

Semi-dynamic Maintenance of the

Width of a Planar Point Set

Christian Schwarz

MPI-I-92-153 December 1992

Semi-dynamic Maintenance of the Width of a Planar Point Set*

Christian Schwarz

Max-Planck-Institut für Informatik

W-6600 Saarbrücken, Germany

schwarz@mpi-sb.mpg.de

December 6, 1992

Abstract

We give an algorithm that maintains an approximation of the width of a set of n points
in the plane in O(a log n) amortized time, if only insertions or only deletions are performed.
The data structure allows for reporting the approximation in O(a log n log log n) time. a is
a parameter that expresses the quality of the approximation. Our data structure is based
on a method of Janardan that maintains an approximation of the width under insertions
and deletions using O(alog2 n) time for the width query and the updates.

1 Introduction

Let S be a set of n points in the plane. The width of S, denoted by W(S), is defined as the

smallest distance of two parallellines enclosing S and has applications in collision-avoidance

problems and in the approximation of polygonal curves [5]. The width of S can also be
characterized using the conve.x hull of S: Let CH(S) denote the convex hull of S, and let e

and v be an edge and a vertex of CH(S), respectively. Furthermore, let le be the supporting

line of e and lv the line through v that is parallel to le. The pair (e, v) is called an antipodal

pair of CH(S) if le and lv support CH(S). (The supporting line of a line segment e is the

line containing e, and the supporting line of a convex polygon P is a tangent of P.) Using this

terminology, W(S) is the mjnjmum distance between lines le and lv, taken over all antipodal

pairs (e,v) of CH(S), see [5]. In [5], it is shown how to compute W(S) for a given set S in

O(nlogn) time and O(n) space: first, compute the convex hull CH(S), and then generate

the - only O(n) - antipodal (edge-verte.x) pairs in linear time, using a procedure similar
to the one given in [11, pp. 179-181] for antipodal point-point pairs. Thus, if the convex hull

is at hand, W(S) can be computed in O(n) time by generating and checking all antipodal

edge-vertex pairs on the hull.

The dynamic width problem is to maintain W(S) while the set S is modified by insertions

and deletions ofpoints. In this paper, we consider the semi-dynamic width problem. We want

to maintain the width of S when the update sequence consists either of insertions only or of
deletions only. We require the updates to be performed on-line, i.e. each update operation

*This work was supported by the ESPRIT Basic Research Actions Program, under contract No. 7141 (project
ALCOM II).

1

must be completed before the next update request is specified. The goal is to find algorithms
that beat the trivial O(n) bound obtained by updating the convex hull using any efficient
dynamic or semi-dynamic convex hull algorithm and then recomputing the width in linear

time by generating and checking all antipodal pairs as described above.
We now summarize previous work on dynamic width maintainance. When looking for a

dynamic solution, the property of a problem being decomposable [8] hasproved to be very
useful. For decomposable problems, efficient dynamization techniques have been developed
([8,3]) . The width problemis not decomposable. The above definition ofwidth using antipodal

pairs can be formulated as follows (see [1]):

W(S) = min max dist(ie , i v),
eECH(S)vECH(S)

where Le and Lv are the paralle1lines containing e and v, respective1y, as described above. That

is, W(S) is a "min-max"-operator, which is not decomposable, in contrast to re1ated problems
such as diameter ("max-max") or elosest pair ("min-min"). Therefore, the techniques of [8,3]
do not work here.

Arestricted off-line variant of dynamic maintenance was discussed by Agarwal and Sharir
[1]: Given a set S, a positive real llllmber W and a sequence of n updates on S, does the case

"W(S) ~ W" occur during the execution of the sequence? In [1], an O(nlog3 n) algorithm is

given for this problem.
The first on-line algorithm was given by Janardan [6]. He considered the dynamic main­

tenance of an approzimation of W(S) and gave insertion and deletion algorithms that run

in O(alog2 n) time. The data structure uses O(an) space. The approximation can be made
arbitrarily elose to optimal, and its quality depends on the parameter a . Reasonable approx­
imations are already available for constant values of a, see Theorem 1 below. As noted by
Janardan [6], approximate solutions are quite appropriate for problems where already the in­
put data are not exact, but only known up to a certain precision, like it is the case for example
in statistical applications. We cite Janardan's result:

Theorem 1 (Janardan [6]) Let S be a set of n points in the plane. Let W(S) be the width
of Sand let a 2: 1 be an integer-valued parameter. There is a data structure that uses
o (a(n)) space and supports the following operations in 0 (a log2 n) time: insert a point into

S, de1ete a point from S and report W(S)I where W(S)jW(S) ~)1 + tan2 4:. For instancel

W(S)jW(S) ~ 1.01 for a = 51 and W(S)jW(S) ~ 1.0001 for a = 16. All bounds are worst
case.

