)) = var(σ(σin(V1)).

6. lvar(σ(σin(X)) ∩ lvar(σ(σin(Y))) ̸= ∅ for variables X ̸= Y . We distinguish the following

cases for the variables X and Y :

• X,Y ∈ {X1, . . . , Xn}: Since σ(σin(P)) = σk(L), lvar(σk(σxz(X))∩ lvar(σk(σxz(Y)) ̸= ∅
which implies {σxz(X), σxz(Y)} ∈ Ak. Hence {X,Y } ∈ Asuccess and {X,Y } ∈ A.

• X ̸∈ {X1, . . . , Xn} (the case Y ̸∈ {X1, . . . , Xn} is symmetric and therefore omitted)

and lvar(σin(X)) ∩ lvar(σin(Y)) ̸= ∅: Then {X,Y } ∈ Ain which yields {X,Y } ∈
rest(Ain, {X1, . . . , Xn}) and {X,Y } ∈ A.

• X ̸∈ {X1, . . . , Xn} and lvar(σin(X)) ∩ lvar(σin(Y)) = ∅:
First suppose Y ∈ {X1, . . . , Xn}. Since σ does only instantiate variables from

σin(P), σin(X) must share a l-variable with some σin(Xi), and σ(σin(Xi)) shares

another l-variable with σ(σin(Y)). Hence {X,Xi} ∈ Ain which implies {X,Xi} ∈
rest(Ain, {X1, . . . , Xn}), and {Xi, Y } ∈ Asuccess (as in the first case). Both facts imply

{X,Xi} ∈ A and {Xi, Y } ∈ A. Since A is closed under the rule for transitivity of sharing

information, {X,Y } ∈ A.

Now suppose Y ̸∈ {X1, . . . , Xn}. Since σ does only instantiate variables from σin(P),

σin(X) must share a l-variable with some σin(Xi) and σin(Y) must share a l-variable

with some σin(Xj) so that σ(σin(Xi)) shares another l-variable with σ(σin(Xj)). Hence

{X,Xi}, {Y,Xj} ∈ Ain which implies {X,Xi}, {Y,Xj} ∈ rest(Ain, {X1, . . . , Xn}). If

23

A P A′

OR

Ain
1 H1 Aout

1 . . . Ain
m Hm Aout

m

#
#

#
#
#
#

##

c
c

c
c

c
c

cc

Figure 3: OR-node for clause entry

Ain H Aout

AND

A0 L1 A1 . . . Ak−1 Lk Ak

#
#

#
#
#
#

##

c
c

c
c

c
c

cc

Figure 4: AND-node for a clause

i = j, then {X,Y } ∈ A since A is a closed abstraction. If i ̸= j, then {Xi, Xj} ∈ Asuccess

and {Xi, Xj} ∈ A (as in the first case). But this implies {X,Y } ∈ A by the closure

property of A.

4.3 Correctness of the abstract interpretation algorithm

Until now we have proved the local correctness of the basic operations of the abstract interpretation

algorithm. We can combine these results into a correctness proof for the whole algorithm by using

Bruynooghe’s framework [Bru91]. In his framework the abstract interpretation algorithm generates

an abstract AND-OR-tree which represents all concrete computations. To avoid infinite paths, this

tree is a rational AND-OR-tree, i.e., if a predicate call is identical to (or a variant of) a predicate

call in an ancestor node, then this call node is identified with the ancestor node. The monotonicity

property of all abstract operations together with the finite domain avoids an infinite computation in

this graph. Next we will give a more detailed description of the abstract interpretation algorithm.

The abstract interpretation procedure generates the abstract AND-OR-graph as follows. In

the first step, the root is created. It is marked with the initial goal (w.l.o.g. we assume that the

initial goal contains only one literal) and the call abstraction for this goal. Then this initial graph

is extended by computing the success abstraction for this goal. The success abstraction A′ of an

equation t = t′ with call abstraction A is computed by abstract unification, i.e., A′ = amgu(A, t, t′).

To compute the success abstraction A′ of a node with predicate call P and call abstraction A, we

distinguish the following cases:

1. There is no ancestor node with the same predicate call and the same call abstraction (up to

renaming of variables): First of all, we add an OR-node as shown in Figure 3 (H1, . . . , Hm

24

A′
in P ′ A′

out

OR

#
#

#
#
#
#

##

c
c

c
c

c
c

cc

AND

. . . Ain P Aout . . .
#
#

#
#
#
#

##

c
c

c
c

c
c

cc

Figure 5: Recursive call: P is a renaming of P ′ and Ain restricted to
call P is a renaming of A′

in restricted to call P ′

are the heads of all clauses for P). Ain
i is the call abstraction computed by our abstract

operations for the entry of clause Hi :- · · · (i.e., A0 in algorithm ai in Section 3.2). Then for

each new clause head H an AND-node is added as shown in Figure 4 where H :-L1, . . . , Lk is

the corresponding clause. After copying the call abstraction of the head to the call abstraction

of the first body literal (A0 = Ain) the success abstraction of each literal in the clause body is

computed. Then the success abstraction Aout of the entire clause is calculated by restricting

Ak to the head variables (i.e., Aout is identical to Aout in algorithm ai in Section 3.2). When

all success abstractions of all clauses for the predicate call P are computed, they are renamed,

combined by the least upper bound operation and then combined with the remainder of the

call abstraction of A (compare algorithm ai).

