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Fast Deterministic Processor Allocation * 

Torben Hagerupt 

Abstract 

Interval alloeation has been suggested as a possible formal­
ization for the PRAM ofthe (vaguely defined) proeessor allo­
cation problem, which is of fundamental importanee in par­
allel eomputing. The interval allocation problem is, given 
n nonnegative integers :1:1, ••• ,:1:", to alloeate n nonoverlap­
ping subarrays of sizes :1:1, ••• ,:I:" !rom within a base array of 
00:;=1 :l:i) eells. We show that interval alloeation problems 
of size n ca.n be solved in O«log log n)3) time with optimal 
speedup on a deterministie CRCW PRAM. In addition to 
a: general solution to the processor allocation .problem, this 
implies an improved deterministie algorithm for the prob­
lem of approximate summation. For both interval alloeation 
and approximate summation, the fastest previous determin­
istie algorithms have running times of9(log n/log log n). We 
also describe an application to the problem of eomputing the 
eonnected eomponents of an undirected graph. 

1 Introduction 

The integer prejiz .9ummation problem, i.e., given n 

wasted because the processors cannot be allocated to 
the work at hand in an efficient manner. 

It is DOwn that the prefix sums of n integers of ab­
solute sise nO(l) can be computed in O(lognjloglogn) 
time with optimal speedup, i.e., with a time-processor 
ptoduct of O(n) [5]. Because of its fundamental na­
ture, however, prefix summation is the bottleneck in 
algorithms for many other problems, and a faster prefix 
summation algorithm would be a great asset. Unfortu­
nately, as shown by Beame and Hastad [3], any PRAM 
algorithm that solves the problem using nO(l) processors 

must have a running time of O(lognjloglogn), even if 
Zj E {O, 1}, for j = 1, ... , n, so that the algorithm of [5] 
is as fast as possible. The lower bound was originally 
stated for deterministic algorithms, but can be shown 
to hold for the expected running time of randomized 
algorithms as well. 

In an attempt to sidestep the lower bound of Beame 

integers Zl, ... , Z,,, computeL:;=l Zj, for i = 1, ... , n, and Hastad, various researchers considered the problem 
is among the most fundamental problems in the field of of linear approzimate compaction, which is defined as 
parallel computing. To a !arge extent, this is due to its that of (exact) compaction, except that the k objects 
folklore application to the problem of compaction, i.e., are to be placed in an array of size O(k), rather than 
given an array of n cells, k of which contain an object, k. Linear approximate compaction does not solve the 
place the k objects in (distinct cells of) an array of prefix summation problem, but it serves almost as well 

size k. The compaction problem, in turn, derives much 
of its importance !rom its dose connection to processor 
allocation. E.g., if each object represents a constant-size 
task to be executed by some processor, the execution of 
the tasks can be carried out with optimal speedup (i.e., 
every processor does useful work all of the time) on ce 
the objects have been compacted, since then they can 
be distributed evenly among the available processorsj 
without compaction, much processing power may be 
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in the major application to processor allocation. Using 
ideas developed previously by Raman [21], Matias and 
Vishkin [19] showed how to solve linear approximate 
compaction problems of size n in O(log*n) expected 

time on a randomized n-processor CRCW PRAM (they 
actually required an upper bound m on k to be given 
as part of the input and compacted into 4m cells rather 
than O(k) cells, but this is immaterial). Their result 
and later improvements and extensions of it led to 
surprisingly fast randomized algorithms for a number 
of fundamental problems [19, 10, 11, 2, 8, 9, 12, 13, 1, 
16, 15]. 

.As mentioned above, it is DOwn that the introduc­
tion of randomization by itself is not sufficient to cir­

cumvent the O(lognjloglogn) lower bound of Beame 



and Hastad. In other words, taking the step from ex- speedup. 

act to approximate compaction is essential. It was not 

known whether, once approximate compaction has been 

substituted for exact compaction, it is additionally nec­

essary to res ort to randomization (technically speaking, 

if we restrict attention to algorithms that are either uni­
form or reasonably efficient). We answer this question 

in the negative by showing that linear approximate com­

paction problems of size n can be solved deterministi­

cally in O((loglogn)3) time with optimal speedup. 

Instead of linear approximate compaction, we actu­

ally consider the more general interval allocation prob­

lem inboduced by Hagerup [10], which is also knownto 

have O(log*n)-time randomized solutions [8, 10]. The 

interval allocation problem of size n is, given n nonneg­

ative integers Zl, ••• , Zn, to allocate (i.e., compute the 

off sets of) n nonoverlapping subarrays of sizes Z 1, ... , Zn 

!rom within a base array of size 0CL:7=1 zi); linear ap­
proximate compaction can be seen to be precisely the 

special case in which zi E {0,1}, for j.= 1, ... , n. 

AE, argued in [13], interval allocation allows the solu­

tion of more general processor allocation problems than 

does linear approximate compaction; in addition, the 

algorithm of the present paper depends in an essen­

tial way on the greater generality of interval allocation: 

Even if the original problem is one of linear approx-

While not using any specific results from that paper, 

the present paper owes much ofits spirit to [20]. 