In this paper, we give a data structure that maintains the approximation W(S) ofTheorem 1 in
O(alogn) amortized time if only insertions or only deletions are performed. Reporting W(S)
takes time O(alognloglogn). The paper is organized as follows. Since our data structure

is based on the one given by Janardan, we will start by reviewing his solution in Section 2.

Section 3 contains the description of the improved data structure for the semi-dynamic case.

2 Dynamic maintenance of the width approximation

As already mentioned in the introduction, we can dynamically maintain the width of S as
follows: Maintain the convex hull CH(S) by using the algorithm of [9], and then search for the

2

antipodal edge-vertex pair that yields the minimal distance between two parallellines enclosing
5. Unfortunately, it is not known how to perform this task efficiently, Le. without essentially
checking all antipodal pairs.

There is yet another algorithm given in [5] to compute the width. Instead of finding
antipodal edge-vertex pairs directly, it finds the corresponding parallellines of support. The
algorithm is implemented using the duality transform, to be described in the next subsection.
Having found the antipodal pairs in this way, the algorithm finds the one with the minimum
distance in linear time as before. As already mentioned, we want to avoid checking all antipodal
pairs after an update.

Janardan observed that, as opposed to the distance of parallellines of support in primal
space, the interpretation of this distance in dual space has a nice monotonicity property along

the convex hull of the set, and this makes efficient searching for the minimum possible. But by
transforming the problem into dual space, the distance between parallellines can be distorted
considerably, so the result computed in dual space may be meaningless. The amount of dis­
tortion depends on the slope of the lines. So, by maintaining a family of coordinate systems
instead of only one, there will always be one system where the error is kept small.

We now discuss the duality transform and its application to the width problem ([5, 6]) in

detail.

2.1 Interpretation of antipodal pairs in dual space

Let us consider the following duality transform that converts points into lines and non-vertical

lines into points:

p=(a,b) t---+ .1"(p): y=az+b

i : y = mz + c t---+ .1"(i) = (-m,c)

An important property of duality is that it is incidence-preserving: pis above (resp. on) i if
and only if .1"(p) is above (resp. on) .1"(i). Also, parallellines are mapped to points with the
same z-coordinate.

We now use this transform to map the points of 5 into dual space. We obtain a set of

lines C. We orient each non-horizontalline of C up,,:ards and each horizontalline rightwards.

By this orientation, we obtain a set of halfplanes 'H'ejt(C) and 'H,.ight(C), defined to be the
halfplanes that lie to the left and to the right ofthe oriented lines of C, respectively. Now, the
following geometrie objects are of interest to us:

Consider L := a nle.c 'H'ejt(C) , the boundary of the intersection of the halfplanes in 'Hlejt(C).
It is a convex chain (eo, VI, EI, ..• , VL, EL), with vertices VI, •.• , VL and edges EO,· .• , eL, where
EI, •.. , EL-I are line segments and EO, EL are half-infinite rays. 5imilarly, we define R :=

a nte.c 'H,.ight(C).
These convex chains correspond to the convex hull CH(5) of 5, as follows: Let U (resp.

D) be the upper (resp. lower) convex hull of 5, Le. the upward (resp. downward) convex chain
connecting the leftmost and righmost vertex of 5.

Fact 1 For each vertex V of U, .1"(v) is a supporting line of an edge of L. In particu1ar, the
supporting line of an edge (u, v) of U maps to the vertex .1"(u) n .1"(v) of L.

3

(a): CH(S)

U 3 4

5

.---

(b): halfplane interseetions

in dual space

--

Figure 1: The duality transform. F. (a): vertices 1-5 of CH(S) belong to U, and vertices 5-8

belong to D. (b): The dual chains L and R of U resp. D. For each vertex i of CH(S), i'

denotes the edge(s) supported by line F(i).

An analogous statement holds for v E D and F(v) E R. Figure 1 shows an example. The dual
of vertex 2 is the supporting line of the edge 2'; the dual of the supporting line of (2,3) is the

common endpoint of the edges labeled 2' and 3'.

