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Abstract 

In this paper, a paramodulation calculus for equational reasoning is presented that 

combines the advantages of both Knuth-Bendix completion and goal directed strategies like 

the set of support strategy. Its soundness and completeness is proved, and finally the 

practical aspects of this method are discussed. 

I Introduction 

Knuth-Bendix completion has turned out to be a well suited tool for proving equational 
theorems. It seems, however, that this approach to equational reasoning does not 
support backward reasoning or goal directed strategies. Knuth-Bendix completion is a 
forward chaining method, deriving new consequences from the axioms and previously 
derived equations, intended to produce a complete set of equations and rewrite rules for 
the given equational specification. The proof of the theorem actually is more like a "side 
effect" of completion. The well-known problem with the set of support strategy [17] in 
combination with a paramodulation calculus [15] is the need to paramodulate into and 
from variables (see, for instance, [16]), both of which is precluded in Knuth-Bendix 
completion. The following clause set 

{f(a,b)=a, a=b, f(x,x)#x) 

which is taken from [16], is unsatisfiable. However, if the third clause is chosen as set of 
support, then a refutation can be obtained only by paramodulating into a variable. 
Snyder and Lynch [16] have found a way to overcome this difficulty. Their relaxed 
paramodulation calculus employs the set of support strategy, and it is complete without 
paramodulation into variables. 

Still, the relaxed paramodulation calculus cannot solve the problem with paramo­
dulating from variables, as the following example (see [18]) shows: 

{(x*y)*z=x*(y*z), x*e=x, x*i(x)=e, i(i(a)J#a) (1) 

• This work was supported by a grant from the Max-I<ade Foundation 
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If the inequality is chosen as the set of support, then no refutation can be obtained 
without paramodulating from the variable x in the second equation. Paramodulating 
from variables is incompatible with the most important feature of Knuth-Bendix 
completion, namely the orientation of equations into rules. In order to keep the 
advantages of completion when combining it with backward reasoning, the basic feature 
of orienting equations should be preserved as much as possible. 

Considering the success of goal directed approaches, such as set of support (with the 
goal chosen as the set of support), or SLD-resolution for automated theorem proving, it 
would be desirable to have a similar strategy for completion based methods in equatio­
nal reasoning (for a more detailed discussion of this issue, see [18]. Bonacina and Hsiang 
[4] pointed out that Knuth-Bendix completion, when used to prove equational theo­
rems, does not take into account the existence of a theorem to be proved. Rather, it 
derives consequences from the axioms regardless whether they contribute to the proof. 

In the following, a goal oriented calculus for equational reasoning is presented that 
comes as close as possible to Knuth-Bendix completion. This strategy takes advantage of 
the additional information about the equational theorem to be proved, thus reducing 
the number of unnecessary consequences derived. It works in the spirit of the set of 
support strategy, however, relying more on the terms occurring in the goal equation, 
rather than on the goal itself. In fact, this is just the idea proposed in connection with 
research problem 3 in [18]. The performance of this method depends on the particular 
equation to be proved. If the information provided by the structure of the goal is too 
weak, then our method reduces to ordinary completion. 

To get an idea of how this strategy proceeds, we compare the basic approach of com­
pletion based theorem proving (fig. la) with a paramodulation calculus that employs 
the set of support strategy (see fig. 1b) to prove an equations =R t, where R={e1, ... ,enl· 
Knuth-Bendix completion successively eliminates the peaks in the proof s =R t by 
deriving new axioms ek, such that the proof 5 =Roe t has no peak, and hence is a rewrite 
proof. Goal oriented strategies, on the other hand, start from the theorem to be proved, 
G1 = {s=t}, and successively derive new goals Gi by paramodulating some Gj, j<i, with 
one of the axioms. It should be remarked that other goal directed strategies, like E­
resolution [13], proceed basically in the same way. 

-- --- ... --
Completion Based Approach 

fig. la 

e 

s Gl t 

Paramodulation Based Approach 
with Set of Support 

fig. 1b 

n 

The proceeding of goal directed completion is illustrated in fig. 2. An equation ee R is 
distinguished as a goal equation, if it can occur as the leftmost (rightmost) step of the 
proof s =R t, that is, if there exists a term 5 I (t 1 ) with 5 He sI (t I Het, respectively). New 
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consequences are derived from the axioms and previously derived equations using two 
basic derivation rules: Superposition is used to resolve those peaks that comprise at 
least one goal equation. A very restricted form of paramodulation is used in order to 
derive new goal equations, thus decreasing the distance between the left-hand (right­
hand) side of the goal and the leftmost (rightmost) peak. The basic idea is to allow only 
the resolution of the leftmost (rightmost) peak of the proof s=Rt. 

