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Abstract

The current paper is devoted to automated techniques in correspondence
theory. The theory we deal with concerns the problem of finding classical
first-order axioms corresponding to propositional modal schemas. Given
a modal schema and a semantics based method of translating proposi-
tional modal formulas into classical first-order ones, we try to derive au-
tomatically classical first-order formula characterizing precisely the class
of frames validating the schema. The technique we consider can, in many
cases, be easily applied even without any computer support.

Although we mainly concentrate on Kripke semantics, the technique
we apply is much more general, as it is based on elimination of second-
order quantifiers from formulas. We show many examples of application of
the method. Those can also serve as new, automated proofs of considered
correspondences.

We essentially strengthen the considered elimination technique. Thus,
as a side-effect of this paper we get a stronger elimination based method
for proving a subset of second-order logic.

Keywords

automated theorem proving, correspondence axioms, modal logics, semantics based trans-
lation



1 Introduction

A great deal of attention has been devoted to automated theorem proving during the
last two decades. The revolutionary resolution method introduced by Robinson in 1968
focussed the interest of researchers and software designers mainly on classical first-order
logic. This resulted in huge amount of implementation-oriented optimizations and im-
provements of the resolution method and had also influence on other theorem proving
techniques. No wonder than that the classical first-order logic occupies now the cen-
tral position in the field of automated theorem proving. On the other hand, classical
first-order logic has some disadvantages, widely discussed by philosophers and computer
scientists. The following ones are perhaps the most serious from the point of view of
artificial intelligence techniques:

• classical implication does not perfectly correspond to natural language implication

• classical first-order logic is an extensional one, i.e. the logical value of complex
formulas depend solely on values of their atomic components.

Thus classical-first order logic is not very natural when one uses implication and/or wants
to express intentional natural language phenomena.

Let us discuss this more precisely. Consider the following two sentences:

1. if water is dry then John will be a president of USA

2. it is possible that John has walked to his office today.

The first sentence is true (in classical logic), since its assumption is false, whilst, in
natural language, one usually considers similar sentences senseless. The truth of the
second sentence does not only depend on truth of the sentence John has walked to his
office today, as we do not intend to say that this fact indeed took place. Even if John
has not walked to his office today, this still might be possible. That, however, depends
on many factors, like whether John lives in walking distance from the office or whether
John is able to walk at all.

Modal logics have been proposed as a remedy to those difficulties1. They were inten-
sively studied during our century. There were some successful attempts to mechanize the
reasoning in those logics (cf. e.g. methods described in [3, 5, 7], just to mention a few
of them). When attempting to mechanize modal reasoning, one faces the choice between
designing the whole system from the beginning or, alternatively, using existing theorem
provers for classical first-order logic. The first way usually requires much effort and is time
consuming. On the other hand, as motivated above, there are many good reasons to use
the existing theorem provers whenever possible. One of the best ways to achieve this goal
is to interpret modal logics in terms of classical first-order logic. Such an interpretation
can be done by translation of modal logic into classical logic (see e.g. [7, 8]).

Let us denote classical first-order logic by LI . Suppose that we are going to mechanize
theorem proving in some modal logic, say LM. According to above discussion, in what

1there is a rich literature on modal logics - for their history, further motivations and references see
e.g. [2]
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follows we shall consider methods of translating LM into LI . In order to make such a
translation useful, one has to ensure the following two properties:

• if the translated formula is valid, then also original modal formula is valid2 (sound-
ness of translation)

• if modal formula is valid, then it remains valid after translation (completeness of
translation).

We thus need a translation which associates classical first-order formula to a given modal
formula. This, however, is only a part of the problem. Namely properties of modal oper-
ators are usually given by means of a set of postulates, i.e. axiom schemas. For instance,
if one says that modal operator satisfies 2p→ p, what he in fact has in mind is that for
any modal formula p, 2p implies p. Those postulates must also have their counterparts
in translation mechanism. Such counterparts are usually called correspondence axioms
(cf. e.g. [4, 8]). Our paper is then devoted to automatic search for classical first-order
axioms corresponding to modal postulates. Before we formulate our goal more formally,
let us consider the following example (for a survey of correspondence theory see e.g. [8]).

Example 1.1 Let us consider modal logic with modality 2. The modality can have
various possible readings, like always, necessary, known, etc. According to the reading,
the modality has some properties expressed by postulates. E.g. if we read 2 as necessary,
we can have the following postulates, where, as usual, 3 is defined as ¬2¬:

(i) 2p→ p

(ii) 2p→ 22p

(iii) p→ 23p.

Let us now consider Kripke-like translation of modal formulas, which translates 2q into

∀x.∀y.R(x, y)→ Q(y),

where R represents the accessibility relation provided by Kripke structures. Then pos-
tulates (i) - (iii) correspond to the following classical first-order properties of relation
R:

(i’) ∀x.R(x, x) - reflexivity

(ii’) ∀x, y, z.R(x, y)→ (R(y, z)→ R(x, z)) - transitivity

(iii’) ∀x, y.R(x, y)→ R(y, x) - symmetry.

Thus in order to prove that modal formula, say q, is a theorem of the least normal logic3

containing schemas (i) - (iii), one can translate the formula into classical first-order for-
mula q′ and try to prove that q′ follows from (i’) - (iii’) in classical logic. 2

2one can also consider dual case of translations preserving satisfiability of formulas. We shall, however,
prefer translations preserving validity

3for definition of normal logic see the next section
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An algorithm (called SCAN) for automatic synthesis of correspondence axioms, based
on first-order resolution principle, was recently proposed by D. Gabbay and H. J. Ohlbach
in [4]. The SCAN algorithm is a break through in mechanizing the theory of correspon-
dence between modal and classical logic. On the other hand, SCAN is partial, i.e. does
not always stop even if the answer exists (cf. [4]). Since we are concerned with automated
techniques, we find this feature a disadvantage of the SCAN algorithm4. In this paper
we shall present another algorithm. The new algorithm always halts. Moreover, one can
construct examples5 when our algorithm gives some first-order formula as an answer and,
for the same input, SCAN algorithm loops.