Now we note further correspondences between the upper and lower part of CH(S) and
the convex chains L and R in dual space. Let v be a vertex of CH(S), w.l.o.g. v E D. Let

el = (w, v), e2 = (v, z) be the edges incident on v and let l1. l2 be their supporting lines.
Consider the supporting lines l of CH(S) thatare obtained by rotating around v, starting

with l = II and ending with l = l2. Let C(v, ll, l2) be the set of these lines. Since the duality
transform. is incidence-preserving, every line through v must map to a point on F(v).

If v is a non-extreme vertex of D, then the neighboring vertices w and z are also on D.
By Fact 1, F(w) and F(z) are supporting lines of edges of R, as is F(v). Furthermore, l1.

the supporting line of el = (w,v), maps to point F(w) n F(v), and l2 maps to F(v) n F(z).

Therefore,

Fact 2 11 visa non-extreme vertex 01 D, the set 01 lines C(v, l1. l2) maps to the line segment

F(v)n R, with endpoints F(ll) and F(l2)'

(In Figure 1, if v = 7, then F(7) n R is the segment labeled 7'.)

If v is an extreme vertex of D, then v is also on U. W.l.o.g.let be w E D, Le. el E D. Then

z E U and therefore e2 EU. N ow F(v) is a supporting line of an edge of R and also of an edge

of L. F(w) is a supporting line of an edge of Rand F(z) is a supporting line of an edge of L.

4

.1"(Ld is a vertex of R, namely .1"(v) n .1"(w) , and .1"(l2) is a vertex of L, namely .1"(v) n .1"(z).

We have

Fact 3 1f v is an eztreme vertez of D I then the set .c(v, L1, L2) maps to the mys .1"(v) n Rand

.1"(v) n L, i.e. the part of .1"(v) that is obtained by ezcluding the line segment from .1"(L1) to

.1"(l2).

As an example, consider v = 5 in Figure 1. The rays .1"(5) n L and .1"(5) n R are the ones
labeled 51.

Let (e, v) be an antipodal pair of CH (S), w.l.o.g. let e EU. Then v E D, because U is

convex. Let Le and lv be the parallellines through e and v, respectively, that support CH(S).

From the above facts, it follows that

1. .1"(Lv) is a point on the segment .1"(v) n R,

2 . .1"(le) is a vertex of L,

3 . .1"(Lv) and .1"(le) have the same z-coordinate.

On the other hand, let VI be a vertex of L and let pI be the point of R with the same z-coordinate
as VI. Define e := U n .1"-1 (VI) and v := D n .1"-1 (pI).

Claim: (e, v) is an antipodal pair of S.

Proof: By the definition of v, .1"(v) contains pI, Le. pI is on a ray or segment .1"(v) n R.

Following the notation used to establish Facts 2 and 3, let w and z be the vertices that are
adjacent to v on CH(S). We want to prove that lv := .1"-l(pl) is a tangent of CH(S). To do

this, it suffices to prove that it belongs to the set .c(V,ll,l2), where ll,l2 are the supporting

lines of e1 = (w,v) and e2 = (v,z), respectively. Since the duality transform .1" is injective,

Facts 2 and 3 imply that every point on a segment or ray .1"(v) n R must belong to.c(v, L1 , L2).I

We therefore have

Fact 4 Let e E U, v E D I and let Le and Lv be the parallel lines through e and v I respectively.

Then (e, v) is an antipodal pair of CH (S) if and only if .1"(Lv) is the point where the vertical

line through vertez .1"(le) in L intersects the chain R.

In Figure 1, if e = (3,4), then v = 7 and .1"(L7) is the point on R that lies vertically below the
common endpoint of the edges 31 and 4/. If e E D and v EU, then claims analogous to the

ones in Facts 2-4 hold.

Fact 4 establishes a one-to-one correspondence between the antipodal edge-vertex pair (e, v)
in primal space and the vertex-point pair (.1"(le),.1"(Lv)) in dual space. Accordingly, in dual

space, the distance between the vertex .1"(le) and the point .1"(lv) will play the role of the

distance of the parallellines of support belonging to (e, v). Thus, the search for the minimum,
over the vertices of both chains L and R, of the vertical distance of a vertex to the other chain

in dual space corresponds to the search for the antipodal pair (e, v) with minimal distance

between Le and Lv in primal space.