2 . Overview of the algorithm 

At the topmost level our algorithm uses what has 
been called the "divide-and-crush paradigm" , whereby 

"crush" refers to the activity of solving small subprob­

lems fast using a number of processors that far exceeds 

the size of these subproblems. An application of the 

divide-and-crush paradigm requires, loosely speaking, 

that the problem under consideration can be broken 

up into "local" subprQblems, solutions to which can 

be combined to form a "global" problem of the same 

kind , whose solution is a solution to the original prob­

lem. The problem of computing the maximum among 

a number of input elements, for instance, has this prop­

erty: H the input elements are partitioned into groups 

and the maximum within each group is computed, the 

overall maximum can be obtained as the maximlim of 

the group maxima. Another requirement is that there 

is indeed a suitable "crushing" subroutine. Continu­

ing the example, the maximum of m elements is eas­

ily computed in constant time with m 2 processors by 

carrying out all m 2 pairwise comparisons between in­

put elements and declaring to be the maximum the 

imate compaction, its solution generates subproblems unique element that never loses a comparison. When­

that are general interval allocation problems. For our ever, as in the example, the "crushing" subroutine uses 

present purpose, however, the expression 0CL:7=1 zi) constant time and mO(l) processors on inputs of size 

for the size of the base array is too crude; we have to m, the divide-and-crush paradigm yields an algorithm 

be more specific about the constant factor hiding in the that uses O(log log n) time and n processors on inputs 

"big oh". Hence for all >. ~ 0, define the interval allo- of size n. H the problem additionally admits a linear-
cation problem with padding factor >. to be as above, 

but with the base array allowed to be of size at most 

(1 + >.) :L:7=1 zi, rather than O(:L:7=1 zi)' Our actual 
result is that for every constant I, interval allocation 

problems of size n and with padding lactor (log log n)-I 
can be solved deterministically in O((log log n )3) time 

with optimal speedup. 

In fact, although this is of secondary interest, we 

obtain a more general result by exploiting a bade­

off between running time and padding factor ([16] 

paraphrased a similar situation "waste makes haste"): 

For all t ~ (log log n )3, we can solve interval al­

location problems of size n and with padding fac­
tor 2-tlogloglogn/(loglogn)3 in O(t) time with optimal 
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time sequential solution, the running time can be kept 

at o (log log n), while the number of processors is re­

duced to (the optimal) O(n/loglogn). For the algo­

rithm studied in this paper, the "crushing" subroutine 
needs e(log log m) time and essentially mloglogm pro­

cessors on inputs of size in, which leads to an optimal 

algorithm with a running time of o «(log log n)3). To our 

knowledge, this is the first application of the divide-and­

crush paradigm with a "crushing" subroutine of super­

polynomial complexity. 

When nothing else is stated, our model of computa­

tion is the standard ARBITRARY CRCW PRAM. The­

orems 4.1, 5.1 and 6.1 actually hold for any CRCW 



PRAM variant capable of computing the OR of n bits 
using constant time, n processors and O(n) space, and 
Theorem 6.2 holds for any variant that in addition 
has the so-called self-simulating property, i.e., a ma­

chine with p processors can simulate each step of a ma­

chine with n processors in O(fnlpl) time, for arbitrary 

n,pE IN. 
Throughout the paper, logz denotes max{log2z, I}, 

for arbitrary z > O. 

a multiplier magical. In other words, if we attempt to 
move the objects to the destination array according to 
the function associated with a magical multiplier, there 

will be fewer than 2k2 I S left-over objects that found no 
free cello We may subsequently attempt to handle (most 

of) these in the same way. 
For a numerical example, suppose that we first 

use the simple compaction scheme outlined above with 

S = SI = 8k. Assume for a moment that we happen to 
know a magical multiplier a. As argued above, we can 

3 Nonoptimallinear approximate compaction then place all except fewer than 2P I SI = kl4 objects 

In this section we describe the main ideas of our in the destination array of size SI. In a next stage 

"aushing" subroutine for the special case of linear we may use a new destination array of size S2 = 4k, 
approximate compaction. Our solution males crucial in which case the number of active objects decreases 
use of techniques developed in the theory of hashing, below 2(kI4)2/(4k) = k132, where an active object is 

and the concept of collisions under a hash function is one that has not yet been placed. Taking S3 = 2k leaves 
central. Given a function h and a finite subset X of fewer than 2(kI32)2/(2k) = kl322 active objects after 
the domain of h, define the collision number of h on X the third stage. It seems justified to expect that if we 

as the number of elements in X whose image under h 
is not unique, i.e., as the quantity I{z EX: For some 

y E X\{z}, h(z) = h(y)}l. The following lemma was 
essentially proved by Fredman et al. [7]. We use the 
convenient formulation given in [14]. 

LEMMA. 3.1. Let m, k, sEIN and let p 2: m be 
a prime. Then for every subset X of {O, ... , m - I} 
with lXI::; k, there ezists an integer a with 1 ::; a < p 
such that the collision number on X of the fu.nction 
z t-+ (az modp) mod s is less than 2PIs. 0 

continue in this way with Si+! = s;/2, for i = 1,2, ... , 
then the nuinber of active objects will be bounded by 
kir, where r is approximately squared in each stage. 

This intuition is indeed correct, insofar as the process 

will come to an end after at most nog log k 1 stages, with 
all objects placed - it is straightforward to verify by 
induction that the number of active objects after i stages 
is less than k .2-(2'+i- l ), for i = 1,2, ... The total 

number of destination cells used is SI +S2 + ... = O(k). 
In other words, given an oracle that promptly delivers 
magical multipliers whenever they are needed, we can 

In our applications of Lemma 3.1, the enct value of p solve linear approximate compaction problems of size n 

will be inessential: Any prime p 2: m with p = O(m) in O(loglogk) = O(loglogn) time using n processors 
will dOj since the set {m, ... , 2m} contains at least one (if the prime pis given for free). 
prime, such a prime can be found in constant time with There is little hope of constructing such an oracle. 