The algorithm we present essentially differs from SCAN, as it is based on techniques
discovered mainly by Ackermann in connection to classical elimination problem - cf. [1].
Those techniques allow, in many cases, to eliminate second-order quantifiers from formulas
of second-order logic. On the other hand, when considering schemas of formulas, we
basically deal with second-order quantification. For instance, schema 2p→ p corresponds
to second-order formula ∀p.2p→ p. Thus the main problem to be solved is to eliminate
second-order quantification.

For the sake of readability of the algorithm we shall first present it in a simplified form
(cf. section 4). The algorithm of section 4 can still be strengthened so to accept more
formulas. The possible directions of strengthening the algorithm are discussed in section
5. Note that we introduce there a factorization principle that essentially strengthens the
elimination technique of Ackermann.

2 Modal logics

Let us now define modal logics. It should be emphasized here that, for the sake of
simplicity, we make the following restrictions:

• we do not consider multimodal logics

• we consider one-argument modalities only

• we consider Kripke semantics only

• we do not consider first-order versions of modal logics

• we consider only normal logics.

However, as it will follow from our considerations, the extension of our approach to cover
the multimodal case and the case of many-argument modalities as well as first-order
quantifiers and non-normal logics is straightforward. The method is also applicable to
other kinds of semantics as well. For a discussion of mentioned extensions see also final
remarks.

In what follows by ⊤ and ⊥ we shall denote truth values, true and false, respectively.
Let us now define the notion of Kripke frame and Kripke model.

4note, however, that when SCAN loops, it is sometimes possible to observe some patterns that, put
together, give us a correspondence axiom of infinitary logic Lω1ω

5we admit however, that examples we know are rather artificial ones

3



Definition 2.1 Let V be an enumerable set of propositional variables.

• By Kripke frame (frame, in short) we shall mean any pair ⟨W,R⟩, where

– W is any set, called the set of worlds

– R is a binary relation defined on W , called the accessibility relation.

• By Kripke model we shall mean any triple ⟨K, w, v⟩, where

– K = ⟨W,R⟩ is a Kripke frame

– w ∈ W is a distinguished element of W , called the actual world

– v : V ×W −→ {⊤,⊥} is a mapping associating truth value to a given propo-
sitional variable in a given world.

We shall say that class B of frames validates modal formula p iff any Kripke model with
frame in B satisfies p. 2

We are now ready to define the notion of modal logic.

Definition 2.2 By (propositional) modal logic we shall mean triple LM = ⟨F , C, |=⟩,
where

• F is the set of formulas, i.e. expressions built from propositional variables by apply-
ing classical propositional connectives ¬, ∨, ∧6 and one-argument modal operators
2, 3

• C is a subclass of the class of Kripke models

• |= is a satisfiability relation defined as follows:

– K, w, v |= p iff v(p, w) = ⊤, where p is a propositional variable

– K, w, v |= ¬p iff not K, w, v |= p

– K, w, v |= p ∨ q iff K, w, v |= p or K, w, v |= q

– K, w, v |= p ∧ q iff K, w, v |= p and K, w, v |= q

– K, w, v |= 2p iff for any w′ such that R(w,w′), K, w′, v |= p

– K, w, v |= 3p iff there is w′ such that R(w,w′) and K, w′, v |= p.

By normal modal logic we shall mean any modal logic which is an extension of classical
propositional logic and such that

• |= 2(p→ q)→ (2p→ 2q)

• |= p implies |= 2p. 2

6the choice of just those connectives allows us to simplify the presentation. We shall, of course, use
also other connectives – those should always be understood as abbreviations.
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The following fact is well-known (cf. e.g. [2]).

Proposition 2.3 The set of all tautologies of the least normal logic is precisely the set
of those formulas which are valid in any Kripke model. 2

We are now ready to define the notion of correspondence axioms.

Definition 2.4 Let S be a modal schema. We shall say that classical first-order formula
A is a correspondence axiom for S iff the class of classical first-orders models of A is pre-
cisely the class of frames validating any formula obtained from schema S by substituting
propositional variables by modal formulas. 2

Note that, according to the above definition, we shall consider only normal logics. We
also need the following definition.

Definition 2.5 We shall say that occurrence of predicate P in formula A is positive iff
P appears under no negation sign (in the place in question). Dually, we shall say that
occurrence of P in A is negative iff the occurrence P has the form ¬P and (this) ¬P
appears under no negation sign in A. 2

3 Semantics based translation

As one can easily notice, the definition 2.2 suggests translations summarized in the table
below.

Modal formula Translated formula
preserving satisfiability preserving validity

2p ∃x.∀y.R(x, y)→ P (y) ∀x.∀y.R(x, y)→ P (y)
3p ∃x.∃y.R(x, y) ∧ P (y) ∀x.∃y.R(x, y) ∧ P (y)

For our algorithm we shall chose the second kind of translation, preserving validity of
formulas. We shall use the translation suggested above. On the other hand, translation
function will be an input to our algorithm. This makes our method independent of any
particular translation.

The translation presented above is so called relational translation. Since it is well
known, we shall not define it here precisely, giving some examples instead (for precise
definition see e.g. [7]).

