
1

Semi-Unification

Rolf Socher-Ambrosius

Max-Planck-Institut für Informatik, Im Stadtwald,

D-W-6600 Saarbrücken, Germany

email: socher@mpi-sb.mpg.de

Abstract

Semi-unifiability is a generalization of both unification and matching. It is used to check

nontermination of rewrite rules. In this paper an inference system is presented that decides

semi-unifiability of two terms s and t and computes a semi-unifier. In contrast to an algorithm by

Kapur, Musser et al, this inference system comes very close to the one for ordinary unification.

Keywords: Automatic Theorem Proving, Termination, Unification

1 Introduction

It is a well-known fact that termination is an undecidable property of rewrite systems, even in the case of

a single rewrite rule [2]. For practical purposes, a number of rewrite orderings have been proposed as

sufficient conditions for termination. In addition to such termination proofs, the ability to prove

nontermination of a rule seems to be useful for Knuth-Bendix completion. For instance, if a newly

generated rule can be easily shown to be nonterminating, then it is not necessary to try to orient it with

the given termination ordering. Purdom [9] gives some practical results that demonstrate the practical

value of non-termination proofs. One such sufficient condition [6] for nontermination is based on semi-

unification. A similar idea based on nontermination is proposed by Plaisted [8].

More recently, another application of semi-unification has emerged in the area of type inference in
extensions of the Milner Calculus. In [4], it is shown that the polymorphic type inference problem for recur-
sive functions can be reduced to a generalized semi-unification problem.

The first algorithm for semi-unification [9] was shown to be incorrect by Kapur et al, [5]. In their

paper, a correct algorithm is presented, which, however, seems to be unnecessarily complicated, both with

respect to the formulation and the correctness proof. Their algorithm essentially tries to construct a termi-

nating rewrite system. A refined version of this algorithm is shown to be of polynomial time complexity.

Leiß [7] extends Kapur’s algorithm to the generalized semi-unification problem. Unfortunately, he is not

able to prove termination of the extended algorithm. According to [7], it is even an open question whether

the generalized semi-unification problem is decidable.

In this paper, an inference system for semi-unification is presented that bears considerable similarity

to the inference system for ordinary unification. The proofs of termination and correctness are straightfor-



2

ward. The inference system can be canonically transformed into an inference system on graphs, thus yield-

ing an algorithm of polynomial time-complexity.

We use the standard notions on terms and substitutions: Let T=T(F,V) denote the set of terms over

the signature F and the set of variables V. For any t∈T\V, Head(t) denotes the function symbol heading t.

We use ≤ (<) for the (proper) subsumption ordering on T, i.e., s≤t, if there exists a substitution σ, such that

t=sσ.

A substitution σ is an endomorphism on the term algebra, such that xσ=x for all but a finite number of

variables. By Dom(σ) and Cod(σ), we denote the sets {x∈V| xσ ≠ x} and {xσ| x∈Dom(σ)}, respectively. A sub-

stitution σ is usually denoted by the set of termpairs {x→xσ| x∈Dom(σ)}. Σ denotes the set of substitutions.

A renaming is an injective substitution with Cod(ρ)⊆V. We extend the quasi-ordering ≤ to Σ by σ≤τ iff there

exists θ∈Σ with τ=σθ.

A substitution σ is a unifier of the pair (equation) s≈t of terms, iff sσ=tσ holds, and it is a unifier of an

equational system E, iff it is a unifier for each e∈E. The set of all idempotent unifiers of E is denoted by

u(E). A most general unifier of E is a minimum of u(E) w.r.t. the subsumption quasi-ordering, and mgu(E)

denotes the set of all most general unifiers of E.

We use the notation E*σ , where E is an equational system and σ∈Σ ,  to denote the system

Eσ∪{y≈yσ| y∈Dom(σ)}.

2 An Algorithm for Semi-unification

1 Definition  Let s and t be terms. We say s semi-unifies with t, iff there exist substitutions μ and σ, such

that sσμ = tσ. In this case we call the pair (σ,μ) a semi-unifier of the pair s≈t. We call (σ,μ) a semi-unifier of an

equational system E, iff it is a semi-unifier for each e∈E. Let U, E be equational systems. We call (σ,μ) a semi-

unifier of (E,U), iff σ is a unifier of U and (σ,μ) is a semi-unifier of E. The set of all semi-unifiers of E or (E,U) is

denoted by su(E) or su(E,U), respectively.

