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Abstract

We present a conceptually simple, randomized incremental algorithm for finding
the closest pair in a set of n points in D-dimensional space, where D) > 2 is a fixed
constant. Using dynamic perfect hashing, the algorithm runs in O(n) expected
time. In addition to being quick on the average, this algorithm is reliable: we
show that it runs in O(nlogn/loglogn) time with high probability.

1 Introduction

The closest pair problem is to find a closest pair in a given set of points. The problem
has a long history in computational geometry and has been extensively studied. It is well
known, for example, that finding the closest pair in a set of n points requires Q(nlogn)
time in the algebraic decision tree model of computation [1] and that there are optimal
algorithms which match this lower bound. It is also well known that if the model of
computation is changed then the lower bound no longer holds. This was first shown
by Rabin [9] who described an algorithm that combines the use of the floor function
with randomization to achieve an O(n) expected running time. The expectation is taken
over choices made by the algorithm and not over possible inputs. Recently, Khuller and
Matias [6] have described a radically different algorithm that also uses the floor function
and randomization to achieve an O(n) expected running time.

In this paper, we present yet another algorithm that combines the use of the floor
function and randomization to solve the problem in O(n) expected time. Our algorithm
is conceptually simpler than the ones in [9] and [6]. It also differs from them in that itis a
randomized incremental algorithm. The other two algorithms are inherently static. The
algorithm that we present here assumes that the input points are fed to it in a sequence
which is a random permutation py, ps, ..., pn of the n points. The i-th stage of the
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algorithm will find the closest pair of the set S; := {p1, p2, ..., pi} in O(1) expected
time leading to an overall O(n) expected running time. To prove this running time, we
use the technique of backwards analysis, due to Seidel. See [12, 13].

In Section 2, we present the algorithm and its analysis. We give an O(nlogn) ex-
pected time tree based algorithm and show how to use dynamic perfect hashing (3] to
improve its expected running time to O(n).

In Section 3, we consider the problem of returning not only the closest pair, but
all the k closest pairs, where k is an integer between 1 and '2") For this problem,
there are deterministic algorithms with running time O(nlogn + k), which is optimal
in the algebraic decision tree model of computation. (See (7, 10].) Combined with
randomization and the floor function, we get a simple algorithm with expected running
time O(kn), which is better than the algorithms in [7, 10] if k = o(log n).

In Section 4, we show that our closest pair algorithms are reliable: For example,
the linear expected time algorithm actually runs in O(nlogn/loglogn) time with high
probability.

All algorithms of this paper assume that the floor function can be computed at unit
cost. In Section 5, however, we give a variant of the closest pair algorithm presented in
Section 2 that has O(nlogn) expected running time, even with high probability, without
using this non-algebraic function. This algorithm fits in the algebraic decision tree model
of computation, extended with the power of randomization.

2 The closest pair algorithm

To keep our exposition simple, we give the algorithm for the two-dimensional case and the
euclidean metric. The extension to arbitrary, but fixed, dimension D > 2 and arbitrary
Ly-metric, 1 <t <€ oo, is straightforward. Let d(p, q) denote the distance between the
points p = (p(), p(*)) and ¢ = (¢*), ¢?), i.e.,

d(p, ) = V() — g0))? + (p(2) — g@))2,

Let S = {p1, P2, ..., Pn} be a set of points. The closest pair distance in S is

6(S) := min{d(p,q) : p,9 € S, P # q}.

The closest pair problem is to find a pair of points p, g € S such that d(p, q) = §(S).

Our algorithm will be based upon the following simple observation. Let S; :=
{p1, P2, ..., pi} be the set containing the first < points of S. Then §(Si;1) < 6(S:)
if and only if there is some point p € S; such that d(p, p;11) < 8(S;).

Suppose a square grid with mesh size §(S;) is laid over the plane! and each point of
S; 1s stored in the grid box in which it appears. Let b be the grid box in which the new
point p;4; is located. Then every point in S; that is within distance §(S;) of p;;; must
be located in one of the 9 grid boxes that are adjacent to b. (We consider the box b as
being adjacent to itself.) We call these 9 boxes the neighbors of b.

We note that each grid box can only contain at most four points from S;. This is
because if a grid box contained more than four points then some pair of them would be
less than §(S;) apart, contradicting the definition of §(S;).