As an example, consider the following system: E = {(x*e)*y=x*(e*y), e*h(x)=x, e*e=e, 
h(e)=d, a;ih(a)}. The goal is the pair (a,h(a)). Each occurring equation can be oriented into 
a rule: 

(e1J (x*e)*y -+ x*(e*y) 

( e2) e*h( x) -+ x 

(e3) e*e -+ e 

and we have the following proof of a =R h(a) (see fig. 2a). 

(e*e)*h(h(a)) 

cy\'\.@ 
e*(e*h(h(a)))l e*h(h(a)) 

@/ '----~@ 
@ e*h(a) -.. h(a) 

~ 

(e*e)*h(h(a)) 

~ ""@ 
e*(e*h(h(a))) ~ @/ -- -- _. h(a) 

@ e*h(a) 

~ 
a a 

fig. 2a fig.2b 

e*(e*h(h(a))) r:2. 

@/ ~~ 
@ e*h(a) - - - - - .,. h(a) 

~ 

e*h(a) 

y~ 
a +- - - - - - - h(a) 

a 

fig.2c fig. 2d 

In our example, it is easy to see that only rule e2 can occur as the leftmost step of any 
proof of a =R h(a). This makes e2 the only goal equation, and thus disallows any 
superpositions. In such a situation, the method proceeds by deriving new goal equations 
performing a paramodulation step on the left hand side of a goal equation and the right 
hand side of a non-goal equation. In analogy to a term coined by Dershowitz [6], we call 
such a step a forward closure. In our example, we could paramodulate e2 with e3, 
resulting in the new (goal) equation (e*e)*h(x) == x, which can be directed into es = 
(e*e)*h(x) ~ x, (see fig. 2a, 2b). The complete proof manages with just this single 
paramodulation step. Now, (see fig. 2b-d) the rest of the proof proceeds like ordinary 
completion. 

It should be noted that equation e4 is not used during the derivation. In fact, since 
the constant d cannot be removed by R, each proof of a =R h(a) actually is a proof of a =R' 
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h(a), where R '=R \ {e4}. This particular form of redundancy resembles somewhat the 
notion of pure clauses (see, for instance, [5]). A derivation using standard completion, 
however, would infer consequences from e4, regardless of whether they contribute to 
the proof. 

We just briefly recall some of the basic notions of term rewriting, as they can be 
found, for instance, in [7] or [10]. 

For any term t, Pos(t) denotes the set of tree positions of t, with A.e Pos(t) being the 
root position. We write p<q if pis a prefix of q, and p 11 q, if p 1. q and q 1. p hold. The term 
t /p is the subterm oft rooted at p, t[p+-s] denotes replacement of t/p by s. The set of 
variable positions of t is defined by 'V!Pos(t) = {pe Pos(t) : t/p e 'V), and the set of non­
variable positions is defined by ~Pos(t) = Pos(t)\ 'V!Pos(t). !Heatf(t) denotes the function 
symbol heading t. 

For any relation~'+- denotes the inverse of~' H denotes the symmetric closure of 
~, and ~ .. denotes the reflexive, transitive closure of ~. The relation ~f denotes 
rewriting on position p using equation (or rule) e, ~n denotes parallel rewriting on the 
set of disjoint positions n, i.e., s ~n t, where n = {pJ, .. . ,pn} is a set of mutually parallel 
(disjoint) positions of s, iff s ~Pl ... ~Pn t. By ~11, we denote parallel rewriting (without 
indicating the rewriting positions). finally, we use ~ {<I ) for the (proper) encompass­
ment ordering, i.e., s~ t, iff an instance of s is a subterm oft. 

We use s=t to denote an equational axiom with one sides and the other side t, while 
s:t denotes an equational axiom with left hand sides and right hand side t. 

