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Abstract 

The Steiner problem requires a shortest tree spanning a given 
vertex subset S within graph G = (V, E). There are two 11/6-
approximation algorithms with running time O(VE + VS2 + S4) [9] 

and O(VE + VS2 + S3+t) [2], respectively. Now we decrease the 
implementation time to O(ES + VS2 + VlogV). 

1 Introduction 

Let G = (V, E, d) be a graph with a vertex set V, an edge set E and distance 
function d : E -+ R+. A tree T is aSteiner tree of S, S C V, if S is contained 
in the vertex set of T. Given G and S, the Seiner tree problem requires the 
shortest Steiner tree (also called the Steiner minimal tree) of S. 

It is known that the Steiner tree problem is NP-hard [5]. Therefore algo­
rithms which in polynomial time construct an approximate Steiner minimal 
tree are investigated. The quality of an approximation is measured by its 

1 



performance ratio: an upper bound on the ratio between achieved length and 
the optimal length. 

A well-known heuristic ( an MST-heuristic) for the Steiner tree problem 
approximates aSteiner minimal tree with a minimum length spanning tree 
of a complete graph Gs which has a vertex set S and edge lengths equal to 
shortest path lengths in the graph G. It was proved that the lowest perfor­
mance ratio of this heuristic equals 2 [7]. The fastest known implementation 
of the MST-heuristic has a running time O(E + VlogV) [6] (throughout this 
paper we use E, V, S to denote the #E, #v, #S, respectively, in the order of 
a running time of an algorithm). For many years, the problem of finding a 
better heuristic remained open. 

Two better heuristics were given recently [2,9]. Their better performance 
ratios appear while consideration of a k-restricted Steiner tree problem. 

First we introduce some denotations: S MT( S) and smt( S) are aSteiner 
minimal tree of S and its length, respectively. For a complete graph with a 
vertex set S, Gs , M(Gs ) denotes the minimum length spanning tree of Gs , 
and m( G s) denotes its length. 

SMT(S) may in general contain vertices of V\S. So SMT(S) contains 
the set S of given vertices and some additional vertices. SMT(S) is called a 
fu11 Steiner tree if S coincides with the set ofleaves of SMT(S). H SMT(S) 
is not full, then we can split it into the union of edge-disjoint full Steiner 
subtrees. SMT(S) is called k-restricted if every full component has at 
most k given vertices. Let the shortest k-restricted Steiner tree for the set 
S, denoted by SMTlc (S), has the length smtlc(S), Note, that SMT2(S) = 
M(F). 

Let rlc = sUp{smtlc(S)/smt(S)}. The bound for the MST-heuristic im­
plies r2 = 2 [7]. It was proved that r3 = 5/3 [8,9], r4 :::; ~ and rs :::; ~ [1]. 
Moreover, r21: :::; 1 + i [3]. 

The above bounds anse the k-restricted Steiner tree problem which re­
quires a shortest k-restricted Steiner tree. A greedy algorithm finds a 2-
restricted Steiner minimal tree [7]. Unfortunately, for k ~ 4 computing 
SMTlc(S) is NP-hard [5]. The problem for k = 3 is open. Note that this 
problem can be generalized to the problem of a minimum spanning set of 
weighted (k - 1)-polymatroids [10]. The main idea of the known heuristics 
with nontrivial performance ratios is to approximate k-restricted Steiner 
minimal trees instead of usual Steiner minimal trees. 

A greedy heuristic achievesa performance ratio r2 - (r2 - r3)/2 in time 
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O( V E + V S2 + S4) [9]. A family of evaluation heuristics Ale was constructed 
in [2]. Ale achieves a performance ratio at most 

Ie 
"" r,-1 - r, r2 - L.J . 
,=3 ~ - 1 

in time O(VE + V Ie- 2 SIe- l + Sk+!) [2] . 
We restrict our attention to the case k = 3. Then the approximation 

ratio for A3 (as well as for greedy algorithm) is at most 1
6
1. The problem 

of finding exact upper approximation bounds for the both algorithms is still 
open. 

In this paper, we acrueve the performance ratio of 1
6
1 in time O(ES + 

VS2 + VlogV) . A greedy approach to the 3-restricted Steiner problem, 
necessary definitions and facts are contained in the next section. In Section 
3, we give a modified version of the greedy algorithm. 