m2 processors, which will always be available. We can What we can do, however, is to try out all possible 
interpret Lemma 3.1 as a statement about approximate multipliers in parallel. Note that we cannot tell until 

compaction in the following way: If we are given an the very end whether a particular multiplier was good, 
array A[O .. m-l] of size m containing at most k objects, so that we are forced to combine all possible multipliers 
let X be the set of indices of those cells in A that in Stage 1 with all possible multipliers in Stage 2, 

contain an object. In order to place the objects in etc. This structures the computation as a (p - 1)­
a destination array B[O .. s - 1] of size s, we might ary tree of depth at most nog log k 1, all branches of 
attempt to place the object previously in cell number which are explored in parallel, starting from the root. 
z in A in cell number (az mod p) mod s in B, for some Each stage needs p - 1 times more processors than the 

value of a with 1 ::; a < p. The lemma states that previous one, so that the overall processor reqmrements 
there is a value oHhe multiplier a for which fewer than are::; n· (p - l)nog1ogkl ::; ~oglog"+2. In fact , since 

2P I s objects claim a cell in the destination array that p = O( n) and since it is easy to see that we can reduce 
is also claimed by some other objectj let us call such the number of stages by any desired additive constant by 
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multiplying Sl by a suitable constant, we have proved: 

LEMMA. 3.2. For every constant c, linear approz­

imate compaction problems 0/ size n can Oe solved in 
O(loglogn) time using at most rnloglogn-el processq1's. 

o 

The above proof implicitly assumes k to be known. 
If this is not the case, we can simply execute the algo­
rithm in parallel with k = 0,1, ... , n and subsequently 

choose the smallest destination array into which the ob­
jects were successfully compacted. The extra cost in 

terms of processors can be absorbed into the constant c. 

4 Optimal but wasteful interval allocation 

In this section we proceed from "linear approximate com­

paction to interval allocation using a simple reduction 
introduced in [10], restated in [8] and discussed more 
fully in [13]. We also embed the "crushing" subroutine 
in an optimal algorithm according to the divide-and­

crush paradigm. 
Assume that we are given an input :Cl, ... ,:Cn 

to the interval allocation problem and that we want 

to solve the problem with constant padding factor " 
(i.e., according to the original definition of interval 
allocation). Each input number :Cj can be viewed as a 

"request" for a block of:Cj contiguous cells. The central 
observation is that we can pretend that there are only 
O(logn) different request sizes. Indeed, ifthe maximum 

request is M, any nonzero request smaller than M / n can 

be replaced by r M / n 1 without increasing the sum of all 
requests by more than a constant factorj recall from 

Section 2 that M can be computed in O(loglogn) time. 
Similarly, each nonzero request can be rounded to the 
nearest larger power of2, which leaves O(logn) distinct 
request sizes, as desired. Henceforth, a "color class" will 
be the set of requests of one particular common size. 
At a cost of an extra factor of O(logn) in the number 
of processors, we can now apply the linear approximate 

compaction algorithm of the previous section separately 
to each color elass. What remains is to allocate space 

for the base arrays ofthe O(logn) color elasses (i.e., to 
solve an interval allocation problem of size O(logn))j 

this can be done in o (log log n) time using the standard 
prefix summation algorithm. 

THEOREM 4.1. For every constant c, inteMlal al­

location problems 0/ size n (with unspecified constant 
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padding /actor) can Oe solved in o (log log n) time using 
at most rnloglogn-el proceuors. 0 

We now apply the divide-and-crush principle. 

Given an input of size n to the interval allocation 
problem, we can begin spending 9(loglogn) time com­
puting prefix sums within groups of input numbers 

of size 9((logn)2) using the standard parallel algo­
rithm, thereby in effect reducing the problem size by 
9((log n)2). Since we will use 9(n/(loglogn)3) pro­

cessors (see below) , this gives us an initial processor 
advantage of n(logn), where the processor advantage 

is defined as the number of processors divided by the 
problem size. We now execute a number of rounds. Ar 
sume that at some point we have achieved a processor 

advantage of v = n(log n). The nen round then divides 
the problem at hand into the smallest possible number 
of subproblems of size at most m = lv l/[log log 11' J each, 

solves these in O(loglogm) = O(loglogn) time using 
the algorithm of Theorem 4.1 (note that mlog 10gm $ v) 
and combin.es the solutions of the subproblems into a 

global problem by letting the size of the base array 
of each solution become a request in the global prob­

lem. We leave to the reader the easy details of how 
to keep track of the subarrays allocated to the original 

requests. As for the running time, however, the im­
portant fact is that the global problem, if it is of size 

~ 2, will be smaller than the (global) problem of the 

previous round by a factor of at least m/2. For suf­
ficiently large values of n, we hence go !rom a pioces­

sor advantage of v to a processor advantage of at least 
vl+l/(210g10gll) ~ vl+l/(21og10gn). But then, as long as 

the problem size is not reduced to 1, 2 log log n rounds at 

least square the processor advantage. Since the proces­
sor advantage cannot exceed n, O«loglogn)2) rounds 
suffice to solve the original problem. 

The above gives us an interval allocation algo­
rithm with optimal speedup and a running time of 

o «log log n )3). However, the algorithm suffers from 
an important drawback: Each application of Theo­

rem 4.1 introduces a constant padding factor, i.e., the 
9( (log log n )2) successive rounds accumulate a total 
padding factor of 28 ((loglogn)2). In the nen section we 

show how to reduce the padding factor from this value 
to 0(1). This is the most complicated part of out argu­

mentj since all important applications of interval alloca-



tion require the padding fador to be at most constant, possible according to Lemma 3.1, and let X' be the set 
however, it is weil worth the effort. 