Modal formula Translated formula
2p→ p ∀x.(∀y.R(x, y)→ P (y))→ P (x)
2p→ 22p ∀x.(∀y.R(x, y)→ P (y))→ ∀y.(R(x, y)→ ∀z.(R(y, z)→ P (z)))
p→ 23p ∀x.P (x)→ (∀y.R(x, y)→ ∃z.(R(y, z) ∧ P (z))

In what follows we shall always consider translations satisfying the following require-
ment:
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(3.1) modal formula is valid (in sense of the least normal modal logic) iff translated
formula is valid (in sense of classical logic).

Proposition 2.3 justifies the requirement, for no additional conditions on relation R are
necessary here. In case of other kinds of semantics one, of course, has to change the
requirement as to normality of the logic. In general, requirement (3.1) can be formulated
as follows:

(3.1’) modal formula is valid (in sense of some basic modal logic) iff translated formula is
valid (in sense of classical logic),

where ”basic modal logic” depends on chosen semantics.

Note that the above translation can easily be extended to the case of modal schemas,
using second-order quantification as follows (cf. also [8]).

Modal schema Translated schema
2p ∀P.∀x.∀y.R(x, y)→ P (y)
3p ∀P.∀x.∃y.R(x, y) ∧ P (y)

The following table illustrates the translation of modal schemas.

Modal schema Translated schema
2p→ p ∀P.∀x.(∀y.R(x, y)→ P (y))→ P (x)
2p→ 22p ∀P.∀x.(∀y.R(x, y)→ P (y))→ ∀y.(R(x, y)→ ∀z.(R(y, z)→ P (z)))
p→ 23p ∀P.∀x.P (x)→ (∀y.R(x, y)→ ∃z.(R(y, z) ∧ P (z))

However, the above formulas are useless from the point of view of automated theorem
proving, as the set of second-order tautologies even with one second-order quantification
is, in general, totally undecidable (not even arithmetical). In order to put our translation
into good use, we should then try to eliminate second-order quantification and find suitable
first-order conditions on R that could serve as basis in proving theorems.

Observe that the elimination technique we consider preserves logical equivalence of
formulas. This means that the resulting formula is equivalent over all interpretations.
Thus, whenever one considers semantics of modal logics which is based on some inter-
preted formalism (like neighbourhood semantics), one has to work in some theory that
approximates the formalism. We shall not consider the question of interpreted formalisms
in this paper. Note that the requirement (3.1) (as well as (3.1’)) excludes the possibility
of dealing with interpreted formalisms directly.

4 The algorithm

The algorithm we shall present is based on Ackermann’s techniques developed in connec-
tion to elimination problem (cf. [1]). Below we shall follow a simplified presentation of
elimination techniques given in [6], slightly modifying it whenever necessary. Note also
that we present the algorithm in its simplest (and thus not strongest) form. Possible
directions of strengthening the algorithm are discussed in section 5.
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The elimination techniques we consider are based on proposition 4.1 and lemma 4.2,
where by A(σ ← δ) we denote the formula obtained from A by replacing every occurrence
of expression σ by expression δ. Proposition 4.1 summarizes well-known facts (cf. e.g.
[1]).

Proposition 4.1 The following pairs of formulas are equivalent, where Q stands for any
quantifier and A, B, C are formulas such that C does not contain free occurrence of
variable x

(1) ¬¬A and A
(2) ¬(A ∧B) and ¬A ∨ ¬B
(3) ¬(A ∨B) and ¬A ∧ ¬B
(4) ¬∀x.A(x) and ∃x.¬A(x)
(5) ¬∃x.A(x) and ∀x.¬A(x)
(6) ∃x.(A(x) ∨B(x)) and ∃x.A(x) ∨ ∃x.B(x)
(7) ∀x.(A(x) ∧B(x)) and ∀x.A(x) ∧ ∀x.B(x)
(8) Qx.(A(x)) ∧ C and Qx.(A(x) ∧ C)
(9) C ∧Qx.A(x) and Qx.(C ∧ A(x)))

(10) Qx.(A(x)) ∨ C and Qx.(A(x) ∨ C)
(11) C ∨Qx.A(x) and Qx.(C ∨ A(x))
(12) Qx.Qy.A and Qy.Qx.A
(13) ∀x.(x ̸= t ∨ C(t← x)) and C(t) (where x is not in t)
(14) ∃x.(x = t ∧ C(t← x)) and C(t) (where x is not in t) 2

The following lemma is essential for the purpose of our algorithm (cf. e.g. [1, 6]).

Lemma 4.2 Let P be a predicate and A(x1, ..., xn), B(P ) be classical first-order formu-
las (without second-order quantification). Let P occurs in B only positively and let A
contains no occurrences of P at all. Then:

1. formula ∃P.∀x1, ..., xn.[P (x1, ..., xn) ∨ A(x1, ..., xn)] ∧B(P ← ¬P ) is equivalent to

B(P ← A(x1, ..., xn)),

where, in the second formula, arguments x1, ..., xn of A are each time substituted
by actual arguments of P (with renaming the bound variables whenever necessary)

2. formula ∃P.∀x1, ..., xn.[¬P (x1, ..., xn) ∨ A(x1, ..., xn)] ∧B(P ) is equivalent to

B(P ← A(x1, ..., xn)),

where, in the second formula, arguments x1, ..., xn of A are each time substituted
by actual arguments of P (with renaming the bound variables whenever necessary).

Proof: As proofs of both equivalences are quite similar, let us prove the first of them
only.