2 The Calculus 

This section presents the derivation rules of the goal oriented completion calculus, 
which essentially consists in unfailing completion ([3],[9]), restricted by a certain critical 
pair condition and an additional forward closure rule. The rules operate on triples 
(E,R,G), where Eisa set of equations, R is a set of rules, and G is a set of disequations (the 
actual goals). In the following we make use of the fact that s =E t holds iff Sgr =E tgr holds, 
where Sgr=tgr is the skolemized form of s=t. We thus always assume the goals to be 
ground disequations. A set of goals is called inconsistent, iff it contains a disequation t~t. 
To each derivation rule, the corresponding proof transformation rule is shown. 

We assume a reduction ordering >-on the set 'I of terms, which is total on the set (j 
of ground terms. 

1 Definition A proof of s =EuR t is a sequence 

S H£uR ... H£uR t 

of proof steps. A proof of the form tHt is called trivial. A variable overlap is a proofs 
Hl·r u Hf.r· t, such that pe o/Pos(l') or qe o/Pos(l). The subsumption quasi ordering$ on 
terms carries over to proofs in the following way: Let P = wo Hff ... H~ Wn. Then P$P ', 
if! P' = w 'oH~~ ... H~ w 'nand there exists a substitution a such that w',-=w;a for i=1, ... ,n. 
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In the following three definitions we introduce the inference rules of the goal 
oriented calculus. All rules are given with respect to a restriction r, which is a subset of 
the actual rules and equations, and which will be defined in more detail later on. 

2 Definition Let e1,e2e EuR, r~EuR, such that e1e r or e2e r. The equation s=t is called a 
critical pair of e1 and ez w.r.t. the restriction r, if there is a variable overlap free proof P = 

p A. 
S He1 U He1 t 

such that 

(i) P is minimal w.r.t. the subsumption ordering and 

(ii) neither s >- u nor t >- u holds. 

s=t is called trivial, ifs = t. CPr(E,R) denotes the set of all non-trivial critical pairs w.r.t. 
r. 

3 Definition Let ee E and s:#e G. Then s'# is called a (goal) paramodulant of e and s:Ft, if 
there is a proof 

such that s' >I s holds. P(G,E) denotes the set of all paramodulants. 

4 Definition Let r~EuR, and let e,e'E EuR, e'Er. Then s=t is called a (one step) forward 
closure of e,e' w.r.t. r, if there is a variable overlap free and minimal (w.r.t . s:J proof P = 

such that p=A. or q=A, and t >I u >I s holds. 

Let eJ, ... ,ene EuR. We define recursively FCn(eJ, ... ,en) by FCo(ei) = {ei}, and 
FC 0 (eJ, .. . ,en) is the set of all forward closures of elements of FC0 .J(eJ, ... ,e0 .J) with en. 
Moreover, we define FC(E,R) = ,UE R FC1(e,e') to be the set of all (one-step) forward e,ee u 
closures of equations in EuR. 

5 Definition Let E be a set of equations, R a set of rules, and G a set of disequations. We 
define the set T(G) of goal equations to be the set {ee EuR: 3 t'e T, s:lte G: t>l t', t-< s, 
t 'Het}. 

Note that the definition of goal equations implies that l=re r(G) iff r>ll and there is 
s:Fte Gwith t ~ s and r ~ t. 

Example Let R = {e1, e2, e3} with e1 = (x*y)*z ~ x*(y*z), e2 = x*e ~ x, and e3 = x*i(x) ~ e, 
and let G = {a,li(i(a))}. Then e2 is a goal equation, because a*e ~ e

2 
a holds, or, 

equivalently, because x~ a holds. The rules e1 and e3 are not goal equations, so we have 
r(G) = {eJ}. Moreover, CPr(R) = {x*(e*z) = x*z, x*y = x*(y*e)} are critical pairs of e2 with 
e1, and FCr(R) = {(x*y)*e = x*y, x*(y*i(y)) = x} are the forward closures of e1 with e2 and e3 
with e2, respectively. 
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6 Definition Let r=r(G), and let RE= {ucr~vcr : u=ve E, ucr>-vcr} . The goal oriented 
superposition calculus is defined by the following derivation rules and proof trans­
formation rules operating on quadruples (E,R,G,F), where E is a set of equations, R is a 
set of rules, G is a set of goals, and F is a subset of E u R, which designates elements 
derived by forward closure. We use the convention 