5 Reducing the padding factor 

Assume that we succeed in modifying the algorithm 

of Lemma 3.2 so that it compacts with padding fac­
tor O((loglogn)-1-3), where I is a given positive 

integer with I = O(logn/(loglogn)3). The bet­
ter padding faetor then carries over to Theorem 4.1, 

except that the number of color classes must be 
increased to 0(logn(loglogn)1+3) (note that (1 + 
(loglognt ' -

3)(ioglogn)'+$ = 0(1), so that each orig-

inal color dass splits into E>((loglogn)1+3) new color 
classes). Tbis causes a negligible increase in the num­
ber of processors needed and an increase to E>(log log n+ 
lIog log log n) in the running time; the laUer will turn 
out to be negligible as well. Applying the divide-and­
crush principle as in the previous section gives an algo­
rithm that uses as many processors and as many rounds 

as before, but with padding faetor 

(1 + o ((log log n)-1-3))O«loglogn)') - 1 

of elements in X that do not collideunder h4 ,o, i.e., 

X' = {z EX: For all y E X\{z}, h4 ,o(z) ::f h4 ,o(y)}. 
By the choice of a, IX'I ~ ~. Since the elements in 

X' do not collide under h4 ," for any b, the task now 
. lXI' is simply to show that Ih4 ,,,(X') n FI ~ 2. for some 

bE {O, ... , s-l}. But L:~:~ Ih4 ,,,(X') nFI = IX'IIFI ~ 
I·\t, since each element of F is "hit" exactly once by 

each element of X' as b vanes from 0 to s -1. The claim 
now follows, since at least one of the s terms of the sum 
~, 1 I (' I 1 lXI' L..t,,:o h4 ,,, X ) n F must be at least -;. 2 • . 0 

The introduetion of the set F allows us to declare 
certain values in {O, ... , s - 1} (namely those not in F) 
"invalid" in the sense that even if an object is the only 
one mapped to such a value, it cannot be placed in the 
conesponding cello We use tbis in two ways. Firstly, 
although our intention is to compact into k cells, we can 

take s to be considerably larger than k, as required by 

Lemma 3.1, simply by ensuring that F ~ {O, ... , k -1}. 
Secondly, we can reuse the same k cells over several 
stages; F will be the subset of {O, ... , k - 1} of indices 
of those cells that were not occupied in earlier stages. If 
we start out with k active objects, the number of active 

which for su1liciently large values of n is bounded by objeds will then clearly equal IF I after any number 
(log log n)-I. of stages, as necessary for a repeated application of 

Our goal therefore is, for given I EIN, to modify Lemma 5.1. 

Lemma 3.2 to obtain a padding fador of O(A), where In order to compact most of k objeets into k 
A = (loglogn)-1-3. We meet tbis goal by introducing cells, we hence take s = 4k and execute a number of 
a preprocessing phase that places all except at most stages, in each of which we try in parallel for all pairs 
Ak objects in an array of size k, after which the (a,b)E{1, ... ,p-1}x{0, ... ,s-1}tomaptheadive 

remaining objeds can be dealt with using (the original) objeds according to h4 ,,,, an objed being placed if it 
Lemma 3.2. Our approach is based on the following hits one of the k cells, if tbis cell was not occupied 

lemma, ofthe same llavor as Lemma 3.1: 

LEMMA 5.1. Let m, sEIN and let p ~ m be a 

prime. For all a E {1, ... ,p-1}, bE {O, ... ,s -1} 

and z E {O, ... , m - 1}, let h4 ,,,(z) = ((az mod p) + 
b) mod s. Then for all sets X ~ {O, ... , m - 1} and 

F ~ {O, ... , s - 1} with lXI = !PI ~ s/4, there ezist 

integers a E {1, .. . ,p - 1} and b E {O, ... , s - 1} such 

that 

l{zEX h4 ,,,(z) E F, and for all y E X\{z}, 
IXI 2 

h4 ,,,(z) ::f h4 ,,,(y)}I ~ Ta. 

Proof. Choose a E {1, .. . ,p - 1} such that the 
collision number of h4 ,o on X is less than 21: 1' ~ ~, 
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in a previous stage and if it is not claimed by any 
other object in the present stage. Lemma 5.1 states 

that there exists a "magical" pair (a, b) that lets us go 

from !X! active objeets to at most IX! - I~r active 
objects. The following lemma quantifies the efficiency 
of tbis procedure. 

LEMMA 5.2. Let qo and s be positive intege7's with 

qo ~ sand suppose that {q;}f=l is aseries with qj+l ~ , 
qj - ~, for j = 0, 1, ... Then for all rEIN, ql6r ~ ~. 

Proof· Suppose that q. ~ i, for some integers i ~ 0 

and 9 ~ 1. Then qi+8g ~ ;g. For if tbis were not 
the case, we would have ;g < q; ~ i and henc;e 

q~ , . 
qj+l ~ qj - ~ < qj - qj . 4g. ~ qj - ~ for all integers 



j with i .:5 j < i + 8g, a contradidion. Using this 
for 9 = 1,2,4, ... , 2l1ogrJ, we find that qi .:5 ;, where 

i = 8· (1 + 2 + 4 + ... + 2l1ogrJ) .:5 16r. 0 

Assume that we are solving a (sub-)problem of size 
m .:5 n. We can condude !rom Lemma 5.2 that 

o (log log m) stages suffice to reduce the number of ac­
tive objects by a fador of 9(log log m). At this point 
we use Lemma 3.2 to compact the remaining !ree cells 

into an array of size 1 = O(fk/loglogml). This al­
lows us to prune away all branches, except one, !rom 

the computation tree (recall that we try out all se­
quences of pairs (a, b) in parallel), essential in order 
to keep the processor count at mO(loglogm): We sim­

ply pick a branch for which the compaction into 1 
cells succeeds. The compaction also allows us to re­

define s as 41, after which we can proceed as before, 
i.e., another O(log log m) stages reduce the number of 
active objeds by another fador of 9(loglogm), etc. 