Let us first prove that
∃P.∀x1, ..., xn.[P (x1, ..., xn) ∨ A(x1, ..., xn)] ∧B(P ← ¬P ) (1)

implies
B(P ← A(x1, ..., xn)) (2)
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By assumption, P occurs in B only positively. Thus B is monotone in argument
P , i.e. whenever ∀x1, ..., xn.C(x1, ..., xn) → D(x1, ..., xn), also B(P ← C(x1, ..., xn))
implies B(P ← D(x1, ..., xn)). Assume (1) holds. Let than P ′ be a predicate that
satisfies (1). Thus

∀x1, ..., xn.[P
′(x1, ..., xn) ∨ A(x1, ..., xn)] ∧B(P ← ¬P ′)

which can equivalently be reformulated as follows:

∀x1, ..., xn.[¬P ′(x1, ..., xn)→ A(x1, ..., xn)] ∧B(P ← ¬P ′).

Thus, by monotonicity of B,

[B(P ← ¬P ′)→ B(P ← A(x1, ..., xn)] ∧B(P ← ¬P ′).

Now, by application of modus ponens, we obtain that B(P ← A(x1, ..., xn)), which
shows the first of required implications.

What remains to prove is that formula (2) implies formula (1). Assume then that
B(P ← A(x1, ..., xn)) is true. We shall exhibit P for which the formula

∀x1, ..., xn.[P (x1, ..., xn) ∨ A(x1, ..., xn)] ∧B(P ← ¬P )

is true as well. Define P to be ¬A(x1, ..., xn). Then the above formula takes the form
∀x1, ..., xn.[¬A(x1, ..., xn) ∨ A(x1, ..., xn)] ∧B(P ← ¬¬A(x1, ..., xn)), i.e.

∀x1, ..., xn.B(P ← A(x1, ..., xn)).

Since the substituted P was out of scope of the quantifier ∀x1, ..., xn and x1, ..., xn

are substituted in A by actual arguments of P , the last formula reduces to B(P ←
A(x1, ..., xn)). 2

The above lemma implies the strategy of our algorithm. Namely, we shall try to
turn the translated modal schema into suitable form and then to eliminate second-order
quantification. If there is more than one second-order quantifier (what obviously happens
when schema contains more than one propositional variable), one has to eliminate one
quantification after another - cf. also example 4.5. In case of relational translation we
deal with, all quantified predicate variables are unary. We presented more general form
of the lemma in order to indicate possible extensions of the method.

Given an algorithm solving the problem we deal with, one would like to have an answer
(at least) to the following questions:

• does the algorithm always stop

• is the algorithm sound in sense that whenever it does not fail, the returned formula is
indeed the correspondence axiom for a given modal schema (w.r.t. given translation)

• is the algorithm complete in sense that whenever it fails, the correspondence axiom
does not exist.
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Let us emphasize here that our algorithm always stops and is sound. On the other
hand, our algorithm is incomplete even when one restricts considerations to Kripke-like
semantics and translation. There are, however, good reasons to believe that the problem
we deal with is not partially decidable (at least in whole generality, when one attempts
to give an algorithm that is independent of any particular translation of modal schemas),
for first-order definability of Π1

1 sentences7 is not an arithmetical notion (cf. e.g. [8]).

We shall assume that three additional procedures are given:

• CNF (A,B), which transforms classical first-order formula B into formula B in
conjunctive normal form with all quantifiers in its prefix (that is, also into prenex
normal form)

• Skolemize(A,B), which eliminates existential quantifiers by applying the Skolem
technique, whenever necessary

• Unskolemize(A,B) which transforms formula A into formula B by eliminating
Skolem functions introduced by Skolemize, if possible.

Note that the above procedures are standard ones and can be found in most textbooks
on logic or logic programming. We, of course, require that the first procedure gives as
a result an equivalent formula (in sense of logical equivalence). However, unlike in most
sources, instead of satisfiability/unsatisfiability preservation, we require that both later
procedures preserve equivalence of formulas. Namely, those procedures are based on the
following (second-order) equivalence:

• ∀x1...xn.∃y.A(x1, ..., xn, y, ...) is equivalent to the following second-order formula8

∃f.∀x1...xn.A(x1, ..., xn, y ← f(x1, ..., xn), ...).

The above equivalence is used in Skolemize to introduce existential second-order quan-
tification (but in the beginning of considered formula) instead of existential first-order
quantification. The Unskolemize procedure uses the equivalence in order to eliminate
second-order quantification and replace it by a first-order one.

Algorithm 4.3 (search for correspondence axiom)

Input:
1. function T translating modal formulas into classical first-order formulas
2. modal schema S (given syntactically as modal formula)
Output: correspondence axiom for S or answer that algorithm failed9

(1) let P1, ..., Pk be all propositional variables appearing in S and let A be
second-order formula ∀P1, ..., Pk.T (S) — note that now A is the second-
order formula that corresponds to schema S

(2) let B be ¬A — now B takes the form ∃Pi1 , ..., Pir .B
′

while there are quantified P ’s in B do

7i.e. sentences that begin with second-order quantifier of the form ∀P followed by a first-order formula
8we assume the axiom of choice
9which does not mean that correspondence axiom does not exist
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(3) let P be one of Pi1 , ..., Pir , say Pij , now set B to be formula ∃P.B′ — we
try to eliminate quantification over P ; all other P ’s are now treated as
predicate constants

(4) call CNF (B′, C) and set B to be ∃P.C
(5) if C begins with existential quantifiers, move those before ∃P (using propo-

sition 4.1.12)
(6) if any conjunct of C containing P contains (among others) positive oc-

currence of P or any of those conjuncts contains (among others) negative
occurrence of P then set F to be formula obtained from C by deleting all
conjuncts containing P (the empty conjunction consider, as usual, as ⊤)
and execute step (11) — for justification of this step see proposition 4.4