5

2.2 The basic search and update algorithms

Let P be a vertex on L. The distance of P to R, denoted by p(p, R), is defined to be the length
of the vertical segment starting at P and ending at a point of R. The distance of a point pER

to L is defined analogously. The distance function P has the following monotonicity property

which effects an efficient searching algorithm.

Lemma 1 (J anardan [6]) Let Po E L such that p(Po, R) = m.inpeL p(p, R). Indez the vertices

on L with subsequent integers such that the vertices to the right of Po get positive indices and the

vertices to the left of Po get negative indices, i. e. L = ... , P-2, P-I , Po, PI , P2, Then there are

indices k- ::; 0 and k+ ~ 0 such that p(pi, R) = p(Po, R) for k- ::; i ::; k+, P(pi, R) > p(Pi-l, R)

for i > k+ and p(pi, R) > P(Pi+I, R) for i < k-. An anologous statement holds for the points

onR.

Using Lemma 1, Po can be found by binary search, as shown in Figure 2.

(1) Pmid +- middle vertex of L;

(2) PI +- left neighbor of Pmid in L; Pr +- right neighbor of Pmid in L;

(3) find the interseetions of R with the verticallines through Pmid, PI and Pr;

(4) compute P(Pmid, R), p(PI, R) and P(Pr, R) ;

(5) if P(Pmid,_ R) ::; P(PI, R) and P(Pmid, R) ::; P(Pr, R) then
(6) Po +- Pmid; stop
(7) else
(8) if P(Pmid, R) > p(PI, R) then
(9) PI +- new rightmost vertex of L to be considered

(10) else
(11) pr +- new leftmost vertex of L to be considered

(12) fi
(13)

(14)

fi· ,
goto (1);

Figure 2: The searching algorithm to find the vertex Po E L which minirnizes the vertical

distance to chain R.

How about the implementation of this algorithm? In [9], it is shown that the intersection

of n halfplanes can be maintained in O(n) space and o (log2 n) update- time such that the

halfplanes contributing to the boundary - these are the duals of the points of the upper jlower

hull- are stored at the leaves of a balanced binary search tree, in sorted order of their slopes.

An internal node v of the tree corresponds to the part of the convex chain represented by the
leaves of v's subtree. Also, if each internal node v is augmented with pointers to leftmost and

rightmost leaf in its subtree, this does not affect the bounds on space and update time of the

structure.

The binary search is thus implemented by walking down a root-to-leaf path in the tree.

When we are at node v, then the vertex formed by the intersection of the boundary of the

halfplane stored at the rightmost leaf of v's left subtree and the boundary of the halfplane
stored at the leftmost leaf of v's right subtree is chosen to be the "middle" vertex Pmid in

6

line (1). Using the pointers described before, line (1) can be executed in 0(1) time. Knowing
Pmid, its neighbors pz and Pt' are computed in constant time in line (2). Discarding parts of the
convex chain L in lines (10) and (12) is implicitly performed in 0(1) time by continuing the

search in the left or right child of the current node v.

Since ILI + IRI :s; n+ 2 if n is the current size of the point set, the algorithm makes O(logn)

iterations. Each line of the algorithm takes constant time, except line (3). The intersections of

R and the verticallines through Pmid, pz and Pt' are also computed by binary search, in 0 (log n)
time. It follows that the total time to find the point Po E L with minimal distance to chain R
is o (log2 n).

Now consider the following algorithm to report the width of S: Maintain L and R in
separate instances of the above structure and use the search algorithm of Figure 2 to search

L (and similarly R) for the vertex that minimizes the distance to the other chain. Out of the

two resulting vertices, pick the one, say v, with smaller vertical distance to point P on the

other chain, and report the distance of the primal parallellines corresponding to v and p. The

running time of this algorithm is o (log2 n). However, it does not compute the width W(S),
because the duality transform F does not preserve the distance between parallellines. More

specifically,

Lemma 2 (Janardan [6]) Let 9 and h be parallel lines in the plane, with slope m. The
distance between the points F(g) and F(h) is v'1 + m 2 times the distance between 9 and h.