2. There is an ancestor node P ′ with the same predicate call and the same call abstraction

(up to renaming of variables) (Figure 5): Then the success abstraction of P ′ (A′
out without

the remainder of A′
in, i.e., Asuccess in algorithm ai in Section 3.2) is taken as the success

abstraction of P (or ⊥ if it is not available). The combination of this success abstraction

with the remainder of Ain yields Aout (step 3 of algorithm ai) and we proceed with the

abstract interpretation procedure (i.e., we connect P to P ′). If we reach the node P ′ at some

point during the further computation and we compute a success abstraction for P ′ which

differs from the old success abstraction taken for P , we recompute the success abstractions

beginning at P where we take the new success abstraction of P ′ as new success abstraction

for P . The monotonicity property of the abstract operations and the finite domain ensures

that this iteration terminates.

In [Bru91] it is shown that this algorithm computes a superset of all concrete proof trees if the

abstract operations for built-ins (here: unification), clause entry and clause exit satisfies certain

correctness conditions. Theorems 4.10, 4.11 and 4.14 imply exactly these correctness conditions.

Hence we can infer the correctness of our abstract interpretation algorithm.

25

A0 sum(L0,S0) A12

OR

A1 sum(L,S) A5 A6 sum(L,S) A11

"
"
"

"
"
"

"
"
""

b
b

b
b

b
b

b
b

bb

AND

A2 L=[] A3 S=0 A4

�
�
�
�

��

@
@

@
@

@@
AND

A7 L=[E|R] A8 S=E+RS A9 sum(L,RS) A10

#
#
#

#
#
#
#

c
c

c
c

c
c

c

Figure 6: AND-OR-tree for the abstract interpretation of sum(L0,S0)

4.4 A final example

The following residuating logic program is an example for a recursive procedure which requires the

construction of the abstract AND-OR-tree described in the previous section. The following clauses

define a predicate sum(L,S) which computes the sum S of a list of numbers L:

sum([],0).

sum([E|R],E+RS) :- sum(L,RS).

For instance, the execution of the goal sum([1,3,5],S) yields the answer S=9. The concrete

computation is shown in the following table:

Goal: Current residuation: Current substitution:

sum([1,3,5],S) ∅ ∅
sum([3,5],RS1) {1+RS1=S} ∅
sum([5],RS2) {1+RS1=S, 3+RS2=RS1} ∅
sum([],RS3) {1+RS1=S, 3+RS2=RS1, 5+RS3=RS2} ∅
∅ ∅ {RS37→0, RS2 7→5, RS1 7→8, S 7→9}

We want to show that the residuation principle computes a fully evaluated answer for S for any

given list of numbers L. In order to apply our abstract interpretation algorithm, we transform the

program into an equivalent flat program:

sum(L,S) :- L=[], S=0.

sum(L,S) :- L=[E|R], S=E+RS, sum(L,RS).

The initial goal is sum(L0,S0) with abstraction {L0}, i.e., it is a predicate call with a ground first

argument. Our abstract interpretation algorithm applied to this goal and abstraction generates

the abstract AND-OR-tree shown in Figure 6. We will see that the tree is finite because the literal

sum(L,RS) together with the call abstraction part of A9 is a renaming of the root literal sum(L0,S0)

together with the call abstraction part of A0. In the following we describe the computation of the

abstract interpretation algorithm and the evolving values of the abstractions Ai.

• A0 = {L0}: The call abstraction of the root literal is the initial abstraction of the goal.

26

• A1 = {L} and A6 = {L}: The root is an OR-node with two sons since two clauses can be

applied to the literal sum(L0,S0). The entry abstractions for these clauses is computed from

A0 by call restrict and renaming.

• A2 = {L}: The entry abstraction of the clause is also the abstraction for the first predicate

call in the clause body.

• A3 = {L}: The abstraction A2 is not modified by abstract unification since L is already

ground.

• A4 = {L, S}: S is added to the abstraction by abstract unification since it is bound to a

ground term after this unification.