(7) if there is a conjunct of C that contains both positive and negative occur-
rence of P , report that algorithm failed and stop10; otherwise transform
equivalently C into form C ∧ C, where positive and negative occurrences
of P are separated (i.e. C contains no negative occurrences of P and C
contains no positive occurrences of P )

(8) if any conjunct of C contains at most one occurrence of P then transform
equivalently11 C into form ∃f1...fl.∀z1...zn.(P (z1...zn)∨D1)∧D2, where fi’s
are Skolem functions and D1, D2 contain no occurrences of P ; otherwise, if
any conjunct of C contains at most one occurrence of P then transform12

C into form ∃f1...fl.∀z1...zn.(¬P (z1...zn) ∨ D1) ∧ D2, where Fi’s, D1 and
D2 are as before; if both C and C contain a conjunct with two or more
different occurrences of P then report that algorithm failed and stop10

(9) now we are able to apply suitable part of lemma 4.2, for B receives now
the form

∃f1...fl.∃P.[∀z1...zn.(P (z1...zn) ∨D1)] ∧ [D2 ∧ C]
(or ∃f1...fl.∃P.[∀z1...zn.(¬P (z1...zn) ∨D1)] ∧ [D2 ∧C], respectively); let E
be formula that results from application of lemma 4.2 to B

(10) if Skolemization was necessary while executing step (8) then try to elim-
inate Skolem functions by calling Unskolemize(E,F ); if unskolemization
is not possible then report that algorithm failed and stop

(11) let now B be ∃Pi1 ...Pir .F ; remove all irrelevant second-order quantifiers
over Pi’s that do not appear in F (in particular remove quantifier ∃P ,
i.e. ∃Pij) — now ¬B is equivalent to modal schema S, but contains no
occurrence of Pij (and maybe of some other second-order quantifiers)

od

(12) return ¬B as the result — now ¬B is the correspondence axiom 2

Observe that the above algorithm always stops and is sound in the sense that whenever
it does not fail, the resulting formula is indeed the correspondence axiom. That is obvious,
as all above transformations preserve equivalence of formulas, and lemma 4.2 indeed
eliminates quantification over P . What has no counterpart in the elimination technique

10note that this step can be strengthened - cf. next section
11more precise description of this step is given in algorithm 4.6
12note that it is sometimes more convenient to transform C first if its transformation is simpler - such

an optimization is sometimes used in examples given below.
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of lemma 4.2 and maybe still requires some explanation is the transformation applied in
step (6). The below proposition justifies the transformation.

Proposition 4.4 Let A be a classical first-order formula of the form Qx1....Qxn.(A1∧...∧
Aq), where A1, ..., Aq are disjunctions of atomic formulas. Assume that any conjunct of
A containing P contains (among others) positive occurrence of P or any of those conjunct
contains (among others) negative occurrence of P . Let B be formula ∃P.A

Then B is equivalent to

Q1x1....Qnxn.(Ai1 ∧ ... ∧ Air),

where i1, ..., ir ∈ {1, ..., q} and Ai1 , ..., Air are all conjuncts that do not contain occurrences
of P (the empty conjunction is, by convention, ⊤).

Proof:

(→) By assumptions formula A implies formula which results from A by replacing
P (respectively ¬P ) by ⊤. But, after replacing, all conjuncts that contained P
(respectively ¬P ) are disjunctions that contain ⊤, i.e. are equivalent to ⊤. Thus A
implies Q1x1....Qnxn.(Ai1 ∧ ... ∧ Air), and so ∃P.A implies ∃P.Q1x1....Qnxn.(Ai1 ∧
...∧Air). The second formula contains no occurrence of P , so the quantifier ∃P can
be removed from this formula. This proves implication (→).

(←) Assume Q1x1....Qnxn.(Ai1 ∧ ... ∧ Air) is true under some interpretation and
valuation of free variables. We have to show that formula ∃P.A is true as well. Thus
we have to exhibit P for which A is true (under the same interpretation and valu-
ation). Set P to be ⊤ (or, in case of negative occurrences of P , to be ⊥). Now all
conjuncts containing P reduce to ⊤, thus A reduces to Q1x1....Qnxn.(Ai1 ∧ ...∧Air),
which is true, by initial assumption. 2

Let us now illustrate the method with a few examples. Note that below we use some
optimizations, e.g. whenever positive and negative occurrences of P are separated, we
do do not transform the whole formula into conjunctive normal form but one of its parts
only, etc.

Example 4.5 Consider first modal schemas 2p → p, 2p → 22p and p → 23p. As
we treat implication as abbreviation, those should be equivalently rewritten as ¬2p ∨ p,
¬2p ∨22p and ¬p ∨23p

Let us now apply the algorithm to those schemas. Let us start with the first one.

— translated schema (cf. section 3): ∀P.∀x.¬(∀y.¬R(x, y) ∨ P (y)) ∨ P (x)
— negated: ∃x.∃P.(∀y.¬R(x, y) ∨ P (y)) ∧ ¬P (x) — note that the formula is

already in separated form
— transformed: ∃x.∃P.∀z.[¬P (z)∨z ̸= x]∧[∀y.¬R(x, y)∨P (y)] — now lemma

4.2(2) can be applied
— P eliminated: ∃x.∀y.¬R(x, y) ∨ y ̸= x
— negated: ∀x.∃y.R(x, y)∧y = x — now algorithm stops, however we can still

simplify the above formula, using proposition 4.1(14) according to which
∃y.R(x, y) ∧ y = x is equivalent to R(x, x)

— simplified: ∀x.R(x, x) — i.e. reflexivity of R
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Let us now consider the second schema.