S[x/ ] := { S\{x}u{y}, i~ xeS 
Y S otherwise 

Orientation: 

Eu{l=r} ,R,G,F 

E,Ru{l~r},G,F' 
if I>-r, F'=F[l=r /I~r] 

Deduction (Superposition and Forward Closure) 

E,R,G,F 
if 1=r e CPr(e,e') 

Eu{l=r} ,R,G,F 

E,R,G,F if I=r e FCr(e,e') 

Eu{l=r} ,R,G,F' F'=Fu{l=r} 

Goal Paramodulation 

E,R,G,F 
if s'~t e P(G,E) 

E,R,Gu{s'~t},F 

Deletion 

Eu{l=1},R,G,F 
F'=F\ {1=1} 

E,R,G,F' 

Simplification 

Eu{l=r},R,G,F if 1 ~R 1' or 1 ~RE 1' by u~v 

Eu{l'=r},R,G,F' with u<l 1; F=F[l=r /1'=r] 

E,R,Gu{s~t} ,F ifS ~RS' or S ~REs' by 

E,R,Gu{s'~t},F 
u~v with u<J s 

E,Ru{l~r},G,F if r ~RuRE r', 

E,Ru{l~r'},G,F' F'=F[l~r /l~r'] 

E,Ru{l~r},G,F if (i) 1 ~RuRE 1' by u~v 

Eu{l'=r},R,G,F with u<l 1 and (ii) 1~r e: F 

1 H1-r r 

1 ~1-+r r 

1 He·U Her 

1 H1-rr 

I He· u Her 

1 H1•r r 

SHS'H ... H t 

s'H ... H t 

I HJ=!I 

0 

I H1-r r 

1 ~ 1' H1·-rr 

s~s'H ... H t 

s'H ... Ht 

1 ~1-+r r 

I ~1-+r' r' f-r-H' r 

I ~1-+r r 

I ~1-+r' r' f-r-+r' r 

We shall write (E,R,G,F) 1--r (E',R',G',F'), if(E',R',G',F') is derived from (E,R,G,F) by one 
of the derivation rules. For any two proofs P,P', we shall write P ~ P', if P' is derived 
from P by one of the transformation rules. 
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Note that the system does not allow simplifying the left hand side of any rule that is 
derived by forward closure. It is thus necessary to keep track of the history of equations 
generated, which is the only purpose of the set F. 

It is easy to check that these inference rules form a sound derivation system: 

7 Lemma If there is a derivation (E,0,{s:lt},F) 1-r"' (E',R',G',F') such that G' is incon-
sistent, then s =E t holds. 0 

Next, we shall prove that the derivation system is refutation complete under certain 
restrictions for r=r(G). We remark that (E,R,G,F) 1-r (E',R',G',F') implies that for any 
proof Pin EuR, there exists a proof P' in E'uR' with P~P'. As a first step, we define an 
ordering on proofs. The following definition is taken from [2]. 

8 Definition We assume given a quadruple (E,R,G,F) as in definition 6. 

a) For any proof step p of the form s ~ f-+r t with l~ r e R \F, we define the complexity 
c(p) = ({s},s/p,l,t). For any proof step p of the form s ~~~r t with l~ re R(]F, we define the 
complexity c(p) = ({s},l_,l_,t). The complexity of a step s +-+f-r t is defined by ({s,t},-,-,-). 
Finally, the complexity c(P) of a proof P is defined to be the multiset of the complexities 
of its proof steps. 

b) The ordering >-c on pairs c(p) is defined as the lexicographic combination of the 
multiset extension >-muC of the term ordering >-, the subterm ordering, the 
encompassment ordering, and the term ordering >-. The ordering >-1) is defined by P >-1) 
P', iffc(P) >-~ucc(P'). The element j_ is a minimal element of 'Iw.r.t. the encompassment 
ordering. 

The proof ordering >-1) is well-founded, and it is easy to verify that the proof 
transformation rules given in definition 6 decrease the complexity of proofs, that is, 
P~ P' implies P >-1) P'. 

So far, the proof of completeness of the calculus is similar to the standard argument. 
However, the inference rules given in definition 6 restrict the generation of critical 
pairs, and so there might exist peaks in a given proof P that are not resolvable due to the 
restriction r. So we have to prove that for any non-trivial proof P, there is some proof 
transformation rule that applies to P. However, we encounter one problem, which 
occurs with variable overlaps. 