• A5 = {L, S}: The exit abstraction of this clause is the exit abstraction of the last body literal

restricted to the variables in the clause head.

• A7 = {L}: The entry abstraction of the second clause is also the abstraction for the first

predicate call in the clause body.

• A8 = {L, E, R}: The variables E and R are ground since L is ground. This is computed by

the abstract unification algorithm together with the normalization rules.

• A9 = {L, E, R, S if {RS}, S with +|{RS}}: The function call to + is added to the abstraction.

It can not be evaluated until the variable RS is ground.

• A10 =⊥: The call abstraction part of A9 is {L} (compare definition of call restrict). Hence

this predicate call is a renaming of the predicate call at the root and therefore we take the

value ⊥ as the success abstraction for this call since the success abstraction of the root call

is not yet known. However, if the latter success abstraction is available and different from ⊥,

we start a recomputation at this point.

• A11 =⊥: The exit abstraction of the second clause is the exit abstraction of the last body

literal.

• A12 = {L0, S0}: The success abstraction of the root predicate call is the least upper bound

of {L0, S0} and ⊥ together with the remainder of A0 (which is actually empty). Since the

success abstraction of the root call is now available and different from ⊥, we restart the

evaluation of the abstraction A10.

• A10 = {L, RS, E, R, S}: The new value of A10 is computed from the new renamed success

abstraction of the root predicate call ({L, RS}) together with the remainder of A9 giving

{L, RS, E, R, S if {RS}, S with +|{RS}}. This abstraction simplified by the normalization

rules is the new value of A10.

• A11 = {L, S}: The exit abstraction of the second clause is the exit abstraction of the last

body literal restricted to the variables in the clause head.

27

• A12 = {L0, S0}: The success abstraction of the root predicate call is the least upper bound of

the renamed exit abstractions A5 and A11 (which are identical) together with the remainder

of A0 (which is actually empty). Since the success abstraction of the root call is identical

to the previous value, we need not restart the evaluation of the abstraction A10. Hence the

abstract interpretation algorithm is finished.

Since the abstract interpretation has computed the exit abstraction {L0, S0} for the initial goal,

we conclude by the correctness of the abstract interpretation algorithm and the concretisation

function γ that variable S0 is bound to a ground term without unevaluable residuations at the end

of a successful computation.

5 Conclusions and related work

In this paper we have considered an operational mechanism for the integration of functions into logic

programs. This mechanism, called residuation, extends the standard unification algorithm used in

SLD-resolutions by delaying unifications between unevaluable function calls and other terms. If all

variables of a delayed function call are bound to ground terms, then this function call is evaluated in

order to verify the delayed unification. This residuation principle yields a nice operational behaviour

for many functional logic programs but has two disadvantages. One problem is that the answer

to a query may contain unsolved and complex residuations for which the user cannot easily decide

their solvability. A further problem is that the search space of a residuating logic program can be

infinite in contrast to the equivalent logic program. This case can occur if the residuation principle

generates more and more residuations which are simultaneously not solvable. Hence it is important

to check at compile time whether or not this case can occur at run time. Since this is undecidable in

general, we have presented an approximation to this problem based on the abstract interpretation

of residuating logic programs. Our algorithm manages information about all possible residuations

together with their argument variables and the dependencies between different variables in order

to compute groundness information. Hence the algorithm is able to infer which residuations can

be completely solved at run time.

We can also interpret our algorithm as an attempt to compile functional logic programs from

languages with a complete but often complex operational semantics (e.g., EQLOG [GM86], SLOG

[Fri85], BABEL [MR92], or ALF [Han90]) into a more efficient execution mechanism without loosing

completeness. For this purpose we check a given functional logic program by our algorithm. If

the algorithm computes an abstraction containing no potential residuations, then we can safely

execute the program with the residuation principle. Otherwise we must apply the nondeterministic

narrowing principle to compute all answers. This method can also be applied to individual parts

of the program so that some parts are executed using the residuation principle and other parts are

executed by narrowing.

Marriott, Søndergaard and Dart [MSD90] have also presented an abstract interpretation algo-

rithm for analysing logic programs with delayed evaluation. The purpose of their work was to check

logic programs with negation for floundering, i.e., whether a delayed evaluation of negated subgoals

is complete. This is a simpler problem than our analysis of residuating logic programs due to the

following reasons:

28

1. In their context only entire literals can be delayed and not single subterms. Therefore in their

framework it is not necessary to analyse the precise structure of the terms.

2. A delayed evaluation of a negated literal cannot bind any goal variables since this literal is

evaluated if all arguments are ground. In our context it is important that a delayed evaluation

of a residuation can bind variables in order to enable the evaluation of other residuations

(see the example in Section 3.3). Therefore we have to manage the dependencies between

residuations and their variables in order to analyse the data flow in this case.