2.3 The approximation algorithm

From Lemma 2, we infer that the quality of the result decreases with rising absolute value of

the slope of the optimal supporting lines.
This observation is used as follows. Let a be a positive integer. Instead of one coordinate

system, a family Ci = (Xi, Yi), 0 :s; i :s; a, with positive z- and y-axes Xi and Yi, respectively,

is maintained. X o is horizontal and the angle between Xi and Xi-l is 2: for 1 :s; i :s; a.
Then, it is shown in [6] that for any line l in the plane, there is an i E {O, ... , a}, such

that the absolute value of l's slope in the system Ci is at most tan 4:' Therefore, there is a

coordinate syste~ in which the slope of the optimal pair of supporting lines is small.
The update and query algorithms are modified as follows. For each coordinate system Ci,

keep the data structure described before, i.e. two instances Li, Ri of the halfplane intersection

structure of [9], for the intersection of the left and the intersection of the right halfplanes,

respectively. To insert or delete a point p, compute Pi, the coordinate of P in Ci, for 0 :s; i :s; a,

and perform the update with Pi in Li and Ri for all i, as described before. The running time
for the update operations is O(a log2 n), where n is the current size of the point set.

To ans wer a width query, we use the search algorithm given before, for each i, and find 2(a +
1) point pairs. Out of these pairs, we pick the one for which the distance oft he corresponding

pair of parallellines in primal space is mimimal and report this distance. The running time of
this algorithm is 0 (a log2 n).

Let W(S) be the distance reported in the query algorithm. To obtain abound on the

reported distance, consider the parallellines that give rise to this distance. Using the fact that

for any line l, there is a system Ci where the slope of l is at most tan 4:' and that for parallel

lines 9 and h with slope m, the distance between the points F(g) and F(h) is v'1 + m 2 times

7

the distance between g and h (Lemma 2), it is shown in [6] that W(S) ~ W(S)·)1 + tan2 :01.
This completes the proof of Theorem 1.

3 Semi-dynamic maintenance of the width approximation

In this section, we consider the case where the point set is modified by one type of update

operation (insert or delete) only. We will show how to modify the method of Section 2 to
achieve the following result.

Theorem 2 Let S be a set of n points in the plane, and let a be a positive integer. There is a
data structure that supports the operation report W(S) in O(alognloglogn) worst case time,
where W(S) satisfies the property described in Theorem 1. Furthermore, the data structure
supports the operation insert p into S in O(alogn) amortized time. There is a related structure
with the same bound for reporting W (S), namely 0 (a log n log log n) that, instead of insertions,
supports deletions of points in O(a log n) amortized time. Both data structures use O(an) space.

From now on, we concentrate on improving the data structure for one fixed coordinate system
given in Subsection 2.2. Theorem 2 then follows by applying the method of maintaining a
family of coordinate systems described in Subsection 2.3.

3.1 Potential improvements for the semi-dynamic case

Let us examine the running time oft he operations. The cost of an update operation is o (log2 n),
determined by the time to update the structure representing the chains L and R, which are
instances of the halfplane intersection structure of [9]. The dynamic halfplane intersection

problem is dual to the dynamic convex hull problem, and the data structures for these problems
are basically the same. So, a fast er convex hull algorithm would decrease the update time.
Indeed, in the semi-dynamic case, there are algorithms that update the convex hull in O(logn)

amortized time: see [4] for deletions and [10] for insertions. The time bound for insertions in
[10] is worst case.

The running time for a query in the structure of Subsection 2.2 is O(log2 n), because it is
a twofold binary search: a vertex vo, say on L, is searched such that the vertical distance of
Vo to the other chain is minimal. For each vertex V on L that is tested, a binary search on R
is performed to find the segment that intersects the verticalline through v. This is the inner
binary search. We want to speed-up the query by replacing the inner binary search by a faster
method.

The segment on R that intersects the verticalline through v is found by identifying one of
its incident vertices. We call these vertices the left resp . right neighbor of v in R. Note that

one of tbem may not exist. Assume e.g. that the right neighbor does not exist. In this case, the
segment opposite v is the ray at tbe rigbt end of the chain. We can easily handle this special

case. If the right neighbor, say p', exists, tben tbe segment on R that is opposite v is adjacent
to p' and is therefore accessible once p' is found.

Note that the vertices are ordered by z-coordinate on both chains L and R. So, in an
abstract sense, our problems is as follows: We have two ordered lists of real numbers, and we

are given a number in one list. Our goal is to localize this number in the otber list, where

8

localizing means to find the position (Le. right neighbor) that the number would have in the
other list .

The problem that we want to solve turns out to be an instance of a well-known data­
structuring problem called union-split-find problem, see e.g. [7,2]. We will address this problem
in Subsection 3.2, and then, in Subsection 3.3, we will apply it to our situation.