— translated schema (cf. section 3):
∀P.∀x.¬(∀y.¬R(x, y) ∨ P (y)) ∨ ∀y.(¬R(x, y) ∨ ∀z.(¬R(y, z) ∨ P (z)))

— negated: ∃x.∃P.(∀y.¬R(x, y)∨P (y))∧ ∃y.(R(x, y)∧ ∃z.(R(y, z)∧¬P (z)))
— note that the formula is already in separated form

— transformed: ∃x.∃P.∀y.[P (y)∨¬R(x, y)]∧[∃y.R(x, y)∧∃z.(R(y, z)∧¬P (z))]
— now lemma 4.2(1) can be applied

— P eliminated: ∃x.∃y.R(x, y) ∧ ∃z.(R(y, z) ∧ ¬R(x, z))
— negated: ∀x.∀y.¬R(x, y)∨∀z.(¬R(y, z)∨R(x, z)) — algorithm stops here,

however the formula can still be simplified as follows
— simplified: ∀x, y, z.R(x, y)→ (R(y, z)→ R(x, z)) — i.e. transitivity of R

The elimination of P from the third schema proceeds as follows.

— translated schema (cf. section 3):
∀P.∀x.¬P (x) ∨ (∀y.¬R(x, y) ∨ ∃z.(R(y, z) ∧ P (z))

— negated: ∃x.∃P.P (x) ∧ ∃y.(R(x, y) ∧ ∀z.(¬R(y, z) ∨ ¬P (z)) — note that
the formula is already in separated form

— transformed: ∃x.∃P.∀z.[P (z)∨x ̸= z]∧ [∃y.R(x, y)∧∀z.(¬R(y, z)∨¬P (z))]
— now lemma 4.2(1) can be applied

— P eliminated: ∃x.∃y.R(x, y) ∧ ∀z.(¬R(y, z) ∨ x ̸= z)
— negated: ∀x.∀y.¬R(x, y)∨∃z.(R(y, z)∧x = z) — algorithm stops here, but

we can simplify the formula using proposition 4.1(14) and definition of →
— simplified: ∀x, y.R(x, y)→ R(y, x) — i.e. symmetry of R

Let us now illustrate the algorithm in case of elimination of two second-order quantifica-
tions. For this purpose consider the schema 2(p∨q)→ (2p∨2q), i.e. ¬2(p∨q)∨(2p∨2q).

— translated schema: ∀P.∀Q.∀x.¬(∀y.(R(x, y)→ (P (y) ∨Q(y))) ∨
(∀z.(R(x, z)→ P (z)) ∨ ∀v.(R(x, v)→ Q(v)))

— negated: ∃x.∃P.∃Q.(∀y.(¬R(x, y)∨P (y)∨Q(y))∧ (∃z.(R(x, z)∧¬P (z))∧
∃v.(R(x, v) ∧ ¬Q(v))

— separated (w.r.t. Q): ∃x, z, v.∃P.∃Q.∀y.[Q(y)∨(¬R(x, y)∨P (y))]∧[R(x, z)∧
¬P (z) ∧R(x, v) ∧ ¬Q(v)]

— Q eliminated: ∃x, z, v.∃P.(R(x, z) ∧ ¬P (z) ∧R(x, v) ∧ (¬R(x, v) ∨ P (v))
— separated (w.r.t. P ):
∃x, z, v.∃P.[P (v) ∨ ¬R(x, v)] ∧ R(x, z) ∧ ¬P (z) ∧ R(x, v) ∧ ¬P (v) — now
use proposition 4.1(13)

— transformed:
∃x, z, v.∃P.∀u.[P (u) ∨ (u ̸= v ∨ ¬R(x, u))] ∧ [R(x, z) ∧ ¬P (z) ∧R(x, v)] —
now lemma 4.2 can be applied

— P eliminated: ∃x, z, v.[R(x, z) ∧ (z ̸= v ∨ ¬R(x, z)) ∧R(x, v)]
— negated: ∀x, z, v.[¬R(x, z)∨(z = v∧R(x, z))∨¬R(x, v)] — algorithm stops

here, but we can still make some simplifications:
— simplified: ∀x, z, v.((R(x, z) ∧R(x, v))→ (z = v ∧R(x, z)), i.e.
∀x, z, v.((R(x, z) ∧R(x, v))→ z = v 2
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The following more precise description of the eighth step of algorithm 4.3 completes the
presentation of our algorithm.

Algorithm 4.6 (step (8))

Input: first-order formula C in conjunctive normal form, containing positive
occurrences of P only13

Output: formula of the form ∃f1...fl.∀z1...zn.(P (z1, ..., zn)∨D1)∧D2, where
fi’s are Skolem functions and D1, D2 contain no occurrences of P . The
resulting formula is equivalent to C

(1) if C contains existential quantifiers then call Skolemize(C,E) — now E is
of the form ∃f1...fl.∀x1....xm.(E1∧ ...∧Ek), where fi’s are Skolem functions
and Ei’s are disjunctions of atomic formulas

(2) set D2 to be formula ∀x1....xm.(Ei1∧ ...∧Eiq), where Eij ’s are all conjuncts
of E that do not contain P ; delete all those Eij ’s from E

(3) move universal quantifiers in E before each conjunct (using proposition
4.1(7))— now E is of the form

∃f1...fl.(∀x1....xm.E1 ∧ ... ∧ ∀x1....xm.Er),
where Ei’s are disjunctions of atomic formulas and each Ei contains P

for all conjuncts of E do
(4) using proposition 4.1(13) transform the conjunct into form

∀x1....xm.∀z1....zn.(P (z1, ...., zn) ∨ F ),
where zi’s are fresh variables

od

(5) using proposition 4.1(11)-(12) and law (p ∨ q) ∧ (p ∨ s) ↔ (p ∨ (q ∧ s))
transform equivalently E into form

∃f1...fl.∀z1....∀zn.[P (z1, ..., zn) ∨ ∀x1....xm.(F1 ∧ ... ∧ Fr)]
(6) return as the result formula

∃f1...fl.∀z1....∀zn.[P (z1, ..., zn) ∨ ∀x1....xm.(F1 ∧ ... ∧ Fr)] ∧D2. 2

Let us now give two examples where algorithm 4.3 fails (note, however, that both examples
consider modal schemas that are not first-order definable).