2 Greedy Approach 

Some preliminary definitions: given a tripIe z = {a, b, c} E S, aSteiner 
minimal tree z* for z (called astar) may include one additional vertex v = 
v(z) (called a center of a star). The length of z* = (V(Z)i a, b, c) is denoted 
by d(z) = d(v, a) + d(v, b) + d(v, c). For a set Z of tripIes, d(Z) is the sum of 
lengths of its elements. Tripies denotes the set of all tripIes for S. 

Let T = M ( G s ) and d( T) denote the length of T. Given a pair of vertices 
a, b ofT, we use T[a, b] to denote an MST(TU(a, b)), where (a, b) is an edge of 
zero length. Fo! any tripIe z = {a, b, c} the graph T[z] equals T[(a, b)][(a, c)], 
i.e. it results from two reductions. For a set A ~onsisting of pairsand tripIes 
we define T[A] recursively: T[0] = T, and T[A U e] = T[A][e] . 

Let a value 

winT(z) = m(F) - m(F U z*) = d(T) - d(T[z]) - d(z) 

is positive. Then m(T U z*) is better than the MST-heuristic approximate 
solution for the 3-restricted Steiner problem. For a set Z of tripIes, we define 
winT(Z) = d(T) - d(T[Z]) - d(Z). The equality r3 = ~ implies an existance 
of a set Z such that 
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· 5 d(T) - W'l.nT(Z) ::; 3smt(S) (2.1) 

The greedy heuristic choses the best possible reduction of a previously 
achieved approximate solution. Below we present a rough version of the 
greedy heuristic. 

Algorithm 2.1 (greedy heuristic) 

(0) T f- M(Gs ), W f- 0j 
(1) repeat forever 

(a) find z = argmaz{winT(z)lz E Triples}j 
(b) if winT(z) ::; 0 then exit repeatj 
(c) T f- T[z]j insert(W,v(z»)j 

(2) find aSteiner tree Tl for S U W in graph.G using MST-heuristic. 

A sequence of tripies chosen by the greedy heuristic is called greedy in 
Gs · 

Theore~ 2.2 [9]. If H is the set of elements of a greedy sequence of 
tripies, then for every set of tripies Z 

(2.2) 

Inequalities (2.1) and (2.2) imply a performance ratio of I'; for the greedy 
heuristic. 

An implementation of the greedy heuristic given in [9] generates stars for 
all tripies of given vertices in time O(EV + VS2). The sa.meprocedure is 
necessary for the evaluation heuristic. This generation needs the shortest 
path distances . between given vertices and additional vertices. Therefore, we 
can decrease its running time to O(ES + VS2) using an O(E)-algorithm for 
every given vertex sES to find all shortest paths from s to other vertices of 
V. 

Now we describe computing of the function winT. 
For a pair e = (a,b) of given vertices define saveT(e) = d(T) - d(T[e]). 

Let List(T) = {tl, ... , tn } be an nondecreasing oreder of edges of T. Then 
saveT( e) is the length of the last edge of List, say ti, in the unique cycle of 
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TUe. The index i of ti is denoted by indT(e), i.e. saveT(e) = d(tindTCe»). 
Note that T[e] = eU T\ti and List(T[e]) = {e, t l , ... , ti-I, ti+l, ... , tn }. 

Furt her , z denotes the set ofthree edges {(a,b),(b,c),(c,a)}, for a tripie 
z={a,b,c}. 

Lemma 2.3. For any tripie z = {a, b, c}, z contains a unique edge with 
the minimum index and two other edge indices equal to each other. 

Proof. Let Pab , Pbe , Pea be simple paths in the tree T between a and b, 
b and c, c and a, respectively. One of these three paths is the symmetric 
subtraction of the two others. Let Pea = (Pab \Pbe ) U (Pbe \Pab ), indT(a, b) ~ 
indT(b,c) and indT(c,a) = i. Ifti E Pab\Pbe , then i = ind(a,b) = ind(c,a) > 
ind(b,c), otherwise i = ind(a,b) = ind(b,c) > ind(c,a). [] 

Corollary 2.4[9]. 

winT( z) = m~ saveT( e) + mi!l saveT( e) 
eCz eCz 

This corollary implies that it is sufficient to compute the function saveT. 
At first we find a binary tree T' which. corresponds to T according to List. 
Inner vertices of T' correspond to edges of T, leaves correspond to the vertices 
of T. A root of T' is tn and sons of ti are the last edges in two components 
which appear after deletion of ti from T'\A(ti), where A(ti) is the set of 
ancestors of ti. H such component does not contain edges, then the son is the 
corresponding vertex of T. Moreover, using preprocess(T') (preprocessing 
of time O(S)) we can find in time 0(1) the nearest common ancestor of any 
pair e of given vertices [4] which corresponds to the edge of T with the length 
saveT(e). 