Example Let R = {b~a, b~c, fxx~e, fac~c}, let the term ordering >- be chosen such that c 
>- e, and consider the following proof (see fig. 3) P of c =Re: 

fig.3 

Let G={c;l:e). The (single) peak occurring in this proof cannot be resolved, since the rules 
b~c and b~a are both non-goal rules. As c >- e, we have fxx~e e r(G). The overlap 
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between b~a and fxx~e is a variable overlap, hence it cannot be used for deriving a 
forward closure of b~a. It is easy to verify that fxx~e is the only rule in r(G), hence the 
proof Pis irreducible by=>. 

The solution to this problem is the observation that there is a top-critical pair of 
fxx~e and fac~c, i.e. fxx and fac are top-unifiable. 

9 Definition a) Let s,tE T. The pair (er, E) is a top-unifier of s and t, if there exists a proof 

with PiE o/Pos(s)u 'V'Pos(t) and Pi 11 Pj for i,j=1, ... ,n, i~. We shall sometimes abbreviate the 
sequence H~1 ... H~n by ~11 E 

b) Let e1,e2E EuR, ep=lp=:r1, and let Ts;;;EuR, such that e1E r or e2E r. s=t is called a top­
critical pair of e1 and e2 w.r.t. r, if there is a proof 

p PJ Pn A. t 
5 He2 V HE ... HE W He 1 

with pi! o/Pos(l1 ), such that neither s >- v nor t >- w holds and with p<pi, 
PiE 'V'Pos(s)u o/.Pos(t) and Pi 11 Pj for i,j=1, ... ,n, i:;t:j. The equation s=t is a proper top-critical 
pair, if! it is not a critical pair of e1 and e2 in the sense of definition 2. TCPr(E,R) denotes 
the set of all proper top-critical pairs w.r.t. r. 

In a similar way we define top-paramodulation and top-forward closure, and the sets 
TP(E,R) of all top-paramodulants, and the set TFC(E,R) of all top-forward-closures. 

It is easy to see from the definition that s=t is a top-critical pair of l1=TJ and h=r2, if 
there is pe .1'Pos(l1) and a top-unifier (cr,E) of l2 and 1}/p, such that s = l1cr[pt-r2crl and t = 
qcr. 

The notion of top-unification was introduced by Dougherty and Johann [8]. They 
define top-unification operationally by giving an algorithm. We show that the two 
definitions basically coincide: 

10 Definition We define derivation systems D1, D2. D1 operates on a set of equations, and 
D 2 operates on pairs (er, E), where er is a substitution and E a set of equations. D1 is 
defined by the following two rules 

E U {fs1 ... Sn= fs1· .. Sn} 

E u {Si= ti: i=1, ... ,n} 

and D2 is defined by 

and 

cr, E u {x=t} 

cru {x~-~ t}, E{x~-~ t} 

E u {s = t} 

.L 

if xe o/ar(t) 

The derivation system D1 is the one given in [8] and [16]. 

if !J{eatf(s )'*!J{eatf( t) 

11 Lemma Let s,tE T, let er be a substitution, and E a set of equations. The pair (s,t) is top­
unifiable by (cr,E), iff there are maximal derivations Eo =>b1 E' with Eo={s=t} and E';eJ., 
and (cro,E') =>b2(cr,E)with cro= id. 
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Proof. First, we remark that (i) E~o1 E' and s HuE t imply s HuE, t and (ii) (cr,E)~o2(cr',E') 
and scr HuE tcr imply sa' HuE, tcr'. If there are maximal derivations Eo~ b1 E' with Eo= 
{s=t} and E':;e.l, and (ao,E') ~b2 (cr,E) with ao =id, then we have sa HuE tcr. Due to the 
construction of the derivation D1, each position involved is a variable position either in 
s or in t. If, on the other hand, Eo ~b1 E'=.l holds, then there is pe :FPos(s)(l:FPos(t), such 
that J-featf(s/p):;eJ-featf(t/p), which implies that (s,t) is not top-unifiable. D 

12 Definition A variable overlaps H~ u H;, t is called critical (w.r.t. n, if u>l s and t>l u, 
p>q, and e~ r hold. 

13 Lemma Let s~teG with s>-t. Let R={eJ, ... ,enL and let 

be a proof of to= R tn, which is minimal w.r.t. >- and has no critical variable overlaps 
w.r.t. T(G). !{there exists eie r(G), then there is a proof P' with P~P'. 