The problem to find a semi-unifier for a system (E1,…,En,U) with arbitrary n∈IN is referred to as

generalized semi-unification problem, while the problem for n=1 is simply called semi-unification problem.

In this section we give an inference system for semi-unification, which is shown to be correct and terminat-

ing under a particular strategy (i.e., a priority on the inference rules).

Semi-unification can be used as the basis of a sufficient condition for nontermination, as the following

theorem ([6], [5]) shows:

2 Theorem  Let l→r be a rewrite rule. If there exists a subterm r' of r, such that l semi-unifies with r', then

l→r is nonterminating. 

Of course, this criterion can not be necessary for nontermination. A simple counterexample is given in

[3]: Consider the rule fgx→ggffx, which is nonterminating (the term fggx, for instance, issues an infinite

derivation), even though the left hand side fails to semi-unify with any subterm of the right hand side.



3

3 Example  Let s=f(hy,x) and let t=f(x,h2y). We are looking for a pair (σ,μ), such that sσμ = tσ. It is easy to

see that the pair s≈t has neither a unifier nor a matcher. The basic idea of the semi-unification algorithm is

the following: The subproblem (hy)σμ = xσ implies that xσ must be of the form hu for some term u. We try

σ={x→hu} and obtain the subproblem f(hy,hu) ≈ f(hu, h2y), which has the matcher μ={y→u, u→hy}.

In the following we consider the semi-unification problem s0≈t0. Let V0 = Var(s0,t0). The rules operate

on pairs (E,U), where E and U are equational systems. The initial system is given by (E0,U0), where

E0={s0≈t0} and U0=Ø. We assume given an infinite set V of variables with V0⊆V, and a renaming ρ on V,

such that V =  ∪
n∈IN

 V0ρn. In other words, for each x∈V, we have an infinite set of copies {xρn | n∈IN}, which

will be abbreviated by X.

As a matter of technicality, we shall consider only those semi-unifiers (σ, μ) that satisfy ρσ = σμ. This

is no loss of generality, since (σ,μ) is a semi-unifier of s0≈t0, iff (σ|V0
, μ) is a semi-unifier of s0≈t0, i.e., the

value of σ on Vρ is irrelevant.

If U = {x1≈t1,…,xn≈tn} and V⊆V, then U|V denotes the set {xi≈ti | i=1,…,n; xi∈V}.

4 Definition  For any (finitely based) substitution σ we define (an infinitely based substitution) σ* by

σ* = {xρn → (xσ)ρn | x∈Dom(σ), n∈IN}

5 Definition  The system ⇒SU consists of the following inference rules:

Decomposition:

(E∪{ft1…tn ≈ fs1…sn},U) ⇒D (E∪{t1≈s1,…,tn≈sn},U)

Merge left:

(E∪{t≈x},U) ⇒ML (Eσ*∪{y≈yρ| y∈Var(t)}, U*σ*), if X∩Var(tρ)=Ø, t∉V, and σ={x→tρ}

Merge right:

(E∪{x≈s, x≈t}, U) ⇒MR ((E∪{x≈s})σ*, U*σ*), if σ∈mgu(s,t)

The following failure rules enhance the efficiency of the procedure:

(E∪{ft1…tn ≈ gs1…sm},U) ⇒F failure, if f≠g

(E∪{t≈x},U) ⇒F failure, if X∩Var(tρ)≠Ø

(E∪{x≈s, x≈t}, U) ⇒F failure, if mgu(s,t)=Ø

An inference step (E∪{t≈x},U) ⇒ML (Eσ*∪{y≈yρ| y∈Var(t)}, U*σ*) is called an application of ML on x in

E∪{t≈x}. An ML step on a variable x is denoted by ⇒ML(x).