Thus, to fulfill the step (1)(a) of Algorithm 2.1 it is sufficient time 0(S3), 
therefore, the step (1) demands time O( S4) and a running time of the whole 
algorithm is O(ES + VS2 + S4). 

3 A Faster Greedy heuristic 

Now we present a faster modification of the greedy heuristic. At first, for 
every vertex v E V\ S, the following algorithm finds a best possible star with 
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the center v and then chooses the best one among all such stars. Therefore, 
it does not generate all stars with positive win. 

Algorithm 3.1. 

(0) find all shortest paths from S to Vj 
find T = M(Gs)j 
W~0j 

(1) repeat forever 
(a) find List(T), Tlj preprocess(TI)j 
(b) for all v E V\S do 

So ~ arg min6 Es d( v, s)j 
SI ~ argmax6 Es[saveT(sO's) - d(v,s)]j 
s2 ~ arg max6 ES winT( Vj So, sI, s)j 

(c) z ~argIila.xvEV\swinT(VjSo,Sl,S2)j 
(d) if winT(Z) :::; 0 then exit repeatj 
(e) T ~ T\{e1' e2} U {(so, SI), (So, S2)}, where 

and d(SO,Sl) ~ d(SO,S2) ~ Oj 
insert(W, v(Z))j 

'(2) find aSteiner tree T2 for S U W in graph G using MST-heuristic. 

Lemma 3.2. The output Steiner tree T2 of Algorithm 3.1 coincides with 
the output Steiner tree Tl of Algorithm 2.1. 

Proof. It is necessary to prove that a star resulted by steps (1 )(b) and 
(1)(c) has a maximum win. Let 

ZI = (Vj a, b, c) = arg max winT(Vj a, b, c) 
B,b,cES 

Let i and j be the largest and the smallest indices of Zl. Then 

winT(Vj a, b, c) = d(ti) + d(tj) - d(v, a) - d(v, b) - d(v, c) (3.1). 

The forest T\ {ti, tj} has three components with vertex sets A, B, C, such 
that a E A, bEB, c E c. Let ti connect A and B, tj connect B and c. Then 
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ind( a', b') ;::: i for every two vertices a' E A and b' E B. The same inequality 
holds for the components B and C. Note, that (3.1) implies that a, b, c are 
the nearest vertices to v in its components. Therefore, So E z'. 

Let So coincides with a. If SI belongs to the other component (B or C), 
then SI also coincides with b or c and z = z', since the star z has the largest 
winT among stars with the center v and given vertices So and SI' 

Let SI E A and indT(sO' SI) = k. Then k cannot coincide with i and j 
and Lemma 2.3 implies that 

This value is at least 

d(tj) - d(v, c) + d(ti) - d(v,so) - d(v, b) = winT(v; So, b, c), 

since d(tlc) - d(v, SI) ;::: d(ti) - d(v, c) ;::: d(tj) - d(v, c) 
The cases of So coincide with b or c are similar. (] 

Now we can present the main result of this paper. 

Theorem 3.3. Algorithm 3.1 finds 'an li-approximation of a minimal 
Steiner tree in time O(ES + VS 2 + VlogV). 

Proof. Lemma 3.2 implies that it is sufficient to estimate the running 
time of Algorithm 3.1. The steps (0) and (2) have been considered already 
above: they can be implemented in time O(E + VlogV) [6]. The updating 
time for the step (1) is O(S) for preprocess and constant for substitution 
of edges in the current tree T. The most complicated step is (l)(a), which 
takes time O(V S) per iteration. Thus, the whole running time of Algorithm 
3.1 is O(ES + VS2 + VlogV).[] 
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