The data structure in Subsection 2.2 is organized such that the two chains L and R are kept
sep ar at ely. To perform the above described search for a neighbor of a vertex in the other list, we
maintain an additional structure, the mixed L, R-structure, to be described in Subsection 3.3,
where the vertices of both chains are stored together.

In this structure, each vertex that, for example, vanishes from one of the chains L and R
due to an update that changes the convex hull, has to be deleted explicitly. Note that the

number of vertices changing on L and R in dual space corresponds to the number of edges
that are destroyed and established on the convex hull in primal space, which in turn differs by
at most two from the number of points that change on the convex hull. That is, if k is the
number of points changing on the hull due to an update, c(n) is the time to update the convex
hull and u(n) is the time to update the mixed L, R-structure (for one vertex of L or R), then
the rllnning time for an update operation will be proportional to c(n) + k . u(n).

In the semi-dynamic case we know that, summed over all operations, the number of points
deleted from or inserted into the hull is O(n). In the deletions only case, n is the size of the

initial set, and in the insertions only case, n is the size of the final set.
Therefore, we can amortize the cost, Le., if k i is the number of vertices that change on the

hull due to update #i, then the total update cost is proportional to

n

L c(n) + k i · u(n) = 0 (n (c(n) + u(n))). (1)
i=l

For this reason, the method is not applicable to the fully dynamic case, where the total number
of points deleted from or inserted into the hull is no longer related to the size of the point set
itself.

3.2 The union-split-find problem

Consider the following problem. Let B be a linear list of elements some of which are marked.
The marked elements partition the list into intervals. We want to carry out the following
operations:

Find(z : element): return the next marked element y to the right of z in B (including z);

Split(z : unmarked element): turn z into a marked element;

Union(z : marked element): turn z into a unmarked element;

Add(y, z : element): insert a new unmarked element y before z into B;

Erase(z : unmarked element): remove z from B;

In [7] it is shown that each of the above five operations can be supported in time 0 (log log I BI)
and space O(IBI), where the time bound is worst case for Union, Split and Find and amortized
for Add and Erase.

9

3.3 The mixed L, R-structure

We shall now describe the mixed L, R-structure that stores the vertices of the chains L and R
together in order to speed up queries.

From now on, we treat L and Raslists of items, ordered by a real-valued key. (This key
is the z-coordinate of the point stored in the chain L or R.) We will maintain the ordered list
B := Lu R such that we can execute dictionary operations and are also able to support the

repertory described in Subsection 3.2. The mixed L, R-structure is composed of the following
parts:

1. A balanced binary tree T(B) that stores the elements of B and supports insertions,
deletions and searches of elements in o (log IBI) time.

2. A structure USF(LR), which is an instance of the union-split-find structure of Subsec­

tion 3.2, that stores the list B = Lu R such that the elements of L are unmarked and
the elements of R are marked.

3. A structure USF(RL), analogous to USF(LR), where the elements of L are marked and
the elements of R are unmarked.

Furthermore, we link the occurrences of elements in USF(LR) and USF(RL) to the corre­

sponding occurrence in T(B).
We want to use the structure for the following query:

N eighbor(v : list}) : list2

given v E list}, find the right neighbor of v in list2, where list} and list2 are L and R or
vice versa.

We can implement this operation by executing Find(v), using either the structure USF(LR),
if v E L, or the structure USF(RL), if vER.

We also want to update the data structure under insertions and deletions in L and R such
that the above mentioned marking invariants are preserved. Figure 3 shows how to update the
mixed L, R-structure under insertions into and deletions from L. Insertions and deletions of

elements in R are performed analogously. (We denote an operation on a certain data structure
by adding the name of the structure as a prefix.)
Note that inserting or deleting v E L needs one additional operation in the structure USF(RL),
because there, L is the set of marked items.

Lemma 3 Let n = ILI + IRI. Then the Neighbor query takes time O(loglogn) and the amor­
tized time 01 the update operations is bounded by O(logn). The data structure uses O(n) space.