1To exactly specify the grid we will always assume that (0,0) is one of its lattice points.
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The above observations lead to the following generic algorithm for finding the closest
pair in S. The points will be fed to the algorithm in random order py, p2, ..., pa, i€,
each of the n! possible orders is equally likely. The algorithm starts by calculating
8(S,) = d(p1,p2) and inserting the points of S, into the grid with mesh size §(S,). It
then proceeds incrementally, always keeping set S; stored in a grid with mesh size §(5;).
When fed point p;;; it finds the at most 36 points in the 9 grid boxes neighboring the
box in which p;4; is located and computes d;;;, the minimum distance between p;4, and
these at most 36 points. If there are no points in these boxes then d;.; = co. From the
discussion above we know that §(S;4;) = min (d;41, 8(S;)) -

If d;y; > 6(S;) then 6(S;+1) = &(S;) and the algorithm inserts p;y; into the current
grid. Otherwise, §(Siy1) = diy1 < 8(S;) and the algorithm discards the old grid, creates
a new one with mesh size §(S;4,), and inserts the points of S;4; into this grid.

The algorithm thus calculates §(S;) for + = 2,3,...,n, in this order. Then it outputs
the value §(S,) = 8(5). An example of our algorithm is shown in Figure 1.

Remark: Instead of one closest pair, we can also incrementally maintain a list of all
point pairs in S; with distance §(S;), for 2 < 7 < n, without additional cost. Consider
the i-th stage of the algorithm, when we add p;4; to S;. Since the algorithm checks
all points within distance §(S;) of p;y; anyway, we find all points ¢ in S; such that
d(q, pi+1) = 8(S;). The pairs (g, pi41) with 6(q, piy1) = 8(Si41) — there can be only O(1)
of them — are exactly the new closest pairs after the i-th stage of the algorithm. If
8(Si+1) = 8(S:), we add these pairs to the current closest pair list. If §(S;41) < 8(S;), we
discard the old list and make a new list that contains just these pairs.

To actually implement the above algorithm we will need the following: let P be a
point set, d a positive real number, p a point, G a grid, and b the name of a box in a
grid. We define the following operations.

o Build(P,d) : Return a grid G with mesh size d that contains the points in P.
e Insert(G,p) : Insert point p into grid G.
¢ Report(G,b) : Return all points in grid box b.

Pseudocode for the closest pair algorithm using these operations is presented in Figure 2.

How do we actually implement these grid operations? One easy way is to use balanced
binary search trees: Consider a grid G with mesh size d, let p = (p*), p(*)) be a point in
the plane, and denote the box containing p in G by b,. The integer pair (|p(")/d], |p(®/d])
is called the indez of b,. The point set is stored as follows: We determine the indices of
the non-empty boxes and store them in lexicographical order in a balanced binary search
tree. Moreover, with each box in this tree, we store a list of all points that are contained
in this box. To insert a point into the grid, we use the floor function to compute the
index of the grid box that contains this point. Then we search in the tree for this box.
If it is stored in the tree, then we insert the new point into the list that is stored with
the box. Otherwise, we create a new node to hold the new grid box, together with a list
containing the new point.

Using this implementation, it takes O(nlogn) time to run Build(P,d) for |P| = n.
When G stores n points, then Insert(G,p) will cost O(log n) time and Report(G,d) will
cost O(logn + |bN P|) time.
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Figure 1: The incremental algorithm running on a set of 10 points. In the beginning the
grid has mesh size d(p;,p2). Every new minimal distance that is computed during the

algorithm causes a refinement of the grid.



Algorithm CP(p,, p2, ..., Pn)

(1) &8:=d(p1,p2); G := Build(S,, 6);

(2) fori:=2to n—1do

(3) begin

(4) V := {Report(G,b) : bis a neighbor of the box containing p;;; };
(5) d := mingey d(pit1,q);

(6) if d> 6 then Insert(G,piy1)

(7) else § := d; § := Build(S;41,6);

(8) end;

(9) return(é).

Figure 2: Pseudocode for the closest pair algorithm.