Proof. For each j=1, ... ,n, let Pi be the rewrite position used in the step tj-1 ~ tj · 

Let i be the largest number, such that eie r(G). Then it follows immediately from the 
definition of r(G) that i<n. We have eie r(G), and ei+1e r(G). 

Case 1: If Pi 11 Pi+1' then we can construct a proof P' =to ~e1 ... ti-1 ~ei+l t'i ~ei ti+1 ~ ... 
~en tn. Continuing this way, we obtain a proof P* = to ~e·1 t'1 ~e·2 ... ~e'n tn with 
e'ke r(G), and e'k+le r(G). 

Case 2: If t'k-1 ~e·k t'k ~e·k+l t'k+l is a variable overlap, then p'k~P'k+1 follows from 
the assumption that P has no critical variable overlaps. In a way similar to the proof of 
the critical pair lemma, we can construct a proof P' = to ~e·1 ... t'k-1 ~11e·k+t t''k ~ekt"'k 
11 f-e'k+l t'k+l··· ~en tn with P' -< P, contradicting the minimality of P. 

Case 3: If t'k-1 ~e·k t'k ~e·k+l t'k+l is a proper overlap, then FC(e'k,e'k+ J):;e0 . The 
forward closure rule thus applies toP, hence there is a proof P' with P~P'. D 

14 Lemma Let P be a nontrivial ground proof of s = EuR t, which is a minimal proof of s 
=EuR t w.r.t. >- and has no critical variable overlaps. Moreover, let s=#E G. Then there is a 
proof P' with P~P '. 

Proof. As Pis a ground proof, P uses only rules in R':=RuRE. W.l.o.g. we assume that 
s>-t. Let 

p = sstQ H ... H tn=t 

If P has a subproof of the form Po = s ~ u or Po = t ~ u, then the goal paramodulation 
rule applies to P, proving the assertion of the lemma. Otherwise, P contains a peak. Let 
Po = lk-lf- tk ~ lk+l be the rightmost such peak, i.e. 

p =to H ... Htk-Jf-tk ~ lk+J~ ... ~tn 

If Po does not originate from a critical overlap, then the critical pair lemma [11] implies 
that there is a proof P'o of s =R' t with Po>-P'o, contradicting the minimality assumption 
on P. If eje r(G) holds for some j=k, ... ,n, then we are done by lemma 13. Otherwise, 
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ekE r(G), hence Po has the form tk-1 ~R' tk ~R'nr(G) tk+1, and the superposition rule 
applies to the critical overlap Po, again proving the assertion of the lemma. 0 

15 Lemma Let 

P - q t Pl t Pn t p t - S ~e· 0 Hel 1 ··.Hen n ~e 

be a ground proof with e=l~ r, such that PiE o/Pos(l) for i=l, ... ,n, and such that there is a 
critical overlap s' ~ ~ u ~~ t' of (e,e '). Then there is a proof 

P I lt I I lt t =SH U Hs'=t'V H 

with P'-<P. 

Proof. Let E:={e1, ... ,en}, and let e'=l'~r·. We can assume e and e' to be variable disjoint, 
so there is a ground substitution fJ. with tn/p=lfJ., and to/q=l'fJ.. W.l.o.g. we can assume 
that p<q, i.e. q=pq' for some q'. Let cr=mgu(l/q', 1'), such that cr does not introduce new 
variables. For each xe o/ar(l)n o/ar(r) with XO'fJ.:;f:XfJ., there is a proof XO'fJ. =E XfJ., and 
similarly for each ye o/ar\l')n o/ar\r'). So we have a proof 

P' = s = to[q~r'J.L] H •E to[q~r'crfJ.] ~~ to[q~l'crJ.L] = tn[p~lO'fJ.] ~~ tn[p~rcrJ.L] H .. E 

tn[p~rfJ.] = t 

A straightforward, but tedious argument shows that P'-< P holds. 0 

16 Lemma Let P be a minimal nontrivial ground proof of S=EvRt, let T=r(G) with #tEG, 
and let TFCr{E,R)=TCPr{E,R)=TPr{E,R)=0. Then there exists a proof P' with P=*P'. 