3. In our context the terms contain constructors and function calls. The right abstraction of

these terms complicates the correctness proofs of our algorithm.

On the other side, we cannot analyse logic programs with delayed negation with our algorithm

(for instance, by declaring all negated literals as functions) since we consider the evaluation of a

ground function call as an atomic operation. But the evaluation of a negated literal may cause the

evaluation of other negated literals and therefore it is not an atomic operation. However, it would

be interesting to extend our algorithm to a more detailed analysis of function calls if the functions

are specified and evaluated in a particular formalism (for instance, by conditional equations as in

ALF [Han90]).

Since we must restrict all abstract information to a finite domain, our algorithm cannot manage

all dependencies between residuations and their variables. If a residuation depends only on variables

of one clause and these variables are bound to ground terms at the end of the clause, the algorithm

detects the solvability of the residuation. But if a residuation depends on local variables from

different clauses, then the algorithm cannot manage it and therefore it simply infers the unsolvability

of this residuation. It seems to be possible to improve the algorithm at this point by refining the

abstract domain (which makes the definition of the concretisation function and the correctness

proofs more complex).

Another interesting topic for further research is the question whether it is possible to adapt

our proposed method to the abstract interpretation of other logic languages which are not based

on SLD-resolution with the leftmost selection rule. Such a method could be applied to analyse the

floundering problem of NU-Prolog or to derive run-time properties of the Andorra computation

rule [HB88].

References

[AH87] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative Languages.
Ellis Horwood, 1987.

[AK90] H. Aı̈t-Kaci. An Overview of LIFE. In J.W. Schmidt and A.A. Stogny, editors, Proc.
Workshop on Next Generation Information System Technology, pp. 42–58. Springer
LNCS 504, 1990.

[AKLN87] H. Aı̈t-Kaci, P. Lincoln, and R. Nasr. Le Fun: Logic, equations, and Functions. In
Proc. 4th IEEE Internat. Symposium on Logic Programming, pp. 17–23, San Francisco,
1987.

29

[BGL+87] P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A complete semantic
characterization of K-LEAF, a logic language with partial functions. In Proc. 4th IEEE
Internat. Symposium on Logic Programming, pp. 318–327, San Francisco, 1987.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Pro-
grams. Journal of Logic Programming (10), pp. 91–124, 1991.

[CM87] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and ext.
edition, 1987.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.

[DL86] D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Relations, and
Equations. Prentice Hall, 1986.

[Fri85] L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Su-
perposition and Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming,
pp. 172–184, Boston, 1985.

[GM86] J.A. Goguen and J. Meseguer. Eqlog: Equality, Types, and Generic Modules for Logic
Programming. In D. DeGroot and G. Lindstrom, editors, Logic Programming, Func-
tions, Relations, and Equations, pp. 295–363. Prentice Hall, 1986.

[Han90] M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int. Work-
shop on Programming Language Implementation and Logic Programming, pp. 387–401.
Springer LNCS 456, 1990.

[Han91] M. Hanus. Efficient Implementation of Narrowing and Rewriting. In Proc. Int. Work-
shop on Processing Declarative Knowledge, pp. 344–365. Springer LNAI 567, 1991.

[HB88] S. Haridi and P. Brand. Andorra Prolog: An Integration of Prolog and Committed
Choice Languages. In Proc. Int. Conf. on Fifth Generation Computer Systems, pp.
745–754, 1988.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,
1987.

[MM82] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 2, pp. 258–282, 1982.

[MR92] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Functions
and Predicates: The Language BABEL. Journal of Logic Programming, Vol. 12, pp.
191–223, 1992.

[MSD90] K. Marriott, H. Søndergaard, and P. Dart. A Characterization of Non-Floundering Logic
Programs. In Proc. of the 1990 North American Conference on Logic Programming, pp.
661–680. MIT Press, 1990.

[Nai91] L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium on
Programming Language Implementation and Logic Programming, pp. 15–26. Springer
LNCS 528, 1991.

[Nil90] U. Nilsson. Systematic Semantic Approximations of Logic Programs. In Proc. of the
2nd Int. Workshop on Programming Language Implementation and Logic Programming,
pp. 293–306. Springer LNCS 456, 1990.

[Smo91] G. Smolka. Residuation and Guarded Rules for Constraint Logic Programming. Re-
search Report 12, DEC Paris Research Laboratory, 1991.

[SY86] P.A. Subrahmanyam and J.-H. You. FUNLOG: a Computational Model Integrating
Logic Programming and Functional Programming. In D. DeGroot and G. Lindstrom,
editors, Logic Programming, Functions, Relations, and Equations, pp. 157–198. Prentice
Hall, 1986.

30