Assume the points are available in two lists X and Y, sorted by z- and y-coordinates,
respectively. Moreover, assume that each point in Y contains a pointer to its occurrence
in X. Then the running time of Build(P,d) can be improved to O(n): Walk along
the list X and compute the value |p(!)/d] for each point p. Initialize an empty bucket
B(|p™)/d]) for all distinct values |p(*)/d]. Moreover, give each point in X a pointer to
its bucket. Then, go through the list Y. For each point in this list, follow the pointer to
its occurrence in X and, from there, follow the pointer to its bucket and store the point
at the end of this bucket. Finally, concatenate all buckets into one list. This list contains
the indices of all non-empty boxes in the grid G, sorted in lexicographical order.

Another way to implement the grid operations is by using dynamic perfect hashing [3]
to store the currently non-empty grid boxes. Then, we can implement Build in O(n)
expected time, Insert in O(1) expected time and Report in O(1 + |bN P|) deterministic
time.

We should point out that dynamic perfect hashing does not permit the insertion of
totally arbitrary items into a lookup table. It requires that the universe containing the
items be known in advance, and that we have a prime exceeding the size of the universe.
In terms of grids, the first requirement translates into having a bound on the indices of
possible non-empty grid boxes. As mentioned above, the index of the box containing
p = (p),p®) in a grid with mesh size d is the integer pair (|p™")/d], |p*)/d|). Therefore,
the set of integers {I_p:;":'/'dj,l <1< n,j =1,2} should come from a bounded universe.
This is the case in our application because we know all points in advance. So, if we
have to build a grid for the current set with a given d we have a bound on the indices
of all non-empty grid boxes before we start gridding. Therefore, our method works for
all input sets where the size of the universe that contains the indices of the grid boxes
is moderate enough such that the time spent on finding a suitable prime does not affect
the overall running time of the building algorithm.

We now analyze the cost of both the tree and hashing based implementation of the
algorithm. Let i be fixed. Line 4 of the algorithm will call Report() 9 times to find at
most 36 points. Therefore lines 4-5 will use O(log i) deterministic time in the tree based



implementation and O(1) deterministic time in the hashing based one.

Line 6 will be called at most once and uses O(log:) deterministic time for the tree
based implementation, and O(1) expected time if we use hashing.

Line 7 will use O(ilogt) deterministic time if we use trees and O(z) expected time if
we use hashing. We can improve the bound for trees to O(z) also if we maintain the points
of S; sorted by both their coordinates. Then, as discussed before, the procedure Build
runs in linear time. Note that line 7 is called if and only if §(S;41) < 8(S;). We will prove
in Lemma 1 that this happens with probability at most 2/(741). Therefore, the expected
cost of line 7 is O(1) for both the tree based and the hashing based implementation. (For
the hashing based implementation, the expected cost of line 7 is composed of two random
variables: One variable indicating if we build a new grid, and the other variable gives
the time needed for this. This second variable depends on coin tosses that are made to
build a hash table. These coin tosses have nothing to do with the first random variable.
Therefore, the two random variables are independent. Hence, the expected cost of line
Tis O(i)-2/(: + 1) = 0(1).)

Combining the three paragraphs above proves that the i-th stage of our closest pair
algorithm runs in O(1) expected time if we use dynamic perfect hashing. If the points
are maintained in sorted order w.r.t. each coordinate, the i-th stage of the tree based
algorithm takes O(logi) deterministic time plus O(1) expected time. The latter separa-
tion of deterministic time and expected time will be crucial for the “high probability”
running time of the algorithm, which will be discussed in Section 4.

So, to find §(S) = §(S.), the algorithm uses O(nlogn) expected time for the tree
based implementation, and O(n) expected time if we use dynamic perfect hashing.

As mentioned at the beginning of this section, our algorithm works for points in any
dimension and for any L;-metric, 1 <t < oco. Suppose S is a collection of D-dimensional
points, where D > 2. We modify the algorithm by extending the definition of a grid to
be D-dimensional and define the neighbors of a grid box to be the 32 grid boxes that
adjoin it. The algorithm and analysis proceed as before. Note that a box in a grid with
mesh size §(S;)—which now is the minimal L,-distance in S;—contains at most (D +1)”
points of S;. (See [11].)

We mention here that our algorithm, whatever implementation we take, is much
simpler than the known O(nlogn) deterministic algorithms for finding the closest pair
in dimensions higher than two. (See [2, 7, 10, 11] for some of such algorithms.)