Proof. Assume to the contrary that Pis irreducible w.r.t. =*· According to lemma 14, we 
can assume that P has critical variable overlaps. Let 

P = s=to +-+~l ... +-+~ tn=t 

with ei = li~ri, and let k be the least element of {1, ... ,n}, such that tk-1 ~ek tk ~ek+l tk+l is 
a critical variable overlap. 

Case 1: there is me {l, ... ,k-1}, and qe ~os(lk+1), such that Pm<q. Let P' = tm-1 +-+~:;; ... 
H~~:l tk+1· Since P' is minimal and irreducible w.r.t. =*, each peak of P' comprises two 
rules or equations in (EuR)\r. Moreover, there is no critical variable overlap ei,ei+1 for 
i<k, hence eiE r holds for i=1, ... ,k-1. 

Suppose there is some je {m+l, ... ,k-1} such that pjE ~os(lk+J), and let j be a maximal 
such j, that is, Pj'E ~osOn) for j'=j+l, ... ,k. If q is any variable position of lk+1, then Pj 1. q, 
since m was chosen maximal with that property. Hence we have Pj 11 Pj' for j'=j+l, ... ,k. 
By "moving the step tj-1 ~fJ tj to the right", we obtain a proof 

P" - t L....>. L....>. t· L....>.Pj+l t'· . Pk t' PJ· h Pk+l h - m-1 ......,. ... ......,. J-1 ......,.Cj+l J+1 H ... ~Ck k HCj •K ~ek+l •K+1 

If tj-1-< tj, then we have tj~1 ~fJ tj, and P'>- P" holds contradicting the choice of P'. So we 
can assume tj-1>- tj, hence tj-1 ~fj tj and ejE r. Now consider the subproof P"o = t'k~~J 
tk~~~:l tk+1 of P". Since PjE ~os0n), P"o is not a variable overlap. Moreover, we have 
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eje rand ek+1E r. Hence there is a forward closure e' of (ej,ek+1), contradicting the 
irreducibility of P w~r.t. =>. 

So we can assume that PiE o/Pos(lk+1) holds for all je {m+l, ... ,k}. We have eje r for 
each j<k, in particular erne r. If tm-1>- tm, there is a top-forward closure of (em,ek+1), and if 
tm-1-< tm, there is a top-critical pair of (em,ek+ 1). We only treat the second case, the first 
one being rather similar. Since TCPr(E,R)=0, (em,ek+1) defines a proper critical pair. 
Hence, according to lemma 15, there is a proof P" -< P' of tm-1 =EuR tk+1' contradicting the 
assumption of the lemma. 

Case 2: P has no step tm-1 H~::: tm with Pm<q, for some qe ~os(ln). The proof is very 
similar to the proof of case 1, this time using the fact that TPr(E,R) = 0. 0 

17 Definition A derivation (Eo,Ro,Go,Fo) 1-r·<Eo,Ro,Go> (E1,R1,G1,F1) l-r·cE1,R1,G1> ... is a 
fair derivation, iff the following conditions are satisfied: 

(i) If TCPnGi)(E;,R;)uTFCnGi>(E;,R;)uTPnGi>(E;,R;):;t0, then r'(E;,R;,G;) = E;uR;. 
Otherwise, r'(E;,R;,G;) = r(G;). 

(ii) Each critical pair and each forward closure of (R oo ,E00
) is contained in k~ Ek 

(iii)Each result of a goal paramodulation step of (Roo,Eoo,Goo) is contained in k~Gk 

Roo,Eoo,Goo are the sets of persistent rules, equations, and goals, 

Roo- U ("') R· 
- kelN j2:k 1 

and similarly for Eoo, Goo. 

18 Theorem If S=E t holds, and (Eo,Ro,Go) 1- (E7,R7,G1) 1- ... is a fair derivation with Eo 
= E, Ro = 0, and Go= {s#}, then there is ne IN, such that Gn is inconsistent. 

Proof. We show: If P is a ground proof of Si =EiuRi ti with Si#tiE Gi, and Si*ti, then 
there exists j~i and a ground proof P' of Sj =EjuRi tj with sj#tjEGj with P >-!D P'. 