Example 4.7 Consider the Löb axiom 2(2p→ p)→ 2p, i.e. ¬2(¬2p ∨ p) ∨2p.

— translated: ∀P.∀x.(¬(∀y.(R(x, y) → (¬∀z.(R(y, z) → P (z)) ∨ P (y))) ∨
∀u.(R(x, u)→ P (u)))

— negated:
∃x.∃P.((∀y.(¬R(x, y)∨(∃z.(R(y, z)∧¬P (z))∨P (y)))∧∃u.(R(x, u)∧¬P (u)))

— try to separate:
∃z, u.∃P.∃f.∀y.(¬R(x, y) ∨ R(y, f(y)) ∨ P (y)) ∧ (¬R(x, y) ∨ ¬P (f(y)) ∨
P (y))) ∧ (R(x, u) ∧ ¬P (u))) — new Skolem function f was introduced;

— report failure — the second conjunct cannot be separated

Consider now the McKinsey’s axiom 23p→ 32p, i.e. ¬23p ∨32p.

13the case of negative occurrences of P is symmetric and thus need not be presented here
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— translated: ∀P.∀x.(¬∀y.(R(x, y) → ∃z.(R(y, z) ∧ P (z)) ∨ ∃u.(R(x, u) ∧
∀v.(R(u, v)→ P (v)))

— negated: ∃x.∃P.(∀y.(¬R(x, y) ∨ ∃z.(R(y, z) ∧ P (z)) ∧
∀u.(¬R(x, u) ∨ ∃v.(R(u, v) ∧ ¬P (v)))

— separated: ∃x.∃P.∃f.∀y.[¬R(x, y)∨P (f(y)]∧ [∀y.(¬R(x, y)∨R(y, f(y)))∧
∀u.(¬R(x, u) ∨ ∃v.(R(u, v) ∧ ¬P (v))]

— transformed: ∃x.∃f.∃P.∀z.[P (z)∨∀y.(¬R(x, y)∨z ̸= f(y))]∧[∀y.(¬R(x, y)∨
R(y, f(y))) ∧ ∀u.(¬R(x, u) ∨ ∃v.(R(u, v) ∧ ¬P (v))] — now lemma 4.2(1)
can be applied

— P eliminated: ∃x.∃f.∀y.(¬R(x, y)∨R(y, f(y)))∧∀u.(¬R(x, u)∨∃v.(R(u, v)∧
∀y.(v ̸= f(y) ∨ ¬R(x, y))))

— report failure — the last formula cannot be unskolemized (which may even
easier be seen after transformation into conjunctive normal form). 2

Note that in case of Löb’s axiom SCAN algorithm of [4] loops (while our stops).

Observe also that our algorithm is incomplete, for it fails in producing correspondence
axiom for (2p→ 22p) ∧ (23p→ 32p)14. The fact that McKinsey’s axiom has a first-
order equivalent in transitive frames can be found e.g. in [8]. On the other hand, our
algorithm applied to ∀p.(2p → 22p) ∧ (23p → 32p), i.e. equivalently to ∀p.(2p →
22p) and, separately, to (23p→ 32p) produces formula that cannot be unskolemized.
Observe that the same argument shows incompleteness of the SCAN algorithm.

5 Strengthening the algorithm

Observe that steps (7) and (8) of the algorithm can still be modified so that the algorithm
accepts essentially more formulas. The whole idea, however, remains the same.

Let us first start with a simple modification of step (7). Namely, in some cases, when
scopes of quantifiers allow for this, one can separate positive and negative occurrence
of P in a conjunct. Assume E is in conjunctive normal form, with no existential first-
order quantifiers placed after ∃P , i.e. E is of the form ∃f1....fn.∃P.∀x1...xp.(E1∧ ...∧Em).
Assume a conjunct, say Ei, is of the form E∨E, where E contains no negative occurrences
of P and E contains no positive occurrences of P . One can then transform E into form

∃f1....fn.∃P.∀x1...xp.(E1∧...∧Ei−1∧Ei+1∧...∧Er∧E)∨(E1∧...∧Ei−1∧Ei+1∧...∧Er∧E),

using the law p ∧ (q ∨ s) ↔ (p ∧ q) ∨ (p ∧ s). Now, if the scopes of quantifiers
do not make this impossible, one can separate the above formula into two formulas
∃f1....fn.∃P.∀x1...xp.(E1 ∧ ... ∧Ei−1 ∧Ei+1 ∧ ... ∧Er ∧E) and ∃f1....fn.∃P.∀x1...xp.(E1 ∧
... ∧ Ei−1 ∧ Ei+1 ∧ ... ∧ Er ∧ E). After such a separation one can consider those formulas
separately and, at the end, collect them into one disjunction.

The below example clarifies the above improvement of the algorithm.