Lemma 1 Let P1, P2, ---, Pn be a random permutation of the points of S. Let S; :=
{p1, P2, ---, pi}- Then Pr[§(Siy1) < 8(S:)] < 2/(z +1).

Proof: We use Seidel’s backwards analysis technique. (See [12, 13].) Consider S;, pis1
and S".{.l = S;‘ U {p,'+1}. Let

A:={p € Si;; : 3q € S;;1 such that d(p, q) = §(Si41)},

i.e., A is the set of points that are part of some closest pair in S;;;. If |A| = 2 then there
is exactly one closest pair in S;;; and

8(Siy1) < 8(S;) <= pis1 € A.



If |A| > 2 there are two possibilities. The first is that there is a unique p € A that is a
member of every closest pair in S;;;. In this case

8(Sit1) < 8(S:) <= piy1 = p.

The other possibility is that there is no such unique p. In that case, S; must contain
some pair of points from A and, therefore, §(S5;41) = 6(S;).

We have just shown that, regardless of the composition of S;,;, there are at most 2
possible choices of p;+; which will permit §(S;4,) < 8(S;). Since p1, p2,- - -, P is a random
permutation, the point p;4; is a random point from S;;;. Therefore, the probability that
8(S;i41) is smaller than §(S;) is at most 2/(¢ + 1). |

‘We summarize our result:

Theorem 1 Let S be a set of n points in D-space, and let 1 <t < co.

1. The implementation of the algorithm that uses a binary tree finds a closest pair in
S, in O(nlogn) expected time. This implementation uses the floor function and
randomization, and it works for any set S.

2. The implementation of the algorithm that uses dynamic perfect hashing finds a clos-
est pair in S, in O(n) expected time. This implementation uses the floor function
and randomization, and it works for any set S for which the values |p'9)/8(S)],
p= (@, p@,...,p™) € S and 1 < j < D, come from a finite universe.

3 The k closest pairs problem

In this section we quickly sketch how to modify our algorithm to provide a simple solution
to the k closest pairs problem. Let S = {p,, pa, ..., pn} be a set of n points in the plane.
<

e(z): Set §%(S) := ex to be the k-th closest pair distance in the set S. The k closest pairs

Enumerate all (:) distances between pairs of points and sort them as e; < e; <

problem is to find k pairs of points that are at most §%(S) apart.

Let py, p2, ..., Pn be given to us in a random order. Let S; = {p;, p2, ---, p;}- Our
algorithm will incrementally calculate §%(S;). It differs from the closest pair algorithm
only in that it uses a mesh size of §%(S;) instead of §(S;) for the grid that stores S;.

Assume the algorithm has already seen the first 7 points. Moreover, assume that the
algorithm

1. has stored S; in a grid with mesh size §*(S;), and

2. has a binary search tree (sorted in increasing order by distance) containing k pairs
of points from S; that are at most §%(S;) apart.

The algorithm now performs the i-th stage, 1.e., it gets p;;; and wants to update the
information it is storing.

It does this by finding all points within distance §%(S;) of p;y1. Note that all these
points must be in one of the 9 grid boxes neighboring p;4;. Also note that each grid
box can contain at most 8v/k points from S;: If a box contained more than 8k points,
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then more than k points would be less than distance §%(S;) from each other which is
impossible. We can therefore use 9 Report() operations as described in the previous
section to find all of the at most 72vk points within these boxes. The algorithm then
calculates all distances between these points and p;;; and inserts them into the tree
that stores the k smallest distances. For each inserted distance, we delete the maximal
element stored in the tree. In this way, the tree still contains k elements, which form
the k closest pairs in S;;;. Moreover, 5"‘(5;.,.1) is known at this moment. All this takes
O(vklog k) time.

If 6%(S;41) = §%(S;) then the algorithm inserts p;,; into the current grid. If §*(Si41) <
§%(S;) then the algorithm discards the current grid and inserts all points of S;;, into a
new grid with mesh size §*(S;;,).

An analysis similar to the one performed in the previous section shows that—if the
points are fed to the algorithm in a random order—a new grid is built in the i-th stage
with probability at most 2k/(i+1). Therefore, the expected cost of inserting the (i+1)-st
point will be O(k + log 1) if trees are used and O(k) if dynamic perfect hashing is used.
Thus, the algorithm finds §*(S) = §%(S,) in O(n(k + logn)) expected time in tree based
implementations and O(nk) expected time in hashing based ones.