Mter altogether O(loglog mlog(l/ A)/log log log m) = 
O(1oglog nlog(l/ A)/loglog log n) O(lloglog n) 
stages we are left with at most Ak active objeds, as 
desired. Using this with 1= rt/(loglogn)3l, we obtain: 

THEOREM 5.1. For all given t ~ (log log n)3, inter­
val allocation problems 01 size n and with padding lactor 
2-Uogloglogn/(loglogn)' can be solved in O(t) time using 

rn/tl processors and O(n) space. 0 

6 ApplieatioDS 

The first result below follows immediately !rom Theo­
rem 5.1 and was used implicitly in its proof, but still 
deserves to be formulated explicitly. 

The problem of apprtnimate summation with rel­
ative error bound A ~ 0 is, given n nonnegative inte­

gers Zl, ... , Zn, to compute an estimate 80f the number 

s = Ej=l Zj such that s .:5 8.:5 (1 + A)S. 

THEOREM 6.1. For all given t ~ (log log n)3, ap­
prozimate summation problems 01 size n and with rela­
tive error bound 2-Uogloglogn/(loglogn)' can be solved in 

O(t) time using rn/tl processors and O(n) space. 0 

Our second result deals with the processor allo­
cation problem, which we must therefore formaIizej 
see [13] for a fuller discussion. Assume that a paral­
lel algorithm operates with a dynamically changing col­
ledion of virtual processors, and that the algorithm is 

charged one operation for each virtual processor for each 
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time step in which the virtual processor is in existence 

(i.e., the algorithm pays only for resources that it actu­
aUy uses). Suppose further that the mechanism avail­
able to the algorithm for manipulating the colIedion of 

virtual processors is an instrudion Allocate(zl' ... ' zr), 
executed in unison by all currently existing virtual pro­
cessors, each of which contributes a single nonnegative 
integer argument Z to the instrudion. Z = 0 means 
that the processor should be removed (presumably be­
cause it has completed its task), Z = 1 means that the 
processor is to be left alone, and Z ~ 2 is arequest 
that Z - 1 new virtual processors be allocated to the 

virtual processor that contributed the argument z. The 
algorithm is charged one time unit for each execution 

of an Allocate instrudion. An algorithm with these 

properties is called loosely specijied in [8] and standard 
in [13] j as concerns aspects of processor allocation, prac­
tically all published parallel algorithms can be formu­

lated within this !ramework. Observe that the efficient 
implementation of a standard algorithm on a PRAM is 
far !rom obvious, since the PRAM lacb machine-Ievel 

facilities for dynamic task management. Loosely speak­
ing, the processor allocation problem is precisely to pro­
vide such an implementation. More precisely, we want 

to execute the standard algorithm on a PRAM in such 
a way that the time and the number of operations con­
sumed by the PRAM are as dose as possible to the time 
and the number of operations charged to the standard 
algorithm, respectively, which means that the overhead 
due to processor allocation should be low. The proof of 

Theorem 6.2 below is a slight modification of the proof 
of Theorem 5.2 in [13], which is a counterpart of Theo­
rem 6.2 for randomized standard algorithms. 

THEOREM 6.2. For all given t, t', nEIN, every 
deterministic standard algorithm that uses at most t 
time steps, t' calls 01 Allocate and n operations can 

be ezecuted on a deterministic PRAM using O(t + 
t'(loglogn)3) time and O(n) operations. 0 

Theorem 6.2 can possibly be used to improve the 
best known deterministic algorithms for a number of 

problems in computational geometry - see [9] for a 
list of candidate problems. We will not pursue this 
line of investigation, but instead finally consider the 
problem of computing the connected components of 
general undireded graphs on a deterministic CRew 



PRAM. The best published algorithm for this problem, 
due to Cole and Vishkin [6], uses O(logn) time and 

O«n+m)a(m,n)/logn) processors on input graphs 
with n vertices and m edges, where a is a slowly-growing 

"inverse Ackermann" function - see [6] for the exact 
definition of a. The algorithm derives part of its speed 
flom a deterministic load balancing scheme based on the 
use of expander graphs. As an application of our results 

on processor allocation and approximate summation, we 
can give aversion of the algorithm of Cole and Vishkin 
that avoids the large constant factors associated with 

the use of expander graphsj this serves as an example 

of how to apply our results in a "real-life" situation. 
We are also able to simplify the algorithm to some 

extent. The necessary modifications are smallj for the 

reader's convenience, however, we describe them in the 
context of the "smallest enclosing black box" , the "Main 
Connectivity Algorithm" of [6]. The reader is alerted 
to the fact that another and quite different algorithm 
that can also take the place of the "Main Connectivity 

Algorithm" of [6] was developed in independent work 

by Iwamaand Kambayashi [17]. Their algorithm avoids 
not only the use of expander graphs, but of nontrivial 
load balancing altogether, and appears to be superior 

to ours in practical terms. 

We consider each (undirected) edge {u, v} to be 
composed of two antiparallel directed darts (u, v) and 
(11, u). We assume that an input graph G = (V, E) is 

presented as an array of size IV I specifying the (integer) 
names representing the vertices in V, together with an 

array D of size 21Ellisting the 21EI darts of G, each 

of which is represented by (the names of) its head and 

tail. The algorithm of [6] in addition requires the darts 

in D to be semisorted by their tails, the meaning of 

Proo/.Let the input graph be Go = (Vo, Eo) and 

take n = lVol and m = IEol. We can assume without 
loss of generality that n ~ 216 and, as demonstrated 
by Cole and Vishkin (the "Reduction Procedure"), that 

m ~ nlog n. We describe an algorithm for computing 
the connected components of Go in O(logn) time using 
p = 9(m/logn) processorSj the reader is referred to [6] 
for the implementation details. 