Example 5.1 The formula ∃x.∃P.∀y.(¬P (x)∨ P (y)∨G(y)) ∧H(x) can be transformed
as follows: ∃x.∃P.∀y.(¬P (x)∧H(x))∨ (P (y)∨G(y))∧H(x)). Now, by using proposition

14the counterexample was supplied to us by H.J. Ohlbach
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4.1(11), we obtain ∃x.∃P.(¬P (x)∧H(x))∨∀y.((P (y)∨G(y))∧H(x)), i.e. (by proposition
4.1(6)) ∃x.∃P.(¬P (x) ∧ H(x)) ∨ ∃x.∃P.∀y.((P (y) ∨ G(y)) ∧ H(x)). This gives us the
required separation of positive and negative occurrences of P . Now the elimination of P
can proceed separately for the above two disjuncts.

Note however, that the following formula:
∃P.∀x, y.(¬P (x) ∨ P (y) ∨G(x, y)) ∧H(x)

cannot be separated by application of this technique. 2

Similarly, different positive (respectively negative) occurrences of P in one conjunct
can sometimes be separated by similar application of the technique described above. This
allows us to strengthen the eighth step of algorithm 4.3. If the above technique fails, we
can still apply, in case of step (8), yet another method based on factorization principle we
introduce below. Note that the principle we present essentially strengthens the elimination
technique of Ackermann. It is based on the following lemma.

Lemma 5.2 Let P be an n-argument predicate and let C be a formula that does not
contain occurrences of P . Then formula

∀x1...xm.(±P (t11, ..., t1n) ∨ ±P (t21, ..., t2n) ∨ ... ∨ ±P (tk1, ..., tkn) ∨ C)

is equivalent to formula

∃Q.[∀y1...yn.¬Q(y1, ..., yn) ∨ ±P (y1, ..., yn)]∧
∀x1...xm.[±P (t11, ..., t1n) ∨Q(t21, ..., t2n) ∨ ... ∨Q(tk1, ..., tkn) ∨ C],

where Q and yi’s are fresh variables and ± stands either for negation (in case when all
occurrences of P are negative) or for no symbol (in case when all occurrences of P are
positive).

Proof: The proof can be carried out by direct application of lemma 4.2. 2

Note that in the above lemma occurrences of P are separated and lemma 4.2 can be
applied to eliminate P . After such an elimination we still have to eliminate Q. We do
this by application of our (strengthened) algorithm.

Observe that we proved lemma 5.2 by application of lemma 4.2. However, unlike in
elimination technique we deal with, we introduced new second-order quantifications. Thus
we strengthen the technique by proposing a new way of applying the basic equivalences
of lemma 4.2. Observe that we have to modify the strategy of our algorithm in order to
avoid loops. The strategy can now be the following:

try to eliminate P and, in case of application of lemma 5.2, try to eliminate
new quantifications. If complexity of new quantifications is greater than that
of P , report failure and stop, otherwise continue the execution of algorithm.

The complexity of quantifications, say over S1,..., St, is measured here by number of
occurrences of Si’s in all conjuncts.

Below we show an example of application of factorization principle.
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Example 5.3 Consider formula ∃P.∀x, y.(P (x) ∨ P (y) ∨R(x, y)) ∧ (¬P (x) ∨R(y, x)):

— quantification over Q introduced:
∃Q.∃P.∀x, y.(P (x)∨Q(y)∨R(x, y))∧(¬P (x)∨R(y, x))∧∀z.(¬Q(z)∨P (z))

— transformed: ∃Q.∃P.[∀z.(P (z)∨ (∀u, v.(z ̸= u∨Q(v)∨R(u, v))∧¬Q(z))]∧
[∀x, y.(¬P (x) ∨R(y, x))]

— P eliminated: ∃Q.∀x, y.(∀u, v.(x ̸= u∨Q(v)∨R(u, v))∧¬Q(x))∨R(y, x))
— transformed into conjunctive normal form:
∃Q.∀x, y, u, v.(x ̸= u ∨Q(v) ∨R(u, v) ∨R(y, x)) ∧ (¬Q(x) ∨R(y, x))

— transformed: ∃Q.[∀v.(Q(v) ∨ ∀x, y, u.(x ̸= u ∨R(u, v) ∨R(y, x))] ∧
[∀w, z.(¬Q(w) ∨R(z, w))]

— Q eliminated: ∀w, z.(∀x, y, u.(x ̸= u ∨R(u,w) ∨R(y, x)) ∨R(z, w)). 2

6 Final remarks

We presented an algorithm for automated search of correspondence axioms. We mainly il-
lustrated the use of algorithm on Kripke-like semantics of modal logics. Observe, however,
that the technique we apply is based on elimination of second-order quantification from
formulas. That makes it independent of any particular semantics. In fact, the semantics
is given to the algorithm only via translation function which is a parameter for the algo-
rithm. Thus restriction as to normality of considered logics, as inherited together with
Kripke semantics, is again inessential in sense, that whenever dealing with non-normal
logics, one has to apply another kind of semantics and translation anyway.

We did not consider the case of multimodal logics. This again was done without loss
of generality, as what we were really working with was always some translated modal
schema, i.e. Π1

1 formula. The number of modalities is then inessential from the point of
view of the algorithm. Similarly, the algorithm can deal with many-argument modalities
etc. More generally - the algorithm is applicable to Π1

1 formulas and thus to any semantics
or translation which associates a Π1

1 formula to a modal schema.

Observe that we considered only translations that preserve validity of formulas. In
particular we did not deal with translations that are based on any interpreted formalism.

Recall that we proved soundness of the algorithm. Unfortunately, even the strength-
ened algorithm is incomplete. We believe that the problem, in most general form, is
totally undecidable. It seems, however, that for particular semantics and translations
complete algorithms can be given. This, however, is still an open problem.

Note that the factorization principle introduced in section 5 essentially strengthens
the elimination technique of Ackermann. Thus, as a side-effect of this paper, we get a
method for proving a subset of second order logic which is essentially stronger than that
considered in [1, 6].
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