Example  Let E0={fy≈z, fx≈y, z≈f3x}, U0=Ø. As a matter of convenience, we write v' = vρ and v" = vρ2 for any

variable v. As a first step, we can apply the ML rule to fy≈z:

({fy≈z, fx≈y, z≈f3x},Ø) ⇒ ({y≈y', fx≈y, fy'≈f3x},{z≈fy'})

Now we apply the ML rule to fx≈y:



4

({y≈y', fx≈y, fy'≈f3x},{z≈fy'}) ⇒ ({fx'≈fx", x≈x', ffx"≈f3x},{z≈ffx", y≈fx', y'≈fx"})

Note that it is not necessary to include explicitely into U all equations y≈fx', y'≈fx", y"≈fx''', …, rather, it

would be sufficient to include only the first one. After several decomposition steps, we obtain the solution

({x'≈x", x≈x', x"≈fx},{z≈ffx", y≈fx', y'≈fx"})

which indeed is a semi-unifier for the original system.

In the following we first prove that the inference rules are correct, and then we show that the inference

system SU is terminating under a particular priority for the rules.

In the following we shall prove that each terminating SU inference (E0,U0) ⇒ (E1,U1) ⇒ … ⇒ (En,Un)

yields a system (En,Un) that either represents a solution to the system (E0,U0), if this system is solvable,

or it terminates with failure, if the original system is unsolvable.

In the next lemmata, (E0,U0) ⇒ (E1,U1) ⇒ … ⇒ (En,Un) denotes an SU-derivation with E0={s0≈t0} and

U0=Ø.

6 Lemma  Let U=Ui for some i=1,…,n. Then for each e∈U, there are x∈V0 and t∈T with X∩Var(t)=Ø, such

that e = x≈t. Moreover, the mapping σU := {x→t| x≈t∈U} is a well-defined and idempotent substitution and σU

∈ mgu(U) holds.

Proof: This is obvious by the construction of the derivation system. 

7 Lemma su(Ei+1, Ui+1) = su(Ei, Ui) holds for any i=0,…,n.

Proof: First, we remark that Dom (σU i
) ∩  Var(Ei) = Ø holds for i=0,…,n. Let (E,U)=(Ei,Ui) and

(E',U')=(Ei+1,Ui+1). Note that we consider only semi-unifiers (σ,μ) with ρσ = σμ.

Case 1: (E', U') is derived from (E, U) by a decomposition step. Then obviously su(E', U') = su(E, U) holds.

Case 2: (E, U) ⇒ML   (E', U') holds. Let E = {t≈x, s1≈t1,…, sn≈tn} and U = {x1≈r1,…, xm≈rm}, with

Var(t)={y1,…,yk}, such that E' = {y1≈y1ρ, …, yk≈ykρ, s1θ≈t1θ, …, snθ≈tnθ} and U' = {x1≈r1θ, …, xm≈rmθ, x≈tρ}

hold for θ = {x→tρ}* = {xρi → tρi+1 | i∈IN}.

Let (σ,μ)∈su(E, U). We have xσ = tσμ = tρσ = xθσ, and xρiσ = xσμi = tσμi+1 = tρi+1σ = xρiθσ for any

i∈IN, and yθσ = yσ for y∉X, which shows that θσ = σ. From xiσ = riσ = riθσ now follows σ∈u(U'). Finally,

from yiσμ = yiρσ, i=1,…,k; and siθσμ = siσμ = tiσ = tiθσ, i=1,…,n, follows (σ,μ) ∈ su(E').

Conversely, assume that (σ,μ)∈su(E',U'). This implies xσ = tρσ = xθσ, hence θσ = σ. We have tσμ = tρσ

= xσ, xjσ = rjσ for j=1,…,m and siσμ = tiσ for i=1,…,n. Hence (σ,μ)∈su(E,U).

 Case 3: (E, U) ⇒MR  (E', U') holds. Let {x≈t, x≈t'} ⊆ E, and let τ0∈mgu(t,t'), τ = τ0*, such that E'= Eτ and U'

= U*τ. First, suppose that (σ,μ)∈su(E,U).

We have xσμ = tσ and xσμ = t'σ. Hence σ∈u(t,t'), and with τ0∈mgu(t,t') follows τ0≤σ, that is, τ0σ = σ.