The algorithm successively constructs undirected 

graphs Gi = (Vi, Ei), for i = 1,2, ... , which may 
contain multiple edges and loops. For i = 1,2, ... , Gi 

is constructed flom Gi-l by computinga partition U 

of Vi-I' each of whose sets spans a connected subgraph 
of Gi_I, and then contracting the vertices of each set 
U E U into a single new vertex said to contain the 

vertices in U. Each edge {u, v} in Ei-I is replaced by 
the ~dge {u' , Vi} in Ei, where u' and Vi are the vertices 

in Vi containing u and v, respectively, except that the 
algorithm discards a number ofloops in the construction 
of Gi flom Gi-I. Extend the relation of containment to 
its refiexive and transitive closure, such that each vertex 

in Gi contains a subset of Vo, for i = 0, I, .. " and extend 
the relation further to subgraphs of Gi in the obvious 
way (a vertex in Vois contained in a subgraph of Gi if 
and only if it is contained in one of its vertices). 

Let do = Lylm/nJ ~ 4 and d; = lcf.~;J, for 
i = 1,2, .. " and assign to each vertex in Go a weight of 

~. For i = 0, 1, ... , define the weight of a vertex in Gi 

or of a subgraph of Gi as the total weight of the vertices 
in Go that it contains. Obviously the weight of each of 

Go, GI, ... is bounded by m. Also define avertex in Gi 
or a connected subgraph of Gi to be complete if and 

only if the vertices in Go that it contains span a full 

connected component of Go, and incomplete otherwise. 
For each u E Vo, the vertex in the most recently 

which is that the darts out of any given vertex occupy constructed graph Gi that contains u will be recorded 
acontiguous part of D. Since a standard adjacency list in a variable T[u]. The goal thereforeis to arrive at 
representation can be converted to this format using 

O(logn) time and O(n + m) operations by means of 
(essentially) list ranking, the theorem below need not 
distinguish between the two representations. 

THEOREM 6.3. [6] The connected components 0/ 
an undirected graph with n 'Oertices and m edges 

represented via adjacency lists can be computed in 

O(logn) time on an ARBITRARY CRCW PRAM with 

O«n + m)a(m, n)/logn) processors. 
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a graph Gi without incomplete vertices, since at this 

point the array T furnishes a solution to the original 

connected-components problem. The algorithm will 
ensure that the weight of each incomplete vertex in Gi 

is at least dl, for i = 0, 1, ... (the weight condition for 
Gi)j in particular, the number of incomplete vertices 

in Gi is bounded by m/dl. Since min{i EIN: 
4 > m} = o (log log n), the algorithm terminates after 
constructing Gi for some i with i = O(loglogn). 



What remams is to describe the construdion of Gi The basic operation in Step 1 is that of processing 

from Gi-I, for i = 1,2, ... , which will be called Stage i. a dart. To process a dart e = (u, v) (where u and v 

We first describe an idealized algorithm that ignores a are the true endpoints of e, not those recorded in the 
certam complication, and afterwards describe how to representation), discard e if u = v. Otherwise check 
deal with the complication. by inspeding a variable ACTUAL[u, v) whether a dart 

We will consider each dart (u, v) to "belong to" its from u to v was already found earlier in the present 
tail u. In the idea1.i.zed description, each stage begins stage. If so, discard e. If not, attempt to record e as the 
with the darts of each vertex divided into blocks of value of ACTUAL[u, v), thereby signaling the discovery 
en.ctly B darts each, where B = 9(logn/(loglogn)2), of a dart from u to v. Since possibly other darts 
except that each vertex may possess a single incomplete from u to v are discovered simultaneously, this may 
block containing fewer than B darts. The darts of each involve concurrent writing. The darl actually recorded 
block are stored in a linked list, accessible via a pointer in ACTUAL[u, v] becomes a selected dan; the other 
in a block header. The block headers of all vertices are darts from u to v are discarded. Note that since the 
stored together in an array of size O(m/B), with the table ACTUAL is too !arge to be initiaJised, it should 
blocks of each vertex occupying a contiguous part of be handled with care: Whenever a dart e is recorded in 
the array. Note that as far as the representation is some cell in ACTUAL, a back pointer to this cell should 
concerned, a dart still records the endpoints in Vo of be stored with e and checked by every processor that 
the corresponding dart in Go; it would be too expensive finds e stored in some cell of ACTUAL, and the valid 
to repeatedly update the representations of all darts. A 
dart with recorded tail u and head v therefore actually 
is a dart from T[u] to T[v). 

entries in ACTUAL should be cleared between stages. 
To process a block is to process the darls in the 

block one by one, whichcan be done in O(B) time 

Define a spanning forest of an undirected graph by a single processor. Step 1 processes blocks until 
G = (V, E) as any acyclic subgraph of G on the full for each vertex u either at least d;-l darts out of 
vertex set V. Each connected component of a spanning u have been selected, or all of u's blocks have been 
forest will be called a tree in the forest. For i = 1,2, ... , 

Stage i consists of the following three steps, which are 
practically the same as those of [6]: 

processed. In more detail, call avertex u actille as 
long as the number of selected darts out of u is not 
known to be at least d;-l' and call a block active if 
it belongs to an active vertex and has not yet been 