First, we remark that we can assume P to be a minimal ground proof of Si =EiuRi tj. If 
P uses a non-persistent rule, equation, or goal ei, then ei is removed by som~ step 
(Ej,Rj,Gj) 1- (Ej+1,Rj+J,Gj+J), which implies the existence of P' with P>-P'. We thus can 
assume that P only uses persistent rules, equations, and goals. Since Pis a ground proof, 
only rules of R=RoouREoo are used. If a proof transformation step P=>P' applies toP, then 
due to the fairness condition, the corresponding derivation step is performed for some 
j>i, hence P>-P', where P' is a proof of Sj =EiuRi tj with sj#tjE Gj. 

So let us assume that no transformation step applies to P. Then, according to lemma 
15, TCPnG·)(Ei,Ri)uTFCnc·><Ei,Ri)uTPnc·><Ei,Ri);e0. According to the fairness 

I I I . 

condition, this implies r'(Ei,Ri,Gi)=EiURi. Since no goal paramodulation step applies to 
P, we can conclude that P contains a peak s'f- u---? t', which is a proper overlap. Since 
r'(Ei,Ri,Gi)=EiuRi, the critical pair rule applies to P, which is a contradiction. 

Now we have proved that for each ground proof of Si =EiuRj ti with Si;tti and Si#tiE Gi 
there is a proof P' with P>-!D P'. Since the proof ordering >-!D is well founded, we can 
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conclude the existence of ne IN, such that Sn=tn and Sn~tne Gn, i.e., Gn is inconsistent. 
0 

3 Implementation and Practical Results 

In this section several practical aspects of the goal oriented calculus are discussed. 

The need to weaken the restriction r to the whole set EuR of equations and rules, 
whenever top-critical pairs, top-forward closures, or top-goal paramodulations occur, 
raises the question of practical relevance. As r=EuR makes the restriction void, and 
reduces the goal oriented calculus to standard completion, a frequent occurrence of this 
top-unifiable structures in practice would strongly reduce the value of the whole 
approach. On the other hand, the need to extend the restriction r only arises in 
connection with critical variable overlaps. Several examples of group theory and the 
theory of Ternary Boolean Algebra haver been considered so far (see fig. 4), and never 
did critical variable overlaps occur. 

In fig. 4, we provide a statistics for GOC, an actual implementation of the goal 
oriented completion method, in terms of the number of equations generated for several 
examples. These results are compared to the results of the theorem prover OTTER [14], 
and the SbReve system [1 ]. Wos2 and Woss are among six equality problems published 
by Lusk and Overbeek [12], Wos2 stating that the inverse function in a group is an 
involution. Woss is a lemma for axiom independence in the theory of Ternary Boolean 
Algebra and reads as follows: 

f(f(v,w,x),y,f(v,w,z)) = f(x,y,f(v,w,z)) 

f(y,x,x) = x 

f(x,x,y) = x 

f(x,y,x) = x 

f(gy,y,x) = x 

f(a,ga,b) ~ b 

GrpComm1 and GrpComm2 are two problems of group theory. GrpComm1 states that a 
group G with the usual axiomatization is commutative, if i(xy) = i(x)i(y) holds for all 
x,ye G. GrpComm2 states that G is commutative, if x(y(xy)) = x(x(yy)) holds for all x,ye G. 

Gee OITER SbReve I 

WOS2 17 37 49 

Woss 578 12,386 410 

GrpComm1 112 S8S 184 

GrpComm2 376 SOS 370 

fig. 4: Number of Equations Generated for Several Problems 
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Another aspect of the goal oriented approach concerns the concentration on goal equa­
tions during the derivation process. The basic idea of the whole strategy is the import­
ance of goal equations, and this should be reflected in the search strategy. Usually, the 
weighting of equations, which serves to select the next equation to deal with, is based on 
the size of the terms occurring in the equation. In the examples shown in fig. 4, goal 
equations were preferred over equations of slightly smaller size, i.e., a weighting 
function c.o(e) for e= l=r was employed, which had the form 

c.o(e) = Ill+ I r 1- k*y(e), 

with y(e)=1 if ee r, and y(e)=O otherwise, and 1~1<$3. 
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