Let y∈Dom(τ0). Then for any i∈IN, yρiτσ = yρiτ0*σ = yτ0ρiσ = yτ0σμi = yσμi = yρiσ, which shows that τσ = σ.

Moreover, from σ∈u(U) and σU = mgu(U) follows σU≤σ. This yields σU' = σUτ ≤ σ, hence σ∈u(U').

Moreover, from τσ = σ follows (τσ,μ) = (σ,μ)∈su(E), which yields (σ,μ) ∈ su(Eτ) = su(E').



5

Conversely, let (σ,μ)∈su(E',U'). Then σUτ = σU' ≤ σ and τ ≤ σ, which implies σU ≤ σ, that is, σ∈u(U).

Moreover, from (σ,μ) ∈ su(E') = su(Eτ) follows (σ,μ) = (τσ,μ)∈su(E). 

8 Lemma  Let (E0,U0) ⇒ … ⇒ (En,Un) with U0=Ø, such that (En,Un) is irreducible by the inference rules

⇒D, ⇒MR and ⇒ML.

a) If (E0,U0) is not semi-unifiable then one of the failure conditions holds.

b) If (E0,U0) is semi-unifiable, then En is of the form {x1≈t1,…,xn≈tn}, such that xi≠xj for i≠j. Moreover,

the pair (σUn
,μEn

) is a semi-unifier of (E0,U0), where μEn 
= {x1→t1, …, xn→tn}.

Proof: Let (E,U)=(En,Un), and let σ=σU.

a) Assume that none of the failure conditions holds. From lemma 7 follows σ  = mgu(U) and

Dom(σ)∩Var(E)=Ø. Since E is irreducible, E is of the form {x1≈t1,…,xn≈tn}, such that xi≠xj for i≠j, which

implies that μ = {x1→t1, …, xn→tn} is a well-defined substitution. Finally, we have xiσμ =  xiμ = ti = tiσ for

i=1,…,n, that is, (σ,μ)∈su(E). From the previous lemma follows that (σ,μ)∈su(E0,U0).

b) If (E0,U0) is semi-unifiable, then by the previous lemma, (E,U) is semi-unifiable. Let (σ,μ)∈su(E,U). We

show that in this case none of the failure conditions holds.

Suppose, there is s≈t∈E with s,t∉V. If Head(s)≠Head(t), then E is not semi-unifiable, which is a contra-

diction, and if Head(s)=Head(t), then the MR rule applies to E, which contradicts the irreducibility of E.

Let t≈x∈E with xρm∈Var(t) for some m∈IN. Since xρm∈Var(t), for each i=1,…,m, there exists s(i)≤n and

an ML-step (Es(i),Us(i)) ⇒ (Es(i)+1,Us(i)+1) such that xρi ≈ xρi+1 ∈ Es(i)+1. Let ϕ=σU. Since the the merge left

and decomposition rules do not remove equations from Ei, the final system E contains equations xϕ ≈

xρ1ϕ,…,xρm-1ϕ ≈ xρmϕ, and t[xρm] ≈ x. Since the variables x and xρm both occur in E, we have x=xϕ and

xρm=xρmϕ. The pair (σ,μ) is a semi-unifier for E, hence we have

xϕσμ = xρ1ϕσ, xρ1ϕσμ = xρ2ϕσ,…,xρm-1ϕσμ = xρmϕσ, and t[xρm]σμ = xσ

Hence we can infer xσμm = xϕσμm = xρmϕσ = xρmσ and t[xσμm+1] = xσ, which is a contradiction. If, on the

other hand, xρm∉Var(t) for all m∈IN, then the ML rule applies to E, which is a contradiction.

So we have E = {x1≈t1,…,xn≈tn}. If xi=xj for i≠j, then the pair ti≈tj is unifiable, because E is semi-unifi-

able, and thus the MR rule applies to E, which is a contradiction.

 Hence μE is a well-defined substitution and from Dom(σU)∩Var(E)=Ø follows xiσμ = xiμ = ti = tiσ for

i=1,…,n, that is, (σU, μE)∈su(E,U), and, by the previous lemma, (σU, μE)∈su(E0,U0).