Theorem 2 The tree-based implementation of the k closest pairs algorithm runs in
O(n(k +logn)) ezpected time, whereas the hashing-based implementation runs in O(nk)
ezpected time.

4 High probability bounds

In this section we will prove that the closest pair algorithm runs quickly with high
probability. To achieve this result, we apply a method due to Clarkson, Mehlhorn
and Seidel [4] for obtaining tail estimates on the space complexity of some randomized
incremental constructions, and a dynamic perfect hashing scheme due to Dietzfelbinger
and Meyer auf der Heide [3].

In each iteration of the closest pair algorithm of Figure 2, some (relatively cheap)
work is done no matter which point is added or which points have been added before,
such as inserting the new point into the data structure or computing the new closest
pair. More interesting for the probabilistic analysis is the expensive rebuilding operation
that has to be performed — depending on the point that is added and the points that
have been added before — with low probability. Therefore, we study a random variable
that describes this rebuilding cost.

Definition 1 For any set T of points and any point p € T, define

el Ty { IT| i 5(T) < 5T\ {p))

That is, if we already have computed §(T'\ {p}), then cost(p, T') expresses the rebuilding
cost of the closest pair algorithm when computing §(T).

Let S be a set of n points. We define a random variable Y5 as follows: Let py, p2, ..., Pn
be a random permutation of the set S and let S; = {p;, p2, ..., pi} for 1 <17 < n. Then
the random variable Y5 has value Y5 = 37, cost(p;, S;).
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Lemma 2 For allc > 1,

e c

1 &Y
Pr[YSZm]ii-—z—(F—-) .

Our proof of this tail estimate follows the general line of the tail estimate proof in
[4]. We will obtain a bound on the probability generating function of Ys and use this to
obtain a bound on the probability that ¥s exceeds the value en.

Definition 2 Let Z be a non-negative random variable that takes only integer values.
The probability generating function (pgf) of Z is defined by

Gz(z) =Y _P1[Z = j]- 2°.

i20
Claim 1 Foranyh >0 anda > 1
Pr[Z > h) < Gz(a)_,fﬂ.h.

Proof: Gz(a) =X ;50 Pr[Z =j]- al > i Pr[Z = 3] - a’ > “'hzjgh Pr[Z = j]. |

By this fact, we can use bounds on the pgf of Z to obtain a tail estimate for Z.
Now let us look at the pgf Gy, (z) of our random variable Ys. We will use Gg(z) as
a short form for Gy, (z).

Claim 2 Forallz > 1
9 .
Gs(e) <palz):= II (1436 -1).
1<i<n o

Proof: The proofis by induction on n, the size of S. For n = 1 and 2, the claim holds,
because then Gg(z) = 1 and the product on the right-hand side is at least equal to one.

Let n > 3 and assume the claim holds for n — 1. Since p;, p2, ..., Pn is a random
permutation of S, p, is random element of S, and so

1
Gs(z) = = 3 2= PG s\ (5)(2).
™ pes
Applying the induction hypothesis yields
Gs(z) < Pnoa(2) 3 zostP.S),
T pes
From Lemma 1 we know that there are at most two points p in S such that cost(p, 5) = n.

For the other points p, cost(p, S) = 0. Therefore,

Gs(z) < P"%@(?z" +n—2)=pa(x) (l + 12—1(3" -~ 1)) = pn(z).



Proof of Lemma 2: We apply the above claims:

Pr[Ys > en] < Gs(a)/a™ for any a € IR5; by Claim 1
< (Micicn (1+ (e = 1))) /@™ by Claim 2
< exp (215{5,, (a* - 1]) fa™ since 1 + z < €°
< exp(2(a™ —1))/a™ since 2(a' —1) < 2(a™ - 1)
for each : <n and each a > 1
= ME) wilidalesices

We can now analyze the closest pair algorithm, first turning our attention to the
tree based implementation. The i-th stage of the algorithm requires O(logi) time for
searching out points in neighboring boxes, inserting p;.; into the lists that maintain
the points sorted by all their coordinates, and (possibly) inserting p;, into the grid. If
8(Si+1) < 8(S;) then it will regrid the points in O(z) time. Thus the full work done by
the i-th stage of the algorithm is described by O (logi + cost(pis1, Si4+1)) and the total
work performed by the algorithm is O (nlogn + Ys).