1. Construct a subgraph G' of Gi_Ion the verlex set 
processed. Step 1 is divided into iterations. The first 

Vo-l and with at most m/d;-l edges, the weight of 
each of whose incomplete connected components is 
at least d'f; 

2. Construd a spanning forest G" of G', the weight 
of each of whose incomplete trees is at least d'f; 

3. Construct Gi from Gi-l by contracting the verlices 
in each tree of G" into a single vertex. 

G' will be a simple graph, i.e., it includes neither 

multiple edges nor loops. For each u E Vo-l, we will 
include in G' either d;"'l edges incident on u, or eise 
one edge between u and each neighbor of u. Thus each 
incomplete connected component of G' will contam at 
least d;-l verticesj since each vertex is ofweight at least 

d'f-l' by the weight condition for Gi-I, the weight of 
each incomplete component will be at least 4-1 ~ d'f, 
as required. 
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iteration processes all incomplete blocks; since there is 

at most one incomplete block for each verlex and p = 
O(n), this takes O(B) time. In the beginning of every 
other iteration, we first use Theorem 6.1 to compute 
an estimate b, correct up to a constant factor, of the 
total number of remaining active blocks. Afterwards a 
vertex u with b,. active blocks requests min{bu, rbup/61} 
virlual processors, each of which will process one of u's 
active blocks. Note thatthe total number of virtual 

processors requested is O(p)j by Theorem 6.2, the time 
needed to allocate these processors is O«loglogn)3) = 
O(B) per iteration, i.e., negligible. This processor 
allocation by means of Theorem 6.2, which replaces the 
"approximate task scheduling" of [6], is the only change 
to the algorithm of [6) that is essential in order to avoid 
the use of expander graphsj other small modifications 
in the present description are introduced merely in the 



interest of simplicity. After each iteration and for each remammg good vertices. Say that an initially active 

vertex u, the processors allocated to u use Theorem 6.1 block is one that is active at the beginning of the 

to estimate the number Su of selected darts found for Uj iteration under consideration. The proportion of both 

specifically, they compute an integer Su with Su ~ Su ~ processed blocks and initially active blocks contributed 

2s". If Su 2: 2dä-l and therefore Su 2: dä-l, U becomes 
inactive. When all blocks have become inactive, G' is 

formed from a subset of the selected darts: a vertex 

with s selected darts contributes min{s, dä-l} of these, 
and the undirected versions of all darts contributed in 

this way form the edge set of G' j since the number 

of incomplete vertices in Gi-l is at most m/dLl' the 
number of edges in G' will be at most m/dä-l, as 

required. 
The correctness of Step 1 is obvious. The time 

analysis is as in [6]: Say that (the processing of) a 

dart in some iteration is of type (a) if the dart is 

discarded, and of type (b) if the tail of the dart becomes 

by bad vertices is 0(1) (i.e., tends to zero as n tends to 

infinity) , for the bad vertices contribute at most n = 
o(p) processed blocks and at most nb/p = o(b) initially 

active blocks, where bis the estimate of the number of 
initially active blocks computed by the algorithm. On 

the other hand, if for each vertex we form the ratio of the 
number of processed blocks to the number of initially 

active blocks, then the ratios of two good vertices will 
düfer by at most a factor of 2 (because if !"bup/b'] 2: 2, 

then rbup/bl ~ 2b"p/b). Using these observations, we 
can conclude that in a regular iteration of type (b) and 

for sufficiently large values of n, at least one quarter of 

the blocks of good vertices processed belong to vertices 

inactive at the end of the iteration under consideration, that become inactive in that iteration, hence that at 

and say that an iteration is of type (a) or (b) if at least one eighth of the initially active blocks of good 
least one third of the darts processed in the iteration vertices become inactive (since for each good vertex 

are of type (a) or (b), respectively. Call an iteration the "sampie" of processed blocks faithfully reflects the 

regular if it is neither the first nor the last iteration number of active blocks, up to a factor of 2), and finally 

in its stage. For sufficiently large values of n, every that therefore at least one ninth of all initially active 

regular iteration is either oftype (a) or of type (b) (or bloCks become inactive. 

both), as can be seen from the following observations. For Step 2 we use a modification proposed in [6] 

Firstly, every regular iteration processes O(p) blocks. of the connected-components algorithm of Shiloach and 

Secondly, a dart that is neither oftype (a)nor oftype Vishkin [22]. The algorithm runs in O(log dä-l) time 

(b) is selected, but its tail continues to be active. In using O((n+m/dä_l) log dä-l) operations and computes 

Stage i, this happens to at most 2dä-l - 1 darts per a spanning forest of G', each of whose incomplete trees 

vertex, and hence to O(m/dä-l) = O(m/y1Og"n) darts contains at least dä-l vertices and hence has a weight 

altogetherj for sufficiently large values of n, these darts of at least di, as required. The time and the number of 

cannot constitute one third or more of theO(pB) = operations needed sum over all stages to O(logn) and 

O(m/(loglogn)2) darts processed in a regular iteration. O(nlogn + m) = O(m), respectively. 