Next we show termination of the inference system. We modify the system SU in the following way: Let

SU* be the system consisting of the decomposition rule, the MR rule, and the ML rule together with the

following strategy: The decomposition rule obtains highest priority, and the MR rule obtains the second

highest one.

In the next lemmata, (E0,U0) ⇒ (E1,U1) ⇒ … ⇒ (En,Un) denotes an SU*-derivation with E0={s0≈t0}

and U0=Ø.



6

9 Lemma  If xρ∈Var(Ei) for some x∈V, then x≈xρ ∈ Ei.

Proof. Let j be the least number such that xρ∈Var(Ej). Then, (Ej-1,Uj-1) ⇒ML (Ej,Uj), and by definition of

the ML rule, x≈xρ ∈ Ej. Now suppose there is some i>j with x≈xρ ∉ Ei. We can assume that i is the least

such integer. Consider the step (Ei-1,Ui-1) ⇒ (Ei,Ui). This step is either an ML or an MR step, yielding

some substitution σ*. Since x≈xρ ∉ Ei, x∈Dom(σ*) or xρ∈Dom(σ*). If x∈Dom(σ*), then by definition of the

mapping *, xρ∈Dom(σ*). Hence xρ∈Dom(σ*), which implies xρ∉Var(Ei), contradicting the asssumption of the

lemma. 

10  Lemma  Let x≈t ∈ Ei with t∉V and Var(Ei)∩Xρ = Ø. If there is no n≥i such that ML applies on x in En,

then there exists no j≥i, such that the ML rule applies on xρk with k≥1 in Ej.

Proof: First, we can conclude from the assumption of the lemma that for each j'≥i, there exists t'∉V with

x≈t'∈Ej'. Without loss of generality, we assume that x≈t ∈ Ej' for each j'≥i.

Since xρ∉Var(Ei), the only way to generate the variable xρ in some step (Ej,Uj) ⇒ (Ej+1,Uj+1), j≥i, is by

an application of the ML rule on some equation s≈y in Ej with x∈Var(s). However, as x≈t ∈ Ej, we have

{x≈t, x≈xρ} ⊆ Ej+1, so the next inference step is an MR step yielding the substitution {xρ→t}, which shows

that xρ does not occur in Ej+2. An induction argument now proves the assertion of the lemma.

11 Theorem  The inference system SU* is terminating.

Proof: Let x∈V0 and let n be the least integer such that the ML rule is applied on some equation t≈xρn in

Ei. Let i be the least such number. Without loss of generality, we can assume that n=1. Then we can con-

clude that x≈xρ ∈ Ei, which in turn implies x≈t ∈ Ei+1 and Var(Ei+1)∩Xρ = Ø. Since the ML rule is not

applied on x in any Ej, the assumption of the previous lemma is satisfied. Hence we can conclude that

there is no j≥i such that the ML rule applies on any x∈X in Ej.

Now we have proved that for any x∈V0, the number of applications of the ML rule on any x'∈X is

finite. As V0 is finite, we can infer that the ML rule can be applied only finitely many times in any SU*

derivation. The system consisting of the remaining two rules, the decomposition rule and the MR rule, is a

subsystem of the inference system for ordinary unification, and hence this system is terminating, too,

which proves the assertion of the lemma.

Lemma 8 and the previous theorem yield the following

12 Theorem  The inference system SU* describes a sound and complete semi-unification algorithm.

3 A Polynomial Algorithm

The inference system described in the previous section can easily be modified to operate on directed acyclic

graphs in order to obtain a polynomial-time algorithm. The proceeding is very close to an algorithm by

Corbin and Bidoit [1], which has time complexity of Θ(n2), where n is the number of symbols occurring in

the unification problem. In the following we work with a directed acyclic graph G = (N,L). In addition to the



7

regular edges denoting the subterm relation, we use the following edges between two nodes s and t or x

and t, respectively:

s → t denotes the semi-unification problem s≈t

s ↔ t denotes the unification problem s≈t

x ⇒ t denotes the solved unification problem x≈t

A graph (N,L) thus corresponds to a system (E,U) in the following way: s→t∈L denotes that the pair s≈t is

in E, x⇒t∈L denotes that the pair x≈t is in U, and finally s ↔ t ∈L denotes that σ∈mgu(s,t) has to be

applied to U and E according to the merge right rule. The renaming ρ is adapted in an obvious way to the

graph representation.