Proof: The time bound for the query follows from the description of the union-split-find
structure above. Also, the structures USF(B) and T(B) both use linear space. Now let us

turn to the update algorithms in Figure 3. The search time in the tree T(B) in line (3) of
the insertion algorithm is 0 (log n). The other operations are performed on the union-split­
find structure and take O(loglogn) amortized time. Therefore, the amortized update time is
bounded by 0 (log n). •

10

(1) Algoritlun insert v into L
(2) begin
(3) find the position of v in the list B = Lu R, by binary search in the tree T(B);

this gives us an element wEB such that v's place in B is directly in front of w;
(4) T(B)Insert(v,w);
(5) USF(LR).A.dd(v,w);
(6) USF(RL).A.dd(v,w);
(7) USF(RL}Split(v);
(8) end;

(1) Algoritlun delete v from L
(2) begin
(3) T(B)Delete(v);
(4) USF(LR)Erase(v);
(5) USF(RL}-Union(v);
(6) USF(RL)Erase(v);
(7) end;

Figure 3: The algorithms to update the mixed L, R-structure for an insertion into or adeletion

from the chain L.

3.4 The complete algorithm

Having described the mixed L, R-structure, we can add the structures that keep the convex
chains L and R separately to obtain our complete data structure:

1. the structure that maintains the convex chain L,

2. the structure that maintains the convex chain R,

3. the mixed L, R-structure.

We have to add some details. As already mentioned, to store the convex chains L and R,
we use either one of the semi-dynamic convex hull structures of [4] or [10]. In each case, the
results of these papers admit to maintain the following information in 0 (log n) amortized time
per insertion or deletion of a point: there are balanced binary trees storing the points of the
current upper and lower hull (U and D) in their leaves, sorted by z-coordinate. Also, each
internal node in these trees has pointers to the leftmost and the rightmost leaf in its subtree,
respectively. We call these trees hull trees. Applying the duality rules given in Subsection 2.1,

we obtain semi-dynamic structures for maintaining the intersection of halfplanes such that the
halfplanes currently forming the boundary are stored at the leaves of a search tree. Each vertex
on U resp. D corresponds to a halfplane that contributes to the boundary of the chain L resp.

R. Moreover, two neighboring vertices on U resp. D specify a vertex on L resp. R. So, as
discussed in Subsection 2.2, each subsequent pair of leaves in the hull trees corresponds to a

11

vertex of L or R. Since we need to store the vertices of L and R explicitly in the mixed L, R­
structure and also want to connect this structure with the hull trees, we let each subsequent

pair ofleaves in a hull tree point to the occurrence (in T(B)) ofthe vertex in L or R that they

determine.
We can now implement the operations insert p into S, delete p from S and report.width.

and thus prove Theorem 2.

The update operations are very similar. In Figure 4, we formulate a general update algo­
rithm and mention the details that are different later. Let L' resp. R' denote the convex chains

Land R after the update.

(1) Algorithm Update (p);
(2) begin
(3) modify the hull tree representing U (and L);
(4) modify the hull tree representing D (and R);

(5) out := {v : v E L u Rand v ~ L' uR'};
(6) in:={v: v~LUR and VEL'UR'};
(7) forall v E out do

(8) delete v from the mixed L, R-structure as described in Figure 3

(9) od;

(10) forall v E in do

(11) insert v into the mixed L, R-structure as described in Figure 3

(12) od;

(13) end;

Figure 4: The algorithm to insert/delete a point p.

We obtain Insert(p) and Delete(p) from Update(p) by applying the appropriate semi-dynamic

convex hull algorithm in lines (3) and (4). In lines (5) and (6), the sets in and out are
determined. These are the points that change in L and R due to the changes on the convex

hull CH(S).

Lemma 4 The operations Insert(p) and Delete(p) correctly maintain the data structure and
run in O(logn) amortized time.

Proof: The correctness is obvious. The running time oflines (3) and (4) is O(logn) amortized.

The cost of lines (5) and (6) is proportional to k, where k is the number of points newly

arising or vanishing on L or R. Finally, lines (7)-(12) take time 0 (k log n). As discussed in
Subsection 3.1, the sum ofthe k's over all updates is O(n). So, according to Equation (1), the

amortized update time is proportional to

1 n - I: c(n) + ki . u(n) = O(c(n) + u(n)),
n i=l

where c(n) is the time to update the hull, ki is the cardinality of in U out and u(n) is the time

to update the mixed L, R-structure (for one vertex). We have c(n) = O(logn) amortized and
u(n) = O(logn) amortized, and therefore the amortized update time is O(logn). •

12

It remains to describe the operation reporbvidth. We only discuss the algorithm to find
Po E L with minima] distance to chain R. To do this, we simply use the search algorithm of

Figure 2, which walks down a root-to-Ieaf path in the hull tree for the points of U (resp. for
the halfplanes contributing to L), with the following details added: Suppose we are at node v
of the hull tree. We find Pmid and its neighbors pz and Pr in L in lines (1) and (2) as before.
Each of these vertices is defined by the intersection of the boundaries of the two halfplanes

which are stored in adjacent leaves of the hull tree. From each pair of leaves defining vertex
pE {pz , Pmid, Pr}, pointers are available to the occurrence of P in the tree T(B), and from there
to the occurrence of P in the structures USF(LR) and USF(RL).