Let s be a positive integer. We apply Lemma 2 with ¢ = 2-5-Ilnn/Inlnn. Then, for
n sufficiently large, we have 2¢ — clnec < —slnn and therefore

2y €
Pr[Ys > 2snlnn/lnlnn] < lz (e_) = —lgez""l“" < —%e"h“ = O(n™*).
et \c e e
This shows that Y5 = O(nlog n/loglogn) with probability 1 — O(n™*) for every s. That
is, the tree based implementation runs in O(nlogn) time with probability 1 — O(n™*)
for any positive integer s.

Now let us analyze the hashing based implementation. We need some facts from [3]
about their dynamic perfect hashing scheme. Their scheme can build? a hash table for
n items in O(n) time with probability 1 — O(n™*) for every s. Moreover, a new element
can be inserted into a hash table storing n items in time O(1), also with probability
1-0(n™").

We assume a slight variant of the closest-pair algorithm. This variant does not start
with ¢ = 2 but instead uses a brute force method to find §(S ) in O(n) time and inserts
S into the grid with mesh size §(S ;). Only then, with i = /n,/n +1,..., n will it
start running the incremental algorithm.

Making this change ensures that the hash table always stores at least ,/n items.
Therefore, with probability 1 — O(n~*/2), an insert into the table will take only 0(1)
time. Moreover, a rebuild on i items will take O(7) time with probability 1 — O(n~*/2).
We can therefore assume that, with probability 1 — O(n'~*/2), over the entire algorithm,
every insert takes O(1) time and every rebuild on i elements takes O(:) time. That
is, with probability 1 — O(n'~*/2), the total work performed by the algorithm is O(n +
¥icost(piy1, Siy1)) = O(n + ¥Ys). We saw already that Y5 = O(nlogn/loglogn) with
probability 1 — O(n™?).

2The algorithm presented in [3] does not explicitly show how to build a hashtable with this probability.
It can be modified to do so, though, without too much difficulty.
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This shows that for each s > 1, the algorithm runs in O(nlogn/loglogn) time with
probability 1 — O(n~*).
We summarize our results:

Theorem 3 The implementation of the closest pair algorithm that uses a binary tree
runs in O(nlogn) time with probability 1 — O(n™*) for every s. The hashing-based imple-
mentation of the closest pair algorithm runs in O(nlogn/loglogn) time with probability
1— 0(n~*) for every s.

5 An algebraic decision tree implementation

In the previous sections, we stored the non-empty grid boxes using binary trees or perfect
hashing. Both implementations, however, use the non-algebraic floor function: We need
this function for computing the grid box that contains a given point. It is well known
that the floor function is very powerful: For the maximum-gap problem, there is an
Q(nlog n) lower bound for the algebraic decision tree model. Adding the floor function,
however, leads to an O(n) time complexity. (See [8].)

In this section, we sketch how to obtain an O(nlogn) expected time algorithm for
the closest pair problem that does not use the floor function and that runs on any set
S. The techniques appear already in [5, 7]. For simplicity, we restrict ourselves to the
planar case. The main idea is to use a slightly degraded grid:

Definition 3 Let S be a set of n points in the plane and let d be a positive real number.
Suppose we have the following:

1. Let 8,,8,,... be a sequence of pairwise disjoint vertical slabs of width between d
and 2d, such that each slab contains at least one point of S, and each point of S is
contained in one of these slabs. The s;’s induce vertical slabs that do not contain
points of S. These empty slabs have width either zero or at least d.

2, For 1 > 1, let V; be the set of points in S that are contained in slab s;. Let
bi1, biz, ..., be a sequence of pairwise disjoint bozes having width equal to the width
of slab s;, and having height between d and 2d, such that each boz contains at least
one point of V;, and each point of V; is contained in one of these bozes. The b;;’s
induce bozes in s; that do not contain points of S. These boxzes have height either

zero or at least d.

The set of non-empty bozes—for all i together—is called a d-covering of S.