The inference rules correspond to graph rewriting rules in the following way:

Decomposition

⇒

f f f f

This rule moves the → edge between nodes s and t down to the children of s and t, respectively, provided

that Head(s)=Head(t), and redirects the regular edges connected with s to t.

Merge left

t x
⇒

x tρ t

Each regular edge, →-edge, ⇒-edge, or ↔-edge connected with x is redirected to a renamed copy tρ of (the

subgraph) t, provided that no leaf node of the form xm is below t. Moreover, the edge t→x is replaced by

x⇒tρ.

Merge right

⇒
x t1

t2

x t1

t2

The edge x→t2 is replaced by an edge t2 ↔ t1.

Moreover, we have the obvious failure rules:



8

Failure

s→t ⇒ failure, if Head(s)≠Head(t)

t→x ⇒ failure, if there is a leaf node xm below t

The inference rules for edges of the form ↔are the ones given in [1].

We briefly sketch why the algorithm is guaranteed to run in time Θ(v2n2), where v=|V| and n=|s|+|t|.

The proof of theorem 11 shows that the maximal number of new nodes generated by the algorithm is vn.

We modify the semi-unification algorithm in the following way: each new subtree tρ that is created during

the algorithm, is created at the beginning of the algorithm rather than during a merge left step. So we

obtain a new graph G'=(N',L') with |N'| ≤vn nodes. The merge left rule is modified in an obvious way:

Merge left (modified)

t
x

⇒

x tρ ttρ

Now it is easy to see that (i) the modified semi-unification algorithm applied to the graph G' takes the

same number of steps as Corbin and Bidoit’s algorithm on G' and (ii) the modified algorithm on G' takes

the same number of steps as the original one on G. This proves the claim on the time complexity of the

semi-unification algorithm.

Acknowledgement

I would like to thank Harald Ganzinger and Peter Barth for reading an earlier draft of the paper.

References

[1] J. Corbin, M. Bidoit. A Rehabilitation of Robinson’s Unification Algorithm. In: R.E.A. Mason (Ed.)

Information Processing 83.  Elsevier 1983, 909-914.

[2] M. Dauchet. Simulation of Turing Machines by a Left-Linear Rewrite Rule. In: N. Dershowitz (Ed.)

Proc. of 3rd International Conference on Rewriting Techniques and Applications, Chapel Hill (1989).

Springer LNCS 355, 109-120.

[3] N. Dershowitz. Termination of Rewriting. In: J.-P. Jouannaud (Ed.). Rewriting Techniques and

Applications. Academic Press 1987, 69-116.

[4] F. Henglein. Type inference and semi-unification. In: Proc. of ACM Conference on LISP and functional

programming. ACM Press, New York, 1988.

[5] D. Kapur, D. Musser, P. Narendran and J. Stillman. Semi-Unification. Theoretical Computer Science

81 (1991), 169-187. 



9

[6] D.S. Lankford, D.R. Musser. A Finite Termination Criterion. Unpublishd Draft, USC Information

Sciences Institute, Marina del Rey, 1978.

[7] H. Leiß. A Semi-Unification Algorithm? Extended abstract. In: H.-J. Bürckert and W. Nutt (Eds.):

UNIF ’89: Extended abstracts of the thirs Int. Workshop on Unification. SEKI-Report SR-89-17,

University of Kaiserslautern, 1989.

[8] D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In: J. Siekmann (Ed.):

8th International Conference on Automated Deduction, Oxford (1988). Springer LNCS 230, 79-88.

[9] P. W. Purdom. Detecting Looping Simplifications. In: P. Lescanne (Ed.). Proc. of 2nd International

Conference on Rewriting Techniques and Applications, Bordeaux (1987). Springer LNCS 256, 54-61.