Now, for P E {PZ,Pmid,Pr}' we perform the query Neighbor(p) in the structure USF(LR)
to obtain p's next neighbor to the right in R, if it exists. From Lemma 3, this takes time
O(loglogn). Given this vertex of R, we can compute the segment vertically below P and the
distance of P to this segment in constant time. H the right neighbor does not exist, then the
segment vertically below P must be the ray at the right end of the chain. We can access this
rayeasily.

The rest of the algorithm is as in Figure 2. We have the following lemma:

Lemma 5 The running time 01 operation reporL width is 0 (log n log log n).

Note that the data structure discussed in this section corresponds to the one given in

Subsection 2.2, i.e. the query does not really report the width, but a distorted value that

depends on the slope of the lines that give rise to the reported distance. However, as discussed
at the beginning of this section, by applying the approximation technique of Subsection 2.3,
we obtain the semi-dynamic approximation result claimed in Theorem 2.

4 Conclusion and open problems

We have shown how to maintain an approximation of the width of a set of n points in the plane,
when either only insertions or only deletions of points are performed, such that the amortized
update time is 0 (a log n) and the time to retrieve the approximate width is 0 (a log n log log n).
The data structure uses 0 (an) space. The parameter a expresses the quality of the approxi­
mation.

There are still a lot of open problems left. First, one could improve the running times of
the operations for the approximation problem. Since it seems that the algorithms at least have

to maintain the convex hull, improving the time for the approximate width query to 0 (a log n)
would be the goal.

Furthermore, as already mentioned in the introduction, there is still no exact algorithm for
dynamic maintenance with a sublinear running time for both updates and width query.

Acknowledgements

The author would like to thank Rajeev Raman for helpful discussions and Michiel Smid for
reading a preliminary draft of this paper.

13

References

[1] P.K. Agarwal and M. Sharir. Off-line dynamie maintenanee of the width of a plan ar point

set. Computational Geometry, Theory and Applications 1, 1991, pp. 65-78.

[2] K. Mehlhorn, St. Näher. Dynamie fraetional easeading. Algorithmica 5, Nr. 2, 1990,
pp. 215-241.

[3] D. Dobkin and S. Suri. Maintenanee of geometrie eztrema. Journal of the ACM 38, 1991,
pp. 275-298.

[4] J. Bershberger and S. Suri. Applieations of a semi-dynamie eonvez hull algorithm. Proc.

Second Scand. Workshop on Alg. Theory (SWAT), 1990, pp. 380-392.

[5] M. Boule and G. Toussamt. Computing the width of a set. Proc. First Annual ACM Symp.

on Computational Geometry, 1985, pp. 1-7.

[6] R. Janardan. On maintaining the width and diameter of a planar point set online. Inter­
national Symp. on Algorithms, 1991, LNCS Vol. 557, pp. 137-149.

[7] K. Mehlhorn. Datenstrukturen und effiziente Algorithmen 1. B.G. Teubner, Stuttgart,
Germany, 1986

[8] M. Overmars. Dynamization of order-deeomposable set problems. Journal of Algorithms 2,
1981, pp. 245-260.

[9] M. Overmars and J. van Leeuwen. Maintenanee of eonfigurations in the plane. Journal of
Computer and System Sciences 23, 1981, pp. 166-204.

[10] F.P. Preparata. An optimal real time algorithm for planar eonvez hulls. Comm. of the
ACM 22, 1979, pp. 402-405.

[11] F.P. Preparata and M.l. Shamos. Computational Geometry, an Introduetion. Springer­
Verlag, New York, 1985.

14

	92-1530001a
	92-1530002
	92-1530003
	92-1530004
	92-1530005
	92-1530006
	92-1530007
	92-1530008
	92-1530009
	92-1530010
	92-1530011
	92-1530012
	92-1530013
	92-1530014
	92-1530015
	92-1530016
	92-1530017