Figure 3 shows an example. A d-covering can be computed in O(nlogn) time by
a sweep algorithm. In fact, if we maintain the points of S in two binary search trees,
one tree containing the points in sorted z-order, the other in sorted y-order, and if each
point in one tree contains a pointer to its occurrence in the other tree, then a d-covering
can be computed in O(n) time, in a way similar to the linear time algorithm for the
grid sketched in Section 2. (See [7].) During the construction, we do not use the floor
function.

11



Figure 3: A d-covering for a planar point set. The rectangles that contain a point have
sidelengths between d and 2d.

It follows from Definition 3, that we can store a d-covering using the slab method.
Hence, we can locate the box containing a point p in O(logn) time, without using the
floor function.

Suppose we want to insert a new point p. Then, we first check if there is already a
non-empty box containing p. If so, we insert p to the list stored with this box. Otherwise,
we have to insert a new box. We distinguish two cases.

First assume that the slab containing p is empty. The search for p ended between
two non-empty slabs, say s and ¢. If the slab between s and ¢ has width less than 2d,
we make one new (non-empty) slab out it. Moreover, we let the new box start at the
y-coordinate of p, and let its height be d. We insert the new slab and the new box into
the data structure. Otherwise, the slab between s and ¢ has width at least 2d. We make
a new slab, say u, taking care that the slab between s and u has width either zero, or
at least d. Similarly, the slab between u and ¢ has width either zero or at least d. As
before, we make in slab u a new box—of height d—containing p, and we insert u and
the new box into the data structure.

The case that the slab containing p is already non-empty, but there is no non-empty
box in this slab containing it, can be handled similarly.
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The entire insert algorithm takes O(logn) time. The delete algorithm, which also
takes O(logn) time, is similar.

The data structure looks as follows. We store the points of S; in a §(S;)-covering.
Moreover, we maintain the two binary search trees that allow us to construct the covering
in linear time. Note that, as it was the case for the grid with mesh size §(S;), each box of
the §(S;)-covering contains only O(1) points of S;—a fact that is crucial to the running
time of the algorithm, see Section 2.

We have to redefine the notion of neighborhood. Let b be a box of a d-covering R.
Let (5(1),5(2)) be the coordinates of the lower left corner of b. Then, the neighbors of b
are all boxes in R that overlap the square

s:=[b® — d: 5@ 4 3d] x [ — d: b 4 3d].
The boxes that overlap s can be found by locating the 25 points

(6M + ad, b® + Bd), for a,8 € {-1,0,1,2,3}
in the structure that stores the covering R.

Theorem 4 Let S be a set of n points in D-space, and let 1 <t < co. There ezists an
algorithm that incrementally computes a closest pair in S in O(nlogn) ezpected time.
This algorithm fits in the algebraic decision tree model of computation eztended with the
power of randomization. Moreover, this algorithm runs in O(nlog n) time with probability
O(n~*) for every s.

Proof: Since we maintain the points sorted w.r.t. all their coordinates, we can build a
8(S;)-covering in O(z) time. That is, for the i-th stage, we need O(logi) deterministic
time for updating the trees and for the point location in the covering, plus O(1) ex-
pected time because of the rebuilding. It follows that the expected as well as the “high
probability” running time is O(nlogn), see Sections 2 and 4. n

Remark: Note that the above algorithm is of the Las Vegas type, 1.e. it always com-
putes a correct output — the running time of the algorithm is a random variable. The
Q(nlogn) for the element uniqueness problem in the algebraic decision tree model (from
which the lower bound for the closest pair problem follows by reduction) not only holds
for the worst case, but also for the expected running time of an input drawn from a
uniform distribution, see [1]. A Las Vegas algorithm is a deterministic algorithm for any
fixed sequence of coin flips. So, for any distribution of inputs, the average running time
of a Las Vegas algorithm — where the average is taken over the inputs of the distribution
and over the coin flips — cannot be smaller than the best average running time that
1s achievable by a deterministic algorithm for this distribution. Since the average case
complexity of a Las Vegas algorithm for some input distribution cannot be larger than
the worst case (w.r.t. inputs) running time of this algorithm, Q(nlogn) is a lower bound
for the expected (w.r.t. coin flips) running time of a Las Vegas algorithm that computes
the closest pair. This shows that algorithm of Theorem 4 is still optimal.
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