As a dart is discarded only once, the total work For Step 3, begin by constructing an Ewer tour of 

expended in all iterations of type (a) is O(m). We each ofthe trees in G" computed in Step 2. To do this, 

will prove that every regular iteration of type (b) convert G" from the representation as an unordered 

reduces the number of active blocks by at least a list of darts to the adjacency list representation, after 

constant factor. Since the total number of blocks which constructing the Euler tour in constant time 

is O(m/B) = O(P(loglogn)2), this can happen only is a trivial matter. The conversion of G" essentially 

O(logloglogn) times within one stage. The time spent reduces to sorting itsdarts by their tails. Using the . 

in all iterations that are not of type (a) over all stages algorithm of Bhatt et al. [4], this can be done in 

is hence O(Blog log nlog log log n) = O(logn). O(logn/loglogn) time using O((n + m/dä_l)loglogn) 
In order to prove that a regular iteration oftype (b) operations, which sums over all stages to O(logn) time 

reduces the number of active blocks by at least a and O(m) operations. We now appeal to the idealizing 

constant factor, we distinguish between bad vertices, assumption mentioned in the beginning of the proof, 

those for which at most one block is processed, and the which is that no tree created in Step 2 contains more 

9 



than 4+1 verlices. Under this assumption O(log ~-1) ignored in the following stage. Spending sufficient but 
steps of standard pointer doubling applied to the Euler still O(log ~-1) time in Step 3, we can easily ensure 
tour of each tree suffice to select a unique name for that each virtual vertex created in Stage i is heavy in 
each tree, to update the array T accordingly, and to Stage i, for i = 1,2, ... The approach for dealing with 

number the vertices of each tree consecutively; the a heavy verlex, basically, is to "let it lie" until the first 
time and the number of operations needed are as for stage in which it is no longer heavy, at which point it 
Step 2. The block headers of all verlices can then be will be contracted into anormal vertex. This involves 
rearranged by means of prefix summation so that the a number of changes to the algorithm. First of all, in 
headers of each tree appear in consecutive locations; this Step 1 we no longer attempt to select darts out of an 

needs O(logn/loglogn) time and O(m/B) operations out-of-date vertex, which is both unfeasible (since we 
per stage, which sums over all stages to O(log n) time cannot tell whether a given dart is a loop in the virlual 
and O(m) operations. Processing again the blocks graph) and unnecessary (because the verlex is contained 

processed in Step 1 and additionally spending another in a heavy verlex in the virtual graph). There may 

O(log n/log log n) time and O( m/ B) operations, we can still be selected darts leading into out-of-date verlices 
also for each tree divide the processed darts that were !rom current vertices; however, we arrange it so that 
not discarded into new blocks of B darts each, with at a current verlex that encounters a dart into an out­
most one incomplete block, reuse some block headers of-date verlex seleds one such dart without consulting 
of processed blocks for the new blocks and remove the the table ACTUAL, after which it immediately becomes 

block headers that are no longer needed. Now Gi has inactive. This ensures that the current verlex will not 
been constructed !rom Gi - 1• have to decide whether two darls leading to out-of-date 

verlices are incident on the same virtual verlex, which 

If we remove the simplifying assumption that each would be unfeasible, and the single darl selected suffices 
tree created in Step 2 is ofsize at most 4+1' there may to satisfy the weight condition. In Step 2, the spanning­
be trees that cannot be contracted in the O(log ~-1) tree algorithm is modified to treat all edges incident on 
time allotted to this operation. We shall still want to some out-of-date verlex as though they were incident 
consider the verlices in such a tree as forming a new on the same ("canonical out-of-date") verlex. Since this 
verlex in Gi; since this vertex is not represented by the represents the most conservative assumption concerning 
algorithm in the usual way, we call it a virtual vertez. which out-of-date verlices might be contained in the 
We hence distinguish between a virtual graph, the one same virtual verlex, the edge set computed cerlainly 
that the algorithm would have constructed if the tree spans an acyclic subgraph, even in the virlual graph. 

contraction had been allowed to run to completion, and In the virlual graph there may be trees with fewer 

the actual graph, which düfers from the virlual graph than ~-1 verlices, but each such tree contains at least 
in that cerlain contractions have not been carried out. one virtual verlex and is therefore sufficiently heavy. 
Note that we consider the weight invariants to apply to Finally, in Step 3 we want to attempt to contract each 
the virtual graph. We identify the edges in the actual tree of a virtual vertex created in a previous stage. In 
graph with the edges in the virlual graph in the natural Stage i, the algorithm of Step 3 is therefore applied to a 

manner. The verlices represented in the actual graph graph that includes not only the verlices in Vi-1 and the 
but not present in the virtual graph will be called out- edges found in Step 2 of Stage i, but also all out-of-date 

of-date verlices, and each spanning-tree edge found in verlices and edges. Since there are at most n out-of­
Step 2 between two out-of-date verlices will be called date verlices and at most n - 1 out-of-date edges (the 
an out-of-date edge; note that this does not include all out-of-date edges form no cycle), this does not increase 
edges between out-of-date verlices. A current verlex the complexity of Step 3 by more than a constant factor. 
is averlex in the actual graph that is not out-of-date. With these modifications, the algorithm worb without 

For i = 1,2, ... , call averlex heavy in Stage i if Hs the simplifying assumption and still uses O(logn) time 
weight is at least d;+1; the intention is that the weight and O(m) operations. 0 

of a heavy verlex is sufficient to allow the verlex to be 
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7 Open problems 

We have demonstrated the existence of determinis­
tic algorithms with running times of o(log n/loglog 11.) 
for problems in the "prefix summation family" . Al­
though for practical values of 11. the running time of 
O((loglogn)3) achieved in this paper is likely to behave 

like a constant, on the theoretical side there remains 
a large gap to the O(1og*n) achievable with random­

ized algorithms, and to the only known lower bound 
of O(log*n) (18). Obtaining better upper bounds or 

showing thatthe performance of randomized algorithms 
cannot be matched deterministica1ly is an obvious open 
problem. 

Although the present pap.er succeeds in derandom­
izing some of the results obtained in the course of the 
so-called "log-star revolution" [13], with some loss in 
speed, other such results are entirely unaffected because 
they additionally use randomization for purposes unre­
lated to compaction. Can interesting deterministic al­
gorithms be obtained for these problems? 
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